JP2007077854A - Supercharging system - Google Patents

Supercharging system Download PDF

Info

Publication number
JP2007077854A
JP2007077854A JP2005265288A JP2005265288A JP2007077854A JP 2007077854 A JP2007077854 A JP 2007077854A JP 2005265288 A JP2005265288 A JP 2005265288A JP 2005265288 A JP2005265288 A JP 2005265288A JP 2007077854 A JP2007077854 A JP 2007077854A
Authority
JP
Japan
Prior art keywords
compressor
intake air
engine
supercharging system
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005265288A
Other languages
Japanese (ja)
Other versions
JP4746389B2 (en
Inventor
Hideki Kato
秀輝 加藤
Yukihiro Tsuji
幸浩 辻
Hiroaki Kawahara
宏明 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2005265288A priority Critical patent/JP4746389B2/en
Publication of JP2007077854A publication Critical patent/JP2007077854A/en
Application granted granted Critical
Publication of JP4746389B2 publication Critical patent/JP4746389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a supercharging system capable of avoiding a surge of a compressor, recovering energy, and assisting supercharging in acceleration. <P>SOLUTION: This supercharging system has a turbocharger 6 for operating a turbine 3 by exhaust gas G sent out of an engine 1 and feeding intake air A compressed by the compressor 4 to the engine 1, a recirculation pipe 8 reaching an air suction port from an air delivery port of the compressor 4, a flow regulating valve 9 incorporated into the recirculation pipe 8, a motor-driven supercharger 10 having the power generation function, and a control unit 11 for operating the motor-driven supercharger 10 when an actual intake quantity is insufficient and making the most of the power generation function of the motor-driven supercharger 10 before an operation state of the compressor 4 enters a surge area. Particularly in full load operation of a low rotating speed area, the surge is avoided by the recirculation pipe 8, and the energy of the intake air A is recovered by the power generation function of the motor-driven supercharger 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は車載のエンジンに適した過給システムに関するものである。   The present invention relates to a supercharging system suitable for a vehicle-mounted engine.

近年、エンジン排気経路から分流した排気を水冷式の管形熱交換器であるEGRクーラ(EGR:Exhaust Gas Recirculation)より冷却したうえエンジン吸気経路へ戻し、燃焼温度を下げてNOxの発生を低減させる排気再循環が一般的に行なわれている。   In recent years, exhaust gas diverted from the engine exhaust path is cooled by an EGR cooler (EGR: Exhaust Gas Recirculation), which is a water-cooled tubular heat exchanger, and then returned to the engine intake path to lower the combustion temperature and reduce NOx generation. Exhaust gas recirculation is generally performed.

排気容量を変えずにエンジンの出力を高めるためには、1サイクルあたりの燃料噴射量を多くするとともに、ターボチャージャにより過給圧を上げてシリンダへの吸気の送給量を増やす必要がある。   In order to increase the output of the engine without changing the exhaust capacity, it is necessary to increase the fuel injection amount per cycle and increase the supercharging pressure by the turbocharger to increase the amount of intake air supplied to the cylinder.

また、吸気の送給量を減らさずに高EGR率を達成するためにも、ターボチャージャを用いて過給圧を上げる必要がある。   Further, in order to achieve a high EGR rate without reducing the amount of intake air supplied, it is necessary to increase the supercharging pressure using a turbocharger.

従来、加速時の応答性の向上を図るために、ターボチャージャーとは別途に、エンジン吸気経路に電動過給機を組み込むことが提案されている(例えば、特許文献1参照)。
特開2004−278430号公報
Conventionally, in order to improve the responsiveness during acceleration, it has been proposed to incorporate an electric supercharger in the engine intake path separately from the turbocharger (see, for example, Patent Document 1).
JP 2004-278430 A

高ECR化に伴い、エンジンが低回転数域で全負荷運転されるときに、コンプレッサの運転作動線がサージ領域に近いことが問題となる。また、加速時などの過渡運転時の応答性と排気再循環量を確保するためにターボラグが少ない吸気量アシストが必要となる。   As the ECR increases, when the engine is operated at full load in a low engine speed range, the operation line of the compressor is close to the surge region. In addition, in order to ensure responsiveness and exhaust gas recirculation amount during transient operation such as acceleration, an intake air amount assist with a small turbo lag is required.

本発明は上述した実情に鑑みてなしたもので、コンプレッサのサージ回避、エネルギ回収、及び加速時の過給アシストに対応できる過給システムを提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a supercharging system that can cope with compressor surge avoidance, energy recovery, and supercharging assistance during acceleration.

上記目的を達成するため本発明は、エンジンから送出される排気によってタービンを作動させ且つコンプレッサで圧縮した吸気をエンジンへ送給するターボチャージャと、コンプレッサの吐出口から吸入口へ至るリサーキュレーション配管と、当該リサーキュレーション配管に組み込んだ発電機能を有する電動過給機と、実吸気量が不足した際に電動過給機を作動させ且つコンプレッサの運転状況がサージ領域に入る前にリサーキュレーション配管に吸気の一部を戻して電動過給機の発電機能を活かす制御ユニットとを備える。   In order to achieve the above object, the present invention provides a turbocharger that operates a turbine by exhaust gas sent from an engine and supplies intake air compressed by a compressor to the engine, and a recirculation piping from the discharge port to the intake port of the compressor. And an electric supercharger with a power generation function incorporated in the recirculation piping, and recirculation before operating the electric turbocharger when the actual intake air amount is insufficient and before the operating state of the compressor enters the surge region. A control unit that returns a part of the intake air to the pipe and makes use of the power generation function of the electric supercharger.

更に、電動過給機作動時に、リサーキュレーション配管からの逆流を止める逆止弁を、コンプレッサの吐出口に設ける。   Further, a check valve for stopping the backflow from the recirculation pipe when the electric supercharger is operated is provided at the discharge port of the compressor.

また、リサーキュレーション配管に流量調整弁を組み込み、コンプレッサの運転状況がサージ領域に入る前に制御ユニットが流量調整弁の開度を調整するようにした構成を採る。   In addition, a flow adjustment valve is incorporated in the recirculation pipe so that the control unit adjusts the opening degree of the flow adjustment valve before the compressor operating state enters the surge region.

エンジンの実吸気量が不足すると、制御ユニットが電動過給機を作動させて、吸気の不足分をリサーキュレーション配管からエンジンへ送給する。   When the actual intake air amount of the engine is insufficient, the control unit activates the electric supercharger and supplies the shortage of intake air to the engine from the recirculation piping.

コンプレッサがサージ領域に入る前に、コンプレッサの吐出口から吸入口へリサーキュレーション配管により吸気を戻してコンプレッサのサージを防ぐ。その際、制御ユニットが電動過給機の発電機能を活かし、エネルギ回収を行なう。   Before the compressor enters the surge region, the intake air is returned from the discharge port of the compressor to the suction port by recirculation piping to prevent the surge of the compressor. At that time, the control unit utilizes the power generation function of the electric supercharger to recover energy.

本発明の過給システムによれば、下記のような優れた効果を奏し得る。   According to the supercharging system of the present invention, the following excellent effects can be obtained.

(1)エンジンの実吸気量が不足すると、制御ユニットが電動過給機を作動させて、コンプレッサとは別途に、吸気の不足分をリサーキュレーション配管からエンジンへ送給するので、吸気量の確保が図られ、車両の加速に対応できる。   (1) When the actual intake air amount of the engine is insufficient, the control unit activates the electric supercharger and supplies the intake air shortage to the engine separately from the compressor. Secured and can respond to acceleration of the vehicle.

(2)コンプレッサがサージ領域に入る前に、リサーキュレーション配管によりコンプレッサの吐出口から吸入口へ吸気を戻すことにより、コンプレッサのサージを防ぐ。その際、制御ユニットが電動過給機の発電機能を活かし、リサーキュレーション配管を通る吸気のエネルギを回収することができる。   (2) Before the compressor enters the surge region, the recirculation piping returns the intake air from the discharge port of the compressor to the intake port, thereby preventing the compressor surge. At that time, the control unit can utilize the power generation function of the electric supercharger to recover the energy of the intake air passing through the recirculation pipe.

(3)また、コンプレッサの出口圧とタービン入口圧との差圧が小さくならず、低回転数の高負荷運転でも、EGR配管を通る排気の再循環量が確保され、高EGR率を達成することが可能になる。   (3) In addition, the differential pressure between the compressor outlet pressure and the turbine inlet pressure is not reduced, and the recirculation amount of the exhaust gas passing through the EGR pipe is ensured even in a high load operation at a low speed, thereby achieving a high EGR rate. It becomes possible.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1及び図2は本発明の過給システムの一例であり、車載のエンジン1の排気マニホールド2から送出される排気Gによってタービン3を作動させ且つコンプレッサ4で圧縮した吸気Aをエンジン1の吸気マニホールド5へ送給するターボチャージャ6と、コンプレッサ4から吸気マニホールド5へ向かう吸気Aを冷却するインタクーラ7と、コンプレッサ4の空気吐出口から空気吸入口へ至るリサーキュレーション配管8と、当該リサーキュレーション配管8に組み込んだ流量調整弁9、及び発電機能を有する電動過給機10と、制御ユニット11と、圧力センサ12,13,14と、流量センサ15,16と、回転数センサ17,18と、温度センサ19と、排気マニホールド2から吸気マニホールド5へ至るEGR配管20と、当該EGR配管20に組み込んだEGRクーラ21及びEGRバルブ22とを備えている。   FIGS. 1 and 2 show an example of a supercharging system according to the present invention. Intake A of an engine 1 is obtained by operating a turbine 3 by exhaust G sent from an exhaust manifold 2 of an in-vehicle engine 1 and compressing the intake A by a compressor 4. A turbocharger 6 for feeding to the manifold 5, an intercooler 7 for cooling the intake air A from the compressor 4 to the intake manifold 5, a recirculation pipe 8 from the air discharge port of the compressor 4 to the air intake port, and the recirculation The flow rate adjusting valve 9 incorporated in the distribution pipe 8, the electric supercharger 10 having a power generation function, the control unit 11, the pressure sensors 12, 13, and 14, the flow rate sensors 15 and 16, and the rotational speed sensors 17 and 18. A temperature sensor 19, an EGR pipe 20 extending from the exhaust manifold 2 to the intake manifold 5, and the EGR And a R EGR cooler 21 incorporated in the pipe 20 and the EGR valve 22.

コンプレッサ4の空気吐出口には、電動過給機10の作動時に、リサーキュレーション配管8からコンプレッサ4へ向かう吸気Aを止めるための逆止弁23が組み込んである。   The air discharge port of the compressor 4 incorporates a check valve 23 for stopping the intake air A from the recirculation pipe 8 toward the compressor 4 when the electric supercharger 10 is operated.

電動過給機10にはインバータ24が付帯しており、当該インバータ24は、制御ユニット11から送信されるブースタ回転数Nbに見合う回転数で電動過給機10を運転する。または、制御ユニット11から送信されるジェネレータ回転数Ngに見合う回転数となるように、電動過給機10の発電量を調整する。   The electric supercharger 10 is accompanied by an inverter 24, and the inverter 24 operates the electric supercharger 10 at a rotation speed corresponding to the booster rotation speed Nb transmitted from the control unit 11. Or the electric power generation amount of the electric supercharger 10 is adjusted so that it may become the rotation speed suitable for the generator rotation speed Ng transmitted from the control unit 11.

制御ユニット11は、図3に示すフローチャートのステップS1〜S9を追って、電動過給機10や流量調整弁9の制御を実行する。   The control unit 11 performs control of the electric supercharger 10 and the flow rate adjusting valve 9 following steps S1 to S9 of the flowchart shown in FIG.

ステップS1では、開度Nv=1(全開)とする指令を流量調整弁9へ送信し、同時にブースタ回転数Nb=0とする指令をインバータ24へ送信して、電動過給機10を待機状態に保つ。   In step S1, a command for opening degree Nv = 1 (fully open) is transmitted to the flow rate adjusting valve 9, and a command for booster rotation speed Nb = 0 is transmitted to the inverter 24 at the same time so that the electric supercharger 10 is in a standby state. Keep on.

ステップS2では、エンジン1の起動後、流量センサ15による実吸気量Gaの情報、流量センサ16による燃料流量Gfの情報、回転センサ17によるエンジン回転数Neの情報を読み込む。燃料流量Gfの情報は、エンジン回転数Neと別のセンサによって得たアクセル開度から算出した計算値でも代用できる。   In step S2, after starting the engine 1, information on the actual intake air amount Ga by the flow sensor 15, information on the fuel flow rate Gf by the flow sensor 16, and information on the engine speed Ne by the rotation sensor 17 are read. The information on the fuel flow rate Gf can be substituted by a calculated value calculated from the engine speed Ne and the accelerator opening obtained by another sensor.

ステップS3では、燃料流量Gfの情報とエンジン回転数Neの情報とに基づき、目標吸気量Gatを算出し、当該目標吸気量Gatと実吸気量Gaを対比する。   In step S3, the target intake air amount Gat is calculated based on the information on the fuel flow rate Gf and the information on the engine speed Ne, and the target intake air amount Gat and the actual intake air amount Ga are compared.

ステップS4は、実吸気量Ga<目標吸気量Gat(吸気量が不足ぎみである場合)を対象としている。   Step S4 targets the actual intake air amount Ga <the target intake air amount Gat (when the intake air amount is insufficient).

ここでは、実吸気量Gaと目標吸気量Gatとの差ΔGaを補うのに要する電動過給機10のブースタ回転数Nbを求めて、当該ブースタ回転数Nbの指令をインバータ24へ送信する。   Here, the booster rotational speed Nb of the electric supercharger 10 required to compensate for the difference ΔGa between the actual intake air amount Ga and the target intake air amount Gat is obtained, and a command for the booster rotational speed Nb is transmitted to the inverter 24.

つまり、ブースタ回転数Nbに見合う回転数で電動過給機10を運転して、目標吸気量Gatが確保されることになり、車両の加速に対応できる(図1参照)。   In other words, the electric turbocharger 10 is operated at a rotational speed corresponding to the booster rotational speed Nb, and the target intake air amount Gat is ensured, which can cope with acceleration of the vehicle (see FIG. 1).

ステップS5は、実吸気量Ga≧目標吸気量Gat(吸気量が確保されている場合)を対象としている。   Step S5 is targeted for the actual intake air amount Ga ≧ target intake air amount Gat (when the intake air amount is secured).

ここでは、回転センサ18によるタービン回転数Ntの情報、圧力センサ12によるブースト圧Pbの情報、圧力センサ13による大気圧Patmの情報、圧力センサ14によるコンプレッサ入口圧Piの情報、温度センサ19によるコンプレッサ入口温度Tiの情報を読み込む。   Here, information on the turbine rotational speed Nt by the rotation sensor 18, information on the boost pressure Pb by the pressure sensor 12, information on the atmospheric pressure Patm by the pressure sensor 13, information on the compressor inlet pressure Pi by the pressure sensor 14, compressor by the temperature sensor 19 Information on the inlet temperature Ti is read.

ステップS6では、ブースト流量Gabをタービン回転数Ntの情報、ブースト圧Pbの情報、大気圧Patmの情報、コンプレッサ入口温度Tiの情報から算出し、サージ流量Gasをブースト圧Pbの情報、大気圧Patmの情報、コンプレッサ入口圧Piの情報、コンプレッサ入口温度Tiから算出したうえ、ブースト流量Gabとサージ流量Gasを対比する。   In step S6, the boost flow rate Gab is calculated from the turbine rotational speed Nt information, boost pressure Pb information, atmospheric pressure Patm information, and compressor inlet temperature Ti information, and the surge flow rate Gas is determined from the boost pressure Pb information and the atmospheric pressure Patm. And the boost flow rate Gab and the surge flow rate Gas are compared with each other.

ステップS7は、ブースト流量Gab<サージ流量Gas(サージ領域に入る場合)を対象としている。   Step S7 is targeted for boost flow rate Gab <surge flow rate Gas (when entering the surge region).

ここでは、ブースト圧Pb及びコンプレッサ入口圧Piからジェネレータ回転数Ngを求めて、当該ジェネレータ回転数Ngの指令をインバータ24へ送信する。   Here, the generator rotational speed Ng is obtained from the boost pressure Pb and the compressor inlet pressure Pi, and a command for the generator rotational speed Ng is transmitted to the inverter 24.

また、サージ流量Gasとブースト流量Gabとの差ΔGabに応じた開度Nvの指令を流量調整弁9へ送信する。   Further, a command for the opening degree Nv corresponding to the difference ΔGab between the surge flow rate Gas and the boost flow rate Gab is transmitted to the flow rate adjustment valve 9.

つまり、ジェネレータ回転数Ngに見合う回転数となるように電動過給機10の発電量が調整され、コンプレッサ4の空気吐出口から空気吸入口へリサーキュレーション配管8を通って戻る吸気Aのエネルギを回収するとともに、コンプレッサ4のサージが防ぐことになり、低回転数域の全負荷運転に対応できる(図2参照)。   That is, the energy of the intake air A that is adjusted through the recirculation pipe 8 from the air discharge port of the compressor 4 to the air intake port is adjusted so that the electric power generation amount of the electric supercharger 10 is adjusted so as to match the generator rotation number Ng. In addition, the surge of the compressor 4 is prevented and it is possible to cope with full load operation in a low rotation speed range (see FIG. 2).

また、コンプレッサ4の出口圧とタービン3の入口圧との差圧が増加し、低回転数の高負荷運転でも、EGR配管20を通る排気Gの再循環量が確保される。   Further, the differential pressure between the outlet pressure of the compressor 4 and the inlet pressure of the turbine 3 is increased, and the recirculation amount of the exhaust G passing through the EGR pipe 20 is ensured even in a high load operation at a low speed.

ステップS8は、ブースト流量Gab≧サージ流量Gas(サージ領域でない場合)、もしくは前述のステップS4,S7の実行後を対象として、キースイッチ(図示せず)の信号Sigを読み込む。   Step S8 reads the signal Sig of the key switch (not shown) for the boost flow rate Gab ≧ surge flow rate Gas (when not in the surge region) or after the execution of the above-described steps S4 and S7.

ステップS9では、信号Sig=1(ON)か、それとも信号Sig=0(OFF)であるのかを判定し、ONである場合には、前述したステップS2に戻る。   In step S9, it is determined whether the signal Sig = 1 (ON) or the signal Sig = 0 (OFF). If it is ON, the process returns to the above-described step S2.

なお、本発明の過給システムは、上述の実施の形態のみに特に限定されるものではなく、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。   Note that the supercharging system of the present invention is not particularly limited only to the above-described embodiment, and it is needless to say that changes can be made without departing from the gist of the present invention.

本発明の過給システムは、様々な内燃機関に適用できる。   The supercharging system of the present invention can be applied to various internal combustion engines.

本発明の過給システムの一例(加速状態)を示す概念図である。It is a conceptual diagram which shows an example (acceleration state) of the supercharging system of this invention. 本発明の過給システムの一例(低回転数域全負荷運転状態)を示す概念図である。It is a conceptual diagram which shows an example (low-speed-range full load driving | running state) of the supercharging system of this invention. 図1及び図2に関連する制御ユニットのフローチャートである。It is a flowchart of the control unit relevant to FIG.1 and FIG.2.

符号の説明Explanation of symbols

1 エンジン
2 排気マニホールド(排気経路)
3 タービン
4 コンプレッサ
5 吸気マニホールド(吸気経路)
6 ターボチャージャ
8 リサーキュレーション配管
9 流量調整弁
10 電動過給機
11 制御ユニット
20 EGR配管
21 EGRクーラ
22 EGRバルブ
22 リサーキュレーション配管
23 リサーキュレーション配管
A 吸気
G 排気
1 Engine 2 Exhaust manifold (exhaust path)
3 Turbine 4 Compressor 5 Intake manifold (intake path)
6 Turbocharger 8 Recirculation piping 9 Flow control valve 10 Electric supercharger 11 Control unit 20 EGR piping 21 EGR cooler 22 EGR valve 22 Recirculation piping 23 Recirculation piping A Intake G Exhaust

Claims (4)

エンジンから送出される排気によってタービンを作動させ且つコンプレッサで圧縮した吸気をエンジンへ送給するターボチャージャと、コンプレッサの吐出口から吸入口へ至るリサーキュレーション配管と、当該リサーキュレーション配管に組み込んだ発電機能を有する電動過給機と、実吸気量が不足した際に電動過給機を作動させ且つコンプレッサの運転状況がサージ領域に入る前にリサーキュレーション配管に吸気の一部を戻して電動過給機の発電機能を活かす制御ユニットとを備えてなることを特徴とする過給システム。   The turbocharger that operates the turbine by exhaust gas sent from the engine and supplies the intake air compressed by the compressor to the engine, the recirculation piping from the discharge port of the compressor to the intake port, and the recirculation piping Electric supercharger with power generation function and electric supercharger when the actual intake air amount is insufficient, and a part of the intake air is returned to the recirculation piping before the compressor operation status enters the surge region. A supercharging system comprising: a control unit that utilizes a power generation function of the supercharger. コンプレッサの吐出口にリサーキュレーション配管からの吸気を止める逆止弁を設けた請求項1に記載の過給システム。   The supercharging system according to claim 1, wherein a check valve for stopping intake air from the recirculation pipe is provided at a discharge port of the compressor. リサーキュレーション配管に流量調整弁を組み込み、コンプレッサの運転状況がサージ領域に入る前に制御ユニットが流量調整弁の開度を調整するようにした請求項1あるいは請求項2のいずれかに記載の過給システム。   The flow rate adjustment valve is incorporated in the recirculation piping, and the control unit adjusts the opening degree of the flow rate adjustment valve before the operation state of the compressor enters the surge region. Supercharging system. エンジン排気経路のタービンよりも上流側からエンジン吸気経路のコンプレッサよりも下流側へ至るEGR配管を設け、当該EGR配管にEGRクーラ及びEGRバルブを組み込んだ請求項1乃至請求項2のいずれかに記載の過給システム。   3. An EGR pipe extending from an upstream side of a turbine in an engine exhaust path to a downstream side of a compressor in an engine intake path is provided, and an EGR cooler and an EGR valve are incorporated in the EGR pipe. Supercharging system.
JP2005265288A 2005-09-13 2005-09-13 Supercharging system Active JP4746389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005265288A JP4746389B2 (en) 2005-09-13 2005-09-13 Supercharging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005265288A JP4746389B2 (en) 2005-09-13 2005-09-13 Supercharging system

Publications (2)

Publication Number Publication Date
JP2007077854A true JP2007077854A (en) 2007-03-29
JP4746389B2 JP4746389B2 (en) 2011-08-10

Family

ID=37938440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005265288A Active JP4746389B2 (en) 2005-09-13 2005-09-13 Supercharging system

Country Status (1)

Country Link
JP (1) JP4746389B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019060A1 (en) * 2007-04-23 2008-11-20 Audi Ag Internal-combustion engine for motor vehicle, has mechanical loader arranged in intake system in parallel connection to compressor of turbocharger, and switched into upper speed range of engine to adjust power loss of turbocharger
JP2009167827A (en) * 2008-01-11 2009-07-30 Toyota Motor Corp Supercharging system of internal combustion engine
WO2012146372A3 (en) * 2011-04-26 2013-01-03 Audi Ag Arrangement with an internal combustion engine and a turbocharger, and method for operating a turbocharger
JP2014118829A (en) * 2012-12-13 2014-06-30 Mitsubishi Heavy Ind Ltd Supercharging power generating system, supercharging power generating device, and supercharging power generating method for internal combustion engine
JP2014141929A (en) * 2013-01-24 2014-08-07 Mitsubishi Heavy Ind Ltd Control device, supercharging system, control method and program
US20140305413A1 (en) * 2013-04-15 2014-10-16 Ford Global Technologies, Llc Direct manifold boost assist device with throttle body manifold volume isolation
EP2993329A1 (en) 2014-09-02 2016-03-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine system
DE102014220931A1 (en) * 2014-10-15 2016-04-21 Continental Automotive Gmbh Charging device for an internal combustion engine and operating method for the charging device
DE102014223891A1 (en) * 2014-11-24 2016-05-25 Continental Automotive Gmbh Charging device for an internal combustion engine and operating method for the charging device
DE102014224474A1 (en) * 2014-12-01 2016-06-02 Continental Automotive Gmbh Charging device for an internal combustion engine and operating method for the charging device
GB2535617A (en) * 2015-01-05 2016-08-24 Borgwarner Inc Electrically driven compressor-expander for a turbocharged engine system and associated flow control valves
JP2016200017A (en) * 2015-04-07 2016-12-01 トヨタ自動車株式会社 Internal combustion engine supercharging system
EP3103991A1 (en) 2015-06-09 2016-12-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
GB2541201A (en) * 2015-08-11 2017-02-15 Gm Global Tech Operations Llc Method of operating a turbocharged automotive system
FR3056639A1 (en) * 2016-09-27 2018-03-30 Valeo Systemes De Controle Moteur METHOD OF RECOVERING ENERGY WITH AN ELECTRIC COMPRESSOR AND ELECTRICAL COMPRESSOR THEREFOR
US20190249594A1 (en) * 2014-04-27 2019-08-15 Venomaire, Llc Electric mass airflow turbine control system
JP2020125719A (en) * 2019-02-05 2020-08-20 川崎重工業株式会社 Gas engine system and control method therefor
DE102019108562A1 (en) * 2019-04-02 2020-10-08 Mtu Friedrichshafen Gmbh Exhaust gas turbocharger of an internal combustion engine and method for operating an exhaust gas turbocharger
CN115045771A (en) * 2022-05-16 2022-09-13 潍柴动力股份有限公司 Surge detection method and device for supercharger, storage medium and terminal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101664069B1 (en) 2015-05-07 2016-10-10 현대자동차 주식회사 Engine having low pressure egr system and the method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5577385A (en) * 1995-09-11 1996-11-26 Kapich; Davorin D. Electropneumatic engine supercharger system
JP2003097298A (en) * 2001-09-27 2003-04-03 Nissan Motor Co Ltd Control apparatus for internal combustion engine with supercharger
JP2004278430A (en) * 2003-03-17 2004-10-07 Nissan Motor Co Ltd Electric supercharging system
JP2005214153A (en) * 2004-02-02 2005-08-11 Nissan Diesel Motor Co Ltd Intake air amount control device for internal combustion engine and its method
JP2005256651A (en) * 2004-03-10 2005-09-22 Hino Motors Ltd Intake recirculation device for diesel engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5577385A (en) * 1995-09-11 1996-11-26 Kapich; Davorin D. Electropneumatic engine supercharger system
JP2003097298A (en) * 2001-09-27 2003-04-03 Nissan Motor Co Ltd Control apparatus for internal combustion engine with supercharger
JP2004278430A (en) * 2003-03-17 2004-10-07 Nissan Motor Co Ltd Electric supercharging system
JP2005214153A (en) * 2004-02-02 2005-08-11 Nissan Diesel Motor Co Ltd Intake air amount control device for internal combustion engine and its method
JP2005256651A (en) * 2004-03-10 2005-09-22 Hino Motors Ltd Intake recirculation device for diesel engine

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007019060A1 (en) * 2007-04-23 2008-11-20 Audi Ag Internal-combustion engine for motor vehicle, has mechanical loader arranged in intake system in parallel connection to compressor of turbocharger, and switched into upper speed range of engine to adjust power loss of turbocharger
JP2009167827A (en) * 2008-01-11 2009-07-30 Toyota Motor Corp Supercharging system of internal combustion engine
WO2012146372A3 (en) * 2011-04-26 2013-01-03 Audi Ag Arrangement with an internal combustion engine and a turbocharger, and method for operating a turbocharger
JP2014118829A (en) * 2012-12-13 2014-06-30 Mitsubishi Heavy Ind Ltd Supercharging power generating system, supercharging power generating device, and supercharging power generating method for internal combustion engine
JP2014141929A (en) * 2013-01-24 2014-08-07 Mitsubishi Heavy Ind Ltd Control device, supercharging system, control method and program
US10550759B2 (en) 2013-04-15 2020-02-04 Ford Global Technologies, Llc Direct manifold boost assist device with throttle body manifold volume isolation
US20140305413A1 (en) * 2013-04-15 2014-10-16 Ford Global Technologies, Llc Direct manifold boost assist device with throttle body manifold volume isolation
US9599013B2 (en) * 2013-04-15 2017-03-21 Ford Global Technologies, Llc Direct manifold boost assist device with throttle body manifold volume isolation
US20190249594A1 (en) * 2014-04-27 2019-08-15 Venomaire, Llc Electric mass airflow turbine control system
US11339709B2 (en) * 2014-04-27 2022-05-24 Venomaire, Llc Electric mass airflow control system
JP2016050568A (en) * 2014-09-02 2016-04-11 トヨタ自動車株式会社 Internal combustion engine system
EP2993329A1 (en) 2014-09-02 2016-03-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine system
US10563572B2 (en) 2014-10-15 2020-02-18 Vitesco Technologies GmbH Charging device for an internal combustion engine and operating method for the charging device
DE102014220931A1 (en) * 2014-10-15 2016-04-21 Continental Automotive Gmbh Charging device for an internal combustion engine and operating method for the charging device
CN106795805B (en) * 2014-10-15 2019-06-21 大陆汽车有限公司 Supercharging equipment for internal combustion engine and the operating method for supercharging equipment
CN106795805A (en) * 2014-10-15 2017-05-31 大陆汽车有限公司 Supercharging equipment for explosive motor and the operating method for supercharging equipment
CN107002599A (en) * 2014-11-24 2017-08-01 大陆汽车有限公司 Operating method for the supercharging device of explosive motor and for the supercharging device
DE102014223891A1 (en) * 2014-11-24 2016-05-25 Continental Automotive Gmbh Charging device for an internal combustion engine and operating method for the charging device
CN107002599B (en) * 2014-11-24 2020-03-17 大陆汽车有限公司 Supercharging device for an internal combustion engine and method for operating said supercharging device
WO2016083004A1 (en) * 2014-11-24 2016-06-02 Continental Automotive Gmbh Supercharging device for an internal combustion engine, and operating method for the supercharging device
US10526955B2 (en) 2014-11-24 2020-01-07 Vitesco Technologies GmbH Supercharging device for an internal combustion engine, and operating method for the supercharging device
WO2016087125A1 (en) * 2014-12-01 2016-06-09 Continental Automotive Gmbh Supercharger device for an internal combustion engine, and a method for operating said supercharger device
CN107002555A (en) * 2014-12-01 2017-08-01 大陆汽车有限公司 Operating method for the supercharging device of explosive motor and for the supercharging device
DE102014224474A1 (en) * 2014-12-01 2016-06-02 Continental Automotive Gmbh Charging device for an internal combustion engine and operating method for the charging device
US10513972B2 (en) 2014-12-01 2019-12-24 Vitesco Technologies GmbH Supercharger device for an internal combustion engine, and a method for operating said supercharger device
CN107002555B (en) * 2014-12-01 2019-10-01 大陆汽车有限公司 Supercharging device for internal combustion engine and the operating method for the supercharging device
DE102014224474B4 (en) 2014-12-01 2019-06-06 Continental Automotive Gmbh Charging device for an internal combustion engine and operating method for the charging device
GB2535617B (en) * 2015-01-05 2020-08-12 Borgwarner Inc Electrically driven compressor-expander for a turbocharged engine system and associated flow control valves
US10197020B2 (en) 2015-01-05 2019-02-05 Borgwarner Inc. Electrically driven compressor-expander for a turbocharged engine system and associated flow control valves
GB2535617A (en) * 2015-01-05 2016-08-24 Borgwarner Inc Electrically driven compressor-expander for a turbocharged engine system and associated flow control valves
JP2016200017A (en) * 2015-04-07 2016-12-01 トヨタ自動車株式会社 Internal combustion engine supercharging system
EP3103991A1 (en) 2015-06-09 2016-12-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
US10087822B2 (en) 2015-06-09 2018-10-02 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
CN106246393A (en) * 2015-06-09 2016-12-21 丰田自动车株式会社 The control device of internal combustion engine
US10184390B2 (en) 2015-08-11 2019-01-22 GM Global Technology Operations LLC Method of operating a turbocharged automotive system
GB2541201A (en) * 2015-08-11 2017-02-15 Gm Global Tech Operations Llc Method of operating a turbocharged automotive system
FR3056639A1 (en) * 2016-09-27 2018-03-30 Valeo Systemes De Controle Moteur METHOD OF RECOVERING ENERGY WITH AN ELECTRIC COMPRESSOR AND ELECTRICAL COMPRESSOR THEREFOR
JP2020125719A (en) * 2019-02-05 2020-08-20 川崎重工業株式会社 Gas engine system and control method therefor
JP7214490B2 (en) 2019-02-05 2023-01-30 川崎重工業株式会社 Gas engine system and its control method
DE102019108562A1 (en) * 2019-04-02 2020-10-08 Mtu Friedrichshafen Gmbh Exhaust gas turbocharger of an internal combustion engine and method for operating an exhaust gas turbocharger
CN115045771A (en) * 2022-05-16 2022-09-13 潍柴动力股份有限公司 Surge detection method and device for supercharger, storage medium and terminal
CN115045771B (en) * 2022-05-16 2023-11-17 潍柴动力股份有限公司 Surge detection method and device of supercharger, storage medium and terminal

Also Published As

Publication number Publication date
JP4746389B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4746389B2 (en) Supercharging system
EP2171234B1 (en) Charge air system and charge air system operation method
US9316180B2 (en) Internal combustion engine
EP2725211B1 (en) Intake device for internal combustion engine with supercharger
JP4525544B2 (en) Internal combustion engine with a supercharger
JP2011501043A5 (en)
US20150136093A1 (en) Engine Boosting System and Method Therefor
CN111287839B (en) Engine system and method of controlling the same
JP2008280923A (en) Engine supercharging device
JP4802992B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2010048225A (en) Supercharging system for internal combustion engine
JP5538712B2 (en) EGR device for internal combustion engine
US20130306039A1 (en) Turbo Compressor By-Pass
JP2010024878A (en) Control device for internal combustion engine
JP2008075589A (en) Egr gas scavenging device for internal combustion engine
JP2007154809A (en) Control unit for internal combustion engine
US20190368414A1 (en) Engine system and method using the same
JP5682245B2 (en) Low pressure loop EGR device
JP2008309133A (en) Exhaust gas recirculation system for internal combustion engine
JP2008280953A (en) Exhaust gas recirculation device for internal combustion engine
JP2790019B2 (en) Control device for internal combustion engine
US10767602B2 (en) Engine system
JP4229038B2 (en) Internal combustion engine supercharging system
JP2005188359A (en) Internal combustion engine with supercharger
JP2004324417A (en) Exhaust gas recirculation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4746389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250