KR101401081B1 - Particle-stabilized ceramic foams with a bimodal pore structure and the method for manufacturing the same - Google Patents

Particle-stabilized ceramic foams with a bimodal pore structure and the method for manufacturing the same Download PDF

Info

Publication number
KR101401081B1
KR101401081B1 KR1020120085600A KR20120085600A KR101401081B1 KR 101401081 B1 KR101401081 B1 KR 101401081B1 KR 1020120085600 A KR1020120085600 A KR 1020120085600A KR 20120085600 A KR20120085600 A KR 20120085600A KR 101401081 B1 KR101401081 B1 KR 101401081B1
Authority
KR
South Korea
Prior art keywords
ceramic
raw material
powder
material powder
foam
Prior art date
Application number
KR1020120085600A
Other languages
Korean (ko)
Other versions
KR20140019895A (en
Inventor
하장훈
송인혁
리즈완 아마드
오은지
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020120085600A priority Critical patent/KR101401081B1/en
Publication of KR20140019895A publication Critical patent/KR20140019895A/en
Application granted granted Critical
Publication of KR101401081B1 publication Critical patent/KR101401081B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/5607Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides
    • C04B35/5622Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on refractory metal carbides based on zirconium or hafnium carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 세라믹 소재 및 이의 제조방법에 관한 것이다.
본 발명은 콜로이드 입자 안정화 방식을 이용하여 제조되는 세라믹 소재에 있어서, 상기 세라믹 소재의 원료분말은 개기공 구조 또는 불규칙한 형상을 가지는 원료분말로 형성되고, 상기 원료분말이 계면활성제와 혼합된 이후 건조 및 소결되어 폐기공인 1차 기공과 개기공인 2차 기공이 형성되며, 상기 원료분말은 규조토(Diatomite), 질화알루미늄(AlN), 질화규소(Si₃N₄), 탄화규소(SiC), 탄화지르코늄(ZrC), 탄화텅스텐(WC), 코디어라이트(Cordierite), 뮬라이트(Mullite), 지르코니아(ZrO₂) 중 어느 하나의 단일분말 또는 하나 이상의 복합분말로 형성된다.
또한, 본 발명에 따른 세라믹 소재의 제조방법은 원료분말과 계면활성제를 준비하는 재료준비단계와, 상기 재료준비단계에서 준비된 원료분말과 물을 혼합하여 혼합물을 형성하고, 계면활성제를 첨가한 이후 콜로이드 입자 안정화 폼을 제조하는 세라믹폼 제조단계 및 상기 세라믹폼 제조단계에서 제조된 세라믹 폼을 건조하는 건조단계 및 건조된 세라믹 폼을 소결하는 소결단계가 포함되며, 상기 재료준비단계에서는 원료분말로 규조토(Diatomite), 질화알루미늄(AlN), 질화규소(Si₃N₄), 탄화규소(SiC), 탄화지르코늄(ZrC), 탄화텅스텐(WC), 코디어라이트(Cordierite), 뮬라이트(Mullite), 지르코니아(ZrO₂) 중 어느 하나의 단일분말 또는 하나 이상의 복합분말이 준비된다.
이와 같은 본 발명에 의하면, 세라믹 폼에 이종의 기공 유도 물질 없이 이중 기공 구조를 가지는 세라믹 폼을 제조할 수 있게 된다.
The present invention relates to a ceramic material and a manufacturing method thereof.
The present invention relates to a ceramic material produced using a colloid particle stabilization system, wherein the raw material powder of the ceramic material is formed of a raw material powder having an open pore structure or an irregular shape, and the raw material powder is mixed with a surfactant, The raw material powder is sintered to form a primary pore and a secondary pore which are known to be waste. The raw material powder includes diatomite, AlN, Si3N4, SiC, A single powder of one of tungsten (WC), cordierite, mullite, zirconia (ZrO2), or one or more composite powders.
In addition, the method for producing a ceramic material according to the present invention comprises preparing a material for preparing a raw material powder and a surfactant, mixing the raw material powder prepared in the material preparing step with water to form a mixture, adding a surfactant, A step of preparing a ceramic foam for producing a particle stabilized foam, a drying step for drying the ceramic foam produced in the ceramic foam manufacturing step and a sintering step for sintering the dried ceramic foam, wherein the raw material powder is selected from the group consisting of diatomaceous earth Diatomite, AlN, Si3N4, SiC, ZrC, WC, Cordierite, Mullite, and ZrO2. One single powder or one or more composite powders are prepared.
According to the present invention, it is possible to manufacture a ceramic foam having a double pore structure without a pore-inducing material of a different kind on the ceramic foam.

Description

콜로이드 입자 안정화 방식을 이용하여 이중 기공 구조를 가지는 세라믹 소재 및 이의 제조방법 { Particle-stabilized ceramic foams with a bimodal pore structure and the method for manufacturing the same } TECHNICAL FIELD The present invention relates to a ceramic material having a double-pore structure using a colloid particle stabilization method and a method for manufacturing the ceramic material.

본 발명은 콜로이드 입자 안정화 방식을 이용하여 이중기공 구조를 가지는 세라믹 소재 및 이의 제조방법에 관한 것이다.
The present invention relates to a ceramic material having a double-pore structure using a colloid particle stabilization method and a method for manufacturing the ceramic material.

본 발명이 속하는 기술분야에서 폼(Foam)은 액체나 고체 속에 기체를 붙잡아둔 형태의 물질을 말하며, 구성 대부분이 기체로 형성되고 상기 기체는 액체나 얇은 필름에 의해 형성되는 공간에 수용되는 형태를 가진다.Foam refers to a substance in which a gas is held in a liquid or solid state. Most of the substance is formed of a gas and the gas is accommodated in a space formed by a liquid or a thin film. I have.

상기와 같은 형태의 폼 중에서 고체 폼은 개기공 폼(Open-cell foam)과 폐기공 폼(closed-cell foam)으로 분류될 수 있으며, 상기 개기공 폼의 일 예로 기체 영역이 상호 연결되는 형태의 목욕스폰지를 들 수 있다.Among the foam of the above-mentioned type, the solid foam may be classified into an open-cell foam and a closed-cell foam. In an example of the open-cell foam, A bath sponge can be mentioned.

그리고, 상기 폐기공 폼의 일 예로는 야외용 매트를 들 수 있으며, 폐기공 폼은 기체가 각각 분리된 영역에서 고체에 둘러싸인 형태를 가진다.One example of the waste foam is an outdoor mat, and the waste foam has a form in which the gas is surrounded by a solid in the separated region.

한편, 세라믹 폼은 고체 폼의 분류 중 폴리우레탄 폼, 폴리스티렌 폼 등과 같이 고분자가 아닌 세라믹으로 이루어진다.On the other hand, the ceramic foam is made of a non-polymer ceramic such as a polyurethane foam, a polystyrene foam and the like in the classification of the solid foam.

일반적으로 세라믹 폼의 제조방법은 고분자로 이루어진 개기공 폼을 세라믹 슬러리에 함침시키는 과정과, 건조 및 소결과정을 거침으로써 세라믹 고분자를 열분해하여 기화시킨 후, 세라믹 격벽 구조만 남기는 과정을 포함하도록 구성된다.Generally, a method of manufacturing a ceramic foam includes a process of impregnating a porous slurry made of a polymer into a ceramic slurry, a process of drying and sintering the ceramic polymer, pyrolyzing and vaporizing the ceramic polymer, and then leaving only the ceramic partition wall structure .

한편, US 2009-00325780 A1Ultrastable Particle-Stabilized Foams and Emulsions에는 콜로이드 입자 안정화 방식을 이용하는 세라믹 폼의 제조방법에 대한 내용이 게시되어 있다.On the other hand, US 2009-00325780 AlUltrastable Particle-Stabilized Foams and Emulsions describes how to prepare ceramic foams using colloidal particle stabilization.

상기 공개 기술에서는 장기간 안정화된 습식 거품을 준비하는 방법에 있어서, 현탁액에 포함되어 있는 콜로이드 입자가 기액 계면을 고정시키기 위해 사용되고, 콜로이드 입자는 현탁액의 부피 대비 적어도 1% 부피를 가지고 전체 현탁액이 동일조직으로 발포되도록 구성된다.In the disclosed technique, in the preparation of a long-term stabilized wet foam, the colloid particles contained in the suspension are used to fix the gas-liquid interface, and the colloid particles have a volume of at least 1% As shown in FIG.

그리고, 상기와 같이 제조되는 세라믹 폼은 그 미세구조에 따라 단열, 방음, 유해물질의 흡수, 촉매 반응, 용융 금속 여과 등의 응용 분야를 가진다.The ceramic foam thus manufactured has application fields such as heat insulation, soundproofing, absorption of harmful substances, catalytic reaction, and molten metal filtration according to its microstructure.

한편, 상기와 같이 제조되는 세라믹 폼 중, 개기공 폼은 넓은 비표면적을 가져 촉매 물질의 함침이 용이하고, 폼 내부에서의 액상 및 기상의 이동이 쉽지만, 강도가 낮은 문제가 있다. On the other hand, among the ceramic foams to be produced as described above, the open pores have a wide specific surface area, so that the impregnation of the catalytic material is easy, and the liquid phase and the vapor phase move easily within the foam, but the strength is low.

또한, 상기와 같이 제조되는 세라믹 폼 중, 폐기공 폼은 상대적으로 개기공 폼 대비 강도가 높지만, 비표면적이 좁고, 폼 내부의 물질 이동이 어려운 문제가 있어 그 응용 분야가 단열 등에 한정되는 문제가 있다.In addition, among the ceramic foams to be produced as described above, the disposal foam has a relatively high strength as compared with open pores, but has a narrow specific surface area and difficulty in moving the material inside the foam, have.

따라서, 세라믹 폼 소재를 보다 다양한 분야에 활용하기 위해서는 높은 비표면적을 가지고 물질의 확산, 이동 통로를 유지하면서도 적정한 강도를 가지는 폼을 제조하는 기술이 필요하다.Therefore, in order to utilize the ceramic foam material in various fields, it is necessary to manufacture a foam having a high specific surface area and proper strength while maintaining the diffusion and movement path of the material.

하지만, 종래 고분자 입자를 세라믹 입자와 혼합 한 후, 폼을 생성한 후, 열분해 시켜, 폐기공 내부 격벽에 고분자 입자가 자리하던 위치에 기공을 형성하는 방법으로는 원하는 형상을 가지는 세라믹 폼을 구현하는 것이 난해하며, 열분해 반응 시 기체화 된 고분자의 이동 경로를 따라 세라믹 폼 내부에 균열이 발생하는 문제가 있다.
However, as a method of forming pores at a position where the polymer particles are located at the inner partitions of the disposal hole by mixing the polymer particles with the ceramic particles and then forming the foam and pyrolyzing it, a ceramic foam having a desired shape is implemented And there is a problem that cracks are generated in the ceramic foam along the movement path of the gasified polymer in the pyrolysis reaction.

본 발명의 목적은 제조된 세라믹 폼이 폐기공 폼 고유의 특성과 개기공 폼 고유의 특성을 동시에 포함할 수 있도록 하는 콜로이드 입자 안정화 방식을 이용하여 이중 기공 구조를 가지는 세라믹 소재를 제공하는 것이다.It is an object of the present invention to provide a ceramic material having a double pore structure by using a colloidal particle stabilizing method which enables the produced ceramic foam to simultaneously include characteristics inherent to the waste foam and characteristics inherent in the open pore foam.

본 발명의 다른 목적은 콜로이드 입자 안정화 방식을 이용하여 이중 기공 구조를 가지는 세라믹 소재를 제조하는 방법을 제공하는 것이다.
Another object of the present invention is to provide a method of manufacturing a ceramic material having a double pore structure by using a colloid particle stabilization method.

본 발명은 콜로이드 입자 안정화 방식을 이용하여 제조되는 세라믹 소재에 있어서, 상기 세라믹 소재의 원료분말은 개기공 구조 또는 불규칙한 형상을 가지는 원료분말로 형성되고, 상기 원료분말이 계면활성제와 혼합된 이후 건조 및 소결되어 폐기공인 1차 기공과 개기공인 2차 기공이 형성되며, 상기 원료분말은 규조토(Diatomite), 질화알루미늄(AlN), 질화규소(Si₃N₄), 탄화규소(SiC), 탄화지르코늄(ZrC), 탄화텅스텐(WC), 코디어라이트(Cordierite), 뮬라이트(Mullite), 지르코니아(ZrO₂) 중 어느 하나의 단일분말 또는 하나 이상의 복합분말인 것을 특징으로 한다.
상기 1차 기공은 상기 원료분말에 혼합되는 계면활성제의 투입량과 종류에 따라 조절되어 50㎛ 내지 300㎛의 크기 범위로 입도가 조절되는 것을 특징으로 한다.
The present invention relates to a ceramic material produced using a colloid particle stabilization system, wherein the raw material powder of the ceramic material is formed of a raw material powder having an open pore structure or an irregular shape, and the raw material powder is mixed with a surfactant, The raw material powder is sintered to form a primary pore and a secondary pore which are known to be waste. The raw material powder includes diatomite, AlN, Si3N4, SiC, And is a single powder or at least one composite powder of any one of tungsten (WC), cordierite, mullite, and zirconia (ZrO2).
The primary pores are controlled according to the amount and type of the surfactant to be mixed with the raw material powder, and the particle size of the primary pores is controlled within a range of 50 to 300 탆.

삭제delete

상기 2차 기공은 볼 밀링 과정에 의해 0.1㎛ 내지 10㎛의 크기 범위로 입도가 조절되는 것을 특징으로 한다.The secondary pores are characterized in that the particle size of the secondary pores is controlled within a range of 0.1 탆 to 10 탆 by a ball milling process.

삭제delete

본 발명에 따른 세라믹 소재의 제조방법은 원료분말과 계면활성제를 준비하는 재료준비단계와, 상기 재료준비단계에서 준비된 원료분말과 물을 혼합하여 혼합물을 형성하고, 계면활성제를 첨가한 이후 콜로이드 입자 안정화 폼을 제조하는 세라믹폼 제조단계와, 상기 세라믹폼 제조단계에서 제조된 세라믹 폼을 건조하는 건조단계 및 건조된 세라믹 폼을 소결하는 소결단계가 포함되며, 상기 재료준비단계에서는 원료분말로 규조토(Diatomite), 질화알루미늄(AlN), 질화규소(Si₃N₄), 탄화규소(SiC), 탄화지르코늄(ZrC), 탄화텅스텐(WC), 코디어라이트(Cordierite), 뮬라이트(Mullite), 지르코니아(ZrO₂) 중 어느 하나의 단일분말 또는 하나 이상의 복합분말이 준비되는 것을 특징으로 한다.A method for producing a ceramic material according to the present invention comprises preparing a material for preparing a raw material powder and a surfactant, mixing the raw material powder prepared in the material preparing step with water to form a mixture, adding a surfactant, A step of drying the ceramic foam produced in the step of manufacturing the ceramic foam and a sintering step of sintering the dried ceramic foam, wherein the raw material powder is a diatomite Any one of aluminum nitride (AlN), silicon nitride (Si3N4), silicon carbide (SiC), zirconium carbide (ZrC), tungsten carbide (WC), cordierite, mullite, and zirconia Or at least one composite powder is prepared.

상기 세라믹폼 제조단계에서는 상기 원료분말에 혼합되는 계면활성제의 투입량과 종류를 조절하여 폐기공인 1차 기공의 입도를 조절하고, 상기 재료준비단계에서는 상기 원료분말을 24시간 이상 분쇄하는 분쇄과정을 통해 개기공인 2차 기공의 입도를 조절하는 것을 특징으로 한다.
In the step of preparing the ceramic foam, the amount of the surfactant to be mixed with the raw material powder is adjusted to control the particle size of the primary pore, which is a waste, and in the preparing step, the raw material powder is pulverized for 24 hours or more Thereby controlling the particle size of the second pore recognized as the final product.

본 발명에 따르면 세라믹 폼에 이종의 기공 유도 물질 없이 이중 기공 구조를 가지는 세라믹 폼을 제조할 수 있게 된다.According to the present invention, it is possible to produce a ceramic foam having a double pore structure without a different pore inducing material on the ceramic foam.

따라서, 제조된 세라믹 소재는 세라믹 개기공 폼의 촉매 반응, 선택적 투과, 방음 효과, 유해물질 흡수, 용융금속 여과 등의 기능을 발휘하면서 세라믹 폐기공 폼의 기본 강도를 일정 수준 유지할 수 있는 이점이 있다.Therefore, the produced ceramic material has an advantage of maintaining the basic strength of the ceramic waste foam at a certain level while exhibiting functions of catalytic reaction of the ceramic open pore foam, selective permeation, soundproof effect, absorption of harmful substances, and filtration of molten metal .

또한, 이종의 재료가 추가되지 않고, 원료 재료 입자의 크기와 형상 및 콜로이드 입자 안정화 공정과 소결 공정 변수만을 조절하여, 세라믹 폼의 이중 기공 구조를 조절할 수 있으므로 공정의 간소화가 가능하며, 편의성이 향상될 수 있다.
In addition, it is possible to control the double pore structure of the ceramic foam by controlling only the size and shape of the raw material particles, the colloid particle stabilization process and the sintering process parameters without adding different kinds of materials, thereby simplifying the process and improving the convenience .

도 1 은 본 발명에 따른 일실시 예인 세라믹 소재의 이중기공 구조를 개략적으로 보이기 위한 도면.
도 2 는 본 발명에 따른 세라믹 소재의 제조과정을 보이기 위한 순서도.
도 3 은 본 발명에 따른 일실시 예에서 원재료인 규조토의 주사전자현미경(Scanning Electron Microscope, SEM) 사진.
도 4 에 도시된 원재료를 24시간 동안 볼 밀링(Ball milling) 한 결과를 보인 주사현미경(SEM) 사진.
도 5 는 본 발명에 따른 세라믹 소재의 원료분말의 볼 밀링 시간에 따른 입도를 분석한 그래프.
도 6 은 본 발명에 따른 세라믹 소재의 일실시 예인 규조토 폼에서 요부구성인 1차 기공을 확인하기 위한 주사현미경(SEM) 사진.
도 7 은 본 발명의 요부구성인 1차 기공과 2차 기공을 확인할 수 있도록 도 5 를 부분 확대 도시한 사진.
도 8 은 도 5 에서 본 발명의 요부구성인 2차 기공을 확대하여 도시한 사진.
도 9 는 본 발명에 따른 세라믹 소재의 요부구성인 2차 기공의 크기를 측정한 수은 기공도 측정 그래프.
도 10 은 본 발명의 비교예로서 종래 기술에 의한 콜로이드 입자 안정화 방식을 이용하여 제조된 알루미나 세라믹 폼의 폐기공을 도시한 주사현미경(SEM) 사진.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing a double pore structure of a ceramic material according to an embodiment of the present invention. FIG.
2 is a flow chart showing a process of manufacturing a ceramic material according to the present invention.
3 is a Scanning Electron Microscope (SEM) photograph of a diatomaceous earth as a raw material in an embodiment of the present invention.
4 is a scanning electron microscope (SEM) photograph showing the result of ball milling the raw material shown in FIG. 4 for 24 hours.
FIG. 5 is a graph illustrating particle size of a raw material powder of a ceramic material according to the present invention; FIG.
FIG. 6 is a scanning electron microscope (SEM) photograph of a diatomite foam, which is one embodiment of the ceramic material according to the present invention, for identifying primary pores constituting the main part.
FIG. 7 is a partially enlarged view of FIG. 5 so that primary pores and secondary pores, which are essential parts of the present invention, can be identified.
FIG. 8 is an enlarged photograph of a secondary pore, which is a main constituent of the present invention, in FIG.
9 is a graph showing mercury porosity measured by measuring the size of a secondary pore, which is a main constituent of a ceramic material according to the present invention.
10 is a scanning electron microscope (SEM) photograph showing a waste hole of an alumina ceramic foam produced by a conventional colloidal particle stabilization method as a comparative example of the present invention.

이하에서는 도면을 참조하여, 본 발명의 구체적인 실시예를 설명한다. 다만, 본 발명의 사상은 제시되는 실시예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서 다른 실시예를 용이하게 제안할 수 있을 것이다. Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. It is to be understood, however, that the spirit of the invention is not limited to the embodiments shown and that those skilled in the art, upon reading and understanding the spirit of the invention, may easily suggest other embodiments within the scope of the same concept.

도 1 에는 본 발명에 따른 일실시 예인 세라믹 소재의 이중기공 구조를 개략적으로 보이기 위한 도면이 도시되어 있다.FIG. 1 is a schematic view showing a double pore structure of a ceramic material according to an embodiment of the present invention.

도면을 참조하면, 본 발명에 따른 세라믹 소재는 상대적으로 큰 직경을 가지는 폐기공 형태의 1차 기공(100)과, 상기 1차 기공(100)보다 작은 크기를 가지며 1차 기공(100)의 격벽(300)을 따라 구비되는 개기공 형태의 2차 기공(200)을 포함하도록 구성된다.Referring to the drawings, a ceramic material according to the present invention includes a primary pore 100 in the form of a waste pore having a relatively large diameter, a porous pore 100 having a size smaller than that of the primary pore 100, And a secondary pore 200 in the form of an open pore.

상세히, 상기 세라믹 소재는 규조토(Diatomite), 질화알루미늄(AlN), 질화규소(Si₃N₄), 탄화규소(SiC), 탄화지르코늄(ZrC), 탄화텅스텐(WC), 코디어라이트(Cordierite), 뮬라이트(Mullite), 지르코니아(ZrO₂) 등의 단일분말 또는 복합분말을 원재료로 사용하게 된다.In detail, the ceramic material may be selected from the group consisting of Diatomite, AlN, Si3N4, SiC, ZrC, WC, Cordierite, Mullite, ), Zirconia (ZrO2), and the like are used as raw materials.

그리고, 상기 세라믹 소재는 제조과정에서 계면활성제를 선택적으로 첨가하여 다양한 크기로 조절 가능한 1차 기공(100)을 형성할 수 있다.In addition, the ceramic material can form a primary pore 100 that can be adjusted in various sizes by selectively adding a surfactant in a manufacturing process.

즉, 원료분말에 계면활성제를 투입하여 기공이 포함된 현택액을 제조하고, 제조된 현탁액을 콜로이드 입자 안정화 방식을 이용하여 계면 특성을 조절한 다음 소결함으로써 콜로이드 입자 안정화 방식으로 제어 가능한 범위인 50㎛ 내지 300㎛ 크기 범위에서 1차 기공(100)을 형성할 수 있다.That is, a surfactant is added to a raw material powder to prepare a suspension containing pores, and the prepared suspension is adjusted to have an interfacial property using a colloid particle stabilization method, and then sintered to form a 50 탆 The primary pores 100 can be formed in the size range of about 300 to 300 mu m.

한편, 상기 2차 기공(200)은 상기와 같이 계면활성제에 의해 계면 특성이 조절되는 과정에서 원재료의 분말입도에 의해 형성되는 것으로, 상기 1차 기공(100)의 격벽(300)에 0.1㎛ 내지 10㎛의 크기 범위에서 형성된다.Meanwhile, the secondary pores 200 are formed by the powder particle size of the raw material in the process of controlling the interface characteristics by the surfactant as described above. The secondary pores 200 are formed in the primary pores 100 in the range of 0.1 [ Mu] m.

상기 2차 기공(200)은 소결 시 입자들 사이의 간격 혹은 입자 내부의 기공에 의해서 얻어지는데, 0.1㎛ 미만인 경우에는 소결 과정에서 기공이 쉽게 사라지게 되며 10㎛ 를 초과하는 크기의 기공이 내부에 형성되고자 할 경우에는 입자 자체의 크기가 10㎛ 이상의 크기를 가져야만 하는데, 콜로이드 입자 안정화 방식에서는 원료 분말의 입자가 10㎛ 이상이 될 경우 1차 기공(100)의 형성이 어렵게 된다.The secondary pores 200 are obtained by the interval between the particles during sintering or the pores inside the particles. If the secondary pores 200 are less than 0.1 탆, the pores are easily disappeared in the sintering process and pores having a size exceeding 10 탆 are formed inside The size of the particles themselves must be 10 μm or more. In the colloidal particle stabilization method, when the particles of the raw material powder are 10 μm or more, it is difficult to form the primary pores 100.

이하에서는 첨부된 도면을 참조하여 상기와 같은 구조의 세라믹 소재를 제조하는 방법에 대하여 설명한다.Hereinafter, a method of manufacturing a ceramic material having the above-described structure will be described with reference to the accompanying drawings.

도 2 에는 본 발명에 따른 세라믹 소재의 제조과정을 보이기 위한 순서도가 도시되어 있다.FIG. 2 is a flowchart illustrating a manufacturing process of a ceramic material according to the present invention.

도면을 참조하면, 본 발명에 따른 세라믹 소재의 제조과정은 우선, 이중 기공을 형성하기 위한 원재료와 이에 첨가될 계면활성제를 준비하기 위한 재료준비단계(S100)와, 준비된 재료를 이용하여 세라믹 폼을 제조하는 세라믹 폼 제조단계(S200) 그리고, 제조된 세라믹 폼을 건조하는 건조단계(S300) 및 건조된 세라믹 폼을 소결하는 소결단계(S400)를 포함한다.Referring to the drawings, a process for manufacturing a ceramic material according to the present invention comprises: preparing a raw material for forming a double pore and a surfactant to be added (S100); and preparing a ceramic foam (S200) for manufacturing a ceramic foam to be manufactured, a drying step (S300) for drying the produced ceramic foam, and a sintering step (S400) for sintering the dried ceramic foam.

상세히, 상기 재료준비단계(S100)에서는 개기공 구조를 가지는 원료분말 또는 불규칙한 형상을 가지는 원료 분말과 이에 첨가될 계면활성재를 준비하는 것으로, 준비되는 원료분말은 2차 기공(200)의 원활한 형성을 위해 입도를 조절하기 위한 볼 밀링(Ball-milling) 과정을 거치게 된다.In detail, in the material preparation step (S100), a raw material powder having an open pore structure or a raw material powder having an irregular shape and a surface active material to be added thereto are prepared. A ball-milling process is performed to adjust the particle size.

도 3 에는 본 발명에 따른 일실시 예에서 원재료인 규조토의 주사전자현미경(Scanning Electron Microscope, SEM) 사진이 도시되어 있고, 도 4 에는 도시된 원재료를 24시간 동안 볼 밀링(Ball milling) 한 결과를 보인 주사현미경(SEM) 사진이 도시되어 있으며, 도 5 에는 본 발명에 따른 세라믹 소재의 원료분말의 볼 밀링 시간에 따른 입도를 분석한 그래프가 도시되어 있다.3 shows a scanning electron microscope (SEM) photograph of diatomaceous earth as a raw material in the embodiment of the present invention. The result of ball milling the raw material shown in FIG. 4 for 24 hours is shown in FIG. FIG. 5 is a graph showing the grain size of the raw material powder of the ceramic material according to the ball milling time according to the present invention. FIG.

이들 도면을 참조하면, 본 발명에서는 기존의 콜로이드 입자 안정화 방식에서는 구현하기 힘든 1차 기공(100)과 2차 기공(200)을 동시에 형성할 수 있도록 하기 위하여 상기와 같이 원료분말을 개기공 구조 또는 불규칙한 형상을 가지는 것을 채택하고, 보다 효과적인 기공을 형성할 수 있도록 볼 밀링(Ball-milling) 과정을 거치게 된다.Referring to these drawings, in order to simultaneously form the primary pores 100 and the secondary pores 200, which are difficult to realize in the conventional colloid particle stabilization method, It adopts an irregular shape and undergoes a ball-milling process so as to form more effective pores.

즉, 도 3 에 도시된 바와 같이 규조토(Diatomite)에는 미세기공이 형성되어 있으며, 이와 같은 규조토를 볼 밀링 과정을 거치도록 함으로써 원료분말인 규조토의 입도를 조절하게 된다.That is, as shown in FIG. 3, fine pores are formed in the diatomite, and the particle size of the diatomite as the raw powder is controlled by subjecting the diatomite to ball milling process.

한편, 상기와 같은 볼 밀링 과정은 도 5에 도시된 바와 같이 수행하지 않았을 때와 4시간 수행했을 경우에는 미세기공의 형성이 원활하지 않지만 24시간 이상 수행하게 될 경우에는 원료분말의 입도가 미세기공을 형성할 수 있을 정도로 형성된다.On the other hand, as shown in FIG. 5, when the ball milling process is not performed as shown in FIG. 5, and when it is performed for 4 hours, formation of micropores is not smooth. However, when the ball milling process is performed for 24 hours or more, As shown in FIG.

따라서, 본 발명에서는 원료분말을 24시간 이상 볼 밀링 가공함으로써 2차 기공(200)이 원활하게 형성될 수 있도록 입도를 조절하게 된다.Therefore, in the present invention, the raw material powder is ball milled for 24 hours or more to control the particle size so that the secondary pores 200 can be smoothly formed.

또한, 상기와 같이 준비되는 원료분말에 혼합되는 계면활성제는 헥실디아민(Hexyl Diamine)을 포함하여 다양한 계면활성제가 이용될 수 있으며, 투입되는 양과 종류에 따라서 1차 기공(100)을 조절할 수 있다.The surfactant to be mixed with the raw material powder may be various surfactants including hexyldiamine, and the primary pores 100 can be controlled according to the amount and type of the surfactant.

한편, 상기와 같이 재료준비단계(S100)가 완료되면, 준비된 재료를 이용하여 세라믹 폼을 형성하기 위한 세라믹 폼 제조단계(S200)가 수행된다.On the other hand, when the material preparation step S100 is completed, the ceramic foam manufacturing step S200 for forming the ceramic foam using the prepared material is performed.

상기 세라믹 폼 제조단계(S200)에서는 준비된 원료분말과 계면활성제를 습식으로 혼합하여 생성된 혼합물에 교반기를 이용하여 공기를 주입함으로써 거품 형태의 폼을 형성하게 된다.In the step of manufacturing the ceramic foam (S200), air is injected into a mixture obtained by wet mixing the prepared raw material powder and a surfactant by using an agitator to form a foam-like foam.

그리고, 상기 세라믹 폼 제조단계(S200)가 완료되면, 제조된 세라믹 폼을 건조하기 위한 건조단계(S300)가 수행된다.When the step of manufacturing the ceramic foam (S200) is completed, a drying step (S300) for drying the produced ceramic foam is performed.

상기 건조단계(S300)에서는 제조된 세라믹 폼을 가열하여 소결을 위한 준비를 하게 된다.In the drying step (S300), the prepared ceramic foam is heated to prepare for sintering.

한편, 상기 건조단계(S300)가 완료되면, 전술한 소결단계(S400)가 수행된다.On the other hand, when the drying step (S300) is completed, the above-described sintering step (S400) is performed.

상기 소결단계(S400)에서는 건조된 세라믹 폼을 가열하여 소성시킴으로써 상기 세라믹 폼 내부의 1차 기공(100)과 2차 기공(200)이 동시에 형성될 수 있도록 한다.In the sintering step (S400), the dried ceramic foam is heated and baked so that the primary pores (100) and the secondary pores (200) inside the ceramic foam can be formed at the same time.

그리고, 상기와 같은 소결단계(S400)가 완료되면 필요에 따라 표면의 정밀도를 증가시키기 위하여 최종 연마단계가 더 수행될 수 있다.After the sintering step (S400) is completed, a final polishing step may be further performed to increase the precision of the surface, if necessary.

이하에서는 본 발명에 따른 콜로이드 입자 안정화 방식을 이용하여 이중 기공 구조를 가지는 세라믹 소재의 제조방법에 따라 제조된 세라믹 소재의 일 실시 예와 기존의 콜로이드 입자 안정화 방식을 이용하여 폐기공 구조를 가지는 세라믹 소재의 비교예를 첨부된 도면을 참조하여 설명한다.Hereinafter, an embodiment of a ceramic material produced according to a method of manufacturing a ceramic material having a double pore structure using the colloid particle stabilization method according to the present invention and a ceramic material having a porous structure using a conventional colloid particle stabilization method will be described below. Will be described with reference to the accompanying drawings.

이중 기공 구조를 가지는 세라믹 폼을 제조하기 위한 원료분말로 규조토(Diatomite)를 사용하였으며, 계면활성제로 헥실 디아민(Xexyl Diamine)을 사용하였다.Diatomite was used as a raw material powder to produce a ceramic foam having a double pore structure, and hexyldiamine was used as a surfactant.

원료분말인 규조토(Diatomite)는 24시간 밀링 하여 최빈값 5.88㎛, 평균값 6.22㎛, 중앙값 4.65㎛의 크기를 가지도록 형성하였다.The diatomite as a raw material powder was milled for 24 hours to have a mode value of 5.88 mu m, an average value of 6.22 mu m, and a median value of 4.65 mu m.

측량된 원료분말과 계면활성제를 습식으로 혼합하였으며, 용매는 증류수를 사용하였다.The measured raw material powder and surfactant were mixed by wetting, and distilled water was used as a solvent.

원료 혼합 시 분말과 볼의 부피는 1:2였으며, 증류수는 광우병(폴리프로필렌)에 가득 채워서 24시간 동안 시행하였다.The volume of powder and balls was 1: 2 when mixed with raw materials, and the distilled water was filled in mad cow (polypropylene) for 24 hours.

헥실 디아민(Hexyl Diamine) 105mmol/L를 분말 대비 첨가하였으며, 혼합물의 최종 pH는 1HCl 수용액을 이용하여 11.8로 적정하였다.105 mmol / L of hexyldiamine was added to the powder, and the final pH of the mixture was adjusted to 11.8 with aqueous 1 HCl solution.

교반기를 이용하여 1000rpm으로 5분간 교반한 후, 공기가 혼합물 내에 장입된 웨트 폼(Wet foam) 형태의 성형체를 제조하였다.The mixture was stirred for 5 minutes at 1000 rpm using a stirrer, and then a shaped body of wet foam type in which air was charged into the mixture was prepared.

이와 같이 제조된 웨트 폼(Wet foam)을 잘 건조되도록, 30℃, 24시간 조건으로 건조를 실시하였다.The thus-prepared wet foam was dried at 30 DEG C for 24 hours so as to be dried well.

소결은 아르곤 분위기에서 승온/하강 속도 1℃/min, 1600℃유지 2시간으로 실시하였다.The sintering was carried out in an argon atmosphere at a temperature rising / falling rate of 1 占 폚 / min and holding at 1600 占 폚 for 2 hours.

파단면 및 기공 구조는 SEM(JSM+5800, JEOL)을 사용하여 측정하였다.
The fracture surface and pore structure were measured using SEM (JSM + 5800, JEOL).

(비교예 1)(Comparative Example 1)

콜로이드 입자 안정화 방식을 이용한 일반적인 폐기공 세라믹 폼을 제조하기 위한 원료분말로 알루미나(Al2O3)를 사용하였으며, 계면활성제로 발레르 산(Valeric Acid)을 사용하였다.Alumina (Al 2 O 3 ) was used as a raw material powder to produce general waste ceramic foam using colloidal particle stabilization method and Valeric Acid was used as a surfactant.

측량된 원료분말과 계면활성제를 습식으로 혼합하였으며, 용매는 증류수를 사용하였다.The measured raw material powder and surfactant were mixed by wetting, and distilled water was used as a solvent.

원료 혼합 시 분말과 볼의 부피비는 1:2였으며 증류수는 광우병(폴리프로필렌)에 가득 채워서 24시간 동안 시행하였다.Volume ratio of powder and balls was 1: 2 in raw material mixing and distilled water was filled in madpowder (polypropylene) for 24 hours.

발레르 산(Valeric Acid) 3.1g/L를 분말대비 첨가하였으며, 혼합물의 최종 pH는 1NaOH 수용액을 이용하여 4.7로 적정하였다.3.1 g / L of Valeric Acid was added to the powder, and the final pH of the mixture was titrated to 4.7 using 1NaOH aqueous solution.

교반기를 이용하여 100rpm으로 5분간 교반한 후, 공기가 혼합물 내에 장입된 웨트 폼(Wet foam) 형태의 성형체를 제조하였다The mixture was stirred for 5 minutes at 100 rpm using a stirrer, and then a shaped body of wet foam type in which air was charged into the mixture was prepared

알루미나 세라믹 폼이 잘 건조되도록, 30℃, 24시간 조건으로 건조를 실시하였다.Drying was carried out at 30 DEG C for 24 hours so that the alumina ceramic foam was dried well.

소결은 아르곤 분위기에서 승온/하강 속도 1℃/min, 1600℃ 유지 2시간으로 실시하였다. The sintering was carried out in an argon atmosphere at a temperature rising / falling rate of 1 占 폚 / min and holding at 1600 占 폚 for 2 hours.

파단면 및 기공 구조는 SEM(JSM+5800, JEOL)을 사용하여 측정하였다.The fracture surface and pore structure were measured using SEM (JSM + 5800, JEOL).

상기 [실시예 1]과 관련하여 도 6 에는 본 발명에 따른 세라믹 소재의 일실시 예인 규조토 폼에서 요부구성인 1차 기공을 확인하기 위한 주사현미경(SEM) 사진이 도시되어 있고, 도 7 에는 본 발명의 요부구성인 1차 기공과 2차 기공을 확인할 수 있도록 도 5 를 부분 확대 도시한 사진이 도시되어 있다. 그리고, 도 8 에는 도 5 에서 본 발명의 요부구성인 2차 기공을 확대하여 도시한 사진이 도시되어 있으며, 도 9 에는 본 발명에 따른 세라믹 소재의 요부구성인 2차 기공의 크기를 측정한 수은 기공도 측정 그래프가 도시되어 있다.6, there is shown a scanning electron microscope (SEM) photograph for confirming the primary pore, which is a main constituent in the diatomite foam, which is one embodiment of the ceramic material according to the present invention, FIG. 5 is a partially enlarged view showing the primary porosity and secondary porosity, which are major components of the invention. FIG. 8 is an enlarged view of the secondary pores of the present invention, and FIG. 9 is a graph showing the relationship between the secondary pores of the ceramic material according to the present invention. A porosity measurement graph is shown.

이들 도면을 참조하면, 본 발명에 따른 콜로이드 입자 안정화 방식을 이용하여 제조된 세라믹 소재는 도시된 바와 같이 상대적으로 큰 직경의 폐기공인 1차 기공이 다수 형성되고, 상기 1차 기공의 격벽을 따라서 개기공인 2차 기공이 무수히 형성되어 있음이 확인된다.Referring to these drawings, as shown in the figure, a ceramic material manufactured using the colloidal particle stabilization method according to the present invention is formed with a number of primary pores having a relatively large diameter and is disposed along the partition walls of the primary pores. It is confirmed that numerous secondary pores are formed.

따라서, 폐기공과 개기공 구조가 모두 포함되어 각각의 특성에 따른 기능이 발휘될 수 있다.Therefore, both the disposal hole and the open pore structure are included, and functions according to the respective characteristics can be exhibited.

한편, 도 10 에는 본 발명의 비교예로서 종래 기술에 의한 콜로이드 입자 안정화 방식을 이용하여 제조된 알루미나 세라믹 폼의 폐기공을 도시한 주사현미경(SEM) 사진이 도시되어 있다.Meanwhile, FIG. 10 shows a scanning electron microscope (SEM) photograph of a waste hole of an alumina ceramic foam manufactured by a conventional colloidal particle stabilization method as a comparative example of the present invention.

도시된 바와 같이 (비교예 1)에서는 제조된 세라믹 폼이 폐기공만 가질 뿐 계기공의 격벽에서 [실시예 1]에 도시된 바와 같은 개기공이 확인되지는 않고 있다.
As shown in (Comparative Example 1), the produced ceramic foam has only the waste pores, but no open pores as shown in [Example 1] are observed in the partition walls of the pore.

100..... 1차 기공 200..... 2차 기공
300..... 격벽
S100..... 재료 준비단계 S200..... 세라믹폼 제조단계
S300..... 건조단계 S400..... 소결단계
100 ..... first pore 200 ..... second pore
300 ..... partition wall
S100 ..... material preparing step S200 ..... ceramic foam manufacturing step
S300 ..... Drying step S400 ..... Sintering step

Claims (6)

콜로이드 입자 안정화 방식을 이용하여 제조되는 세라믹 소재에 있어서,
상기 세라믹 소재의 원료분말은 개기공 구조 또는 불규칙한 형상을 가지는 원료분말로 형성되고,
상기 원료분말이 계면활성제와 혼합된 이후 건조 및 소결되어 폐기공인 1차 기공과 개기공인 2차 기공이 형성되며,
상기 원료분말은,
규조토(Diatomite), 질화알루미늄(AlN), 질화규소(Si₃N₄), 탄화규소(SiC), 탄화지르코늄(ZrC), 탄화텅스텐(WC), 코디어라이트(Cordierite), 뮬라이트(Mullite), 지르코니아(ZrO₂) 중 어느 하나의 단일분말 또는 하나 이상의 복합분말인 것을 특징으로 하는 콜로이드 입자 안정화 방식을 이용하여 이중 기공 구조를 가지는 세라믹 소재.
In a ceramic material produced using a colloidal particle stabilization system,
The raw material powder of the ceramic material is formed of a raw material powder having an open pore structure or an irregular shape,
After the raw material powder is mixed with the surfactant, it is dried and sintered to form a primary pore and a secondary pore,
The raw material powder,
(Al2O3), silicon nitride (Si3N4), silicon carbide (SiC), zirconium carbide (ZrC), tungsten carbide (WC), cordierite, mullite, zirconia (ZrO2) Wherein the ceramic powder is a single powder or at least one composite powder of a ceramic material having a double pore structure using a colloid particle stabilization method.
제 1 항에 있어서,
상기 1차 기공은
상기 원료분말에 혼합되는 계면활성제의 투입량과 종류에 따라 조절되어 50㎛ 내지 300㎛의 크기 범위로 입도가 조절되는 콜로이드 입자 안정화 방식을 이용하여 이중 기공 구조를 가지는 세라믹 소재.
The method according to claim 1,
The primary pore
A ceramic material having a double pore structure using a colloid particle stabilizing method in which the particle size is controlled in a size range of 50 to 300 탆 by controlling the amount and type of a surfactant to be mixed with the raw material powder.
제 1 항에 있어서,
상기 2차 기공은 볼 밀링 과정에 의해 0.1㎛ 내지 10㎛의 크기 범위로 입도가 조절되는 콜로이드 입자 안정화 방식을 이용하여 이중 기공 구조를 가지는 세라믹 소재.
The method according to claim 1,
Wherein the secondary pores have a double pore structure by using a colloid particle stabilization method in which the particle size is controlled in the range of 0.1 to 10 mu m by a ball milling process.
삭제delete 원료분말과 계면활성제를 준비하는 재료준비단계;
상기 재료준비단계에서 준비된 원료분말과 물을 혼합하여 혼합물을 형성하고, 계면활성제를 첨가한 이후 콜로이드 입자 안정화 폼을 제조하는 세라믹폼 제조단계;
상기 세라믹폼 제조단계에서 제조된 세라믹 폼을 건조하는 건조단계; 및
건조된 세라믹 폼을 소결하는 소결단계;가 포함되며,
상기 재료준비단계에서는
원료분말로 규조토(Diatomite), 질화알루미늄(AlN), 질화규소(Si₃N₄), 탄화규소(SiC), 탄화지르코늄(ZrC), 탄화텅스텐(WC), 코디어라이트(Cordierite), 뮬라이트(Mullite), 지르코니아(ZrO₂) 중 어느 하나의 단일분말 또는 하나 이상의 복합분말이 준비되는 것을 특징으로 하는 콜로이드 입자 안정화 방식을 이용하여 이중 기공 구조를 가지는 세라믹 소재의 제조방법.
Preparing a material for preparing a raw material powder and a surfactant;
Preparing a ceramic foam by mixing a raw material powder prepared in the material preparation step with water to form a mixture, and adding a surfactant to prepare a colloidal particle stabilized foam;
A drying step of drying the ceramic foam produced in the ceramic foam manufacturing step; And
And a sintering step of sintering the dried ceramic foam,
In the material preparation step
As raw material powders, there are used diatomite, aluminum nitride (AlN), silicon nitride (Si₃N₄), silicon carbide (SiC), zirconium carbide (ZrC), tungsten carbide (WC), cordierite, mullite, zirconia (ZrO2), or one or more composite powders are prepared on the surface of the ceramic material. The method of manufacturing a ceramic material having a double-pore structure using the colloid particle stabilization method.
제 5 항에 있어서,
상기 세라믹폼 제조단계에서는 상기 원료분말에 혼합되는 계면활성제의 투입량과 종류를 조절하여 폐기공인 1차 기공의 입도를 조절하고,
상기 재료준비단계에서는 상기 원료분말을 24시간 이상 분쇄하는 분쇄과정을 통해 개기공인 2차 기공의 입도를 조절하는 것을 특징으로 하는 콜로이드 입자 안정화 방식을 이용하여 이중 기공 구조를 가지는 세라믹 소재의 제조방법.
6. The method of claim 5,
In the ceramic foam manufacturing process, the amount and type of the surfactant mixed with the raw material powder are adjusted to control the particle size of the primary pore,
Wherein the particle size of the secondary pore is controlled by grinding the raw material powder for at least 24 hours in the material preparation step.
KR1020120085600A 2012-08-06 2012-08-06 Particle-stabilized ceramic foams with a bimodal pore structure and the method for manufacturing the same KR101401081B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120085600A KR101401081B1 (en) 2012-08-06 2012-08-06 Particle-stabilized ceramic foams with a bimodal pore structure and the method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120085600A KR101401081B1 (en) 2012-08-06 2012-08-06 Particle-stabilized ceramic foams with a bimodal pore structure and the method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20140019895A KR20140019895A (en) 2014-02-18
KR101401081B1 true KR101401081B1 (en) 2014-06-17

Family

ID=50267125

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120085600A KR101401081B1 (en) 2012-08-06 2012-08-06 Particle-stabilized ceramic foams with a bimodal pore structure and the method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101401081B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2570557B (en) 2016-04-11 2020-03-25 Johnson Matthey Plc An emissions control device for treating or removing pollutants from an exhaust gas.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261463A (en) * 2000-03-15 2001-09-26 Narita Seitoushiyo:Kk Ceramic porous body and its production process
JP2005239471A (en) * 2004-02-25 2005-09-08 Narita Seitoushiyo:Kk Manufacturing method for ceramic porous body, and ceramic porous body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261463A (en) * 2000-03-15 2001-09-26 Narita Seitoushiyo:Kk Ceramic porous body and its production process
JP2005239471A (en) * 2004-02-25 2005-09-08 Narita Seitoushiyo:Kk Manufacturing method for ceramic porous body, and ceramic porous body

Also Published As

Publication number Publication date
KR20140019895A (en) 2014-02-18

Similar Documents

Publication Publication Date Title
JP3581879B2 (en) Alumina porous body and method for producing the same
Zhang et al. Hierarchically ordered micro/meso/macroporous polymer-derived ceramic monoliths fabricated by freeze-casting
CN102584329B (en) Preparation method of high-porosity porous ceramic
Ahmad et al. Short review: Ceramic foam fabrication techniques for wastewater treatment application
Ahmad et al. Processing methods for the preparation of porous ceramics
KR101401084B1 (en) Particle-stabilized ceramic foams coated on ceramic materials and the method for manufacturing the same
JP2009515802A (en) Method for producing controlled microstructured porous ceramic support
MX2011002888A (en) Method for making porous mullite-containing composites.
Meng et al. Hierarchically porous lanthanum zirconate foams with low thermal conductivity from particle‐stabilized foams
Yu et al. Pore structure control of Si 3 N 4 ceramics based on particle-stabilized foams
Schumacher et al. Modified solution based freeze casting process of polysiloxanes to adjust pore morphology and surface functions of SiOC monoliths
Tallon et al. Shaping of porous alumina bodies by freeze casting
Roy Recent developments in processing techniques and morphologies of bulk macroporous ceramics for multifunctional applications
US6368703B1 (en) Supported porous materials
KR101401081B1 (en) Particle-stabilized ceramic foams with a bimodal pore structure and the method for manufacturing the same
Zhu et al. Reaction bonding of open cell SiC-Al2O3 composites
Lee et al. Effect of the processing conditions of reticulated porous alumina on the compressive strength
US20220227671A1 (en) Method for preparation of porous mullite ceramic from pickering emulsion
Koler et al. Macroporous titania monoliths from emulsion templated composites
JP4426524B2 (en) INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME
CN103228596B (en) Process for control of cordierite filter properties
JPH06256069A (en) Ceramic porous material and its production
Altinkok et al. Compressive behavior of Al2O3—SiC ceramic composite foams fabricated by decomposition of aluminum sulfate aqueous solution
JP4392460B1 (en) Calcium phosphate porous material with low residual amount of aromatic hydrocarbon
KR101001253B1 (en) Method for coating oxygen permeable membrane on inner well of porous support and oxygen permeable tube fabricated by the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170308

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20190311

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 7