JP2005214153A - Intake air amount control device for internal combustion engine and its method - Google Patents

Intake air amount control device for internal combustion engine and its method Download PDF

Info

Publication number
JP2005214153A
JP2005214153A JP2004025123A JP2004025123A JP2005214153A JP 2005214153 A JP2005214153 A JP 2005214153A JP 2004025123 A JP2004025123 A JP 2004025123A JP 2004025123 A JP2004025123 A JP 2004025123A JP 2005214153 A JP2005214153 A JP 2005214153A
Authority
JP
Japan
Prior art keywords
control
internal combustion
combustion engine
region
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004025123A
Other languages
Japanese (ja)
Inventor
Kiyomasa Tanaka
中 清 雅 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UD Trucks Corp
Original Assignee
UD Trucks Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UD Trucks Corp filed Critical UD Trucks Corp
Priority to JP2004025123A priority Critical patent/JP2005214153A/en
Publication of JP2005214153A publication Critical patent/JP2005214153A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake air amount control method for an internal combustion engine for securing an optimum intake air amount (new air intake amount) depending on the operated condition of the interral combustion engine by suitably controlling a VNT variable blade angle and an EGR valve angle while considering both of them, to provide its method. <P>SOLUTION: The intake air amount (new air intake amount) control device A is provided for the internal combustion engine (an automobile engine 1 for example) having a variable blade turbocharger (VNT 2) and the exhaust recirculation device (an EGR system 6). It comprises operated condition detecting means (an engine speed detecting means 20 for detecting an engine speed and a fuel injection amount calculating block 30) for detecting the operated condition of the internal combustion engine 1 and a control means (a control unit 10) for determining the angle (VNT variable blade angle) of the variable blade in the variable blade turbocharger (VNT 2) and the valve opening (EGR valve opening) of an exhaust recirculation valve (EGR valve Ve) in accordance with the detection results of the operated condition detecting means 20, 30. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車のエンジンの様な内燃機関に吸入される空気量を制御する技術に関する。より具体的には、可変翼ターボチャージャ(VNT)と、排気環流システム(EGR)とを有する内燃機関における吸入空気量の制御技術に関する。   The present invention relates to a technique for controlling the amount of air taken into an internal combustion engine such as an automobile engine. More specifically, the present invention relates to a technique for controlling the intake air amount in an internal combustion engine having a variable blade turbocharger (VNT) and an exhaust gas recirculation system (EGR).

内燃機関(例えば自動車用エンジン)において、排気ガスで回転するタービンにより駆動する過給機(ターボチャージャ)であって、タービン翼の角度を変えて過給比を制御するタイプのターボチャージャ(いわゆるVNT)は既に知られている(例えば、特許文献1参照)   In an internal combustion engine (for example, an automobile engine), a turbocharger (turbocharger) that is driven by a turbine that is rotated by exhaust gas and that controls the supercharging ratio by changing the angle of the turbine blades (so-called VNT) ) Is already known (see, for example, Patent Document 1).

また、シリンダ内の燃焼温度を下げて、排気中のNOxの排出量を抑制するために、排気環流弁(EGRバルブ)の弁開度を調節して、吸気への排気環流量(EGR量)或いは新気吸入量を制御する排気環流システム(EGR)も公知である(例えば、特許文献2参照)。   In addition, in order to lower the combustion temperature in the cylinder and suppress the exhaust amount of NOx in the exhaust gas, the valve opening degree of the exhaust gas recirculation valve (EGR valve) is adjusted, and the exhaust gas flow rate (EGR amount) to the intake air Alternatively, an exhaust gas recirculation system (EGR) that controls a fresh air intake amount is also known (see, for example, Patent Document 2).

近年、VNT及びEGRの双方を具備した自動車が登場している。
ここで、VNTもEGRも、エンジンの新気吸入について直接作用するものであり、VNTにおける可変翼の角度と、EGRにおけるEGRバルブの弁開度は、エンジンへ供給される空気(排気ガスではない新気)の供給量に直接影響する。従って、VNT可変翼角度及び/又はEGRバルブ開度が不適当であれば、エンジンの運転状態に対応した最適の新気吸入量を実現することが困難になり、エンジン性能を向上することが出来ない。
In recent years, cars equipped with both VNT and EGR have appeared.
Here, both VNT and EGR directly act on fresh air intake of the engine, and the angle of the variable blade in VNT and the valve opening of the EGR valve in EGR are the air supplied to the engine (not exhaust gas) Directly affects the supply of fresh air. Therefore, if the VNT variable blade angle and / or the EGR valve opening are not appropriate, it becomes difficult to realize an optimum fresh air intake amount corresponding to the operating state of the engine, and the engine performance can be improved. Absent.

VNT可変翼角度と、EGRバルブ開度は、共に、制御に際しては、エンジン回転数と燃料供給量(例えば燃料噴射量)から1つの数値を決定するオープンループ制御(以下、「OPEN LOOP」)と、エンジンの新気吸入量が目標値に近づくようにVNT可変翼角度或いはEGRバルブ開度を制御するフィードバック制御(以下、「CLOSED LOOP」)とが併用されている。
そして、VNT可変翼角度の制御及び/又はEGRバルブ開度の制御において、OPEN LOOPにするかCLOSED LOOPにするかの決定如何によっては、エンジンの新気吸入量の決定に多大な影響を及ぼすことになる。
Both the VNT variable blade angle and the EGR valve opening are controlled by open loop control (hereinafter, “OPEN LOOP”) in which one numerical value is determined from the engine speed and the fuel supply amount (for example, fuel injection amount). Also, feedback control (hereinafter referred to as “CLOSED LOOP”) for controlling the VNT variable blade angle or the EGR valve opening so that the fresh air intake amount of the engine approaches the target value is used in combination.
In the control of the VNT variable blade angle and / or the control of the EGR valve opening, depending on whether the OPEN LOOP or the CLOSED LOOP is determined, the determination of the fresh air intake amount of the engine has a great influence. become.

VNT可変翼角度についても、EGRバルブ開度についても、その制御をOPEN LOOPにするかCLOSED LOOPにするかは、エンジンの運転状態により決定される。
ここで、上述した通り、VNT可変翼角度とEGRバルブ開度とは、共にエンジンへの新気供給量(新気吸入量)に多大な影響を及ぼす制御パラメータであるため、エンジンの新気吸入量を最適に制御するのであれば、VNT可変翼角度とEGRバルブ開度との相対的な関係にも考慮しつつ、制御態様をOPEN LOOPにするかCLOSED LOOPにするかが決定されるべきである。
As for the VNT variable blade angle and the EGR valve opening, whether the control is set to OPEN LOOP or CLOSED LOOP is determined by the operating state of the engine.
Here, as described above, the VNT variable blade angle and the EGR valve opening are both control parameters that greatly affect the amount of fresh air supplied to the engine (fresh air intake amount). If the amount is optimally controlled, it should be determined whether the control mode is OPEN LOOP or CLOSED LOOP while taking into account the relative relationship between the VNT variable blade angle and the EGR valve opening. is there.

しかし、従来の技術では、VNT可変翼角度の制御とEGRバルブ開度の制御とは、それぞれ独立して行われており、制御態様をOPEN LOOPとするかCLOSED LOOPとするかについても、VNT可変翼角度とEGRバルブ開度とはそれぞれ単独に判定されていた。
そのため、エンジンの新気吸入量は最適に制御されているとは言い難い状況であった。また、両制御因子が変化するとエンジンに流入する空気量が変化するため、安定したエンジン運転が困難であった。
特開2002−147246号公報 特開2001−182602号公報
However, in the conventional technique, the control of the VNT variable blade angle and the control of the EGR valve opening are performed independently, and the VNT variable is also used to determine whether the control mode is OPEN LOOP or CLOSED LOOP. The blade angle and the EGR valve opening were determined independently.
For this reason, it has been difficult to say that the fresh air intake amount of the engine is optimally controlled. Moreover, since the amount of air flowing into the engine changes when both control factors change, stable engine operation is difficult.
JP 2002-147246 A JP 2001-182602 A

本発明は上述した従来技術の問題点に鑑みて提案されたものであり、VNT可変翼角度とEGRバルブ開度の双方を考慮しつつ、両者を好適に協調制御して、内燃機関の運転状態に応じて最適な吸入空気量(新気吸入量)を確保することが出来る内燃機関の吸入空気量制御装置及び制御方法の提供を目的としている。   The present invention has been proposed in view of the above-mentioned problems of the prior art, and while considering both the VNT variable blade angle and the EGR valve opening, both are suitably coordinated to control the operating state of the internal combustion engine. It is an object of the present invention to provide an intake air amount control device and control method for an internal combustion engine that can secure an optimal intake air amount (fresh air intake amount) according to the above.

本発明の内燃機関の吸入空気量制御装置は、可変翼ターボチャージャ(VNT2)と、排気環流装置(EGRシステム6)とを有する内燃機関(例えば自動車用エンジン1)の吸入空気量(新気吸入量)制御装置(A)において、当該内燃機関(1)の回転数を検出する回転数検出手段(例えば、エンジンの回転数を検出する回転数検出手段20)と、内燃機関(1)へ供給される燃料の供給量を検出する燃料噴射量(例えば燃料噴射量)算出工程(30)と、回転数検出手段(20)及び燃料噴射量算出工程(30)の検出結果に基いて可変翼ターボチャージャ(VNT2)における可変翼の角度(VNT可変翼角度)及び排気環流弁(EGRバルブVe)の弁開度(EGRバルブ開度)を決定する制御手段(コントロールユニット10)とを備え、該制御手段(10)は、内燃機関(1)の運転状態を、前記(VNT2の)可変翼の角度の制御及び前記(EGRバルブVeの)弁開度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にする第1の領域(E1)と、前記可変翼の角度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にし且つ前記弁開度の制御を内燃機関(1)の吸入空気量(新気吸入量)が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)にする第2の領域(E2)と、前記可変翼の角度の制御を内燃機関(1)の吸入空気量が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)にし且つ前記弁開度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にする第3の領域(E3)と、前記可変翼の角度の制御及び前記弁開度の制御を内燃機関の吸入空気量が目標値に近づくように制御するフィードバック制御(CLOSED)にする第4の領域(E4)、の4つの領域の何れか1つの領域に分類する制御を行う様に構成されていることを特徴としている(請求項1)。   An intake air amount control device for an internal combustion engine according to the present invention includes an intake air amount (fresh air intake) of an internal combustion engine (for example, an automobile engine 1) having a variable blade turbocharger (VNT2) and an exhaust gas recirculation device (EGR system 6). Amount) In the control device (A), a rotational speed detecting means for detecting the rotational speed of the internal combustion engine (1) (for example, a rotational speed detecting means 20 for detecting the rotational speed of the engine) and the internal combustion engine (1) Injection quantity (for example, fuel injection quantity) calculating step (30) for detecting the amount of fuel supplied, and variable blade turbo based on the detection results of the rotational speed detection means (20) and the fuel injection quantity calculating step (30) Control means (control unit 10) for determining the angle of the variable blade (VNT variable blade angle) in the charger (VNT2) and the valve opening (EGR valve opening) of the exhaust gas recirculation valve (EGR valve Ve). The control means (10) controls the operating state of the internal combustion engine (1), controls the angle of the variable blades (VNT2) and the valve opening degree (of the EGR valve Ve). The first region (E1) to be an open loop control (OPEN LOOP) for determining one numerical value from the fuel injection amount and the control of the angle of the variable blade is set to one numerical value from the internal combustion engine speed and the fuel injection amount. Open loop control to be determined (OPEN LOOP) and control of the valve opening to feedback control (CLOSED LOOP) to control the intake air amount (fresh air intake amount) of the internal combustion engine (1) to approach the target value. The control of the second region (E2) and the angle of the variable blade is a feedback control (CLOSED LOOP) for controlling the intake air amount of the internal combustion engine (1) to approach the target value. A third region (E3) in which the valve opening is controlled by an open loop control (OPEN LOOP) for determining one numerical value from the internal combustion engine speed and the fuel injection amount; Control for classifying the valve opening degree into any one of the four areas, the fourth area (E4), which is feedback control (CLOSED) for controlling the intake air amount of the internal combustion engine to approach the target value. (Claim 1).

ここで、前記第1の領域(E1)は内燃機関(1)の回転数が低いか或いは燃料噴射量が少ない領域であり、前記第3(E3)の領域は燃料噴射量が多い領域であり、前記第4の領域(E4)は内燃機関回転数は高くも低くもなく且つ燃料噴射量は比較的少ない領域であり、前記第2の領域(E2)はその他の運転領域であるのが好ましい(請求項2)。   Here, the first region (E1) is a region where the rotational speed of the internal combustion engine (1) is low or the fuel injection amount is small, and the third (E3) region is a region where the fuel injection amount is large. The fourth region (E4) is a region where the internal combustion engine speed is neither high nor low and the fuel injection amount is relatively small, and the second region (E2) is preferably another operating region. (Claim 2).

そして、前記制御手段(コントロールユニット10)は、内燃機関の回転数及び内燃機関へ供給される燃料の噴射量(すなわち、内燃機関の運転状態)と、上述した4つの領域(E1〜E4)との相対的な関係(例えば、特性曲線或いはマップ)を記憶する記憶手段(例えばデータベース)を有しているのが好ましい(請求項3)。   The control means (control unit 10) includes the number of revolutions of the internal combustion engine, the injection amount of fuel supplied to the internal combustion engine (that is, the operating state of the internal combustion engine), and the four regions (E1 to E4) described above. It is preferable to have storage means (for example, a database) for storing the relative relationship (for example, characteristic curve or map).

本発明の内燃機関の吸入空気量制御方法は、可変翼ターボチャージャ(VNT2)と、排気環流装置(EGR)とを有する内燃機関(例えば自動車用エンジン1)の吸入空気量(新気吸入量)制御方法において、(回転数検出手段20により)内燃機関(1)の回転数を検出する回転数検出工程(S1)と、(燃料噴射量算出工程30により)内燃機関(1)へ供給される燃料の供給量(例えば燃料噴射量)を検出する燃料噴射量算出工程(S1)と、回転数検出工程及び燃料噴射量算出工程の検出結果により内燃機関の運転状態を決定する内燃機関運転状態決定工程(S2)と、前記可変翼の角度の制御及び前記弁開度の制御を行う制御工程(3)とを含み、該制御工程(3)は、内燃機関運転状態決定工程で決定された内燃機関の運転状態を、前記可変翼の角度の制御及び前記弁開度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にする第1の領域(E1)と、前記可変翼の角度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にし且つ前記弁開度の制御を内燃機関の吸入空気量が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)にする第2の領域(E2)と、前記可変翼の角度の制御を内燃機関(1)の吸入空気量が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)にし且つ前記弁開度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にする第3の領域(E3)と、前記可変翼の角度の制御及び前記弁開度の制御を内燃機関(1)の吸入空気量が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)にする第4の領域(E4)、の4つの領域の何れか1つの領域に分類することを特徴としている(請求項4)。   An intake air amount control method for an internal combustion engine of the present invention includes an intake air amount (fresh air intake amount) of an internal combustion engine (for example, an automobile engine 1) having a variable blade turbocharger (VNT2) and an exhaust gas recirculation device (EGR). In the control method, the rotational speed detection step (S1) for detecting the rotational speed of the internal combustion engine (1) (by the rotational speed detection means 20) and the internal combustion engine (1) (by the fuel injection amount calculation step 30) are supplied. A fuel injection amount calculation step (S1) for detecting a fuel supply amount (for example, a fuel injection amount), and an internal combustion engine operation state determination for determining the operation state of the internal combustion engine based on the detection results of the rotation speed detection step and the fuel injection amount calculation step. Including a step (S2) and a control step (3) for controlling the angle of the variable blade and the valve opening, wherein the control step (3) is an internal combustion engine determined in an internal combustion engine operating state determination step. Engine operating conditions A first region (E1) in which the control of the angle of the variable blade and the control of the valve opening are set to open loop control (OPEN LOOP) for determining one numerical value from the internal combustion engine speed and the fuel injection amount; The variable blade angle is controlled by open loop control (OPEN LOOP) that determines one numerical value from the internal combustion engine speed and the fuel injection amount, and the valve opening control is controlled by the intake air amount of the internal combustion engine approaching the target value. Feedback control for controlling the angle of the variable blades so that the intake air amount of the internal combustion engine (1) approaches the target value (second region (E2) to be feedback controlled (CLOSED LOOP) and Open loop control (OPEN LOOP) that determines one numerical value from the internal combustion engine speed and the fuel injection amount. The third region (E3) to be controlled and feedback control (CLOSED LOOP) for controlling the angle of the variable blade and the control of the valve opening so that the intake air amount of the internal combustion engine (1) approaches the target value. The fourth region (E4) is classified into any one of the four regions (claim 4).

ここで、前記第1の領域(E1)は内燃機関の回転数が低いか或いは燃料噴射量が少ない領域であり、前記第3の領域(E3)は燃料噴射量が多い領域であり、前記第4の領域(E4)は内燃機関回転数は高くも低くもなく且つ燃料噴射量は比較的少ない領域であり、前記第2の領域(E2)はその他の運転領域である(請求項5)。   Here, the first region (E1) is a region where the rotational speed of the internal combustion engine is low or the fuel injection amount is small, and the third region (E3) is a region where the fuel injection amount is large, Region 4 (E4) is a region where the internal combustion engine speed is neither high nor low, and the fuel injection amount is relatively small, and the second region (E2) is another operating region.

上述した構成及び制御方法を具備した本実施形態よれば、VNT(2)可変翼角度の制御及び/又はEGRバルブ(Ve)開度の制御において、オープン制御(OPEN LOOP)にするかフィードバック制御(CLOSED LOOP)にするかが、運転状態に対応して正確に決定することが出来る。   According to the present embodiment having the configuration and the control method described above, in the control of the VNT (2) variable blade angle and / or the control of the EGR valve (Ve) opening degree, open control (OPEN LOOP) or feedback control ( CLOSED LOOP) can be accurately determined in accordance with the operating state.

運転状況に対応して、オープン制御にするかフィードバック制御にするかを適正に選択して制御するため、内燃機関(エンジン1)の新気吸入量が適切に決定される。
即ち、エンジン(1)の回転数が低いか或いは燃料噴射量が少ない領域、換言すれば、停車時や走行中ではあるが惰行等の極めてエンジン負荷が少ない状態(図2の第1の領域E1)では、EGR、VNTともに目標制御値を1点に絞ったオープンループ制御(OPEN)が選択され、エンジン負荷や車速(エンジン回転速度)が変化し、例えば一般道を含み、比較的負荷の高い運転状態など(図2の第2の領域E2)においては、VNTはオープン制御、EGRはフィードバック制御が選択され寄りきめ細かな制御が行われる。また、燃料噴射量が多い高負荷時(図2の第3の領域E3)では、エンジン回転数に関わらずEGRはオープン制御、VNTはフィードバック制御が選択され、さらに、エンジン負荷や車速が変化し、例えば一般などで比較的負荷の低い運転状態では、EGR制御及びVNT制御はともにフィードバック制御が選択される。
In order to control by appropriately selecting whether to perform open control or feedback control in accordance with the driving situation, the fresh air intake amount of the internal combustion engine (engine 1) is appropriately determined.
That is, the engine (1) has a low rotational speed or a low fuel injection amount, in other words, a state where the engine load is extremely low, such as coasting while stopping or running (first area E1 in FIG. 2). ), Open-loop control (OPEN) with the target control value reduced to one point is selected for both EGR and VNT, and the engine load and vehicle speed (engine speed) change. In an operating state (second region E2 in FIG. 2), open control is selected for VNT and feedback control is selected for EGR, and fine control is performed. When the fuel injection amount is high and the load is high (third region E3 in FIG. 2), the open control is selected for EGR and the feedback control is selected for VNT regardless of the engine speed, and the engine load and vehicle speed change. For example, in an ordinary operating state with a relatively low load, feedback control is selected for both EGR control and VNT control.

そのように制御されるため、特に運転条件の変化の多い一般道などでは、特にNOx低減が高い次元で達成されるとともに、内燃機関(エンジン1)の燃費向上とNOx低減を両立させることが出来る。
さらに、負荷が比較的低く、エンジン回転速度が中速域においては、EGR制御及びVNT制御の双方ともフィードバック制御が選択されるため、より細かく省燃費で、且つ、低NOx排出量の走行を実現する。
Because of such control, especially on general roads where there are many changes in operating conditions, especially NOx reduction is achieved at a high level, and both improvement in fuel consumption and reduction of NOx can be achieved in the internal combustion engine (engine 1). .
Furthermore, when the load is relatively low and the engine speed is medium, the feedback control is selected for both EGR control and VNT control, enabling more detailed fuel saving and low NOx emissions. To do.

以下、添付図面を参照して、本発明の実施形態について説明する。
図1において、本発明の実施形態に係る内燃機関の吸入空気量制御装置Aは、エンジン1の、可変翼ターボチャージャ(VNT;以降、可変翼ターボチャージャをVNTと略記する)2を装備した排気系3と、インタクーラ4を装備した吸気系5と、エキゾースト系から吸気系に排気ガスの一部を還流するEGRシステム6とを有している。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
In FIG. 1, an intake air amount control device A for an internal combustion engine according to an embodiment of the present invention is an exhaust equipped with a variable blade turbocharger (VNT; hereinafter, a variable blade turbocharger is abbreviated as VNT) 2 of the engine 1. It has a system 3, an intake system 5 equipped with an intercooler 4, and an EGR system 6 that recirculates part of the exhaust gas from the exhaust system to the intake system.

前記吸気系5は前記VNT2とインタクーラ4を接続する第1のエアダクト51と、インタクーラ4とエンジン1のインテークマニフォルド7を接続する第2のエアダクト52を有している。   The intake system 5 includes a first air duct 51 that connects the VNT 2 and the intercooler 4, and a second air duct 52 that connects the intercooler 4 and the intake manifold 7 of the engine 1.

前記EGRシステム6は、EGRクーラ63を装備しており、エンジン1のエキゾーストマニフォルド8と該EGRクーラ63を接続する第1のEGRパイプ61と、排気還流弁であるEGRバルブVeを介装し前記吸気系5の第2のエアダクト52に形成された合流部53とを接続する第2のERGパイプ62を有している。   The EGR system 6 is equipped with an EGR cooler 63, and is provided with an exhaust manifold 8 of the engine 1 and a first EGR pipe 61 that connects the EGR cooler 63, and an EGR valve Ve that is an exhaust gas recirculation valve. A second ERG pipe 62 is provided to connect the merging portion 53 formed in the second air duct 52 of the intake system 5.

エンジン1には、エンジンの吸入空気量を制御するためのコントロールユニット10と、エンジン回転センサ20と、燃料噴射量を算出する工程30とが装備されており、エンジン回転センサ20及び流量計30はともに入力信号ラインLiによってコントロールユニット10に接続されている。   The engine 1 is equipped with a control unit 10 for controlling the intake air amount of the engine, an engine rotation sensor 20, and a process 30 for calculating a fuel injection amount. The engine rotation sensor 20 and the flow meter 30 are Both are connected to the control unit 10 by an input signal line Li.

前記VNT(可変翼ターボチャージャ)2には前記コントロールユニット10の制御信号によって可変翼の角度を変化させるアクチュエータVtが取り付けられ、そのアクチュエータVtは制御信号ラインLoによってコントロールユニット10に接続されている。
また、前記EGRバルブも、コントロールユニット10からの制御信号によってバルブ開度が制御されるように構成されており、制御信号ラインLoによってコントロールユニット10に接続されている。
The VNT (variable blade turbocharger) 2 is provided with an actuator Vt for changing the angle of the variable blade according to a control signal of the control unit 10, and the actuator Vt is connected to the control unit 10 by a control signal line Lo.
The EGR valve is also configured such that the valve opening degree is controlled by a control signal from the control unit 10 and is connected to the control unit 10 by a control signal line Lo.

前記コントロールユニット10には記憶手段であるデータベース40が接続されていて、そのデータベース40には、エンジン負荷と、燃料噴射量及び/又はエンジン回転数との関係を示したマップ、EGR制御時における運転条件にマッチした制御するべきVNTの可変翼角度のマップ(以降、「運転条件にマッチした制御するべきVNTの可変翼角度のマップ」を「VNTマップ」と言う)、EGR制御を行わないときのVNTマップ、EGR量をフィードバックする場合におけるVNTマップ、吸入空気流量をフィードバックする場合におけるVNTマップ、VNT可変翼角度と吸入空気流量に関係する過給率との関係を示すマップ等が記憶されている。   The control unit 10 is connected to a database 40 as storage means. The database 40 includes a map showing the relationship between engine load, fuel injection amount and / or engine speed, and operation during EGR control. Map of variable blade angle of VNT to be controlled that matches the conditions (hereinafter, “Map of variable blade angle of VNT to be controlled that matches the operating conditions” is referred to as “VNT map”), when EGR control is not performed A VNT map, a VNT map when feeding back the EGR amount, a VNT map when feeding back the intake air flow rate, a map showing the relationship between the VNT variable blade angle and the supercharging ratio related to the intake air flow rate, and the like are stored. .

本実施形態に係る吸入空気量制御装置の作動と制御方法について図2〜図4を用い、図1をも参照して以下に説明する。   The operation and control method of the intake air amount control apparatus according to the present embodiment will be described below with reference to FIG.

図示しないエアインレットから吸込まれた吸気はVNT2において排気のエネルギーによって過給され、第1のエアダクト51によってインタクーラ4に圧送され、インタクーラ4内で冷却されることにより酸素充填効率を更に高められ、第2のエアダクト52及びインテークマニフォルド7を介してシリンダ9内に供給される。   Intake air sucked from an air inlet (not shown) is supercharged by the energy of exhaust gas in the VNT 2, is pumped to the intercooler 4 by the first air duct 51, and is cooled in the intercooler 4, thereby further improving the oxygen filling efficiency. 2 is supplied into the cylinder 9 through the air duct 52 and the intake manifold 7.

一方、エキゾーストマニフォルド8から排出される排気ガスは、多くが前記VNT2に流入するが、一部(還流排気ガス:EGR)は前記第1のEGRパイプ61を介してEGRクーラ63に送られる。
EGRクーラ63で冷却された還流排気ガス(EGR)は第2のEGRパイプ62を介して前記第2のエアダクト52に形成された合流部53によって、第2のエアダクト52内の給気(新気)と合流・混合された後、第2のエアダクト52によって前記インテークマニフォルド7に流入する。
On the other hand, most of the exhaust gas discharged from the exhaust manifold 8 flows into the VNT 2, but a part (recirculation exhaust gas: EGR) is sent to the EGR cooler 63 via the first EGR pipe 61.
The recirculated exhaust gas (EGR) cooled by the EGR cooler 63 is supplied through the second air duct 52 through the second EGR pipe 62 and is supplied into the second air duct 52 (fresh air). ), And then flows into the intake manifold 7 through the second air duct 52.

上述の構成を有する当該吸入空気量制御装置の制御方法は、エンジン回転センサ20によりエンジン1の回転数を検出するとともに、流量計30により燃料噴射量を検出し、それらの検出結果によりエンジンの運転状態を以下の4つの運転状態(4つの運転領域)として認識する。   In the control method of the intake air amount control device having the above-described configuration, the engine speed sensor 20 detects the number of revolutions of the engine 1, the flow meter 30 detects the fuel injection amount, and the engine operation is performed based on the detection results. The state is recognized as the following four operation states (four operation regions).

上記4つの運転状態(4つの運転領域)とは、例えば、燃料噴射特性を示す図2においてE1、E2、E3、E4で示す領域を指す。
即ち、第1の領域E1は、エンジン1の回転数が低いか或いは燃料噴射量が少ない領域、換言すれば、停車時や走行中ではあるが惰行等の極めてエンジン負荷が少ない運転状態の領域である。第2の領域E2は、エンジン負荷や車速(エンジン回転速度)が変化し、一般道走行を含み、比較的負荷の高い運転状態の領域である。
第3の領域E3は、燃料噴射量が多い高負荷での運転状態の領域である。
第4の領域E4は、中速域ではあるが、エンジン負荷や車速(エンジン回転速度)が変化し、例えば一般道などで比較的負荷の低い運転状態の領域である。
The four operation states (four operation regions) refer to regions indicated by E1, E2, E3, and E4 in FIG. 2 showing the fuel injection characteristics, for example.
That is, the first region E1 is a region where the rotational speed of the engine 1 is low or the fuel injection amount is small, in other words, a region where the engine load is extremely low such as coasting while stopping or running. is there. The second region E2 is a region in which the engine load and the vehicle speed (engine rotation speed) change, and includes driving on a general road and is in a driving state with a relatively high load.
The third region E3 is a region in an operating state at a high load with a large amount of fuel injection.
The fourth region E4 is a medium speed region, but is a region where the engine load and the vehicle speed (engine rotation speed) change, and the driving state is relatively low on a general road, for example.

前記コントロールユニット10は、認識された運転状態(図2の1第1〜第4の領域E1〜E4)によって、VNT2の可変翼の角度の制御及び前記EGRバルブVeの弁開度の制御を以下の方法によって行う。
即ち、図3を参照して、第1の領域E1では、VNT制御及びEGR制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN)とする。
第2の領域E2では、VNT制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にし、且つEGR制御を内燃機関の吸入空気量(新気吸入量)が目標値に近づくように制御する(すなわち、例えば図示はしないが吸気系5に介装したエアフローセンサで計測されるエンジン吸気量である実測の新気量が、回転数と噴射量から求まる1つの数値(目標とする新気量)となる様に、EGR弁開度をフィードバック制御する)フィードバック制御(CLOSED LOOP)にする。
第3の領域E3では、VNT(可変翼)制御を内燃機関の吸入空気量(新気吸入量)が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)にし且つEGR制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)とするように制御する。
そして、第4の領域E4では、VMT(可変翼)制御及びEGR制御の双方を内燃機関の吸入空気量(新気吸入量)が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)とするように制御する。
The control unit 10 performs control of the angle of the variable vane of the VNT 2 and control of the valve opening of the EGR valve Ve according to the recognized operating state (the first to fourth regions E1 to E4 in FIG. 2). It is done by the method.
That is, referring to FIG. 3, in the first region E1, the VNT control and the EGR control are set to open loop control (OPEN) for determining one numerical value from the internal combustion engine speed and the fuel injection amount.
In the second region E2, the VNT control is set to open loop control (OPEN LOOP) for determining one numerical value from the engine speed and the fuel injection amount, and the EGR control is set to the intake air amount (fresh air intake amount) of the internal combustion engine. (I.e., not shown, for example, an actually measured fresh air amount that is an engine intake air amount measured by an air flow sensor interposed in the intake system 5 is obtained from the rotational speed and the injection amount 1. It is set to feedback control (CLOSED LOOP) in which the EGR valve opening is feedback-controlled so that one numerical value (target new air amount) is obtained.
In the third region E3, the VNT (variable blade) control is set to feedback control (CLOSED LOOP) for controlling the intake air amount (fresh air intake amount) of the internal combustion engine to approach the target value, and the EGR control is set to the engine speed. And an open loop control (OPEN LOOP) for determining one numerical value from the fuel injection amount.
In the fourth region E4, both VMT (variable blade) control and EGR control are set to feedback control (CLOSED LOOP) for controlling the intake air amount (fresh air intake amount) of the internal combustion engine to approach the target value. To control.

次に図4を参照して、吸入空気量の制御方法を説明する。   Next, a method for controlling the intake air amount will be described with reference to FIG.

先ず、ステップS1において、エンジン回転センサ20によってエンジン回転数を、燃料噴射量算出工程30によってエンジンへの燃料供給量を決定する。ここで、燃料噴射量算出手段30は、アクセルセンサ、ブーストセンサ、エアフローセンサにより、燃料噴射量を算出する様に構成されている。   First, in step S1, the engine speed is determined by the engine rotation sensor 20, and the fuel supply amount to the engine is determined by the fuel injection amount calculation step 30. Here, the fuel injection amount calculation means 30 is configured to calculate the fuel injection amount by an accelerator sensor, a boost sensor, and an air flow sensor.

次のステップS2では、コントロールユニット10は、前記検出したエンジン回転数に関するデータ、燃料噴射量に関するデータ及びデータベース40に記憶した図示しないマップに基づき、その時点の運転状態が、図2に示す4つの領域(E1〜E4)の内のどの領域に属するかを決定し、次のステップS3に進む。   In the next step S2, the control unit 10 determines the four operating states shown in FIG. 2 based on the data relating to the detected engine speed, the data relating to the fuel injection amount, and a map (not shown) stored in the database 40. Which region of the regions (E1 to E4) belongs is determined, and the process proceeds to the next step S3.

ステップS3では、コントロールユニット10は、ステップS2で決定されたエンジン1の運転状態を、前記VNT2の可変翼の角度の制御及び前記EGRバルブVeの弁開度の制御をエンジン回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にする第1の領域E1と、可変翼の角度の制御をエンジン回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にし且つ弁開度の制御を内燃機関の吸入空気量(新気吸入量)が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)にする第2の領域(E2)と、可変翼の角度の制御を内燃機関(1)の吸入空気量(新気吸入量)が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)にし且つ弁開度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御(OPEN LOOP)にする第3の領域(E3)と、可変翼の角度の制御及びEGR弁開度の双方を内燃機関(1)の吸入空気量(新気吸入量)が目標値に近づくように制御するフィードバック制御(CLOSED LOOP)にする第4の領域(E4)との、4つの領域の何れか1つの領域に分類する。
すなわち、所属する領域に対応して(図3の表に基づき)VNT角度、EGRバルブの開度の制御方法(オープンループ制御(OPEN LOOP)か、又はフィードバック制御(CLOSED LOOP))を選択し、選択された制御方法によってVNT角度、EGRバルブの開度の制御を行う。
ここで、VNT角度の制御及びEGRバルブの開度の制御は、OPEN LOOP、CLOSED LOOPを問わず公知の制御ソフト(方法)によって行われ、その結果、エンジン1への吸入空気量は、運転状態に最も適した値として制御される。
In step S3, the control unit 10 determines the operating state of the engine 1 determined in step S2, controls the angle of the variable blades of the VNT2 and the valve opening of the EGR valve Ve, and controls the engine speed and fuel injection amount. Open loop control (OPEN LOOP) to determine one numerical value from the first region E1 to open loop control (OPEN LOOP), variable blade angle control to determine one numerical value from the engine speed and fuel injection amount (OPEN LOOP) And a second region (E2) in which the control of the valve opening is set to feedback control (CLOSED LOOP) for controlling the intake air amount (fresh air intake amount) of the internal combustion engine to approach the target value, Feedback control (CLOSED) for controlling the angle so that the intake air amount (fresh air intake amount) of the internal combustion engine (1) approaches the target value LOOP) and a third region (E3) in which the valve opening is controlled by an open loop control (OPEN LOOP) for determining one numerical value from the engine speed and the fuel injection amount; 4 in a fourth region (E4) in which both the EGR valve opening are set to feedback control (CLOSED LOOP) for controlling the intake air amount (fresh air intake amount) of the internal combustion engine (1) to approach the target value. Classify into any one of the two areas.
That is, select the VNT angle, EGR valve opening control method (open loop control (OPEN LOOP) or feedback control (CLOSED LOOP)) corresponding to the region to which it belongs (based on the table in FIG. 3), The VNT angle and the opening degree of the EGR valve are controlled by the selected control method.
Here, the control of the VNT angle and the opening degree of the EGR valve are performed by known control software (method) regardless of OPEN LOOP and CLOSED LOOP. As a result, the amount of intake air to the engine 1 depends on the operating state. It is controlled as the most suitable value.

次のステップS4では、コントロールユニット10は、制御を終了するか(運転が終わったか)否かを判断し、終了しても良ければ(ステップS4のYES)、そのまま制御を終了する。一方、制御を終了しない(運転が続行される)のであれば(ステップS4のNO)、ステップS5に進み、所定時間の経過を待って(S6のループ)、所定時間が経過すれば(ステップS5のYES)、ステップS1に戻り、再びステップS1以降を繰り返す。   In the next step S4, the control unit 10 determines whether or not to end the control (whether the operation has ended), and if it can be ended (YES in step S4), the control unit 10 ends the control as it is. On the other hand, if the control is not finished (operation is continued) (NO in step S4), the process proceeds to step S5, waits for a predetermined time (loop in S6), and if the predetermined time elapses (step S5). YES), the process returns to step S1, and step S1 and subsequent steps are repeated again.

上述した構成及び制御方法を具備した本実施形態よれば、VNT可変翼角度の制御及び/又はEGRバルブ開度の制御において、オープン制御(OPEN LOOP)にするかフィードバック制御(CLOSED LOOP)にするかが、運転状態に対応して正確に決定することが出来る。   According to the present embodiment having the above-described configuration and control method, whether to perform open control (OPEN LOOP) or feedback control (CLOSED LOOP) in the control of the VNT variable blade angle and / or the control of the EGR valve opening. However, it can be determined accurately in accordance with the driving state.

運転状況に対応して、オープン制御にするかフィードバック制御にするかを適正に選択して制御するため、内燃機関(エンジン)の新気吸入量が適切に決定される。
即ち、停車時や走行中ではあるが惰行等の極めてエンジン負荷が少ない状態(図2の第1の領域E1)では、EGR、VNTともに目標制御値を1点に絞ったオープンループ制御(OPEN LOOP)が選択され、エンジン負荷や車速(エンジン回転速度)が変化し、負荷が比較的高い状態での運転(図2の第2の領域E2)においては、VNTはオープン制御、EGRはフィードバック制御が選択され、よりきめ細かな制御が行われる。また、高負荷時(図2の第3の領域E2)では、エンジン回転数に関わらずEGRはオープン制御、VNTはフィードバック制御が選択される。さらに、負荷が比較的低く、エンジン回転速度が中速域(図2の第4の領域E4)においては、EGR制御及びVNT制御の双方ともフィードバック制御が選択される。
In order to control by appropriately selecting whether to perform open control or feedback control in accordance with the driving situation, the fresh air intake amount of the internal combustion engine (engine) is appropriately determined.
That is, in a state where the engine load is extremely low (first area E1 in FIG. 2) such as coasting while stopping or traveling, open loop control (OPEN LOOP) in which the target control value is reduced to one point for both EGR and VNT. ) Is selected, the engine load and the vehicle speed (engine speed) change, and in operation with a relatively high load (second region E2 in FIG. 2), VNT is open control, and EGR is feedback control. Selected and finer control is performed. Further, during high load (third region E2 in FIG. 2), EGR is selected for open control and VNT is selected for feedback control regardless of the engine speed. Further, when the load is relatively low and the engine rotation speed is in the medium speed range (fourth region E4 in FIG. 2), feedback control is selected for both EGR control and VNT control.

そのように運転状態により制御方法が適切且つ細かに選択されるため、特に運転条件の変化の多い一般道などでは、特にNOx低減が高い次元で達成されるとともに、内燃機関(エンジン)の燃費向上とNOx低減を両立させることが出来る。   In this way, the control method is appropriately and finely selected according to the operating state, so that especially on general roads where the operating conditions change frequently, NOx reduction is achieved at a high level and fuel efficiency of the internal combustion engine (engine) is improved. And NOx reduction can both be achieved.

さらに、負荷が比較的低く、エンジン回転速度が中速域においては、EGR制御及びVNT制御の双方ともフィードバック制御が選択されるため、より細かく省燃費で、且つ、低NOx排出量の走行を実現する。   Furthermore, when the load is relatively low and the engine speed is medium, the feedback control is selected for both EGR control and VNT control, enabling more detailed fuel saving and low NOx emissions. To do.

図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではない。
例えば、図示の実施形態では燃料供給量の検出手段として燃料流量計を用いたが、アクセルペダルに介装したポテンショメータからの信号を処理して燃料供給量を算出してもよい。
The illustrated embodiment is merely an example, and is not intended to limit the technical scope of the present invention.
For example, in the illustrated embodiment, a fuel flow meter is used as a means for detecting the fuel supply amount. However, a fuel supply amount may be calculated by processing a signal from a potentiometer provided in the accelerator pedal.

本発明の実施形態に係る吸入空気量制御装置全体を示すブロック図。1 is a block diagram showing an entire intake air amount control device according to an embodiment of the present invention. 本発明の実施形態において、EGR制御とVNT制御の二組の制御の制御方法が変わる領域を4つの領域に区分した制御特性図。In the embodiment of the present invention, the control characteristic diagram which divided the field where the control method of two sets of control of EGR control and VNT control changes into four fields. 本発明の実施形態において、EGR制御とVNT制御の、制御の組合せを4つの制御領域と対応させた表。The table which matched the combination of control of EGR control and VNT control with four control fields in the embodiment of the present invention. 本発明の実施形態における吸入空気量制御方法を示すフローチャート。The flowchart which shows the intake air amount control method in embodiment of this invention.

符号の説明Explanation of symbols

1・・・エンジン
2・・・可変翼ターボチャージャ/VNT
3・・・排気系
4・・・インタクーラ
5・・・吸気系
6・・・EGRシステム
7・・・インテークマニフォルド
8・・・エキゾーストマニフォルド
10・・・コントロールユニット
20・・・エンジン回転センサ
30・・・燃料流量計
40・・・データベース
E1・・・第1の領域
E2・・・第2の領域
E3・・・第3の領域
Ve・・・EGRバルブ
Vt・・・アクチュエータ
1 ... Engine 2 ... Variable wing turbocharger / VNT
3 ... Exhaust system
4 ... Intercooler
5 ... Intake system 6 ... EGR system 7 ... Intake manifold 8 ... Exhaust manifold 10 ... Control unit 20 ... Engine rotation sensor 30 ... Fuel flow meter 40 ... Database E1 ... First region E2 ... Second region E3 ... Third region Ve ... EGR valve Vt ... Actuator

Claims (5)

可変翼ターボチャージャと、排気環流装置とを有する内燃機関の吸入空気量制御装置において、当該内燃機関の回転数を検出する回転数検出手段と、内燃機関へ供給される燃料噴射量と、回転数検出手段及び燃料噴射量に基いて可変翼ターボチャージャにおける可変翼の角度及び排気環流弁の弁開度を決定する制御手段とを備え、該制御手段は、内燃機関の運転状態を、前記可変翼の角度の制御及び前記弁開度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御にする第1の領域と、前記可変翼の角度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御にし、且つ前記弁開度の制御を内燃機関の吸入空気量が目標値に近づくように制御するフィードバック制御にする第2の領域と、前記可変翼の角度の制御を内燃機関の吸入空気量が目標値に近づくように制御するフィードバック制御にし、且つ前記弁開度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御にする第3の領域と、前記可変翼の角度の制御及び前記弁開度の制御を内燃機関の吸入空気量が目標値に近づくように制御するフィードバック制御にする第4の領域、の4つの領域の何れか1つの領域に分類する制御を行う様に構成されていることを特徴とする内燃機関の吸入空気量制御装置。   In an intake air amount control device for an internal combustion engine having a variable blade turbocharger and an exhaust gas recirculation device, a rotational speed detection means for detecting the rotational speed of the internal combustion engine, a fuel injection amount supplied to the internal combustion engine, and a rotational speed Control means for determining the angle of the variable blade and the valve opening degree of the exhaust gas recirculation valve in the variable blade turbocharger based on the detection means and the fuel injection amount, and the control means indicates the operating state of the internal combustion engine, the variable blade A first region in which the control of the angle of the valve and the control of the valve opening are made open loop control for determining one numerical value from the engine speed and the fuel injection amount, and the control of the angle of the variable blades is made in the engine speed And a second area in which the control of the valve opening is a feedback control in which the intake air amount of the internal combustion engine approaches the target value. And the control of the angle of the variable blade is a feedback control for controlling the intake air amount of the internal combustion engine to approach a target value, and the control of the valve opening is a numerical value from the internal combustion engine speed and the fuel injection amount. A third region for open loop control to be determined, and fourth control for feedback angle control for controlling the angle of the variable blade and the valve opening so that the intake air amount of the internal combustion engine approaches a target value. An intake air amount control device for an internal combustion engine, which is configured to perform control to be classified into any one of the four regions. 前記第1の領域は内燃機関の回転数が低いか或いは燃料噴射量が少ない領域であり、前記第3の領域は燃料噴射量が多い領域であり、前記第4の領域は内燃機関回転数は高くも低くもなく且つ燃料噴射量は比較的少ない領域であり、前記第2の領域はその他の運転領域である請求項1の内燃機関の吸入空気量制御装置。   The first region is a region where the rotational speed of the internal combustion engine is low or the fuel injection amount is small, the third region is a region where the fuel injection amount is large, and the fourth region is the rotational speed of the internal combustion engine. 2. The intake air amount control device for an internal combustion engine according to claim 1, wherein the fuel injection amount is neither high nor low and the fuel injection amount is relatively small, and the second region is another operation region. 前記制御手段は、内燃機関の内燃機関の回転数及び内燃機関へ供給される燃料の噴射量と、上述した4つの領域との相対的な関係を記憶する記憶手段を有している請求項1、2の何れかの内燃機関の吸入空気量制御装置。   The control means includes storage means for storing a relative relationship between the number of revolutions of the internal combustion engine of the internal combustion engine and the injection amount of fuel supplied to the internal combustion engine, and the above-described four regions. 2. The intake air amount control device for any one of the internal combustion engines. 可変翼ターボチャージャと、排気環流装置とを有する内燃機関の吸入空気量制御方法において、内燃機関の回転数を検出する回転数検出工程と、内燃機関へ供給される燃料の噴射量算出工程と、回転数検出工程及び燃料噴射量算出工程の検出結果により内燃機関の運転状態を決定する内燃機関運転状態決定工程と、前記可変翼の角度の制御及び前記弁開度の制御を行う制御工程とを含み、該制御工程は、内燃機関運転状態決定工程で決定された内燃機関の運転状態を、前記可変翼の角度の制御及び前記弁開度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御にする第1の領域と、前記可変翼の角度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御にし、且つ前記弁開度の制御を内燃機関の吸入空気量が目標値に近づくように制御するフィードバック制御にする第2の領域と、前記可変翼の角度の制御を内燃機関の吸入空気量が目標値に近づくように制御するフィードバック制御にし、且つ前記弁開度の制御を内燃機関回転数と燃料噴射量から1つの数値を決定するオープンループ制御にする第3の領域と、前記可変翼の角度の制御及び前記弁開度の制御を内燃機関の吸入空気量が目標値に近づくように制御するフィードバック制御にする第4の領域、の4つの領域の何れか1つの領域に分類することを特徴とする内燃機関の吸入空気量制御方法。   In an intake air amount control method for an internal combustion engine having a variable blade turbocharger and an exhaust gas recirculation device, a rotational speed detection step for detecting the rotational speed of the internal combustion engine, and an injection amount calculation step for fuel supplied to the internal combustion engine; An internal combustion engine operation state determination step for determining an operation state of the internal combustion engine based on detection results of the rotational speed detection step and the fuel injection amount calculation step, and a control step for controlling the angle of the variable blade and the valve opening degree. The control step includes the operation state of the internal combustion engine determined in the internal combustion engine operation state determination step, the control of the angle of the variable blades and the control of the valve opening from the internal combustion engine speed and the fuel injection amount. A first region for open-loop control for determining a numerical value, and an open-loop control for determining one numerical value from an internal combustion engine speed and a fuel injection amount for controlling the angle of the variable blade, and the valve opening degree The second region is controlled so that the intake air amount of the internal combustion engine approaches the target value, and the control of the angle of the variable blade is controlled so that the intake air amount of the internal combustion engine approaches the target value. A third region in which feedback control is performed, and the control of the valve opening is an open loop control in which one numerical value is determined from the internal combustion engine speed and the fuel injection amount; and the angle control of the variable blade and the valve opening The intake air of the internal combustion engine is classified into any one of the four areas of the fourth area, which is feedback control that controls the intake air amount of the internal combustion engine to approach the target value. Quantity control method. 前記第1の領域は内燃機関の回転数が低いか或いは燃料噴射量が少ない領域であり、前記第3の領域は燃料噴射量が多い領域であり、前記第4の領域は内燃機関回転数は高くも低くもなく且つ燃料噴射量は比較的少ない領域であり、前記第2の領域はその他の運転領域である請求項4の内燃機関の吸入空気量制御方法。   The first region is a region where the rotational speed of the internal combustion engine is low or the fuel injection amount is small, the third region is a region where the fuel injection amount is large, and the fourth region is the rotational speed of the internal combustion engine. 5. The intake air amount control method for an internal combustion engine according to claim 4, wherein the fuel injection amount is neither high nor low and the fuel injection amount is relatively small, and the second region is another operation region.
JP2004025123A 2004-02-02 2004-02-02 Intake air amount control device for internal combustion engine and its method Pending JP2005214153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004025123A JP2005214153A (en) 2004-02-02 2004-02-02 Intake air amount control device for internal combustion engine and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004025123A JP2005214153A (en) 2004-02-02 2004-02-02 Intake air amount control device for internal combustion engine and its method

Publications (1)

Publication Number Publication Date
JP2005214153A true JP2005214153A (en) 2005-08-11

Family

ID=34907589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004025123A Pending JP2005214153A (en) 2004-02-02 2004-02-02 Intake air amount control device for internal combustion engine and its method

Country Status (1)

Country Link
JP (1) JP2005214153A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077854A (en) * 2005-09-13 2007-03-29 Hino Motors Ltd Supercharging system
JP2007315371A (en) * 2006-04-25 2007-12-06 Denso Corp Exhaust emission control device for internal combustion engine
US7533657B2 (en) 2004-08-11 2009-05-19 Komatsu Ltd. Open/close controller of intake and exhaust communication circuit
US7610757B2 (en) * 2004-07-30 2009-11-03 Komatsu Ltd. Intake controller of internal combustion engine
JP2010249057A (en) * 2009-04-16 2010-11-04 Isuzu Motors Ltd Control method and control device for internal combustion engine
CN102182575A (en) * 2011-01-27 2011-09-14 潍柴动力股份有限公司 Equipment and method for controlling air system of diesel engine
CN102182576A (en) * 2011-01-27 2011-09-14 潍柴动力股份有限公司 Device and method for controlling air system of diesel engine
CN102297032A (en) * 2011-08-26 2011-12-28 潍柴动力股份有限公司 Equipment and method for controlling air system of diesel engine
WO2012100420A1 (en) * 2011-01-27 2012-08-02 潍柴动力股份有限公司 Control device and method for air system of diesel engine
WO2012153418A1 (en) * 2011-05-12 2012-11-15 トヨタ自動車株式会社 Internal combustion engine control apparatus
US8615997B2 (en) 2009-09-29 2013-12-31 Fujitsu Limited Engine control apparatus and method
US9988996B2 (en) 2015-10-06 2018-06-05 Hyundai Motor Company Method of controlling supercharger

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7610757B2 (en) * 2004-07-30 2009-11-03 Komatsu Ltd. Intake controller of internal combustion engine
US7533657B2 (en) 2004-08-11 2009-05-19 Komatsu Ltd. Open/close controller of intake and exhaust communication circuit
JP2007077854A (en) * 2005-09-13 2007-03-29 Hino Motors Ltd Supercharging system
JP2007315371A (en) * 2006-04-25 2007-12-06 Denso Corp Exhaust emission control device for internal combustion engine
JP2010249057A (en) * 2009-04-16 2010-11-04 Isuzu Motors Ltd Control method and control device for internal combustion engine
US8615997B2 (en) 2009-09-29 2013-12-31 Fujitsu Limited Engine control apparatus and method
CN102182576A (en) * 2011-01-27 2011-09-14 潍柴动力股份有限公司 Device and method for controlling air system of diesel engine
WO2012100420A1 (en) * 2011-01-27 2012-08-02 潍柴动力股份有限公司 Control device and method for air system of diesel engine
CN102182575A (en) * 2011-01-27 2011-09-14 潍柴动力股份有限公司 Equipment and method for controlling air system of diesel engine
US9534533B2 (en) 2011-01-27 2017-01-03 Weichai Power Co., Ltd. Control device and method for air system of diesel engine
WO2012153418A1 (en) * 2011-05-12 2012-11-15 トヨタ自動車株式会社 Internal combustion engine control apparatus
JP5146612B2 (en) * 2011-05-12 2013-02-20 トヨタ自動車株式会社 Control device for internal combustion engine
US8820297B2 (en) 2011-05-12 2014-09-02 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
CN102297032A (en) * 2011-08-26 2011-12-28 潍柴动力股份有限公司 Equipment and method for controlling air system of diesel engine
US9988996B2 (en) 2015-10-06 2018-06-05 Hyundai Motor Company Method of controlling supercharger

Similar Documents

Publication Publication Date Title
JP4215069B2 (en) Exhaust gas recirculation device for internal combustion engine
JP4124143B2 (en) Control device for supercharger with electric motor
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP4285528B2 (en) Exhaust gas recirculation system for internal combustion engines
US8453446B2 (en) Exhaust gas control system for internal combustion engine and method for controlling the same
JP2007255323A (en) Exhaust emission control system of internal combustion engine
JP4872644B2 (en) Internal combustion engine with EGR device
JP4492406B2 (en) Diesel engine intake / exhaust system
US20120174576A1 (en) Supercharged internal combustion engine and method for operating an internal combustion engine of said type
US20170356397A1 (en) Engine system having exhaust gas recirculation apparatus and method of controlling the engine system having exhaust gas recirculation apparatus
KR101886095B1 (en) Engine system having egr apparatus
JP2005214153A (en) Intake air amount control device for internal combustion engine and its method
JP2010168958A (en) Egr controller for internal combustion engine
US10450974B2 (en) Control device for internal combustion engine and control method for internal combustion engine
JP3951089B2 (en) EGR device for turbocharged engine
JP4735519B2 (en) Exhaust gas recirculation device for internal combustion engine
JP2007303380A (en) Exhaust gas control device for internal combustion engine
JPWO2018047286A1 (en) Control method and control apparatus for internal combustion engine
JP2008045524A (en) Supercharger of diesel engine
JP2006299892A (en) Internal combustion engine with supercharger
JP2019203435A (en) Control device of engine
JP2005214152A (en) Intake air amount control device for internal combustion engine and its method
JP2009209887A (en) Control device of internal combustion engine
JP2008267247A (en) Control device for internal combustion engine
JP6907977B2 (en) Turbocharger controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080218