JP2007077854A - Supercharging system - Google Patents
Supercharging system Download PDFInfo
- Publication number
- JP2007077854A JP2007077854A JP2005265288A JP2005265288A JP2007077854A JP 2007077854 A JP2007077854 A JP 2007077854A JP 2005265288 A JP2005265288 A JP 2005265288A JP 2005265288 A JP2005265288 A JP 2005265288A JP 2007077854 A JP2007077854 A JP 2007077854A
- Authority
- JP
- Japan
- Prior art keywords
- compressor
- intake air
- engine
- supercharging system
- power generation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010248 power generation Methods 0.000 claims abstract description 12
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 230000001133 acceleration Effects 0.000 abstract description 7
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000446 fuel Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D23/00—Controlling engines characterised by their being supercharged
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
Abstract
Description
本発明は車載のエンジンに適した過給システムに関するものである。 The present invention relates to a supercharging system suitable for a vehicle-mounted engine.
近年、エンジン排気経路から分流した排気を水冷式の管形熱交換器であるEGRクーラ(EGR:Exhaust Gas Recirculation)より冷却したうえエンジン吸気経路へ戻し、燃焼温度を下げてNOxの発生を低減させる排気再循環が一般的に行なわれている。 In recent years, exhaust gas diverted from the engine exhaust path is cooled by an EGR cooler (EGR: Exhaust Gas Recirculation), which is a water-cooled tubular heat exchanger, and then returned to the engine intake path to lower the combustion temperature and reduce NOx generation. Exhaust gas recirculation is generally performed.
排気容量を変えずにエンジンの出力を高めるためには、1サイクルあたりの燃料噴射量を多くするとともに、ターボチャージャにより過給圧を上げてシリンダへの吸気の送給量を増やす必要がある。 In order to increase the output of the engine without changing the exhaust capacity, it is necessary to increase the fuel injection amount per cycle and increase the supercharging pressure by the turbocharger to increase the amount of intake air supplied to the cylinder.
また、吸気の送給量を減らさずに高EGR率を達成するためにも、ターボチャージャを用いて過給圧を上げる必要がある。 Further, in order to achieve a high EGR rate without reducing the amount of intake air supplied, it is necessary to increase the supercharging pressure using a turbocharger.
従来、加速時の応答性の向上を図るために、ターボチャージャーとは別途に、エンジン吸気経路に電動過給機を組み込むことが提案されている(例えば、特許文献1参照)。
高ECR化に伴い、エンジンが低回転数域で全負荷運転されるときに、コンプレッサの運転作動線がサージ領域に近いことが問題となる。また、加速時などの過渡運転時の応答性と排気再循環量を確保するためにターボラグが少ない吸気量アシストが必要となる。 As the ECR increases, when the engine is operated at full load in a low engine speed range, the operation line of the compressor is close to the surge region. In addition, in order to ensure responsiveness and exhaust gas recirculation amount during transient operation such as acceleration, an intake air amount assist with a small turbo lag is required.
本発明は上述した実情に鑑みてなしたもので、コンプレッサのサージ回避、エネルギ回収、及び加速時の過給アシストに対応できる過給システムを提供することを目的としている。 The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a supercharging system that can cope with compressor surge avoidance, energy recovery, and supercharging assistance during acceleration.
上記目的を達成するため本発明は、エンジンから送出される排気によってタービンを作動させ且つコンプレッサで圧縮した吸気をエンジンへ送給するターボチャージャと、コンプレッサの吐出口から吸入口へ至るリサーキュレーション配管と、当該リサーキュレーション配管に組み込んだ発電機能を有する電動過給機と、実吸気量が不足した際に電動過給機を作動させ且つコンプレッサの運転状況がサージ領域に入る前にリサーキュレーション配管に吸気の一部を戻して電動過給機の発電機能を活かす制御ユニットとを備える。 In order to achieve the above object, the present invention provides a turbocharger that operates a turbine by exhaust gas sent from an engine and supplies intake air compressed by a compressor to the engine, and a recirculation piping from the discharge port to the intake port of the compressor. And an electric supercharger with a power generation function incorporated in the recirculation piping, and recirculation before operating the electric turbocharger when the actual intake air amount is insufficient and before the operating state of the compressor enters the surge region. A control unit that returns a part of the intake air to the pipe and makes use of the power generation function of the electric supercharger.
更に、電動過給機作動時に、リサーキュレーション配管からの逆流を止める逆止弁を、コンプレッサの吐出口に設ける。 Further, a check valve for stopping the backflow from the recirculation pipe when the electric supercharger is operated is provided at the discharge port of the compressor.
また、リサーキュレーション配管に流量調整弁を組み込み、コンプレッサの運転状況がサージ領域に入る前に制御ユニットが流量調整弁の開度を調整するようにした構成を採る。 In addition, a flow adjustment valve is incorporated in the recirculation pipe so that the control unit adjusts the opening degree of the flow adjustment valve before the compressor operating state enters the surge region.
エンジンの実吸気量が不足すると、制御ユニットが電動過給機を作動させて、吸気の不足分をリサーキュレーション配管からエンジンへ送給する。 When the actual intake air amount of the engine is insufficient, the control unit activates the electric supercharger and supplies the shortage of intake air to the engine from the recirculation piping.
コンプレッサがサージ領域に入る前に、コンプレッサの吐出口から吸入口へリサーキュレーション配管により吸気を戻してコンプレッサのサージを防ぐ。その際、制御ユニットが電動過給機の発電機能を活かし、エネルギ回収を行なう。 Before the compressor enters the surge region, the intake air is returned from the discharge port of the compressor to the suction port by recirculation piping to prevent the surge of the compressor. At that time, the control unit utilizes the power generation function of the electric supercharger to recover energy.
本発明の過給システムによれば、下記のような優れた効果を奏し得る。 According to the supercharging system of the present invention, the following excellent effects can be obtained.
(1)エンジンの実吸気量が不足すると、制御ユニットが電動過給機を作動させて、コンプレッサとは別途に、吸気の不足分をリサーキュレーション配管からエンジンへ送給するので、吸気量の確保が図られ、車両の加速に対応できる。 (1) When the actual intake air amount of the engine is insufficient, the control unit activates the electric supercharger and supplies the intake air shortage to the engine separately from the compressor. Secured and can respond to acceleration of the vehicle.
(2)コンプレッサがサージ領域に入る前に、リサーキュレーション配管によりコンプレッサの吐出口から吸入口へ吸気を戻すことにより、コンプレッサのサージを防ぐ。その際、制御ユニットが電動過給機の発電機能を活かし、リサーキュレーション配管を通る吸気のエネルギを回収することができる。 (2) Before the compressor enters the surge region, the recirculation piping returns the intake air from the discharge port of the compressor to the intake port, thereby preventing the compressor surge. At that time, the control unit can utilize the power generation function of the electric supercharger to recover the energy of the intake air passing through the recirculation pipe.
(3)また、コンプレッサの出口圧とタービン入口圧との差圧が小さくならず、低回転数の高負荷運転でも、EGR配管を通る排気の再循環量が確保され、高EGR率を達成することが可能になる。 (3) In addition, the differential pressure between the compressor outlet pressure and the turbine inlet pressure is not reduced, and the recirculation amount of the exhaust gas passing through the EGR pipe is ensured even in a high load operation at a low speed, thereby achieving a high EGR rate. It becomes possible.
以下、本発明の実施の形態を図面に基づき説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1及び図2は本発明の過給システムの一例であり、車載のエンジン1の排気マニホールド2から送出される排気Gによってタービン3を作動させ且つコンプレッサ4で圧縮した吸気Aをエンジン1の吸気マニホールド5へ送給するターボチャージャ6と、コンプレッサ4から吸気マニホールド5へ向かう吸気Aを冷却するインタクーラ7と、コンプレッサ4の空気吐出口から空気吸入口へ至るリサーキュレーション配管8と、当該リサーキュレーション配管8に組み込んだ流量調整弁9、及び発電機能を有する電動過給機10と、制御ユニット11と、圧力センサ12,13,14と、流量センサ15,16と、回転数センサ17,18と、温度センサ19と、排気マニホールド2から吸気マニホールド5へ至るEGR配管20と、当該EGR配管20に組み込んだEGRクーラ21及びEGRバルブ22とを備えている。
FIGS. 1 and 2 show an example of a supercharging system according to the present invention. Intake A of an
コンプレッサ4の空気吐出口には、電動過給機10の作動時に、リサーキュレーション配管8からコンプレッサ4へ向かう吸気Aを止めるための逆止弁23が組み込んである。
The air discharge port of the compressor 4 incorporates a
電動過給機10にはインバータ24が付帯しており、当該インバータ24は、制御ユニット11から送信されるブースタ回転数Nbに見合う回転数で電動過給機10を運転する。または、制御ユニット11から送信されるジェネレータ回転数Ngに見合う回転数となるように、電動過給機10の発電量を調整する。
The
制御ユニット11は、図3に示すフローチャートのステップS1〜S9を追って、電動過給機10や流量調整弁9の制御を実行する。
The
ステップS1では、開度Nv=1(全開)とする指令を流量調整弁9へ送信し、同時にブースタ回転数Nb=0とする指令をインバータ24へ送信して、電動過給機10を待機状態に保つ。
In step S1, a command for opening degree Nv = 1 (fully open) is transmitted to the flow
ステップS2では、エンジン1の起動後、流量センサ15による実吸気量Gaの情報、流量センサ16による燃料流量Gfの情報、回転センサ17によるエンジン回転数Neの情報を読み込む。燃料流量Gfの情報は、エンジン回転数Neと別のセンサによって得たアクセル開度から算出した計算値でも代用できる。
In step S2, after starting the
ステップS3では、燃料流量Gfの情報とエンジン回転数Neの情報とに基づき、目標吸気量Gatを算出し、当該目標吸気量Gatと実吸気量Gaを対比する。 In step S3, the target intake air amount Gat is calculated based on the information on the fuel flow rate Gf and the information on the engine speed Ne, and the target intake air amount Gat and the actual intake air amount Ga are compared.
ステップS4は、実吸気量Ga<目標吸気量Gat(吸気量が不足ぎみである場合)を対象としている。 Step S4 targets the actual intake air amount Ga <the target intake air amount Gat (when the intake air amount is insufficient).
ここでは、実吸気量Gaと目標吸気量Gatとの差ΔGaを補うのに要する電動過給機10のブースタ回転数Nbを求めて、当該ブースタ回転数Nbの指令をインバータ24へ送信する。
Here, the booster rotational speed Nb of the
つまり、ブースタ回転数Nbに見合う回転数で電動過給機10を運転して、目標吸気量Gatが確保されることになり、車両の加速に対応できる(図1参照)。
In other words, the
ステップS5は、実吸気量Ga≧目標吸気量Gat(吸気量が確保されている場合)を対象としている。 Step S5 is targeted for the actual intake air amount Ga ≧ target intake air amount Gat (when the intake air amount is secured).
ここでは、回転センサ18によるタービン回転数Ntの情報、圧力センサ12によるブースト圧Pbの情報、圧力センサ13による大気圧Patmの情報、圧力センサ14によるコンプレッサ入口圧Piの情報、温度センサ19によるコンプレッサ入口温度Tiの情報を読み込む。
Here, information on the turbine rotational speed Nt by the
ステップS6では、ブースト流量Gabをタービン回転数Ntの情報、ブースト圧Pbの情報、大気圧Patmの情報、コンプレッサ入口温度Tiの情報から算出し、サージ流量Gasをブースト圧Pbの情報、大気圧Patmの情報、コンプレッサ入口圧Piの情報、コンプレッサ入口温度Tiから算出したうえ、ブースト流量Gabとサージ流量Gasを対比する。 In step S6, the boost flow rate Gab is calculated from the turbine rotational speed Nt information, boost pressure Pb information, atmospheric pressure Patm information, and compressor inlet temperature Ti information, and the surge flow rate Gas is determined from the boost pressure Pb information and the atmospheric pressure Patm. And the boost flow rate Gab and the surge flow rate Gas are compared with each other.
ステップS7は、ブースト流量Gab<サージ流量Gas(サージ領域に入る場合)を対象としている。 Step S7 is targeted for boost flow rate Gab <surge flow rate Gas (when entering the surge region).
ここでは、ブースト圧Pb及びコンプレッサ入口圧Piからジェネレータ回転数Ngを求めて、当該ジェネレータ回転数Ngの指令をインバータ24へ送信する。
Here, the generator rotational speed Ng is obtained from the boost pressure Pb and the compressor inlet pressure Pi, and a command for the generator rotational speed Ng is transmitted to the
また、サージ流量Gasとブースト流量Gabとの差ΔGabに応じた開度Nvの指令を流量調整弁9へ送信する。
Further, a command for the opening degree Nv corresponding to the difference ΔGab between the surge flow rate Gas and the boost flow rate Gab is transmitted to the flow
つまり、ジェネレータ回転数Ngに見合う回転数となるように電動過給機10の発電量が調整され、コンプレッサ4の空気吐出口から空気吸入口へリサーキュレーション配管8を通って戻る吸気Aのエネルギを回収するとともに、コンプレッサ4のサージが防ぐことになり、低回転数域の全負荷運転に対応できる(図2参照)。
That is, the energy of the intake air A that is adjusted through the recirculation pipe 8 from the air discharge port of the compressor 4 to the air intake port is adjusted so that the electric power generation amount of the
また、コンプレッサ4の出口圧とタービン3の入口圧との差圧が増加し、低回転数の高負荷運転でも、EGR配管20を通る排気Gの再循環量が確保される。
Further, the differential pressure between the outlet pressure of the compressor 4 and the inlet pressure of the
ステップS8は、ブースト流量Gab≧サージ流量Gas(サージ領域でない場合)、もしくは前述のステップS4,S7の実行後を対象として、キースイッチ(図示せず)の信号Sigを読み込む。 Step S8 reads the signal Sig of the key switch (not shown) for the boost flow rate Gab ≧ surge flow rate Gas (when not in the surge region) or after the execution of the above-described steps S4 and S7.
ステップS9では、信号Sig=1(ON)か、それとも信号Sig=0(OFF)であるのかを判定し、ONである場合には、前述したステップS2に戻る。 In step S9, it is determined whether the signal Sig = 1 (ON) or the signal Sig = 0 (OFF). If it is ON, the process returns to the above-described step S2.
なお、本発明の過給システムは、上述の実施の形態のみに特に限定されるものではなく、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。 Note that the supercharging system of the present invention is not particularly limited only to the above-described embodiment, and it is needless to say that changes can be made without departing from the gist of the present invention.
本発明の過給システムは、様々な内燃機関に適用できる。 The supercharging system of the present invention can be applied to various internal combustion engines.
1 エンジン
2 排気マニホールド(排気経路)
3 タービン
4 コンプレッサ
5 吸気マニホールド(吸気経路)
6 ターボチャージャ
8 リサーキュレーション配管
9 流量調整弁
10 電動過給機
11 制御ユニット
20 EGR配管
21 EGRクーラ
22 EGRバルブ
22 リサーキュレーション配管
23 リサーキュレーション配管
A 吸気
G 排気
1
3 Turbine 4
6 Turbocharger 8
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005265288A JP4746389B2 (en) | 2005-09-13 | 2005-09-13 | Supercharging system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005265288A JP4746389B2 (en) | 2005-09-13 | 2005-09-13 | Supercharging system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007077854A true JP2007077854A (en) | 2007-03-29 |
JP4746389B2 JP4746389B2 (en) | 2011-08-10 |
Family
ID=37938440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005265288A Active JP4746389B2 (en) | 2005-09-13 | 2005-09-13 | Supercharging system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4746389B2 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007019060A1 (en) * | 2007-04-23 | 2008-11-20 | Audi Ag | Internal-combustion engine for motor vehicle, has mechanical loader arranged in intake system in parallel connection to compressor of turbocharger, and switched into upper speed range of engine to adjust power loss of turbocharger |
JP2009167827A (en) * | 2008-01-11 | 2009-07-30 | Toyota Motor Corp | Supercharging system of internal combustion engine |
WO2012146372A3 (en) * | 2011-04-26 | 2013-01-03 | Audi Ag | Arrangement with an internal combustion engine and a turbocharger, and method for operating a turbocharger |
JP2014118829A (en) * | 2012-12-13 | 2014-06-30 | Mitsubishi Heavy Ind Ltd | Supercharging power generating system, supercharging power generating device, and supercharging power generating method for internal combustion engine |
JP2014141929A (en) * | 2013-01-24 | 2014-08-07 | Mitsubishi Heavy Ind Ltd | Control device, supercharging system, control method and program |
US20140305413A1 (en) * | 2013-04-15 | 2014-10-16 | Ford Global Technologies, Llc | Direct manifold boost assist device with throttle body manifold volume isolation |
EP2993329A1 (en) | 2014-09-02 | 2016-03-09 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine system |
DE102014220931A1 (en) * | 2014-10-15 | 2016-04-21 | Continental Automotive Gmbh | Charging device for an internal combustion engine and operating method for the charging device |
DE102014223891A1 (en) * | 2014-11-24 | 2016-05-25 | Continental Automotive Gmbh | Charging device for an internal combustion engine and operating method for the charging device |
DE102014224474A1 (en) * | 2014-12-01 | 2016-06-02 | Continental Automotive Gmbh | Charging device for an internal combustion engine and operating method for the charging device |
GB2535617A (en) * | 2015-01-05 | 2016-08-24 | Borgwarner Inc | Electrically driven compressor-expander for a turbocharged engine system and associated flow control valves |
JP2016200017A (en) * | 2015-04-07 | 2016-12-01 | トヨタ自動車株式会社 | Internal combustion engine supercharging system |
EP3103991A1 (en) | 2015-06-09 | 2016-12-14 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
GB2541201A (en) * | 2015-08-11 | 2017-02-15 | Gm Global Tech Operations Llc | Method of operating a turbocharged automotive system |
FR3056639A1 (en) * | 2016-09-27 | 2018-03-30 | Valeo Systemes De Controle Moteur | METHOD OF RECOVERING ENERGY WITH AN ELECTRIC COMPRESSOR AND ELECTRICAL COMPRESSOR THEREFOR |
US20190249594A1 (en) * | 2014-04-27 | 2019-08-15 | Venomaire, Llc | Electric mass airflow turbine control system |
JP2020125719A (en) * | 2019-02-05 | 2020-08-20 | 川崎重工業株式会社 | Gas engine system and control method therefor |
DE102019108562A1 (en) * | 2019-04-02 | 2020-10-08 | Mtu Friedrichshafen Gmbh | Exhaust gas turbocharger of an internal combustion engine and method for operating an exhaust gas turbocharger |
CN115045771A (en) * | 2022-05-16 | 2022-09-13 | 潍柴动力股份有限公司 | Surge detection method and device for supercharger, storage medium and terminal |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101664069B1 (en) | 2015-05-07 | 2016-10-10 | 현대자동차 주식회사 | Engine having low pressure egr system and the method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5577385A (en) * | 1995-09-11 | 1996-11-26 | Kapich; Davorin D. | Electropneumatic engine supercharger system |
JP2003097298A (en) * | 2001-09-27 | 2003-04-03 | Nissan Motor Co Ltd | Control apparatus for internal combustion engine with supercharger |
JP2004278430A (en) * | 2003-03-17 | 2004-10-07 | Nissan Motor Co Ltd | Electric supercharging system |
JP2005214153A (en) * | 2004-02-02 | 2005-08-11 | Nissan Diesel Motor Co Ltd | Intake air amount control device for internal combustion engine and its method |
JP2005256651A (en) * | 2004-03-10 | 2005-09-22 | Hino Motors Ltd | Intake recirculation device for diesel engine |
-
2005
- 2005-09-13 JP JP2005265288A patent/JP4746389B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5577385A (en) * | 1995-09-11 | 1996-11-26 | Kapich; Davorin D. | Electropneumatic engine supercharger system |
JP2003097298A (en) * | 2001-09-27 | 2003-04-03 | Nissan Motor Co Ltd | Control apparatus for internal combustion engine with supercharger |
JP2004278430A (en) * | 2003-03-17 | 2004-10-07 | Nissan Motor Co Ltd | Electric supercharging system |
JP2005214153A (en) * | 2004-02-02 | 2005-08-11 | Nissan Diesel Motor Co Ltd | Intake air amount control device for internal combustion engine and its method |
JP2005256651A (en) * | 2004-03-10 | 2005-09-22 | Hino Motors Ltd | Intake recirculation device for diesel engine |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007019060A1 (en) * | 2007-04-23 | 2008-11-20 | Audi Ag | Internal-combustion engine for motor vehicle, has mechanical loader arranged in intake system in parallel connection to compressor of turbocharger, and switched into upper speed range of engine to adjust power loss of turbocharger |
JP2009167827A (en) * | 2008-01-11 | 2009-07-30 | Toyota Motor Corp | Supercharging system of internal combustion engine |
WO2012146372A3 (en) * | 2011-04-26 | 2013-01-03 | Audi Ag | Arrangement with an internal combustion engine and a turbocharger, and method for operating a turbocharger |
JP2014118829A (en) * | 2012-12-13 | 2014-06-30 | Mitsubishi Heavy Ind Ltd | Supercharging power generating system, supercharging power generating device, and supercharging power generating method for internal combustion engine |
JP2014141929A (en) * | 2013-01-24 | 2014-08-07 | Mitsubishi Heavy Ind Ltd | Control device, supercharging system, control method and program |
US10550759B2 (en) | 2013-04-15 | 2020-02-04 | Ford Global Technologies, Llc | Direct manifold boost assist device with throttle body manifold volume isolation |
US20140305413A1 (en) * | 2013-04-15 | 2014-10-16 | Ford Global Technologies, Llc | Direct manifold boost assist device with throttle body manifold volume isolation |
US9599013B2 (en) * | 2013-04-15 | 2017-03-21 | Ford Global Technologies, Llc | Direct manifold boost assist device with throttle body manifold volume isolation |
US20190249594A1 (en) * | 2014-04-27 | 2019-08-15 | Venomaire, Llc | Electric mass airflow turbine control system |
US11339709B2 (en) * | 2014-04-27 | 2022-05-24 | Venomaire, Llc | Electric mass airflow control system |
JP2016050568A (en) * | 2014-09-02 | 2016-04-11 | トヨタ自動車株式会社 | Internal combustion engine system |
EP2993329A1 (en) | 2014-09-02 | 2016-03-09 | Toyota Jidosha Kabushiki Kaisha | Internal combustion engine system |
US10563572B2 (en) | 2014-10-15 | 2020-02-18 | Vitesco Technologies GmbH | Charging device for an internal combustion engine and operating method for the charging device |
DE102014220931A1 (en) * | 2014-10-15 | 2016-04-21 | Continental Automotive Gmbh | Charging device for an internal combustion engine and operating method for the charging device |
CN106795805B (en) * | 2014-10-15 | 2019-06-21 | 大陆汽车有限公司 | Supercharging equipment for internal combustion engine and the operating method for supercharging equipment |
CN106795805A (en) * | 2014-10-15 | 2017-05-31 | 大陆汽车有限公司 | Supercharging equipment for explosive motor and the operating method for supercharging equipment |
CN107002599A (en) * | 2014-11-24 | 2017-08-01 | 大陆汽车有限公司 | Operating method for the supercharging device of explosive motor and for the supercharging device |
DE102014223891A1 (en) * | 2014-11-24 | 2016-05-25 | Continental Automotive Gmbh | Charging device for an internal combustion engine and operating method for the charging device |
CN107002599B (en) * | 2014-11-24 | 2020-03-17 | 大陆汽车有限公司 | Supercharging device for an internal combustion engine and method for operating said supercharging device |
WO2016083004A1 (en) * | 2014-11-24 | 2016-06-02 | Continental Automotive Gmbh | Supercharging device for an internal combustion engine, and operating method for the supercharging device |
US10526955B2 (en) | 2014-11-24 | 2020-01-07 | Vitesco Technologies GmbH | Supercharging device for an internal combustion engine, and operating method for the supercharging device |
WO2016087125A1 (en) * | 2014-12-01 | 2016-06-09 | Continental Automotive Gmbh | Supercharger device for an internal combustion engine, and a method for operating said supercharger device |
CN107002555A (en) * | 2014-12-01 | 2017-08-01 | 大陆汽车有限公司 | Operating method for the supercharging device of explosive motor and for the supercharging device |
DE102014224474A1 (en) * | 2014-12-01 | 2016-06-02 | Continental Automotive Gmbh | Charging device for an internal combustion engine and operating method for the charging device |
US10513972B2 (en) | 2014-12-01 | 2019-12-24 | Vitesco Technologies GmbH | Supercharger device for an internal combustion engine, and a method for operating said supercharger device |
CN107002555B (en) * | 2014-12-01 | 2019-10-01 | 大陆汽车有限公司 | Supercharging device for internal combustion engine and the operating method for the supercharging device |
DE102014224474B4 (en) | 2014-12-01 | 2019-06-06 | Continental Automotive Gmbh | Charging device for an internal combustion engine and operating method for the charging device |
GB2535617B (en) * | 2015-01-05 | 2020-08-12 | Borgwarner Inc | Electrically driven compressor-expander for a turbocharged engine system and associated flow control valves |
US10197020B2 (en) | 2015-01-05 | 2019-02-05 | Borgwarner Inc. | Electrically driven compressor-expander for a turbocharged engine system and associated flow control valves |
GB2535617A (en) * | 2015-01-05 | 2016-08-24 | Borgwarner Inc | Electrically driven compressor-expander for a turbocharged engine system and associated flow control valves |
JP2016200017A (en) * | 2015-04-07 | 2016-12-01 | トヨタ自動車株式会社 | Internal combustion engine supercharging system |
EP3103991A1 (en) | 2015-06-09 | 2016-12-14 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
US10087822B2 (en) | 2015-06-09 | 2018-10-02 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
CN106246393A (en) * | 2015-06-09 | 2016-12-21 | 丰田自动车株式会社 | The control device of internal combustion engine |
US10184390B2 (en) | 2015-08-11 | 2019-01-22 | GM Global Technology Operations LLC | Method of operating a turbocharged automotive system |
GB2541201A (en) * | 2015-08-11 | 2017-02-15 | Gm Global Tech Operations Llc | Method of operating a turbocharged automotive system |
FR3056639A1 (en) * | 2016-09-27 | 2018-03-30 | Valeo Systemes De Controle Moteur | METHOD OF RECOVERING ENERGY WITH AN ELECTRIC COMPRESSOR AND ELECTRICAL COMPRESSOR THEREFOR |
JP2020125719A (en) * | 2019-02-05 | 2020-08-20 | 川崎重工業株式会社 | Gas engine system and control method therefor |
JP7214490B2 (en) | 2019-02-05 | 2023-01-30 | 川崎重工業株式会社 | Gas engine system and its control method |
DE102019108562A1 (en) * | 2019-04-02 | 2020-10-08 | Mtu Friedrichshafen Gmbh | Exhaust gas turbocharger of an internal combustion engine and method for operating an exhaust gas turbocharger |
CN115045771A (en) * | 2022-05-16 | 2022-09-13 | 潍柴动力股份有限公司 | Surge detection method and device for supercharger, storage medium and terminal |
CN115045771B (en) * | 2022-05-16 | 2023-11-17 | 潍柴动力股份有限公司 | Surge detection method and device of supercharger, storage medium and terminal |
Also Published As
Publication number | Publication date |
---|---|
JP4746389B2 (en) | 2011-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4746389B2 (en) | Supercharging system | |
EP2171234B1 (en) | Charge air system and charge air system operation method | |
US9316180B2 (en) | Internal combustion engine | |
EP2725211B1 (en) | Intake device for internal combustion engine with supercharger | |
JP4525544B2 (en) | Internal combustion engine with a supercharger | |
JP2011501043A5 (en) | ||
US20150136093A1 (en) | Engine Boosting System and Method Therefor | |
CN111287839B (en) | Engine system and method of controlling the same | |
JP2008280923A (en) | Engine supercharging device | |
JP4802992B2 (en) | Exhaust gas recirculation device for internal combustion engine | |
JP2010048225A (en) | Supercharging system for internal combustion engine | |
JP5538712B2 (en) | EGR device for internal combustion engine | |
US20130306039A1 (en) | Turbo Compressor By-Pass | |
JP2010024878A (en) | Control device for internal combustion engine | |
JP2008075589A (en) | Egr gas scavenging device for internal combustion engine | |
JP2007154809A (en) | Control unit for internal combustion engine | |
US20190368414A1 (en) | Engine system and method using the same | |
JP5682245B2 (en) | Low pressure loop EGR device | |
JP2008309133A (en) | Exhaust gas recirculation system for internal combustion engine | |
JP2008280953A (en) | Exhaust gas recirculation device for internal combustion engine | |
JP2790019B2 (en) | Control device for internal combustion engine | |
US10767602B2 (en) | Engine system | |
JP4229038B2 (en) | Internal combustion engine supercharging system | |
JP2005188359A (en) | Internal combustion engine with supercharger | |
JP2004324417A (en) | Exhaust gas recirculation system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101020 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110510 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110513 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140520 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4746389 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |