JP2007081024A - Silicon nitride substrate, silicon nitride circuit board and method of manufacturing silicon nitride board - Google Patents

Silicon nitride substrate, silicon nitride circuit board and method of manufacturing silicon nitride board Download PDF

Info

Publication number
JP2007081024A
JP2007081024A JP2005265197A JP2005265197A JP2007081024A JP 2007081024 A JP2007081024 A JP 2007081024A JP 2005265197 A JP2005265197 A JP 2005265197A JP 2005265197 A JP2005265197 A JP 2005265197A JP 2007081024 A JP2007081024 A JP 2007081024A
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride substrate
substrate
manufacturing
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005265197A
Other languages
Japanese (ja)
Inventor
Toshiyuki Imamura
寿之 今村
Hiroyuki Tejima
博幸 手島
Junichi Watanabe
渡辺  純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005265197A priority Critical patent/JP2007081024A/en
Publication of JP2007081024A publication Critical patent/JP2007081024A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon nitride substrate in which cracks are hard to occur at the end of the substrate, and to provide a silicon nitride circuit board which uses the same with a high reliability, and a method of manufacturing the silicon nitride substrate which is easy to be broken and can be obtained at a low cost, and in which micro-cracks are hard to occur upon breaking. <P>SOLUTION: A plurality of recesses and projections are formed at least on one side of the silicon nitride substrate. When viewing the recess and projection on the side from the surface of the silicon nitride substrate on the side where a roughness of the recess and projection increases in the silicon nitride substrate, Rmax of the recess and projection is equal to or less than 0.1 mm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主に大電力半導体モジュール用基板として用いられる窒化珪素基板、これを用いた窒化珪素回路基板、及び窒化珪素基板の製造方法に関する。   The present invention relates to a silicon nitride substrate mainly used as a substrate for a high power semiconductor module, a silicon nitride circuit substrate using the same, and a method for manufacturing the silicon nitride substrate.

近年、各種のセラミックス(焼結体)基板が半導体モジュール用基板や構造用部材として広く用いられている。例えば、大電力で発熱量の大きな半導体素子を実装する半導体モジュール用基板としては、機械的強度の高さ、熱伝導率の高さが要求される。焼結体の窒化珪素基板はこれらの特性に優れているため、広く用いられている。   In recent years, various ceramic (sintered) substrates have been widely used as semiconductor module substrates and structural members. For example, high mechanical strength and high thermal conductivity are required for a semiconductor module substrate on which a semiconductor element having a large electric power and a large calorific value is mounted. Sintered silicon nitride substrates are widely used because of their excellent characteristics.

一方、窒化珪素基板には、そのコストが高いという問題点がある。この原因としては、焼結体を製造する際の原料のコストが高いことや、窒化珪素の焼結に必要とされる焼結温度が高いためにその製造に要するコストが高いこと等がある。そのため、コストが安い窒化珪素基板の製造方法が求められている。   On the other hand, the silicon nitride substrate has a problem that its cost is high. This is due to the high cost of the raw material for manufacturing the sintered body and the high cost required for the manufacturing because of the high sintering temperature required for sintering silicon nitride. Therefore, there is a demand for a method for manufacturing a silicon nitride substrate at a low cost.

こうした製造方法の一つとして、1枚の大きな窒化珪素焼結体を形成した後にこれを所望の形状、大きさに分割して複数の窒化珪素基板を得るという方法が用いられている。この方法においては、1枚の大きな窒化珪素焼結体に、レーザー加工等によってスクライブ(刻み込み)を複数形成した後で、これに応力を印可することによって窒化珪素焼結体を破断して分割し、所望の形状、大きさの複数の新たな窒化珪素基板を得る。これによれば、1枚の大きな窒化珪素焼結体から多数の窒化珪素基板が得られるため、初めから所望の大きさとなっている多数の窒化珪素基板を焼結して形成する場合と比べて、そのコストを大きく低減することができる。しかしながら、この破断時に窒化珪素基板にマイクロクラックが発生すると、基板の機械的強度が大きく劣化し、その信頼性を損なう。このため、例えば特許文献1においては、窒化珪素焼結体表面に形成するスクライブ形成の条件を規定することにより、破断時のマイクロクラックの発生を抑制し、安い製造コストで信頼性の高い窒化珪素基板を得ることが記載されている。
特開2002−176119
As one of such manufacturing methods, there is used a method in which a large silicon nitride sintered body is formed and then divided into a desired shape and size to obtain a plurality of silicon nitride substrates. In this method, a plurality of scribes (notches) are formed on one large silicon nitride sintered body by laser processing or the like, and then the silicon nitride sintered body is broken and divided by applying stress thereto. Then, a plurality of new silicon nitride substrates having a desired shape and size are obtained. According to this, since a large number of silicon nitride substrates can be obtained from one large silicon nitride sintered body, compared with the case where a large number of silicon nitride substrates having a desired size are sintered and formed from the beginning. The cost can be greatly reduced. However, if a microcrack is generated in the silicon nitride substrate at the time of this fracture, the mechanical strength of the substrate is greatly deteriorated and the reliability thereof is impaired. For this reason, for example, in Patent Document 1, by defining the conditions for forming the scribe formed on the surface of the silicon nitride sintered body, the generation of microcracks at the time of fracture is suppressed, and silicon nitride that is highly reliable at low manufacturing costs. Obtaining a substrate is described.
JP 2002-176119 A

しかしながら、この方法によって分割される窒化珪素焼結体において、その強度や破壊靱性値はその製造方法や原料に依存し、破断時のマイクロクラックの発生もこれに大きく依存する。強度や破壊靱性値が低い窒化珪素焼結体に対しては、上記の方法を適用した場合においてさえも、分割の際にマイクロクラックが発生しやすい。逆にこれらが高い窒化珪素基板においては、分割する際に大きな負荷応力が要求されるために、所望の大きさ、形状に破断することが困難であり、やはりマイクロクラックが発生する場合がある。また、これらの窒化珪素基板においては、破断時にマイクロクラックが発生するというだけではなく、破断後においても割れやクラックが発生しやすい。例えば、この窒化珪素基板上に金属回路を形成して窒化珪素回路基板を製造する工程で基板端部に割れが生じたり、この窒化珪素回路基板を用いた半導体モジュールにおいては、熱サイクルによってクラックが発生するという問題もある。従って、さまざまな特性をもった窒化珪素焼結体を破断分割して窒化珪素基板を得る場合には、これらの問題が発生しない窒化珪素基板を得ることが要求された。   However, in the silicon nitride sintered body divided by this method, the strength and fracture toughness value depend on the production method and raw material, and the occurrence of microcracks at the time of fracture greatly depends on this. For a silicon nitride sintered body having a low strength and fracture toughness value, even when the above method is applied, microcracks are likely to occur during the division. On the other hand, a silicon nitride substrate having a high value is required to have a large load stress when being divided, so that it is difficult to break into a desired size and shape, and microcracks may also occur. In addition, these silicon nitride substrates not only generate microcracks at the time of rupture, but also easily generate cracks and cracks after rupture. For example, in the process of forming a silicon nitride circuit board by forming a metal circuit on the silicon nitride substrate, cracks occur at the end of the substrate. In a semiconductor module using the silicon nitride circuit board, cracks are caused by thermal cycles. There is also a problem that occurs. Therefore, when obtaining a silicon nitride substrate by breaking and dividing a silicon nitride sintered body having various characteristics, it is required to obtain a silicon nitride substrate that does not cause these problems.

本発明は斯かる問題点に鑑みてなされたものであり、その目的とするところは、基板端部での割れを生じにくい窒化珪素基板、及びこれを用いた信頼性の高い窒化珪素回路基板を提供することにある。また、この窒化珪素基板を、破断がしやすく、破断の際のマイクロクラックが発生しにくく、低コストで得ることができる窒化珪素基板の製造方法を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a silicon nitride substrate that is unlikely to crack at the edge of the substrate, and a highly reliable silicon nitride circuit substrate using the same. It is to provide. It is another object of the present invention to provide a method for manufacturing a silicon nitride substrate that can be obtained at low cost because the silicon nitride substrate is easy to break and microcracks are not easily broken.

本発明は、上記課題を解決すべく、以下に掲げる構成とした。
請求項1記載の発明の要旨は、窒化珪素基板の少なくとも一つの側面に複数の凹部及び凸部が設けられており、前記窒化珪素基板において前記凹凸部の粗さが大きくなっている側の前記窒化珪素基板の表面から前記側面の凹凸部をみたときに、凹凸部の最大高さRmaxが0.1mm以下であることを特徴とする窒化珪素基板に存する。
請求項2記載の発明の要旨は、前記凹部は前記側面においてその形状が、V字型、U字型のいずれかであることを特徴とする請求項1に記載の窒化珪素基板に存する。
請求項3記載の発明の要旨は、請求項2に記載の窒化珪素基板の側面において、前記凹部が形成された側の前記窒化珪素基板の表面から前記V字型又はU字型の頂点の距離の最大値をA、前記窒化珪素基板の厚さをTとしたとき、前記側面において前記表面からA/2の距離を走査したときの表面粗さが、平均粗さRaとして7.0〜15.0μmであるか、または前記側面において前記表面の反対側の表面から(T−A)/2の距離を走査したときの表面粗さが、平均粗さRaとして2.0〜7.0μmであることを特徴とする請求項2に記載の窒化珪素基板に存する。
請求項4記載の発明の要旨は、前記側面において、単位長さ当たりの凹凸部の密度が5〜15個/mmであることを特徴とする請求項1〜3のいずれか1項に記載の窒化珪素基板に存する。
請求項5記載の発明の要旨は、請求項1〜4のいずれか1項に記載の窒化珪素基板と金属回路板とからなることを特徴とする、窒化珪素回路基板に存する。
請求項6記載の発明の要旨は、請求項1〜5のいずれか1項に記載の窒化珪素基板の製造方法であって、窒化珪素焼結体の表面に間隔100μm以下で複数の孔部を設け、次いでこの窒化珪素焼結体に応力を印加することによって、前記の連続して設けられた複数の孔部を結ぶ線に沿って前記窒化珪素焼結体を破断して分離することを特徴とする、窒化珪素基板の製造方法に存する。
請求項7記載の発明の要旨は、前記孔部をレーザー加工によって形成することを特徴とする、請求項6に記載の窒化珪素基板の製造方法に存する。
請求項8記載の発明の要旨は、前記孔部を設けた窒化珪素基板について前記破断に必要である負荷応力が、100〜400MPaであることを特徴とする、請求項6に記載の窒化珪素基板の製造方法に存する。
In order to solve the above problems, the present invention has the following configuration.
The gist of the invention described in claim 1 is that a plurality of concave portions and convex portions are provided on at least one side surface of the silicon nitride substrate, and the roughness of the concave and convex portions on the silicon nitride substrate is increased. When the uneven portion on the side surface is viewed from the surface of the silicon nitride substrate, the maximum height Rmax of the uneven portion is 0.1 mm or less.
The gist of the invention described in claim 2 resides in the silicon nitride substrate according to claim 1, wherein the shape of the concave portion on the side surface is either V-shaped or U-shaped.
The gist of the invention described in claim 3 is the distance between the V-shaped or U-shaped apex of the side surface of the silicon nitride substrate according to claim 2 from the surface of the silicon nitride substrate on the side where the recess is formed. When the maximum value of A is A and the thickness of the silicon nitride substrate is T, the surface roughness when the A / 2 distance is scanned from the surface on the side surface is 7.0 to 15 as the average roughness Ra The surface roughness when scanned at a distance of (TA) / 2 from the surface opposite to the surface on the side surface is 2.0 to 7.0 μm as an average roughness Ra. It exists in the silicon nitride board | substrate of Claim 2 characterized by the above-mentioned.
The gist of the invention described in claim 4 is that, in the aspect described above, the density of the uneven portions per unit length is 5 to 15 pieces / mm. It exists in the silicon nitride substrate.
The subject matter of the fifth aspect resides in a silicon nitride circuit board comprising the silicon nitride substrate according to any one of the first to fourth aspects and a metal circuit board.
The gist of the invention described in claim 6 is the method for manufacturing a silicon nitride substrate according to any one of claims 1 to 5, wherein a plurality of hole portions are formed at intervals of 100 μm or less on the surface of the silicon nitride sintered body. And then applying the stress to the silicon nitride sintered body to break and separate the silicon nitride sintered body along a line connecting the plurality of continuously provided holes. And a method for manufacturing a silicon nitride substrate.
The gist of the invention described in claim 7 resides in the method for manufacturing a silicon nitride substrate according to claim 6, wherein the hole is formed by laser processing.
The gist of the invention described in claim 8 is the silicon nitride substrate according to claim 6, wherein the load stress necessary for the fracture of the silicon nitride substrate provided with the hole is 100 to 400 MPa. Exist in the manufacturing method.

本発明は以上のように構成されているので、窒化珪素基板の強度や破壊靱性値によらずに基板端部での割れを生じにくい窒化珪素基板を得ることができる。また、この窒化珪素基板を用いて信頼性の高い窒化珪素回路基板を得ることができる。本発明の製造方法によれば、破断がしやすく、破断の際のマイクロクラックが発生しにくく、低コストで本発明の窒化珪素基板を得ることができる。   Since the present invention is configured as described above, it is possible to obtain a silicon nitride substrate that is less likely to crack at the edge of the substrate regardless of the strength and fracture toughness value of the silicon nitride substrate. In addition, a highly reliable silicon nitride circuit substrate can be obtained using this silicon nitride substrate. According to the production method of the present invention, the silicon nitride substrate of the present invention can be obtained at low cost because it is easy to break and microcracks are hardly generated at the time of fracture.

以下、本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明の窒化珪素基板は、窒化珪素焼結体基板の少なくとも一つの表面に複数の孔部を形成した後に、これを破断して分割するという製造方法によって得られたものである。この窒化珪素基板においては、当該窒化珪素基板のどちらか一方の表面から見たときに、少なくともその一つの側面に複数の凹部及び凸部が存在する。この凹部は前記の孔部に対応し、その凹部の形状はこの孔部の断面形状に対応するため、この側面の形状はこの孔部の形成条件を反映したものとなっている。この孔部の形成条件は、後述する本発明の製造方法によって規定される。この製造方法によって製造されたマイクロクラックが少ない前記の窒化珪素基板においては、前記凹凸部の粗さが大きくなっている側の前記窒化珪素基板の表面から前記側面の凹凸部をみたときに、凹凸部の最大高さRmaxが0.1mm以下である。この表面からみた前記側面の凹凸の形状の例が図1である。   The silicon nitride substrate of the present invention is obtained by a manufacturing method in which a plurality of holes are formed on at least one surface of a silicon nitride sintered substrate, and then this is broken and divided. In this silicon nitride substrate, when viewed from one surface of the silicon nitride substrate, there are a plurality of concave portions and convex portions on at least one side surface thereof. Since the recess corresponds to the hole, and the shape of the recess corresponds to the cross-sectional shape of the hole, the shape of the side surface reflects the formation conditions of the hole. The formation conditions of the hole are defined by the manufacturing method of the present invention described later. In the silicon nitride substrate with few microcracks manufactured by this manufacturing method, when the uneven portion on the side surface is viewed from the surface of the silicon nitride substrate on the side where the roughness of the uneven portion is large, The maximum height Rmax of the part is 0.1 mm or less. An example of the shape of the irregularities on the side surface as viewed from the surface is shown in FIG.

ここで、上記の表面粗さにおけるRmaxは、JISB0601:2001に準拠した粗さの最大高さRzと同じ量である。すなわち、前記基板表面近くの前記の基板側面を触針式または光学式の粗さ計を用いて走査することにより、その粗さプロファイルを求め、これからJISB0601:2001に基づいて算出できる。   Here, Rmax in the above surface roughness is the same amount as the maximum roughness height Rz based on JISB0601: 2001. That is, the roughness profile is obtained by scanning the substrate side surface near the substrate surface using a stylus type or optical roughness meter, and can be calculated based on JIS B0601: 2001.

前記のRmaxが0.1mmよりも大きいと、この窒化珪素基板上に金属回路を形成する工程等で、この側面の粗さに起因して基板端部で割れが発生しやすくなる。   When the Rmax is larger than 0.1 mm, cracks are likely to occur at the edge of the substrate due to the roughness of the side surfaces in the process of forming a metal circuit on the silicon nitride substrate.

この側面の凹部の形状は前記の孔部の断面形状に対応するため、V字型またはU字型、すなわち、これが形成された側の窒化珪素基板表面からその反対側の表面に向かって徐々にこの凹部の幅が小さくなっている形状となる。ただし、破断の際に、孔部のどの断面で窒化珪素焼結体が破断するかは一定ではないため、その断面形状がすべての孔部において同じになるとは限らない。そのため、このV字型またはU字型の形状や大きさは上記の側面においてすべての箇所で同じであるとは限らない。この側面における凹部の形状を例示したのが図2である。この凹部の形状は、例えば、この側面の光学顕微鏡写真から判断することができる。   Since the shape of the concave portion on the side surface corresponds to the cross-sectional shape of the hole portion, the shape is gradually V-shaped or U-shaped, that is, gradually from the surface of the silicon nitride substrate on which it is formed toward the surface on the opposite side. It becomes the shape where the width | variety of this recessed part is small. However, it is not constant at which section of the hole the silicon nitride sintered body breaks at the time of breakage, so the cross-sectional shape is not necessarily the same in all the holes. For this reason, the shape and size of the V-shape or U-shape are not always the same at all locations on the above-described side surface. FIG. 2 shows an example of the shape of the recess on this side surface. The shape of the recess can be determined from an optical micrograph of this side surface, for example.

前記側面に複数個形成された凹部において、前記凹部が形成された側の窒化珪素基板の表面から前記V字型またはU字型の頂点の距離までの距離の最大値をAとすると、これは破断前の窒化珪素焼結体の表面に設けられた孔部の深さに対応する。この凹部が形成された側の窒化珪素基板の表面からA/2の距離の箇所(孔部の半分の深さの箇所:以下、測定個所1と呼称)を走査したときの表面粗さは、この製造方法によって製造されたマイクロクラックが少ない前記の窒化珪素基板においては、その平均粗さRaが7.0〜15.0μmである。また、窒化珪素基板の厚さをTとすると、凹部が形成された側と反対側の表面から(T−A)/2の距離の箇所(以下、測定個所2と呼称)は、前記のV字型またはU字型の形状の凹部の外側、すなわち破断前の孔部がなかった場所である。この箇所を走査したときの表面粗さは、この製造方法によって製造されたマイクロクラックが少ない前記の窒化珪素基板においては、Raが2.0〜7.0μmである。この凹凸は前記の孔部に起因して形成されるため、測定個所2におけるRaは測定個所1におけるRaよりも小さくなる。この窒化珪素基板側面における測定個所1と測定個所2について、図2中に示す。   In a plurality of recesses formed on the side surface, when the maximum value of the distance from the surface of the silicon nitride substrate on the side where the recesses are formed to the distance between the V-shaped or U-shaped apexes is A, This corresponds to the depth of the hole provided in the surface of the silicon nitride sintered body before fracture. The surface roughness when scanning a portion at a distance of A / 2 from the surface of the silicon nitride substrate on the side where the concave portion is formed (a portion having a depth of half of the hole: hereinafter referred to as a measurement location 1) is as follows: In the silicon nitride substrate having few microcracks manufactured by this manufacturing method, the average roughness Ra is 7.0 to 15.0 μm. When the thickness of the silicon nitride substrate is T, a location at a distance of (TA) / 2 from the surface opposite to the side where the recess is formed (hereinafter referred to as measurement location 2) is V It is the outside of the concave portion of the letter-shaped or U-shaped shape, that is, the place where there was no hole before breaking. As for the surface roughness when this portion is scanned, Ra is 2.0 to 7.0 μm in the silicon nitride substrate with few microcracks manufactured by this manufacturing method. Since this unevenness is formed due to the hole, Ra at the measurement location 2 is smaller than Ra at the measurement location 1. The measurement location 1 and measurement location 2 on the side surface of the silicon nitride substrate are shown in FIG.

なお、上記の表面粗さにおけるRaはJISB0601に準拠した平均粗さである。すなわち、基板側面における測定個所1、測定個所2を触針式または光学式の粗さ計を用いて走査することにより、その粗さプロファイルを求め、これからJISB0601に基づいてその粗さの平均値として算出できる。   In addition, Ra in said surface roughness is an average roughness based on JISB0601. That is, the roughness profile is obtained by scanning the measurement location 1 and the measurement location 2 on the side surface of the substrate using a stylus type or optical roughness meter, and based on this, the average value of the roughness is obtained based on JISB0601. It can be calculated.

測定個所1におけるRaが7.0μmよりも小さい、または測定個所2におけるRaが2.0μmよりも小さい窒化珪素基板は、例えば前記の孔部の径を小さくした場合に相当する。この場合は、破断に要する負荷応力が大きくなるため、破断が困難である。測定個所1におけるRaが15.0μmよりも大きい、または測定個所2におけるRaが7.0μmよりも大きい窒化珪素基板は、このような大きな凹凸の存在によって基板端部が割れやすくなっている状態であるため、この上に金属回路を形成する工程等で基板端部で割れが発生しやすい。   A silicon nitride substrate in which Ra at the measurement location 1 is smaller than 7.0 μm or Ra at the measurement location 2 is smaller than 2.0 μm corresponds to, for example, the case where the diameter of the hole is reduced. In this case, since the load stress required for the breakage increases, the breakage is difficult. A silicon nitride substrate having an Ra of more than 15.0 μm at the measurement location 1 or an Ra of greater than 7.0 μm at the measurement location 2 is in a state where the end of the substrate is easily cracked due to the presence of such large irregularities. Therefore, cracks are likely to occur at the edge of the substrate in the process of forming a metal circuit on the substrate.

基板側面の凹凸の数は破断前の窒化珪素焼結体の孔部の数に対応しており、この製造方法によって製造されたマイクロクラックが少ない前記の窒化珪素基板においては、単位長さ当たりの密度が5〜15個/mmである。この密度は、基板側面の顕微鏡写真から算出することができる。   The number of irregularities on the side surface of the substrate corresponds to the number of holes of the silicon nitride sintered body before breaking, and in the silicon nitride substrate with few microcracks manufactured by this manufacturing method, The density is 5-15 pieces / mm. This density can be calculated from a photomicrograph of the side surface of the substrate.

この密度が5個/mmより小さい場合には、その製造時の破断に要する負荷応力が大きくなるため、破断が困難である。15個/mmより大きい場合には、容易に破断しやすくなるために、この基板上に金属回路を形成する工程等において基板端部で割れが発生しやすい。   When this density is smaller than 5 pieces / mm, the load stress required for the rupture at the time of manufacture becomes large, so that the rupture is difficult. If it is larger than 15 pieces / mm, it is easy to break, so that cracks are likely to occur at the edge of the substrate in the process of forming a metal circuit on the substrate.

また、本発明の窒化珪素回路基板は、上記の本発明の窒化珪素基板と金属回路板とからなる。金属回路板は、金属層からなるパターンを有しており、このパターンは、一般には、パターンを有さない金属層をろう付け等の方法で窒化珪素基板に接合し、フォトリソグラフィ工程によってフォトレジストのパターンを形成し、エッチング工程、レジスト除去工程を経ることによって形成される。本発明の窒化珪素基板は、マイクロクラックが少なく、これらの工程によっても基板端部の割れ等を生じにくい。また、この窒化珪素回路基板を用いた半導体モジュールは、熱サイクルによるクラックが発生しにくいため、信頼性が高い。   The silicon nitride circuit board of the present invention comprises the above-described silicon nitride substrate of the present invention and a metal circuit board. The metal circuit board has a pattern made of a metal layer. In general, this pattern is formed by bonding a metal layer having no pattern to a silicon nitride substrate by a method such as brazing, and then performing a photolithographic process to form a photoresist. This pattern is formed, followed by an etching process and a resist removal process. The silicon nitride substrate of the present invention has few microcracks, and it is difficult to cause cracks at the end of the substrate even by these steps. In addition, a semiconductor module using this silicon nitride circuit board is highly reliable because cracks due to thermal cycling are unlikely to occur.

以上に述べた本発明の窒化珪素基板は、窒化珪素焼結体の表面に間隔100μm以下で複数の孔部を設け、次いでこの窒化珪素焼結体に応力を印加することによって、前記の連続して設けられた複数の孔部を結ぶ線に沿って前記窒化珪素焼結体を破断して分離するという、本発明の窒化珪素基板の製造方法によって製造される。   The silicon nitride substrate of the present invention described above is provided with a plurality of holes at intervals of 100 μm or less on the surface of the silicon nitride sintered body, and then applying a stress to the silicon nitride sintered body to The silicon nitride sintered body is manufactured by the method of manufacturing a silicon nitride substrate according to the present invention in which the silicon nitride sintered body is broken and separated along a line connecting a plurality of holes provided.

孔部の間隔が100μmより大きいと、破断時にマイクロクラックが発生する。また、破断後の窒化珪素基板上に金属回路を形成する工程で基板端部の割れが発生しやすい。   If the gap between the holes is larger than 100 μm, microcracks are generated at the time of fracture. Further, cracks at the end of the substrate are likely to occur in the process of forming the metal circuit on the broken silicon nitride substrate.

この孔部を形成する手段として、例えばレーザー加工を用いて、窒化珪素焼結体の表面を部分的に溶融して行なうことができる。この場合、レーザー光の窒化珪素焼結体の表面でのスポットサイズを調整することにより、例えば孔部の径を100μm程度とすることができ、これを上記の所定の間隔で設けることができる。   As a means for forming this hole, for example, laser processing can be used to partially melt the surface of the silicon nitride sintered body. In this case, by adjusting the spot size of the laser light on the surface of the silicon nitride sintered body, for example, the diameter of the hole can be set to about 100 μm and can be provided at the predetermined interval.

孔部の深さは、自由に設定することが可能であるが、例えば数100μmとすることができる。孔部が窒化珪素焼結体を貫通する必要はなく、その場合にはその断面形状はV字型またはU字型となる。その深さは必ずしもすべての孔部で等しくなっている必要はないが、一般に用いられる窒化珪素基板の厚さは0.32mm程度であり、この厚さの50%程度が好ましい。孔部の深さがこれより浅いと、破断が困難になる。孔部の深さがこれより深いと、破断後の窒化珪素基板の強度が小さくなり、分割した基板上に金属回路を形成する工程等において基板端部で割れが発生しやすい。また、孔部の形成に時間がかかるため、製造コストが上昇する。   The depth of the hole can be freely set, but can be set to several hundred μm, for example. The hole does not need to penetrate the silicon nitride sintered body, and in that case, the cross-sectional shape is V-shaped or U-shaped. The depth does not necessarily have to be the same in all the holes, but the thickness of a generally used silicon nitride substrate is about 0.32 mm, and preferably about 50% of this thickness. If the depth of the hole is shallower than this, the fracture becomes difficult. If the depth of the hole is deeper than this, the strength of the broken silicon nitride substrate is reduced, and cracks are likely to occur at the edge of the substrate in a process of forming a metal circuit on the divided substrate. Moreover, since it takes time to form the hole, the manufacturing cost increases.

好ましい窒化珪素基板を得るための孔部の破断面における単位長さ当たりの個数は5〜15個/mmである。5個/mmより小さいと、破断に必要となる負荷応力が大きくなるため、破断が困難となる。15個/mmより大きいと、破断後の窒化珪素基板の強度が小さくなり、破断後の窒化珪素基板に対して後で金属回路を形成する工程で窒化珪素基板が小片化して割れることがある。また、孔部の形成に時間がかかるため、製造コストが上昇する。   The number per unit length in the fracture surface of the hole for obtaining a preferable silicon nitride substrate is 5 to 15 / mm. If it is less than 5 pieces / mm, the load stress required for the breakage becomes large, so that the breakage becomes difficult. If it is larger than 15 pieces / mm, the strength of the silicon nitride substrate after fracture is reduced, and the silicon nitride substrate may be broken into small pieces and cracked in the process of forming a metal circuit later with respect to the fractured silicon nitride substrate. Moreover, since it takes time to form the hole, the manufacturing cost increases.

孔部を設けた後の破断は、孔部が設けられた面に対して引っ張り応力が働く方向に応力を加えることによって行うことができる。従って、例えば、孔部が設けられた面と反対側からこの焼結体にストレスを加えることにこれを破断することができる。本発明において、好ましい窒化珪素基板が得られる場合には、この破断に要する負荷応力は、100〜400MPaである。   The fracture after providing the hole can be performed by applying a stress in a direction in which a tensile stress acts on the surface provided with the hole. Therefore, for example, this can be broken by applying stress to the sintered body from the side opposite to the surface where the hole is provided. In the present invention, when a preferable silicon nitride substrate is obtained, the load stress required for this fracture is 100 to 400 MPa.

この破断に要する負荷応力は、例えば、3点曲げ法(JISR1601に準拠)によって測定することができる。   The load stress required for this fracture can be measured by, for example, a three-point bending method (based on JIS R1601).

この負荷応力が100MPaより小さい場合は、破断時に窒化珪素基板にマイクロクラックが多く発生しやすい。400MPaより大きい場合には破断が困難である。さらに、破断時に孔部の列に沿って割れずに、基板の寸法仕様から逸脱することがある。   When this load stress is smaller than 100 MPa, many microcracks are likely to occur in the silicon nitride substrate at the time of fracture. If it is greater than 400 MPa, it is difficult to break. Furthermore, it may deviate from the dimensional specifications of the substrate without breaking along the row of holes at break.

以下に、本発明の製造方法を実際の窒化珪素焼結体に適用して得られた窒化珪素基板について、比較例と共にその特性を調べた結果について説明する。   Below, the result of having investigated the characteristic with the comparative example about the silicon nitride board | substrate obtained by applying the manufacturing method of this invention to an actual silicon nitride sintered compact is demonstrated.

本発明の実施例においては、窒化珪素焼結体として、大きさ:120mm×110mm、厚さ:0.32mm、焼結助剤として3Wt%MgOおよび2Wt%Y2O3を用い、焼成温度が1850℃×5hのものをを用い、これを破断して分割することにより55mm×45mm×0.32mm厚さの窒化珪素基板を得た。   In the embodiment of the present invention, the silicon nitride sintered body has a size of 120 mm × 110 mm, a thickness of 0.32 mm, 3 Wt% MgO and 2 Wt% Y2O3 as sintering aids, and a firing temperature of 1850 ° C. × A silicon nitride substrate having a thickness of 55 mm × 45 mm × 0.32 mm was obtained by breaking and dividing the substrate having a length of 5 hours.

この窒化珪素焼結体表面に孔部を形成するためのレーザー加工としては、YAGレーザーを用い、大きさが100μmの孔部を形成した。孔部が形成された窒化珪素焼結体の表面の写真の例を図3に示す。孔部の密度は、55mm×45mmの窒化珪素基板を得る際の各辺において、5〜14個/mmとした。孔部の深さは、基板厚さに対する比率として38〜53%とした。   As laser processing for forming a hole on the surface of the silicon nitride sintered body, a YAG laser was used to form a hole having a size of 100 μm. An example of a photograph of the surface of the silicon nitride sintered body in which the hole is formed is shown in FIG. The density of the holes was 5 to 14 holes / mm on each side when a 55 mm × 45 mm silicon nitride substrate was obtained. The depth of the hole was 38 to 53% as a ratio to the substrate thickness.

孔部形成後の破断は、孔部が形成された面と反対側の面から窒化珪素焼結体に圧力を加えることによって行い、55mm×45mmの窒化珪素基板をこの窒化珪素焼結体から4枚取り出した。   The fracture after the hole is formed is performed by applying pressure to the silicon nitride sintered body from the surface opposite to the surface where the hole is formed, and a 55 mm × 45 mm silicon nitride substrate is formed from this silicon nitride sintered body. The sheet was taken out.

以上のようにして製造された窒化珪素基板である発明例1〜17につき、破断後の側面における前記のRmax、測定個所1及び測定個所2におけるRa、孔部の深さ、破断に要した負荷応力、基板の寸法精度、破断後のマイクロクラック発生率、プロセス後のクラック発生率、この窒化珪素基板を用いた回路基板の信頼性を調べた。   With respect to Invention Examples 1 to 17 which are silicon nitride substrates manufactured as described above, Rmax on the side surface after fracture, Ra at measurement location 1 and measurement location 2, depth of hole, load required for fracture The stress, the dimensional accuracy of the substrate, the microcrack generation rate after fracture, the crack generation rate after the process, and the reliability of the circuit substrate using this silicon nitride substrate were examined.

破断後の側面を孔部が形成された表面からみた写真の例を図4に示す。前記の孔部に対応して凹凸が形成されているが、その形状は一定ではない。この形状における凹凸の最大高さRmaxを光学式3次元形状測定装置(EMS2002AD-3D:コムス社製)によって、走査速度100μmのレーザー光によって破断後の側面の長さ10mmにおける形状プロファイルを測定することにより求めた。測定個所1と測定個所2におけるRaも同様にして求めた。   FIG. 4 shows an example of a photograph in which the side surface after fracture is viewed from the surface where the hole is formed. Concavities and convexities are formed corresponding to the holes, but the shape is not constant. The maximum height Rmax of the irregularities in this shape is measured by an optical three-dimensional shape measuring device (EMS2002AD-3D: manufactured by Combs) with a laser beam having a scanning speed of 100 μm and a shape profile at a side length of 10 mm after breaking. Determined by Ra in the measurement location 1 and the measurement location 2 was obtained in the same manner.

孔部の深さとなるAは破断後の側面の光学顕微鏡写真から求めた。その写真の例を図5に示す。この例においては、凹部はいずれもV字型の形状であった。   A as the depth of the hole was determined from an optical micrograph of the side surface after fracture. An example of the photograph is shown in FIG. In this example, all the concave portions were V-shaped.

破断に要した負荷応力は、JISR1601に準拠した3点曲げ法によって測定した。この際、測定スパン(3点曲げ法における二つの支点間の距離)は30mmとし、クロスヘッド速度は0.5mm/minとした。   The load stress required for breaking was measured by a three-point bending method based on JIS R1601. At this time, the measurement span (distance between two fulcrums in the three-point bending method) was 30 mm, and the crosshead speed was 0.5 mm / min.

基板の寸法精度として、破断後の基板が上記の寸法(55mm×45mm)となっているかどうかについて、寸法公差を0.2mmとし、この寸法公差内に入っているかどうかを調べた。入る場合を○、入らない場合を×とした。寸法の測定はデジタルノギスにて行った。   As for the dimensional accuracy of the substrate, the dimensional tolerance was set to 0.2 mm to determine whether or not the substrate after breakage had the above dimensions (55 mm × 45 mm). The case of entering was marked with ◯, and the case of not entering was marked with ×. The dimensions were measured with a digital caliper.

マイクロクラック発生率は、破断後の基板について、蛍光探傷法によって調べた。基板500枚について、このクラックが認められた基板の割合を調べ、これをマイクロクラック発生率とした。これが2%以上あった場合を不良(不合格)と判定した。   The microcrack occurrence rate was examined for the substrate after fracture by a fluorescent flaw detection method. About 500 substrates, the ratio of the substrate in which this crack was recognized was investigated, and this was made into the microcrack generation rate. When this was 2% or more, it was determined to be defective (failed).

プロセス後のクラック発生率は、通常の半導体モジュール用基板を製造する場合と同じ工程である、金属回路を構成する金属層(銅配線材料)のろう付けによる接合、リソグラフィ工程及び金属層のエッチング工程からなるプロセスを破断後の基板について行った回路基板を製造し、その回路基板におけるクラックを前記と同様の方法で400枚の基板について調べた。これをプロセス後クラック発生率とし、2%以上あった場合を不良(不合格)と判定した。なお、ここで用いた基板は、すべて破断後のマイクロクラックが生じていなかったものである。   The rate of occurrence of cracks after the process is the same as that for manufacturing a normal semiconductor module substrate. Joining by brazing of a metal layer (copper wiring material) constituting a metal circuit, lithography process, and etching process of the metal layer A circuit board obtained by performing the process consisting of the following processes on the substrate after fracture was manufactured, and cracks in the circuit board were examined for 400 substrates by the same method as described above. This was regarded as a post-process crack occurrence rate, and a case of 2% or more was judged as defective (failed). In addition, all the substrates used here were those in which microcracks after fracture did not occur.

回路基板の信頼性の評価は、−40℃〜室温〜125℃の温度サイクルを前記のプロセス後の回路基板に対して100サイクル加え、その後のクラックを前記と同様の方法で調べた。この結果、クラックが発生した回路基板の割合を不良率とし、これが2%以上あった場合を不合格とした。なお、ここで用いた回路基板は、すべて前記のプロセス後のクラックが生じていなかったものである。   For the evaluation of the reliability of the circuit board, a temperature cycle of −40 ° C. to room temperature to 125 ° C. was added to the circuit board after the above process for 100 cycles, and the subsequent cracks were examined by the same method as described above. As a result, the ratio of the circuit board in which cracks occurred was defined as the defective rate, and the case where it was 2% or more was rejected. Note that all the circuit boards used here had no cracks after the above process.

比較例1、2としては、孔部形成に用いたレーザーパルス強度を上昇させ、孔部の径および深さを大きくすることにより、破断後の側面におけるRmaxが本発明の範囲よりも大きくなる窒化珪素基板を作成した。比較例3、4としては、比較例1、2とは逆にレーザーパルス強度を低下させ、孔部のピッチ間隔を小さくすることにより、測定個所1におけるRaが本発明の範囲よりも小さな窒化珪素基板を作成し、比較例5、6としては逆の設定によりRaがこれより大きな窒化珪素基板を作成した。比較例7としては、レーザーパルス強度を低下させ、径および深さを小さくすることにより、測定個所2におけるRaが本発明の範囲よりも小さな窒化珪素基板を作成し、比較例8としては逆にこれより大きな窒化珪素基板を作成した。比較例9としては、孔部の深さを浅くした窒化珪素基板を作成し、比較例10としては、これとは逆に孔部を深くした窒化珪素基板を作成した。比較例11としては、孔部の密度を本発明の範囲よりも小さくした窒化珪素基板を作成し、比較例12としては、これとは逆に孔部の密度を高くした窒化珪素基板を作成した。比較例13〜16は、窒化珪素以外の材料からなる焼結体である窒化アルミニウム、アルミナに本発明の製造方法を適用して作成した基板である。   In Comparative Examples 1 and 2, the laser pulse intensity used for forming the hole is increased, and the diameter and depth of the hole are increased, so that the Rmax on the side surface after fracture is greater than the range of the present invention. A silicon substrate was prepared. In Comparative Examples 3 and 4, in contrast to Comparative Examples 1 and 2, by reducing the laser pulse intensity and reducing the pitch interval of the holes, the silicon nitride having a lower Ra at the measurement location 1 than the range of the present invention. A substrate was prepared, and as comparative examples 5 and 6, a silicon nitride substrate having a larger Ra was prepared by the reverse setting. As Comparative Example 7, a silicon nitride substrate having a lower Ra than the range of the present invention was prepared by reducing the laser pulse intensity and reducing the diameter and depth. A larger silicon nitride substrate was produced. As Comparative Example 9, a silicon nitride substrate having a shallow hole portion was prepared. As Comparative Example 10, a silicon nitride substrate having a deep hole portion was prepared. As Comparative Example 11, a silicon nitride substrate having a hole density smaller than the range of the present invention was prepared. As Comparative Example 12, a silicon nitride substrate having a hole density increased was prepared. . Comparative Examples 13 to 16 are substrates prepared by applying the manufacturing method of the present invention to aluminum nitride and alumina which are sintered bodies made of materials other than silicon nitride.

以上の発明例1〜17、比較例1〜16についての上記の評価結果についてまとめたのが表1である。   Table 1 summarizes the above-described evaluation results for Invention Examples 1 to 17 and Comparative Examples 1 to 16.

表1より、本発明の発明例1〜17は、いずれの比較例に対してもマイクロクラック発生率、プロセス後のクラック発生率、及び信頼性評価結果が優れているという結果が得られた。   From Table 1, the result that the invention example 1-17 of this invention was excellent also in any comparative example that the microcrack generation rate, the crack generation rate after a process, and the reliability evaluation result were excellent.

本発明の窒化珪素基板の側面を凹部が形成された側の表面からみた形状を示す図である。It is a figure which shows the shape which looked at the side surface of the silicon nitride substrate of this invention from the surface of the side in which the recessed part was formed. 本発明の窒化珪素基板の側面に形成された凹部の形状を示す図である。It is a figure which shows the shape of the recessed part formed in the side surface of the silicon nitride substrate of this invention. 本発明の実施の形態における窒化珪素基板の製造方法における孔部形成後の窒化珪素焼結体の表面写真の一例である。It is an example of the surface photograph of the silicon nitride sintered compact after the hole formation in the manufacturing method of the silicon nitride substrate in embodiment of this invention. 本発明の実施例における窒化珪素基板の製造方法における孔部形成、破断後の側面を凹部が形成された側の表面からみた写真の一例である。It is an example of the photograph which looked at the side surface after the hole formation and the fracture | rupture in the manufacturing method of the silicon nitride substrate in the Example of this invention from the surface of the side in which the recessed part was formed. 本発明の実施例における窒化珪素基板の製造方法における孔部形成、破断後に得られた窒化珪素基板の側面の凹部の写真の一例である。It is an example of the photograph of the recessed part of the side surface of the silicon nitride substrate obtained after the hole formation in the manufacturing method of the silicon nitride substrate in the Example of this invention, and a fracture | rupture.

Claims (8)

窒化珪素基板の少なくとも一つの側面に複数の凹部及び凸部が設けられており、前記窒化珪素基板において前記凹凸部の粗さが大きくなっている側の前記窒化珪素基板の表面から前記側面の凹凸部をみたときに、凹凸部の最大高さRmaxが0.1mm以下であることを特徴とする窒化珪素基板。   A plurality of concave and convex portions are provided on at least one side surface of the silicon nitride substrate, and the side surface irregularities from the surface of the silicon nitride substrate on the side where the roughness of the concave and convex portions is large in the silicon nitride substrate. A silicon nitride substrate, wherein the maximum height Rmax of the concavo-convex portion is 0.1 mm or less when the portion is viewed. 前記凹部は前記側面においてその形状が、V字型、U字型のいずれかであることを特徴とする請求項1に記載の窒化珪素基板。   2. The silicon nitride substrate according to claim 1, wherein the concave portion has a V-shaped or U-shaped shape on the side surface. 請求項2に記載の窒化珪素基板の側面において、
前記凹部が形成された側の前記窒化珪素基板の表面から前記V字型又はU字型の頂点の距離の最大値をA、前記窒化珪素基板の厚さをTとしたとき、
前記側面において前記表面からA/2の距離を走査したときの表面粗さが、平均粗さRaとして7.0〜15.0μmであるか、
または前記側面において前記表面の反対側の表面から(T−A)/2の距離を走査したときの表面粗さが、平均粗さRaとして2.0〜7.0μmである
ことを特徴とする請求項2に記載の窒化珪素基板。
In the side surface of the silicon nitride substrate according to claim 2,
When the maximum value of the V-shaped or U-shaped apex distance from the surface of the silicon nitride substrate on the side where the concave portion is formed is A, and the thickness of the silicon nitride substrate is T,
The surface roughness when scanning a distance of A / 2 from the surface on the side surface is 7.0 to 15.0 μm as an average roughness Ra,
Alternatively, the surface roughness when the distance of (TA) / 2 is scanned from the surface opposite to the surface on the side surface is 2.0 to 7.0 μm as the average roughness Ra. The silicon nitride substrate according to claim 2.
前記側面において、単位長さ当たりの凹凸部の密度が5〜15個/mmであることを特徴とする請求項1〜3のいずれか1項に記載の窒化珪素基板。   4. The silicon nitride substrate according to claim 1, wherein the density of the uneven portions per unit length is 5 to 15 pieces / mm on the side surface. 5. 請求項1〜4のいずれか1項に記載の窒化珪素基板と金属回路板とからなることを特徴とする、窒化珪素回路基板。   A silicon nitride circuit board comprising the silicon nitride substrate according to any one of claims 1 to 4 and a metal circuit board. 請求項1〜5のいずれか1項に記載の窒化珪素基板の製造方法であって、
窒化珪素焼結体の表面に間隔100μm以下で複数の孔部を設け、次いでこの窒化珪素焼結体に応力を印加することによって、前記の連続して設けられた複数の孔部を結ぶ線に沿って前記窒化珪素焼結体を破断して分離することを特徴とする、窒化珪素基板の製造方法。
A method for producing a silicon nitride substrate according to any one of claims 1 to 5,
By providing a plurality of holes at intervals of 100 μm or less on the surface of the silicon nitride sintered body and then applying a stress to the silicon nitride sintered body, a line connecting the plurality of continuously provided holes is formed. A method of manufacturing a silicon nitride substrate, comprising: breaking and separating the silicon nitride sintered body along
前記孔部をレーザー加工によって形成することを特徴とする、請求項6に記載の窒化珪素基板の製造方法。   The method for manufacturing a silicon nitride substrate according to claim 6, wherein the hole is formed by laser processing. 前記孔部を設けた窒化珪素基板について前記破断に必要である負荷応力が、100〜400MPaであることを特徴とする、請求項6に記載の窒化珪素基板の製造方法。
The method for manufacturing a silicon nitride substrate according to claim 6, wherein a load stress necessary for the fracture of the silicon nitride substrate provided with the hole is 100 to 400 MPa.
JP2005265197A 2005-09-13 2005-09-13 Silicon nitride substrate, silicon nitride circuit board and method of manufacturing silicon nitride board Pending JP2007081024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265197A JP2007081024A (en) 2005-09-13 2005-09-13 Silicon nitride substrate, silicon nitride circuit board and method of manufacturing silicon nitride board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265197A JP2007081024A (en) 2005-09-13 2005-09-13 Silicon nitride substrate, silicon nitride circuit board and method of manufacturing silicon nitride board

Publications (1)

Publication Number Publication Date
JP2007081024A true JP2007081024A (en) 2007-03-29

Family

ID=37941024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265197A Pending JP2007081024A (en) 2005-09-13 2005-09-13 Silicon nitride substrate, silicon nitride circuit board and method of manufacturing silicon nitride board

Country Status (1)

Country Link
JP (1) JP2007081024A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154295A1 (en) 2008-06-20 2009-12-23 日立金属株式会社 Collective ceramic substrate, manufacturing method for the substrate, ceramic substrate, and ceramic circuit substrate
WO2021095845A1 (en) * 2019-11-15 2021-05-20 デンカ株式会社 Ceramic substrate, composite substrate, circuit board, ceramic substrate production method, composite substrate production method, circuit board production method, and method for producing multiple circuit boards
JPWO2020158843A1 (en) * 2019-01-30 2021-11-25 デンカ株式会社 Manufacturing method of single-wafer green sheet, manufacturing method of silicon nitride sintered body, single-wafer green sheet and silicon nitride sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176119A (en) * 2000-12-06 2002-06-21 Toshiba Corp Silicon nitride substrate, silicon nitride circuit substrate using the same, and method of manufacturing the same
JP2003031733A (en) * 2001-07-11 2003-01-31 Toshiba Corp Ceramic substrate and circuit board using it

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176119A (en) * 2000-12-06 2002-06-21 Toshiba Corp Silicon nitride substrate, silicon nitride circuit substrate using the same, and method of manufacturing the same
JP2003031733A (en) * 2001-07-11 2003-01-31 Toshiba Corp Ceramic substrate and circuit board using it

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154295A1 (en) 2008-06-20 2009-12-23 日立金属株式会社 Collective ceramic substrate, manufacturing method for the substrate, ceramic substrate, and ceramic circuit substrate
JPWO2020158843A1 (en) * 2019-01-30 2021-11-25 デンカ株式会社 Manufacturing method of single-wafer green sheet, manufacturing method of silicon nitride sintered body, single-wafer green sheet and silicon nitride sintered body
WO2021095845A1 (en) * 2019-11-15 2021-05-20 デンカ株式会社 Ceramic substrate, composite substrate, circuit board, ceramic substrate production method, composite substrate production method, circuit board production method, and method for producing multiple circuit boards

Similar Documents

Publication Publication Date Title
CN108358461B (en) Structured sheet-shaped glass element and method for the production thereof
EP2315508B1 (en) Collective ceramic substrate, manufacturing method for the substrate, ceramic substrate, and ceramic circuit substrate
JP5326278B2 (en) Circuit board, semiconductor module using the same, and circuit board manufacturing method
CN107922259B (en) Method for producing glass plate, method for producing glass article, and apparatus for producing glass article
KR101690825B1 (en) Substrate with integrated fins and method of manufacturing substrate with integrated fins
EP1748499A3 (en) Light emitting devices and method for fabricating the same
JP6642146B2 (en) Silicon nitride based ceramic aggregate substrate and method of manufacturing the same
JP2007081024A (en) Silicon nitride substrate, silicon nitride circuit board and method of manufacturing silicon nitride board
CN109071365B (en) Copper-ceramic composite
CN115884952A (en) Method for producing a cermet substrate and cermet substrate produced by means of said method
WO2008066133A1 (en) Method for manufacturing metallized ceramic substrate chip
KR102250917B1 (en) Copper-ceramic composite
JP5461913B2 (en) Manufacturing method of multilayer ceramic substrate
JP2019511991A (en) Copper / ceramic composite
TWI636719B (en) Manufacturing method for combining metal with ceramic substrate
JP2013178053A (en) Baking setter
JP5388697B2 (en) Multi-circuit board, circuit board, and module using the same
JP3838810B2 (en) Ceramic substrate for electronic parts
JP4412024B2 (en) Ceramic substrate for mounting photoelectric conversion element and manufacturing method thereof
CN108698945B (en) Copper-ceramic composite
JP2005294668A (en) Metal-ceramic bonding substrate and manufacturing method thereof
JP5536942B2 (en) Manufacturing method of multilayer ceramic substrate
JP4795573B2 (en) Ceramic circuit board
JP6189742B2 (en) Multilayer electronic component and manufacturing method thereof
JP2003019711A (en) Method for producing ceramic substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Effective date: 20110117

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111011