JP2007083146A - Method for preparing photocatalyst using ceramic foam, and photocatalyst - Google Patents

Method for preparing photocatalyst using ceramic foam, and photocatalyst Download PDF

Info

Publication number
JP2007083146A
JP2007083146A JP2005273839A JP2005273839A JP2007083146A JP 2007083146 A JP2007083146 A JP 2007083146A JP 2005273839 A JP2005273839 A JP 2005273839A JP 2005273839 A JP2005273839 A JP 2005273839A JP 2007083146 A JP2007083146 A JP 2007083146A
Authority
JP
Japan
Prior art keywords
photocatalyst
dehydrated cake
titanium
foam
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005273839A
Other languages
Japanese (ja)
Other versions
JP4724789B2 (en
Inventor
Riyougo Yamazaki
良悟 山崎
Nobuyuki Ochiai
伸之 落合
Tomoji Yamashita
智司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba Institute of Technology
Jobu Sangyo KK
Original Assignee
Chiba Institute of Technology
Jobu Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba Institute of Technology, Jobu Sangyo KK filed Critical Chiba Institute of Technology
Priority to JP2005273839A priority Critical patent/JP4724789B2/en
Publication of JP2007083146A publication Critical patent/JP2007083146A/en
Application granted granted Critical
Publication of JP4724789B2 publication Critical patent/JP4724789B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing a photocatalyst comprising a titanium complex derived from titanium oxide using a dehydrated cake. <P>SOLUTION: The method for preparing a photocatalyst using a ceramic foam according to the present invention is characterized by comprising steps of preparing a slurry by adding a titanium complex solution, a carbonate, and hydrogen peroxide water to a dehydrated cake, filling a mold with the resulting slurry to form an article, releasing the molded article from the mold, drying the molded article under vacuum at a low temperature, and sintering the dried article at a temperature of 500°C to 700°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、主として砕石場から大量に発生している脱水ケーキを用いて酸化チタン複合発泡体セラミックスを製造する発泡体セラミックスを用いた光触媒の製造方法及び光触媒に関する。   The present invention relates to a method for producing a photocatalyst using a foam ceramic and a photocatalyst using a foam ceramic that produces a titanium oxide composite foam ceramic mainly using a dehydrated cake generated in large quantities from a quarry.

砕石場から大量に発生している脱水ケーキの有効利用については、幾多の研究開発があり、前記脱水ケーキを素材とする発泡体セラミックスの製造についての提案もある。   There have been many researches and developments regarding the effective use of dehydrated cake generated in large quantities from quarries, and there are also proposals for producing foam ceramics using the dehydrated cake as a raw material.

また触媒担体としてセラミックスを用いることも知られており、セラミックスの固化について研究されているが、脱水ケーキなど廃棄物の触媒利用の為チタンと焼成して多孔性にする技術及び低温焼結体(例えば500℃〜700℃で焼結)などについては未だ知られていない。   It is also known to use ceramics as a catalyst carrier, and research on solidification of ceramics has been carried out. However, technology for making porous by firing with titanium for use in waste catalysts such as dehydrated cakes and low-temperature sintered bodies ( For example, sintering at 500 ° C. to 700 ° C. is not yet known.

また発泡体セラミックスを触媒に利用する技術も光触媒の酸化チタンに関しては、研究課題であった。
特開2001−269574 特開2003−210997 特開2001−205100 特開2001−198475
In addition, the technology of using foam ceramics as a catalyst was also a research subject for photocatalyst titanium oxide.
JP 2001-269574 A JP 2003-210997 A JP 2001-205100 A JP 2001-198475 A

従来砕石場などで大量に発生する脱水ケーキは、発泡体セラミックスとして建材に使用されているが、更に付加価値をつけて多量に消費すべく研究し、その一つとして光触媒の担体とすることに想到した。然し乍ら従来光触媒として、酸化チタンを使用する場合には、前記脱水ケーキを600℃〜900℃に焼結し、これに酸化チタンを付着させていたが、触媒能力の向上について更に研究を必要としていた。   Conventionally, dehydrated cakes generated in large quantities in quarries, etc., have been used as building materials as foam ceramics, but we have also studied to add more value and consume them in large quantities. I came up with it. However, when titanium oxide is used as a conventional photocatalyst, the dehydrated cake was sintered at 600 ° C. to 900 ° C., and titanium oxide was adhered thereto. However, further research was needed to improve the catalytic ability. .

またセラミックスの中に釉薬を入れると、触媒能力が低下する問題点があった。   In addition, when glaze is put in ceramics, there is a problem that the catalytic ability is lowered.

従来特許公報に記載された発明としては、セラミックスと、酸化チタン粒とを混合し、成型し、焼結する手段を採用しているが、従来知られている製造方法では900℃以下で焼結している(特許文献1、3)。   The invention described in the prior patent publication employs means for mixing ceramic, titanium oxide grains, molding, and sintering, but in the conventionally known manufacturing method, sintering is performed at 900 ° C. or lower. (Patent Documents 1 and 3).

また酸化チタン焼結体の焼結温度500℃〜1100℃とされることもある(特許文献2)。   Moreover, the sintering temperature of the titanium oxide sintered body may be set to 500 ° C. to 1100 ° C. (Patent Document 2).

更に酸化チタン多孔質セラミック体の焼結を400℃〜850℃とする提案もある(特許文献4)。但し前記は、本願発明とセラミックスの成分が異なるものが多く、焼結温度についても400℃〜1100℃の開きがあって、400℃のような低温焼結では、水に入れると崩壊し、高温焼結(例えば800℃以上)では触媒機能の低下が考えられる。   Furthermore, there is also a proposal that the sintering of the titanium oxide porous ceramic body is 400 ° C. to 850 ° C. (Patent Document 4). However, many of the above are different in the ceramic component from the present invention, and there is an opening of 400 ° C. to 1100 ° C. about the sintering temperature. In sintering (for example, 800 ° C. or higher), the catalyst function may be lowered.

然るにこの発明は、脱水ケーキ中に炭酸塩(低融点化物質)を混合することによって、500℃〜700℃で焼結できるようにして、前記従来の問題点を解決したのである。前記焼結温度を400℃〜500℃にした場合には、固形化した発泡体セラミックスを水中に入れると、崩壊することが認められ、700℃を越えると、酸化チタンの触媒機能が低下されるので、材質によって変動が考えられるが、表1のような成分の場合には焼結温度は500℃を越え、700℃未満がよいと考えられる。
However, the present invention solves the above-mentioned conventional problems by allowing carbonate (low melting point substance) to be mixed in the dehydrated cake so that sintering can be performed at 500 ° C. to 700 ° C. When the sintering temperature is set to 400 ° C. to 500 ° C., it is recognized that the solidified foam ceramics collapses in water, and when it exceeds 700 ° C., the catalytic function of titanium oxide is reduced. Therefore, although variation may be considered depending on the material, in the case of the components shown in Table 1, it is considered that the sintering temperature should be higher than 500 ° C. and lower than 700 ° C.

即ちこの発明は、脱水ケーキにチタン錯体溶液、炭酸塩及び過酸化水素水を加えてスラリーを生成し、このスラリーを型に入れて成型した後、脱型し、この成型物を減圧低温乾燥した後、500℃〜700℃で焼結することを特徴とした発泡体セラミックスを用いた光触媒の製造方法であり、脱水ケーキに対し、チタン錯体溶液(Ti1モル/ml)を20%〜40%wt%加え、炭酸塩は炭酸カリウム、炭酸ナトリウム及び炭酸カルシウムとし、これを夫々5%〜30wt%用い、3%過酸化水素水は10%〜30wt%用いるものである。   That is, in this invention, a titanium complex solution, carbonate and hydrogen peroxide solution are added to a dehydrated cake to form a slurry, and the slurry is put into a mold and molded, then demolded, and the molded product is dried at a low temperature under reduced pressure. Then, it is a manufacturing method of a photocatalyst using foam ceramics characterized by sintering at 500 ° C. to 700 ° C., and a titanium complex solution (Ti 1 mol / ml) is 20% to 40% wt with respect to the dehydrated cake. In addition, the carbonates are potassium carbonate, sodium carbonate, and calcium carbonate, and 5% to 30 wt% of each is used, and 10% to 30 wt% of 3% hydrogen peroxide is used.

また、減圧低温乾燥は、圧力−0.2〜−0.05Paで温度60℃〜90℃としたものであり、チタン錯体溶液は、くえん酸溶液、硫酸チタン(IV)、3%過酸化水素水及びアンモニア水を等量混合して生成するものであり、また他の発明は、請求項1記載の方法により製造したことを特徴とする光触媒である。   Further, the low-temperature low-pressure drying is performed at a pressure of −0.2 to −0.05 Pa and a temperature of 60 to 90 ° C., and the titanium complex solution is a citric acid solution, titanium (IV) sulfate, 3% hydrogen peroxide. The photocatalyst is produced by mixing equal amounts of water and aqueous ammonia. Another invention is a photocatalyst produced by the method according to claim 1.

前記発明における触媒の焼結温度を500℃未満にした場合には、触媒を水中に入れると崩壊し、700℃を超えると、光触媒能力の低下が認められるので、500℃〜700℃とした。   When the sintering temperature of the catalyst in the invention is less than 500 ° C., it collapses when the catalyst is put in water, and when it exceeds 700 ° C., a decrease in the photocatalytic ability is recognized, so the temperature is set to 500 ° C. to 700 ° C.

また乾燥時に常圧乾燥では、気孔率が70%以下になるので、減圧乾燥で−0.2〜−0.05Paとした。気孔率の関係から、過度の減圧は不必要と認められた。   Moreover, since the porosity becomes 70% or less in the normal pressure drying at the time of drying, the pressure is reduced to -0.2 to -0.05 Pa by drying. From the relationship of porosity, it was recognized that excessive decompression was unnecessary.

この発明で使用する酸化チタンは、紫外線を吸収することによって活性を帯びる代表的半導体物質であり、水又は空気の浄化に使用され、効果を奏している。   Titanium oxide used in the present invention is a typical semiconductor material that is active by absorbing ultraviolet rays, and is effective in purifying water or air.

一般に脱水ケーキを主材とするセラミックス担体の焼成温度は、900℃〜1000℃が良いと考えるが、酸化チタンを含むセラミックスの焼成温度は500℃以上700℃以下が好ましい。   In general, it is considered that the firing temperature of a ceramic carrier mainly composed of a dehydrated cake is 900 ° C. to 1000 ° C., but the firing temperature of the ceramic containing titanium oxide is preferably 500 ° C. or more and 700 ° C. or less.

そこでセラミックスと酸化チタンとの混合物を焼結するには、焼結温度が触媒に悪影響を及ぼさない温度で通常の浄水などの触媒に耐え得る強度が好ましいので、500℃〜700℃となる。   Therefore, in order to sinter a mixture of ceramics and titanium oxide, the strength that can withstand a catalyst such as ordinary water purification at a temperature at which the sintering temperature does not adversely affect the catalyst is preferable, and thus the temperature is 500 ° C to 700 ° C.

前記発明においては、砕石場から大量に発生している脱水ケーキの有効活用を検討しており、主に農業園芸・建材・環境浄化を目的に砕石微粒である脱水ケーキを主原料とした発泡体セラミックスの製造を検討している。この製造プ口セスの特徴として、発泡助剤として過酸化水素水を加えることにより、脱水ケーキに含まれた成分を発泡させるので、気泡が均一化する利点があり、かつ製造がきわめて簡単容易である。従来は発泡助剤に3%過酸化水素水、焼結助剤に釉薬を添加して800℃で1時間焼成することにより、気孔率50%〜60%の発泡体を製造することができる。また、環境浄化分野への応用としてチタンと過酸化水素水の錯体形成能力を利用し、発泡体セラミックスに光触媒性を付与することが可能である。   In the invention, the effective use of the dehydrated cake generated in large quantities from the quarry is being studied, and the foam is mainly composed of dehydrated cake that is fine crushed stone for the purpose of agricultural horticulture, building materials and environmental purification. We are considering the production of ceramics. As a feature of this manufacturing process, by adding hydrogen peroxide as a foaming aid, the components contained in the dehydrated cake are foamed, which has the advantage of uniform air bubbles and is extremely simple and easy to manufacture. is there. Conventionally, a foam having a porosity of 50% to 60% can be produced by adding 3% hydrogen peroxide water to the foaming aid and adding glaze to the sintering aid and baking at 800 ° C. for 1 hour. Further, as an application to the environmental purification field, it is possible to impart photocatalytic properties to foam ceramics by utilizing the complex forming ability of titanium and hydrogen peroxide solution.

また、従来の焼結助剤に釉薬を用いることにより、表面に露出する酸化チタン(TiO)の量が低下して光触媒性が低下する欠点を改善し、さらに高い気孔率を有する発泡体セラミッスの製造条件を研究し、光触媒性付与について、脱水ケーキとチタン錯体溶液とを混合させ、光触媒性付与を行う混合法について研究した。 Further, by using a glaze as a conventional sintering aid, the amount of titanium oxide (TiO 2 ) exposed on the surface is reduced and the photocatalytic property is reduced, and foam ceramics having a higher porosity The production conditions were studied, and photocatalytic properties were imparted by mixing a dehydrated cake and a titanium complex solution to study photomixing properties.

この発明は、脱水ケーキに対して全水量が40wt%になるように3%過酸化水素水と水を混合してスラリーとした。このとき、過酸化水素水の添加量が少なければ発泡は起こらず、添加量が多ければ発泡の際に自重により気孔がつぶれる。これは過酸化水素水濃度を大きくしても同様である。よって脱水ケーキに対して、3%過酸化水素水10wt%、水30wt%の全水量40wt%を最良のスラリー化条件とした。この配合比でスラリー化した後、成型、乾燥、離型して、大気中で焼成することによりこの発明の発泡体セラミックスを製造した。   In the present invention, a 3% hydrogen peroxide solution and water were mixed to form a slurry so that the total amount of water was 40 wt% with respect to the dehydrated cake. At this time, if the added amount of the hydrogen peroxide solution is small, foaming does not occur, and if the added amount is large, the pores are crushed by its own weight during foaming. This is the same even when the hydrogen peroxide concentration is increased. Therefore, the best slurrying condition was set to 40 wt% of the total water amount of 3% hydrogen peroxide water 10wt% and water 30wt% with respect to the dehydrated cake. After slurrying at this mixing ratio, the foamed ceramic of the present invention was produced by molding, drying, releasing, and firing in the air.

この発明において固化温度低下のための釉薬に代わる焼結助剤の選定を行い、各成分が固化温度に及ぼす影響を研究するとともに、気孔率に及ぼす影響についても研究した。
また光触媒性付与には、硫酸チタン(IV)と過酸化水素水、さらに錯体形成剤として、くえん酸、アンモニア水を加えてチタン錯体溶液とし、このチタン錯体溶液を脱水ケーキに添加してスラリーとして発泡体セラミックスを製造する混合法について検討した。また、露出面のTiOの確認にはEPMA分析を行った。
In this invention, a sintering aid was selected in place of the glaze for lowering the solidification temperature, and the influence of each component on the solidification temperature was studied, as well as the influence on the porosity.
In addition, for imparting photocatalytic properties, titanium sulfate (IV) and hydrogen peroxide water, and further complex forming agents, citric acid and ammonia water are added to form a titanium complex solution, and this titanium complex solution is added to a dehydrated cake as a slurry. A mixing method for producing foam ceramics was investigated. Further, EPMA analysis was performed to confirm the TiO 2 on the exposed surface.

前記脱水ケーキの主成分は、前記表1の化学組成に示すようにSiO、Alである。また、脱水ケーキの融点は1300℃〜1400℃の間であった。そこで状態図に基づき融点を低下できる成分を調査した。その結果SiO−Al−CaO、SiO−Al−KO、SiO−Al−NaOの各状態図において低融点組成のあることが確認できた。そこで、焼結助剤としてCaCO、KCO、NaCOを添加して低温固化の可能性を検討した。またこれらの炭酸塩の添加による発泡体の気孔率に及ぼす影響についても検討した。この場合の鉱物組成は表2のとおりである。
The main components of the dehydrated cake are SiO 2 and Al 2 O 3 as shown in the chemical composition of Table 1 above. The melting point of the dehydrated cake was between 1300 ° C and 1400 ° C. Therefore, the components that can lower the melting point were investigated based on the phase diagram. Consequently SiO 2 -Al 2 O 3 -CaO, SiO 2 -Al 2 O 3 -K 2 O, that a low melting point composition in each state diagram of SiO 2 -Al 2 O 3 -Na 2 O was confirmed . Therefore, the possibility of low-temperature solidification was examined by adding CaCO 3 , K 2 CO 3 , and Na 2 CO 3 as sintering aids. The effect of the addition of these carbonates on the porosity of the foam was also investigated. The mineral composition in this case is as shown in Table 2.

脱水ケーキに対して炭酸カルシウムを10wt%添加して作製した発泡体は、焼成温度500℃で固化はするが水中に入れたと同時に崩れてしまった。炭酸カリウム、炭酸ナトリウム10wt%を夫々添加して作製した発泡体は焼成温度500℃で作製したものは水中でも崩れることはなかった。さらに低温固化させるため炭酸カリウム、炭酸ナトリウムの添加量20wt%、30wt%と増やして400℃焼成を行ったが崩れた。次に釉薬を用いた場合の800℃に代わり、炭酸カリウム、炭酸カルシウム、炭酸ナトリウムの添加により焼成温度を500℃まで低下させることが可能となった。   The foam produced by adding 10 wt% of calcium carbonate to the dehydrated cake solidified at a baking temperature of 500 ° C., but collapsed as soon as it was put in water. Foams prepared by adding 10% by weight of potassium carbonate and sodium carbonate, respectively, produced at a firing temperature of 500 ° C. did not collapse even in water. Furthermore, in order to solidify at low temperature, the addition amount of potassium carbonate and sodium carbonate was increased to 20 wt% and 30 wt%, and the baking was carried out at 400 ° C, but it collapsed. Next, instead of 800 ° C. when glaze was used, it was possible to reduce the firing temperature to 500 ° C. by adding potassium carbonate, calcium carbonate, and sodium carbonate.

これら炭酸塩による気孔率の変化を検討すると、焼結助剤を添加せずに作製した発泡体セラミックスの気孔率は60%〜70%であった。釉薬を添加して作製すると釉薬が融解して気孔が塞がってしまうため、気孔率は10%近く低下する。しかし、炭酸塩を添加することにより、炭酸ガスの発生により気孔率は80%前後まで上昇するとの知見を得た。前記は実体顕微鏡およびSEMにより観察した気孔状態を図3、図4に示した。連続した気孔になっている。またSEM観察で発泡体の表面は凹凸が激しく、小さな気孔も確認できた。これら焼結助剤を加えた発泡体セラミックスは気孔率が大きく向上すると共に、水に浮くことを確認した。   When the change in the porosity due to these carbonates was examined, the porosity of the foam ceramic produced without adding the sintering aid was 60% to 70%. When the glaze is added, the glaze melts and the pores are blocked, so the porosity is reduced by nearly 10%. However, it has been found that the addition of carbonate increases the porosity to around 80% due to the generation of carbon dioxide. FIG. 3 and FIG. 4 show the pore state observed with a stereomicroscope and SEM. There are continuous pores. In addition, the surface of the foam was very uneven by SEM observation, and small pores could be confirmed. It was confirmed that the foam ceramic added with these sintering aids greatly improved the porosity and floated on water.

この発明によれば、脱水ケーキとチタン錯体溶液及び炭酸塩と、過酸化水素水を加えてスラリー化した。このスラリーと酸化チタン粉との混合物を成型、乾燥、焼結したので、触媒担体に酸化チタンが確実に、かつ広面積に付着しているので、脱色その他触媒効果が著しく大きくなった。   According to this invention, a dehydrated cake, a titanium complex solution, a carbonate, and a hydrogen peroxide solution were added to form a slurry. Since the mixture of this slurry and titanium oxide powder was molded, dried, and sintered, titanium oxide adhered to the catalyst carrier reliably and over a wide area, so that decolorization and other catalytic effects were significantly increased.

また焼結温度を500℃〜700℃としたので、水中に入れても崩壊することなく、触媒効力も維持できる。従って、この触媒を使用すれば、紫外線(太陽光線)の照射を受けて、70%〜80%の脱色率(効果)を奏することができる効果がある。   Moreover, since sintering temperature was 500 degreeC-700 degreeC, even if it puts in water, catalyst efficacy can also be maintained, without collapsing. Therefore, when this catalyst is used, there is an effect that a decolorization rate (effect) of 70% to 80% can be achieved upon irradiation with ultraviolet rays (sunlight).

この発明は、くえん酸溶液を錯体形成剤として、硫酸チタンと3%過酸化水素水の混合液に添加して、これにアンモニア水を加えて黄色のチタン錯体溶液を作製する。このチタン錯体溶液に脱水ケーキと、その20wt%の炭酸カリウム、炭酸ナトリウム及び炭酸カルシウムを夫々添加してスラリーとし、これを型に入れて成型した。ついで80℃で−0.05MPaの減圧雰囲気中で1時間乾燥した後、500℃で5時間熱処理した所、気孔率80%の発泡体セラミックスと酸化チタンを複合したこの発明の光触媒を得た。   In the present invention, a citric acid solution is added as a complex-forming agent to a mixed solution of titanium sulfate and 3% hydrogen peroxide water, and ammonia water is added thereto to prepare a yellow titanium complex solution. A dehydrated cake and 20 wt% potassium carbonate, sodium carbonate and calcium carbonate were added to the titanium complex solution to form a slurry, which was put into a mold and molded. Then, after drying in a reduced pressure atmosphere of −0.05 MPa at 80 ° C. for 1 hour, heat treatment was carried out at 500 ° C. for 5 hours to obtain a photocatalyst of the present invention in which a foam ceramic having a porosity of 80% and titanium oxide were combined.

前記において、常圧乾燥では気孔率70%であったが、−0.05MPaの雰囲気中の減圧乾燥では気孔率80%であった。   In the above, the porosity was 70% in the normal pressure drying, but the porosity was 80% in the vacuum drying in the atmosphere of -0.05 MPa.

この発明における光触媒性付与としては、くえん酸溶液10ml(1mol/l)を錯体形成剤として市販硫酸チタン(IV)10mlと3%過酸化水素水10mlの混合溶液に添加して、さらにアンモニア水10ml加えて、黄色のチタン錯体溶液を作製した。   In the present invention, the photocatalytic property is imparted by adding 10 ml (1 mol / l) of citric acid solution as a complexing agent to a mixed solution of 10 ml of commercially available titanium sulfate (IV) and 10 ml of 3% hydrogen peroxide solution, and further adding 10 ml of aqueous ammonia. In addition, a yellow titanium complex solution was prepared.

この錯体を使用した光触媒性付与方法として混合法を検討した。図5に付与方法を示した。   As a photocatalytic property imparting method using this complex, a mixing method was examined. FIG. 5 shows the application method.

混合法として、脱水ケーキにチタン錯体及び炭酸塩を添加して発泡体を作製した。脱水ケーキにチタン錯体のみを添加してスラリーとしても発泡は起こらず気孔率は30%前後であった。よって3%過酸化水素水とチタン錯体を添加して混合攪拌してスラリーとして焼成し、発泡体セラミックスを製造した。この時の気孔率は約80%となり、高い気孔率を有する発泡体が得られた。前記炭酸塩は、炭酸カリウム、炭酸ナトリウム及び炭酸カルシウムを夫々20wt%用いた。   As a mixing method, a foam was prepared by adding a titanium complex and carbonate to a dehydrated cake. Even when only the titanium complex was added to the dehydrated cake, foaming did not occur and the porosity was around 30%. Therefore, 3% hydrogen peroxide solution and titanium complex were added, mixed and stirred, and fired as a slurry to produce foam ceramics. The porosity at this time was about 80%, and a foam having a high porosity was obtained. As the carbonate, 20 wt% of potassium carbonate, sodium carbonate and calcium carbonate were used.

前記で焼結助剤に釉薬を用いて硫酸チタンと過酸化水素水の錯体を混合させて作製した発泡体では20時間で約40%の脱色率を示した。それに対してくえん酸を加えた錯体を混合攪拌させて低温固化させた発泡体では20時間で約70%の脱色率を示した。この発泡体表面をEPMA分析した結果、全体にTiOの存在を確認した。 The foam prepared by mixing the titanium sulfate and hydrogen peroxide water complex using glaze as a sintering aid described above showed a decolorization rate of about 40% in 20 hours. On the other hand, the foam obtained by mixing and stirring the complex added with citric acid and solidifying at a low temperature showed a decolorization rate of about 70% in 20 hours. As a result of EPMA analysis of the foam surface, the presence of TiO 2 was confirmed throughout.

次に、発泡体を破砕して使用することも考慮して発泡体を切断して、内部にあるTiOを露出させて、断面にブラックライトを照射して光触媒性評価を行った。その結果、約70%の脱色率を示した。 Next, considering that the foam was crushed and used, the foam was cut to expose TiO 2 inside, and the cross section was irradiated with black light to evaluate photocatalytic properties. As a result, the color removal rate was about 70%.

この発明の発泡セラミックスの成型体の気孔を被覆した状態の顕微鏡写真。The microscope picture of the state which coat | covered the pore of the molded object of the ceramic foam of this invention. 同じく気孔を開放した状態の顕微鏡写真。A photomicrograph with the pores open. 同じく顕微鏡写真Photomicrograph 同じく図3の一部SEM写真。Similarly, a partial SEM photograph of FIG. 同じく実施例のブロック図。The block diagram of an Example similarly.

Claims (5)

脱水ケーキにチタン錯体溶液、炭酸塩及び過酸化水素水を加えてスラリーを生成し、このスラリーを型に入れて成型した後、脱型し、この成型物を減圧低温乾燥した後、500℃〜700℃で焼結することを特徴とした発泡体セラミックスを用いた光触媒の製造方法。   A titanium complex solution, carbonate and hydrogen peroxide solution are added to the dehydrated cake to form a slurry. After the slurry is put in a mold and molded, the mold is removed, and the molded product is dried at a low temperature under reduced pressure. A method for producing a photocatalyst using foam ceramics, characterized by sintering at 700 ° C. 脱水ケーキに対し、チタン錯体溶液(Ti1モル/ml)を20%〜40wt%加え、炭酸塩は炭酸カリウム、炭酸ナトリウム及び炭酸カルシウムとし、これを夫々5%〜30wt%用い、3%過酸化水素水は10%〜30wt%用いることを特徴とした請求項1記載の発泡セラミックスを用いた光触媒の製造方法。   Titanium complex solution (Ti 1 mol / ml) is added to the dehydrated cake in an amount of 20% to 40 wt%, and the carbonates are potassium carbonate, sodium carbonate and calcium carbonate. The method for producing a photocatalyst using the foamed ceramic according to claim 1, wherein water is used in an amount of 10% to 30 wt%. 減圧低温乾燥は、圧力−0.2〜−0.05Paで温度60℃〜90℃としたことを特徴とする請求項1記載の光触媒の製造方法。   The method for producing a photocatalyst according to claim 1, wherein the low-pressure drying under reduced pressure is performed at a pressure of -0.2 to -0.05 Pa and a temperature of 60 ° C to 90 ° C. チタン錯体溶液は、くえん酸溶液、硫酸チタン(IV)、3%過酸化水素水及びアンモニア水を等量混合して生成することを特徴とした請求項1記載の光触媒の製造方法。   The method for producing a photocatalyst according to claim 1, wherein the titanium complex solution is produced by mixing equal amounts of citric acid solution, titanium (IV) sulfate, 3% hydrogen peroxide water and ammonia water. 請求項1記載の方法により製造したことを特徴とする光触媒。   A photocatalyst produced by the method according to claim 1.
JP2005273839A 2005-09-21 2005-09-21 Method for producing photocatalyst using foam ceramics and photocatalyst Expired - Fee Related JP4724789B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005273839A JP4724789B2 (en) 2005-09-21 2005-09-21 Method for producing photocatalyst using foam ceramics and photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005273839A JP4724789B2 (en) 2005-09-21 2005-09-21 Method for producing photocatalyst using foam ceramics and photocatalyst

Publications (2)

Publication Number Publication Date
JP2007083146A true JP2007083146A (en) 2007-04-05
JP4724789B2 JP4724789B2 (en) 2011-07-13

Family

ID=37970669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005273839A Expired - Fee Related JP4724789B2 (en) 2005-09-21 2005-09-21 Method for producing photocatalyst using foam ceramics and photocatalyst

Country Status (1)

Country Link
JP (1) JP4724789B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262029A (en) * 2008-04-23 2009-11-12 Shinetsu Quartz Prod Co Ltd Silica-based glass foam and method for manufacturing the same, and cleaning apparatus
JP2011050874A (en) * 2009-09-02 2011-03-17 Uchu Kankyo Hozen Center:Kk Photocatalyst ceramics
ITMI20111233A1 (en) * 2011-07-01 2013-01-02 Buzzi & Buzzi S R L PHOTOCATALYTIC AND ANTIBACTERIAL MATERIAL AND ITS USE IN THE FIELD OF BUILDING, LIGHTING AND FURNISHINGS

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257053A (en) * 1999-03-11 2000-09-19 Kajima Corp Water quality conserving method for water storage pond
JP2002153758A (en) * 2000-11-17 2002-05-28 Asahi Kasei Corp Anatase type titanium oxide dispersion liquid
JP2004123473A (en) * 2002-10-04 2004-04-22 Sumitomo Chem Co Ltd Method for manufacturing titanium oxide
JP2005162514A (en) * 2003-12-01 2005-06-23 Jobu Sangyo Kk Foaming body using crushed stone sludge or the like and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257053A (en) * 1999-03-11 2000-09-19 Kajima Corp Water quality conserving method for water storage pond
JP2002153758A (en) * 2000-11-17 2002-05-28 Asahi Kasei Corp Anatase type titanium oxide dispersion liquid
JP2004123473A (en) * 2002-10-04 2004-04-22 Sumitomo Chem Co Ltd Method for manufacturing titanium oxide
JP2005162514A (en) * 2003-12-01 2005-06-23 Jobu Sangyo Kk Foaming body using crushed stone sludge or the like and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010056360, 柴田智史 他, ""脱水ケーキを用いた発泡体セラミックスの製造"", 資源・素材学会春季大会講演集(II)素材編, 20050328, p.83−84 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262029A (en) * 2008-04-23 2009-11-12 Shinetsu Quartz Prod Co Ltd Silica-based glass foam and method for manufacturing the same, and cleaning apparatus
JP2011050874A (en) * 2009-09-02 2011-03-17 Uchu Kankyo Hozen Center:Kk Photocatalyst ceramics
ITMI20111233A1 (en) * 2011-07-01 2013-01-02 Buzzi & Buzzi S R L PHOTOCATALYTIC AND ANTIBACTERIAL MATERIAL AND ITS USE IN THE FIELD OF BUILDING, LIGHTING AND FURNISHINGS
WO2013005141A1 (en) * 2011-07-01 2013-01-10 BUZZI & BUZZI S.r.l. Photocatalytic and anti - bacterial material and use thereof in the building, lighting and furnishing field

Also Published As

Publication number Publication date
JP4724789B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
Zhu et al. Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al 2 O 3
CN101328021B (en) Porous devitrified glass and manufacturing method thereof
KR101478286B1 (en) Manufacturing method of metal foam and metal foam manufactured thereby
JP5088342B2 (en) Method for producing porous sintered body
CN106588092B (en) Photocatalytic zinc titanate porous ceramic and preparation method and application thereof
Ahmad et al. Processing methods for the preparation of porous ceramics
EA039534B1 (en) Catalytically active foam formation powder
JP4724789B2 (en) Method for producing photocatalyst using foam ceramics and photocatalyst
JP6785760B2 (en) Methods for Producing Porous Calcium-Deficient Hydroxyapatite Granules
KR101367591B1 (en) Fabrication method of blistered ceramic
Khattab et al. Effect of processing techniques on properties of porous TiO2 and TiO2/hydroxyapatite composites
JP2007063084A (en) Diatom earth solidified body and solidifying method
CN110407574B (en) Calcium zirconate-calcium hexaluminate composite porous ceramic and preparation method thereof
JP3858096B2 (en) Method for producing foam sintered body containing metal or ceramics
Topateş et al. Production of Si3N4 porous beads via carbothermal reduction and nitridation technique
JP4859221B2 (en) Method for producing porous material
Guidoum et al. Development of open-pore polymer and ceramic foams/Guefoams with tunable fluid-dynamic properties: Application in highly efficient water bacteria removal
CN106396628A (en) Spherical sepiolite lightweight through-hole ceramsite with air purifying functions
JP2005029860A (en) Method for manufacturing metal- or ceramics-containing foamed sintered compact
JP2007290935A (en) Porous granule and its production method
JP2009227511A (en) Inorganic hydrothermally solidified body, method of manufacturing the same and material using hydrothermally solidified body
JPH0631174B2 (en) Method for producing reticulated silica whiskers-ceramics porous body composite
CN105272341B (en) A kind of preparation method of stomata controllability nanometer foam ceramics
JPH10226586A (en) Inorganic porous body
KR101401081B1 (en) Particle-stabilized ceramic foams with a bimodal pore structure and the method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101027

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees