JP2007077505A - Cu-Ag ALLOY WIRE, AND Cu-Ag ALLOY WIRE FOR COAXIAL CABLE - Google Patents

Cu-Ag ALLOY WIRE, AND Cu-Ag ALLOY WIRE FOR COAXIAL CABLE Download PDF

Info

Publication number
JP2007077505A
JP2007077505A JP2006285729A JP2006285729A JP2007077505A JP 2007077505 A JP2007077505 A JP 2007077505A JP 2006285729 A JP2006285729 A JP 2006285729A JP 2006285729 A JP2006285729 A JP 2006285729A JP 2007077505 A JP2007077505 A JP 2007077505A
Authority
JP
Japan
Prior art keywords
mass
wire
alloy wire
purity
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006285729A
Other languages
Japanese (ja)
Other versions
JP4501922B2 (en
Inventor
Ryo Matsui
量 松井
Takao Ichikawa
貴朗 市川
Masayoshi Aoyama
正義 青山
Ryohei Okada
良平 岡田
Osamu Seya
修 瀬谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2006285729A priority Critical patent/JP4501922B2/en
Publication of JP2007077505A publication Critical patent/JP2007077505A/en
Application granted granted Critical
Publication of JP4501922B2 publication Critical patent/JP4501922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Cu-Ag alloy wire having excellent tensile strength, wire drawability and flexibility, and to provide a Cu-Ag alloy wire for a coaxial cable. <P>SOLUTION: The Cu-Ag alloy wire has a wire diameter of ≤0.08 mm, and is composed of a copper alloy obtained by admixing high purity Cu in which the total of inevitable impurities is ≤1 mass ppm with Ag having a purity of ≥99.99 mass% by 1.0 to 5.0 mass%. The Cu-Ag alloy wire has excellent wire drawability and flexibility since foreign matters causing disconnection in the base material are suppressed to the minimum, and has excellent tensile strength since Ag is comprised as an additional element. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、銅合金線の直径が0.08mm以下の超極細銅合金線、銅合金撚線導体、極細同軸ケーブル、および超極細銅合金線の製造方法に関し、特に、引張強度、伸線性および屈曲性に優れた超極細銅合金線、銅合金撚線導体、極細同軸ケーブル、および超極細銅合金線の製造方法に関する。   The present invention relates to a method for producing an ultrafine copper alloy wire, a copper alloy twisted wire conductor, an ultrafine coaxial cable, and an ultrafine copper alloy wire having a diameter of a copper alloy wire of 0.08 mm or less, and in particular, tensile strength, wire drawability and The present invention relates to a method for producing a super extra fine copper alloy wire, a copper alloy twisted wire conductor, an extra fine coaxial cable, and a super extra fine copper alloy wire having excellent flexibility.

電子機器、ICテスタ、医療機器の小型化に伴い、それらに適用されている機器電線も細径化が進んでいる。特に、医療機器用電線には、ケーブルの外径は従来と同等で線芯数を多くしたケーブルが求められている。現在、実用化されている導体は、40AWG(7/0.03)が主流であり、不純物濃度が10ppm程度の無酸素銅(OFC)をべースにSnを微量添加した銅合金線が広く適用されている。   With the miniaturization of electronic devices, IC testers, and medical devices, device wires applied to them are also becoming thinner. In particular, cables for medical devices are required to have a cable with an outer diameter equivalent to that of conventional cables and a larger number of wire cores. Currently, 40 AWG (7 / 0.03) is the mainstream conductor in practical use, and copper alloy wires with a small amount of Sn added to oxygen-free copper (OFC) with an impurity concentration of about 10 ppm are widely used. Has been applied.

従来からダイス加工で線材を伸線する場合、異物による断線と延性破壊による断線が問題となる。   Conventionally, when wire is drawn by die processing, disconnection due to foreign matter and disconnection due to ductile fracture become problems.

異物が原因で断線したサンプルを詳細に分析してみると、異物の混入原因は大きく2つに分けられる。1つは伸線工程中に外部から混入した異物、もう1つは溶解、鋳造時に素材である銅や添加元素に含まれる介在物、あるいはルツボや鋳型の成分であるSiC、SiO2、ZrO2などの耐火材が剥離して生じる異物である。前者の異物を低減するためには、伸線工程をクリーン化すれば解決できる。しかし、後者の異物を低減するためには、母材を高品質化しなければならない。一方、延性破断については、加工度と密接な関係があることが知られている。加工度が大きい場合、変形抵抗が大きく塑性変形しにくくなるため、延性破断が起こり易くなる。しかし、加工限界に達していない範囲では強度が大きい材料の方が延性破断が起こりにくいため、強度が大きい材料が望まれている。以上のように、超極細線を製造する場合、各工程において細心の注意を払う必要がある。 When the sample that is disconnected due to the foreign matter is analyzed in detail, the cause of the foreign matter is roughly divided into two. One is foreign matter mixed from the outside during the wire drawing process, the other is melting, inclusions contained in copper and additive elements as a material at the time of casting, or SiC, SiO 2 , ZrO 2 as components of crucible and mold It is a foreign material generated by peeling off refractory materials. In order to reduce the former foreign matter, it can be solved by cleaning the wire drawing process. However, in order to reduce the latter foreign matter, the quality of the base material must be improved. On the other hand, it is known that ductile fracture has a close relationship with the processing degree. When the degree of work is large, the deformation resistance is large and plastic deformation is difficult, so that ductile fracture is likely to occur. However, a material having a high strength is desired because a material having a high strength is less susceptible to ductile fracture within a range not reaching the processing limit. As described above, when manufacturing ultrafine wires, it is necessary to pay close attention to each process.

異物による断線の解決を図った従来の極細導体として、例えば、特開平11−293365号公報に示されるものがある。   For example, Japanese Patent Application Laid-Open No. 11-293365 discloses a conventional ultrafine conductor that has solved wire breakage due to foreign matter.

この極細導体は、Agを1〜4.5重量%含み、残部がCuと不可避不純物からなり、極細導体内に含まれる異物の径を極細導体の径に対して所定の値以下とするものである。これにより、伸線加工や巻線加工で断線しにくい引張強度、伸線性および巻線性を有する極細導体を提供することができる。例えば、極細導体の径が20μmの場合は、異物の径を12μm以下にすればよい。   This ultrafine conductor contains 1 to 4.5% by weight of Ag, the remainder is made of Cu and inevitable impurities, and the diameter of the foreign matter contained in the ultrafine conductor is set to a predetermined value or less with respect to the diameter of the ultrafine conductor. is there. As a result, it is possible to provide an ultrafine conductor having tensile strength, wire drawability, and winding properties that are hard to be disconnected by wire drawing or winding. For example, when the diameter of the ultrafine conductor is 20 μm, the diameter of the foreign material may be 12 μm or less.

しかし、従来の極細導体によると、除外すべき異物を径で規定しているため、その規定された径以下の異物の量が多い場合は、伸線加工時に断線し易くなり、屈曲性にも劣る。   However, according to the conventional fine conductor, the diameter of the foreign material to be excluded is specified, so if there is a large amount of foreign material less than the specified diameter, it will be easy to break during wire drawing and bendability Inferior.

従って、本発明の目的は、引張強度、伸線性および屈曲性に優れた超極細銅合金線、銅合金撚線導体、極細同軸ケーブル、および超極細銅合金線の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing an ultrafine copper alloy wire, a copper alloy twisted wire conductor, an ultrafine coaxial cable, and an ultrafine copper alloy wire excellent in tensile strength, wire drawability and flexibility. .

本発明は、上記目的を達成するため、0.08mm以下の線径を有する超極細銅合金線において、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%添加した銅合金線によって構成されることを特徴とする超極細銅合金線を提供する。
線径を0.08mm以下に規定しているのは、線径が0.08mmよりも大きい場合、従来の無酸素銅(OFC)を母材としても安定して製造できるからである。不可避不純物の総和が1 massppm以下の高純度Cuを用いることにより、母材中に断線の原因となる異物が最小限に抑えられる。高純度CuにAgを添加することにより、Snと比較して導電率をあまり低下させずに引張強度を向上させることができ、延性破壊が起こりにくくなる。Agの純度を99.99mass%以上とすることにより、マトリックスのCuの汚染を最小限にすることができる。Agの濃度を1.0〜5.0mass%に限定したのは、Ag濃度が1.0mass%未満では、共晶相の晶出量が極めて少ないことから強度の向上効果が乏しいためであり、5.0mass%を超えると、加工硬化が著しく直径0.02mm以下の超極細導体を伸線する場合に中間で熱処理を入れないと加工できなくなるためである。
In order to achieve the above object, the present invention provides an ultra-fine copper alloy wire having a wire diameter of 0.08 mm or less, high purity Cu having a total of inevitable impurities of 1 mass ppm or less, and Ag having a purity of 99.99 mass% or more. Provided is an ultrafine copper alloy wire comprising a copper alloy wire added with 1.0 to 5.0 mass%.
The reason why the wire diameter is regulated to 0.08 mm or less is that when the wire diameter is larger than 0.08 mm, the conventional oxygen-free copper (OFC) can be stably produced even as a base material. By using high-purity Cu having a total of inevitable impurities of 1 mass ppm or less, foreign substances that cause disconnection in the base material can be minimized. By adding Ag to high-purity Cu, the tensile strength can be improved without significantly reducing the electrical conductivity compared to Sn, and ductile fracture is less likely to occur. By making the purity of Ag 99.99 mass% or more, contamination of Cu in the matrix can be minimized. The reason why the Ag concentration is limited to 1.0 to 5.0 mass% is that when the Ag concentration is less than 1.0 mass%, the crystallization amount of the eutectic phase is extremely small, and thus the effect of improving the strength is poor. This is because if it exceeds 5.0 mass%, the work hardening becomes remarkably difficult when the ultrafine conductor having a diameter of 0.02 mm or less is drawn, without being heat-treated in the middle.

本発明は、上記目的を達成するため、0.08mm以下の線径を有する超極細銅合金線において、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%、および純度99.9mass%以上のMgを0.01〜0.5mass%添加した銅合金線によって構成されることを特徴とする超極細銅合金線を提供する。
Agの他に純度99.9mass%以上のMgを0.01〜0.5mass%添加してもよい。Mgを添加したのは、Agは高価であるため、導電率をあまり低下させない添加元素Mgで置きかえることによりAg濃度を低減させるためである。Mgの純度を99.9mass%以上に限定したのは、マトリックスのCuの汚染を最小限にするためである。Mgの濃度を0.01〜0.5mass%に限定しているのは、0.01mass%未満では、十分な添加効果が得られないためであり、0.5mass%を超えると、加工効果が著しく超極細導体を伸線する場合に中間で熱処理を入れないと加工できなくなるためである。
In order to achieve the above object, the present invention provides an ultra-fine copper alloy wire having a wire diameter of 0.08 mm or less, high purity Cu having a total of inevitable impurities of 1 mass ppm or less, and Ag having a purity of 99.99 mass% or more. Provided is an ultrafine copper alloy wire comprising a copper alloy wire added with 0.01 to 0.5 mass% of Mg having a purity of 1.0 to 5.0 mass% and a purity of 99.9 mass% or more.
In addition to Ag, Mg having a purity of 99.9 mass% or more may be added in an amount of 0.01 to 0.5 mass%. The reason why Mg is added is that, because Ag is expensive, the Ag concentration is reduced by replacing it with an additive element Mg that does not significantly lower the conductivity. The reason why the purity of Mg is limited to 99.9 mass% or more is to minimize contamination of the matrix with Cu. The reason why the Mg concentration is limited to 0.01 to 0.5 mass% is that a sufficient addition effect cannot be obtained if the concentration is less than 0.01 mass%. This is because, when a very fine conductor is remarkably drawn, it cannot be processed unless heat treatment is performed in the middle.

本発明は、上記目的を達成するため、0.08mm以下の線径を有する超極細銅合金線において、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%、および純度99.99mass%以上のInを0.01〜0.3mass%添加した銅合金線によって構成されることを特徴とする超極細銅合金線を提供する。
Agの他に純度99.99mass%以上のInを0.01〜0.3mass%添加してもよい。Inを添加したのは、Agは高価であるため、導電率をあまり低下させない添加元素Inで置きかえることによりAg濃度を低減させるためである。Inの純度を99.99mass%以上に限定したのは、マトリックスのCuの汚染を最小限にするためである。Inの濃度を0.01〜0.3mass%に限定したのは、0.01mass%未満では、十分な添加効果が得られないためであり、0.3mass%を超えると、加工効果が著しく超極細導体を伸線する場合に中間で熱処理を入れないと加工できなくなるためである。
In order to achieve the above object, the present invention provides an ultra-fine copper alloy wire having a wire diameter of 0.08 mm or less, high purity Cu having a total of inevitable impurities of 1 mass ppm or less, and Ag having a purity of 99.99 mass% or more. Provided is an ultrafine copper alloy wire comprising a copper alloy wire added with 0.01 to 0.3 mass% of In having a purity of 1.0 to 5.0 mass% and a purity of 99.99 mass% or higher.
In addition to Ag, 0.01 to 0.3 mass% of In having a purity of 99.99 mass% or more may be added. The reason why In is added is that Ag is expensive, and thus the Ag concentration is reduced by replacing it with an additive element In that does not lower the electrical conductivity so much. The reason why the purity of In is limited to 99.99 mass% or more is to minimize contamination of the matrix with Cu. The reason why the concentration of In is limited to 0.01 to 0.3 mass% is that a sufficient addition effect cannot be obtained if the concentration is less than 0.01 mass%. This is because when an ultrafine conductor is drawn, it cannot be processed unless heat treatment is performed in the middle.

前記銅合金線は、Snめっき、Agめっき、Niめっき、SnPbはんだめっき、Sn−Agめっき、Sn−Cuめっき、Sn−Ag−Cuめっき、あるいはSn−Ag−Cu−Biめっきが施されたものでもよい。これにより、合金線が機器電線として使用される場合、耐食性、端末接続性が良好となる。   The copper alloy wire is subjected to Sn plating, Ag plating, Ni plating, SnPb solder plating, Sn-Ag plating, Sn-Cu plating, Sn-Ag-Cu plating, or Sn-Ag-Cu-Bi plating But you can. Thereby, when an alloy wire is used as an apparatus electric wire, corrosion resistance and terminal connectivity become favorable.

本発明は、上記目的を達成するため、0.08mm以下の線径を有する複数の銅合金線を撚り合わせた銅合金撚線導体において、前記銅合金線は、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%添加したことを特徴とする銅合金撚線導体を提供する。
複数の銅合金線を撚り合わせることにより、導体の外径が同じでも曲げひずみを小さくすることができるため、繰り返し屈曲を受ける用途に使用された場合の寿命が長くなる。
In order to achieve the above object, the present invention provides a copper alloy stranded wire conductor obtained by twisting together a plurality of copper alloy wires having a wire diameter of 0.08 mm or less. The copper alloy wire has a total of inevitable impurities of 1 massppm or less. Provided is a copper alloy stranded conductor characterized by adding 1.0 to 5.0 mass% of Ag having a purity of 99.99 mass% or more to the high purity Cu.
By twisting together a plurality of copper alloy wires, the bending strain can be reduced even if the outer diameter of the conductor is the same, so that the life when used in applications that undergo repeated bending is prolonged.

本発明は、上記目的を達成するため、0.08mm以下の線径を有する複数の銅合金線を撚り合わせた銅合金撚線導体において、前記銅合金線は、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%、および純度99.9mass%以上のMgを0.01〜0.5mass%添加したことを特徴とする銅合金撚線導体を提供する。   In order to achieve the above object, the present invention provides a copper alloy stranded wire conductor obtained by twisting together a plurality of copper alloy wires having a wire diameter of 0.08 mm or less. The copper alloy wire has a total of inevitable impurities of 1 massppm or less. A copper characterized by adding 1.0 to 5.0 mass% of Ag with a purity of 99.99 mass% or more and 0.01 to 0.5 mass% of Mg with a purity of 99.9 mass% or more to high purity Cu of An alloy stranded conductor is provided.

本発明は、上記目的を達成するため、0.08mm以下の線径を有する複数の銅合金線を撚り合わせた銅合金撚線導体において、前記銅合金線は、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%、および純度99.99mass%以上のInを0.01〜0.3mass%添加したことを特徴とする銅合金撚線導体を提供してもよい。   In order to achieve the above object, the present invention provides a copper alloy stranded wire conductor obtained by twisting together a plurality of copper alloy wires having a wire diameter of 0.08 mm or less. The copper alloy wire has a total of inevitable impurities of 1 massppm or less. A copper characterized by adding 1.0 to 5.0 mass% of Ag having a purity of 99.99 mass% or more and 0.01 to 0.3 mass% of In having a purity of 99.99 mass% or more to high-purity Cu. An alloy stranded conductor may be provided.

本発明は、上記目的を達成するため、0.08mm以下の線径を有する銅合金線を中心導体あるいは外層導体に用いた極細同軸ケーブルにおいて、前記銅合金線は、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%添加したことを特徴とする極細同軸ケーブルを提供する。   In order to achieve the above object, the present invention provides an ultrafine coaxial cable using a copper alloy wire having a wire diameter of 0.08 mm or less as a central conductor or an outer layer conductor, wherein the copper alloy wire has a total mass of inevitable impurities of 1 massppm. Provided is an ultrafine coaxial cable characterized in that 1.0 to 5.0 mass% of Ag having a purity of 99.99 mass% or more is added to the following high purity Cu.

本発明は、上記目的を達成するため、0.08mm以下の線径を有する銅合金線を中心導体あるいは外層導体に用いた極細同軸ケーブルにおいて、前記銅合金線は、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%、および純度99.9mass%以上のMgを0.01〜0.5mass%添加したことを特徴とする極細同軸ケーブルを提供する。   In order to achieve the above object, the present invention provides an ultrafine coaxial cable using a copper alloy wire having a wire diameter of 0.08 mm or less as a central conductor or an outer layer conductor, wherein the copper alloy wire has a total mass of inevitable impurities of 1 massppm. The following high-purity Cu is characterized by adding 1.0 to 5.0 mass% of Ag having a purity of 99.99 mass% or more and 0.01 to 0.5 mass% of Mg having a purity of 99.9 mass% or more. Provide ultra-fine coaxial cable.

本発明は、上記目的を達成するため、0.08mm以下の線径を有する銅合金線を中心導体あるいは外層導体に用いた極細同軸ケーブルにおいて、前記銅合金線は、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%、および純度99.99mass%以上のInを0.01〜0.3mass%添加したことを特徴とする極細同軸ケーブルを提供する。   In order to achieve the above object, the present invention provides an ultrafine coaxial cable using a copper alloy wire having a wire diameter of 0.08 mm or less as a central conductor or an outer layer conductor, wherein the copper alloy wire has a total mass of inevitable impurities of 1 massppm. The following high-purity Cu is characterized in that Ag having a purity of 99.99 mass% or more is added in an amount of 1.0 to 5.0 mass%, and In having a purity of 99.99 mass% or more is added in an amount of 0.01 to 0.3 mass%. Provide ultra-fine coaxial cable.

本発明は、上記目的を達成するため、不可避不純物の総和が1 massppm以下の高純度のCuを真空中に設置された炭素製のルツボの中で溶解し、溶解した前記Cuの雰囲気をアルゴンガス雰囲気に置換して前記Cuに純度99.99mass%以上のAgを1.0〜5.0mass%添加し、前記Agが添加された前記Cuを炭素製の鋳型を用いて鋳造して荒引線を形成し、前記荒引線を直径0.08mm以下に伸線することを特徴とする超極細銅合金線の製造方法を提供する。
炭素製のルツボ、および炭素製の鋳型に限定した理由は、溶解、鋳造時に混入する異物の大半はルツボや鋳型に使用されるセラミックスやセメントの成分であるSiC、SiO2、ZrO2などが剥離し溶湯中に混入したものだからである。
In order to achieve the above object, the present invention dissolves high purity Cu having a total of inevitable impurities of 1 mass ppm or less in a carbon crucible installed in a vacuum, and the atmosphere of the dissolved Cu is argon gas. Substitute the atmosphere and add 1.0 to 5.0 mass% of Ag with a purity of 99.99 mass% or more to the Cu, and cast the Cu to which the Ag has been added using a carbon mold. A method for producing a super extra fine copper alloy wire is provided, wherein the rough drawn wire is drawn to a diameter of 0.08 mm or less.
The reason for limiting to carbon crucibles and carbon molds is that most of the foreign substances mixed during melting and casting are peeled off from the ceramics and cement components used in the crucibles and molds, such as SiC, SiO 2 and ZrO 2. This is because it is mixed in the molten metal.

本発明は、上記目的を達成するため、不可避不純物の総和が1 massppm以下の高純度のCuを真空中に設置された炭素製のルツボの中で溶解し、溶解した前記Cuの雰囲気をアルゴンガス雰囲気に置換して前記Cuに純度99.99mass%以上のAgを1.0〜5.0mass%、および純度99.9mass%以上のMgを0.01〜0.5mass%添加し、前記Agおよび前記Mgが添加された前記Cuを炭素製の鋳型を用いて鋳造して荒引線を形成し、前記荒引線を直径0.08mm以下に伸線することを特徴とする超極細銅合金線の製方法を提供する。   In order to achieve the above object, the present invention dissolves high purity Cu having a total of inevitable impurities of 1 mass ppm or less in a carbon crucible installed in a vacuum, and the atmosphere of the dissolved Cu is argon gas. Substituting the atmosphere with 1.0 to 5.0 mass% of Ag having a purity of 99.99 mass% or more and 0.01 to 0.5 mass% of Mg having a purity of 99.9 mass% or more to the Cu, and adding the Ag and The Cu to which the Mg is added is cast using a carbon mold to form a rough drawn wire, and the rough drawn wire is drawn to a diameter of 0.08 mm or less. Provide a method.

本発明は、上記目的を達成するため、不可避不純物の総和が1 massppm以下の高純度のCuを真空中に設置された炭素製のルツボの中で溶解し、溶解した前記Cuの雰囲気をアルゴンガス雰囲気に置換して前記Cuに純度99.99mass%以上のAgを1.0〜5.0mass%、および純度99.99mass%以上のInを0.01〜0.3mass%添加し、前記Agおよび前記Inが添加された前記Cuを炭素製の鋳型を用いて鋳造して荒引線を形成し、前記荒引線を直径0.08mm以下に伸線することを特徴とする超極細銅合金線の製造方法を提供する。   In order to achieve the above object, the present invention dissolves high purity Cu having a total of inevitable impurities of 1 mass ppm or less in a carbon crucible installed in a vacuum, and the atmosphere of the dissolved Cu is argon gas. Substituting the atmosphere with 1.0 to 5.0 mass% of Ag having a purity of 99.99 mass% or more and 0.01 to 0.3 mass% of In having a purity of 99.99 mass% or more are added to the Cu, and the Ag and Casting of the Cu to which the In is added using a carbon mold to form a rough drawn wire, and drawing the rough drawn wire to a diameter of 0.08 mm or less. Provide a method.

以上説明した通り、本発明によれば、母材中の断線の原因となる異物を最小限に抑えているので、伸線性および屈曲性に優れる。また、Agを添加元素としているので、引張強度に優れる。   As described above, according to the present invention, since the foreign matter that causes the disconnection in the base material is minimized, the wire drawing property and the flexibility are excellent. Moreover, since Ag is an additive element, the tensile strength is excellent.

図1は、本発明の第1の実施の形態に係る極細同軸ケーブルを示す。この極細同軸ケーブルは、撚り合わされた複数の極細銅合金線からなる導体サイズ44AWG(直径0.02mmの7本撚り)の中心導体1と、この中心導体1の周囲に形成され、中心導体1を絶縁するための絶縁体2と、絶縁体2の周囲に形成され、直径0.02mmの極細銅合金線からなるノイズを除去するための横巻きシールド線3と、横巻きシールド線3の周囲に形成されたジャケット4とを備える。絶縁体2は、例えば、充実フッ素樹脂、具体的にはFEP,PFA,ETFE等を用いることができ、外径は直径0.115mm、肉厚は0.06mmである。ジャケット4は、例えばPETからなり、外径は直径0.215mm、肉厚は0.02mmである。   FIG. 1 shows a micro coaxial cable according to a first embodiment of the present invention. This ultrafine coaxial cable is formed around a central conductor 1 having a conductor size 44AWG (seven strands having a diameter of 0.02 mm) made of a plurality of twisted ultrafine copper alloy wires, and the central conductor 1 An insulator 2 for insulation, a laterally wound shield wire 3 for removing noise made of an ultrafine copper alloy wire having a diameter of 0.02 mm, and a laterally wound shield wire 3 are formed around the insulator 2. The formed jacket 4 is provided. For the insulator 2, for example, a solid fluororesin, specifically FEP, PFA, ETFE or the like can be used, and the outer diameter is 0.115 mm and the wall thickness is 0.06 mm. The jacket 4 is made of PET, for example, and has an outer diameter of 0.215 mm and a wall thickness of 0.02 mm.

中心導体1および横巻きシールド線3に用いられる極細銅合金線の材料としては、Agめっきが施された不可避不純物の総和が1 massppm以下の高純度Cuに純度99.99mass%以上のAg,Mg,In等の元素を添加したもの、例えば、Cu−1.0〜5.0mass%Ag、Cu−1.0〜5.0mass%Ag−0.01〜0.05mass%Mg、あるいはCu−0.01〜0.3mass%In等を用いることができる。   As the material of the ultrafine copper alloy wire used for the central conductor 1 and the laterally wound shield wire 3, Ag, Mg having a purity of 99.99 mass% or more is added to high-purity Cu in which the total of inevitable impurities subjected to Ag plating is 1 massppm or less. , In and the like, for example, Cu-1.0 to 5.0 mass% Ag, Cu-1.0 to 5.0 mass% Ag-0.01 to 0.05 mass% Mg, or Cu-0 0.01 to 0.3 mass% In or the like can be used.

この極細銅合金線合金線は、例えば、次のようにして製造される。ここでは、Cu−1.0〜5.0mass%Agからなる合金線について説明する。まず、不可避不純物の総和が1 massppm以下の高純度Cuについて酸洗いを行い、表面に付着した異物を除去した後、炭素製のルツボにセットし、小型の連続鋳造設備で真空溶解する。Cuが完全に溶解した後、チャンバー内をアルゴンガスで置換し、純度99.99mass%以上のAgを1.0〜5.0mass%添加する。Agが完全に溶解した後10分間保持し、炭素製の鋳型を用いて連続鋳造を行って直径0.08mmの荒引線を製造する。その荒引線を直径0.02mmまで伸線する。このようにして超極細銅合金線を製造する。   This ultrafine copper alloy wire alloy wire is manufactured as follows, for example. Here, an alloy wire made of Cu-1.0 to 5.0 mass% Ag will be described. First, pickling is performed on high-purity Cu having a total sum of unavoidable impurities of 1 mass ppm or less to remove foreign substances adhering to the surface, and then set in a carbon crucible and vacuum-dissolved in a small continuous casting facility. After Cu is completely dissolved, the inside of the chamber is replaced with argon gas, and Ag having a purity of 99.99 mass% or more is added in an amount of 1.0 to 5.0 mass%. After Ag is completely dissolved, it is held for 10 minutes, and continuous casting is performed using a carbon mold to produce a rough drawn wire having a diameter of 0.08 mm. The rough drawn wire is drawn to a diameter of 0.02 mm. In this way, a super fine copper alloy wire is manufactured.

上述した第1の実施の形態によれば、母材中に断線の原因となる異物が最小限に抑えられた超極細銅合金線により中心導体1および横巻きシールド線3を構成しているので、伸線工程で断線が起こりにくいため、生産性の向上が図れ、屈曲性の優れた極細同軸ケーブルを提供することができる。   According to the first embodiment described above, the central conductor 1 and the laterally wound shield wire 3 are constituted by the ultra-fine copper alloy wire in which the foreign matter that causes disconnection is minimized in the base material. Since disconnection hardly occurs in the wire drawing process, productivity can be improved and an ultrafine coaxial cable excellent in flexibility can be provided.

図2は、本発明の第2の実施の形態に係る極細同軸ケーブルを示す。この極細同軸ケーブルは、第1の実施の形態において、中心導体1に第1の実施の形態と同様に製造された直径0.06mmの超極細銅合金からなる単線導体を用いたものであり、他は第1の実施の形態と同様に構成されている。この第2の実施の形態によれば、第1の実施の形態と比較して屈曲性に劣るが、第1の実施の形態と同様に伸線工程で断線が起こりにくいため、生産性の向上が図れる。   FIG. 2 shows a micro coaxial cable according to the second embodiment of the present invention. In the first embodiment, this ultrafine coaxial cable uses a single-wire conductor made of a superfine copper alloy having a diameter of 0.06 mm manufactured in the same manner as in the first embodiment for the center conductor 1. Others are configured in the same manner as in the first embodiment. According to the second embodiment, although it is inferior in flexibility as compared with the first embodiment, the disconnection hardly occurs in the wire drawing process as in the first embodiment, so that productivity is improved. Can be planned.

<実施例1,2>
本発明の実施例1,2の超極細銅合金線の製造方法について説明する。母材の高純度銅(Cu:99.9999mass%)について酸洗いを行い、表面に付着した異物を除去した後、炭素製のルツボにセットし、小型の連続鋳造設備で真空溶解した。Cuが完全に溶解した後、チャンバー内をアルゴンガスで置換し、Ag(純度99.99mass%)を2mass%(実施例1)、又は5mass%(実施例2)添加した。Agが完全に溶解した後10分間保持し、炭素製の鋳型を用いて連続鋳造を行って直径8.0mmの荒引線を製造した。その荒引線を直径0.02mmまで伸線した。
<Examples 1 and 2>
The manufacturing method of the extra fine copper alloy wire of Examples 1 and 2 of the present invention will be described. High purity copper (Cu: 99.9999 mass%) as a base material was pickled to remove foreign substances adhering to the surface, set in a carbon crucible, and vacuum-dissolved in a small continuous casting facility. After Cu was completely dissolved, the inside of the chamber was replaced with argon gas, and Ag (purity 99.99 mass%) was added 2 mass% (Example 1) or 5 mass% (Example 2). After Ag was completely dissolved, it was held for 10 minutes, and continuous casting was performed using a carbon mold to produce a rough drawn wire having a diameter of 8.0 mm. The rough drawn wire was drawn to a diameter of 0.02 mm.

<実施例3〜6>
本発明の実施例3〜6の超極細銅合金線の製造方法について説明する。母材の高純度銅(Cu:99.9999mass%)について酸洗いを行い、表面に付着した異物を除去した後、炭素製のルツボにセットし、小型の連続鋳造設備で真空溶解した。Cuが完全に溶解した後、チャンバー内をアルゴンガスで置換し、Ag(純度99.99mass%)を2mass%(実施例3,4)、又は5mass%(実施例5,6)添加した。Agが完全に溶解した後10分間保持し、Mg(純度99.9mass%)を0.05mass%(実施例3,5)、又は0.2mass%(実施例4,6)添加し、さらに10分間保持した。その後、炭素製の鋳型を用いて連続鋳造を行って直径8.0mmの荒引線を製造した。その荒引線を直径0.02mまで伸線した。
<Examples 3 to 6>
The manufacturing method of the super extra fine copper alloy wire of Examples 3-6 of the present invention is explained. High purity copper (Cu: 99.9999 mass%) as a base material was pickled to remove foreign substances adhering to the surface, set in a carbon crucible, and vacuum-dissolved in a small continuous casting facility. After Cu was completely dissolved, the inside of the chamber was replaced with argon gas, and 2 mass% (Examples 3 and 4) or 5 mass% (Examples 5 and 6) of Ag (purity 99.99 mass%) was added. After Ag is completely dissolved, it is kept for 10 minutes, and 0.05 mass% (Examples 3 and 5) or 0.2 mass% (Examples 4 and 6) of Mg (purity 99.9 mass%) is added. Hold for a minute. Thereafter, continuous casting was performed using a carbon mold to produce a rough drawn wire having a diameter of 8.0 mm. The rough drawn wire was drawn to a diameter of 0.02 m.

<実施例7〜10>
本発明の実施例7〜10の超極細銅合金線の製造方法について説明する。母材の高純度銅(Cu:99.9999mass%)について酸洗いを行い、表面に付着した異物を除去した後、炭素製のルツボにセットし、小型の連続鋳造設備で真空溶解した。Cuが完全に溶解した後、チャンバー内をアルゴンガスで置換し、Ag(純度99.99mass%)を2mass%(実施例7,8)、又は5mass%(実施例9,10)添加した。Agが完全に溶解した後10分間保持し、In(純度99.99mass%)を0.01mass%(実施例7,9)、又は0.1mass%(実施例8,10)添加し、さらに10分間保持した。その後、炭素製の鋳型を用いて連続鋳造を行って直径8.0mmの荒引線を製造した。その荒引線を直径0.02mmまで伸線した。
<Examples 7 to 10>
The manufacturing method of the super extra-fine copper alloy wire of Examples 7-10 of this invention is demonstrated. High purity copper (Cu: 99.9999 mass%) as a base material was pickled to remove foreign substances adhering to the surface, set in a carbon crucible, and vacuum-dissolved in a small continuous casting facility. After Cu was completely dissolved, the inside of the chamber was replaced with argon gas, and 2 mass% (Examples 7 and 8) or 5 mass% (Examples 9 and 10) of Ag (purity 99.99 mass%) was added. After Ag was completely dissolved, it was kept for 10 minutes, and In (purity 99.99 mass%) was added 0.01 mass% (Examples 7 and 9) or 0.1 mass% (Examples 8 and 10). Hold for a minute. Thereafter, continuous casting was performed using a carbon mold to produce a rough drawn wire having a diameter of 8.0 mm. The rough drawn wire was drawn to a diameter of 0.02 mm.

<比較例1>
比較例1の超極細銅合金線の製造方法について説明する。無酸素銅(Cu:99.99mass%)をSiC等の材質で作られているルツボ中で大気溶解した後、Sn(純度99.9mass%)を0.3mass%添加して10分間保持した後、連続鋳造・圧延を行って直径11.0mmの荒引線を製造した。その荒引線を直径0.02mmまで伸線した。
<Comparative Example 1>
A method for manufacturing the ultrafine copper alloy wire of Comparative Example 1 will be described. After oxygen-free copper (Cu: 99.99 mass%) is dissolved in the atmosphere in a crucible made of SiC or the like, Sn (purity 99.9 mass%) is added at 0.3 mass% and held for 10 minutes. Then, continuous casting and rolling were performed to produce a rough drawn wire having a diameter of 11.0 mm. The rough drawn wire was drawn to a diameter of 0.02 mm.

<比較例2,3>
比較例2,3の超極細銅合金線の製造方法について説明する。無酸素銅(Cu:99.99mass%)をSiC等の材質で作られているルツボ中で大気溶解した後、Ag(純度99.99mass%)を2mass%(比較例2)、又は5mass%(比較例3)添加して10分間保持した後、連続鋳造圧延を行って直径11.0mmの荒引線を製造した。その荒引線を直径0.02mmまで伸線した。
<Comparative Examples 2 and 3>
A method for manufacturing the ultrafine copper alloy wire of Comparative Examples 2 and 3 will be described. After oxygen-free copper (Cu: 99.99 mass%) is dissolved in the atmosphere in a crucible made of a material such as SiC, Ag (purity 99.99 mass%) is 2 mass% (Comparative Example 2), or 5 mass% ( Comparative Example 3) After adding and holding for 10 minutes, continuous cast rolling was performed to produce a rough drawn wire having a diameter of 11.0 mm. The rough drawn wire was drawn to a diameter of 0.02 mm.

<比較例4〜7>
比較例4〜7の超極細銅合金線の製造方法について説明する。無酸素銅(Cu:99.99mass%)をSiC等の材質で作られているルツボ中で大気溶解した後、Ag(純度99.99mass%)を2mass%(比較例4,5)、又は5mass%(比較例6,7)添加して10分間保持した後、Mg(純度99.9mass%)を0.05mass%(比較例4,6)、又は0.2mass%(比較例5,7)添加し、さらに10分間保持した。その後、連続鋳造・圧延を行って荒引き線を製造した。その荒引き線を伸線した際に炉材の混入が原因で断線が多発したため検討を中止した。
<Comparative Examples 4-7>
The manufacturing method of the ultra fine copper alloy wire of Comparative Examples 4-7 is demonstrated. Oxygen-free copper (Cu: 99.99 mass%) is dissolved in the atmosphere in a crucible made of a material such as SiC, and then Ag (purity 99.99 mass%) is 2 mass% (Comparative Examples 4 and 5) or 5 mass. % (Comparative Examples 6 and 7) and maintained for 10 minutes, Mg (purity 99.9 mass%) is 0.05 mass% (Comparative Examples 4 and 6), or 0.2 mass% (Comparative Examples 5 and 7). Added and held for an additional 10 minutes. Thereafter, continuous drawing and rolling were performed to produce a rough drawn wire. When the rough wire was drawn, the investigation was stopped because of frequent disconnections due to the mixing of furnace materials.

<比較例8〜11>
比較例8〜11の超極細銅合金線の製造方法について説明する。無酸素銅(Cu:99.99mass%)をSiC等の材質で作られているルツボ中で大気溶解した後、Ag(純度99,99mass%)を2mass%(比較例8,9)、又は5mass%(比較例10,11)添加して10分間保持した後、In(純度99.99mass%)を0.01mass%(比較例8,10)、又は0.1mass%(比較例9,11)添加し、さらに10分間保持した。その後、連続鋳造・圧延を行った際に荒引き線の表面に深い傷が入ったため、超極細線の母材として不適切と判断し検討を中止した。
<Comparative Examples 8-11>
The manufacturing method of the super extra fine copper alloy wire of Comparative Examples 8-11 is demonstrated. Oxygen-free copper (Cu: 99.99 mass%) is dissolved in the atmosphere in a crucible made of a material such as SiC, and then Ag (purity 99, 99 mass%) is 2 mass% (Comparative Examples 8 and 9) or 5 mass. % (Comparative Examples 10 and 11) and held for 10 minutes, In (purity 99.99 mass%) is 0.01 mass% (Comparative Examples 8 and 10), or 0.1 mass% (Comparative Examples 9 and 11). Added and held for an additional 10 minutes. Later, when continuous casting / rolling was performed, the surface of the roughing wire was deeply damaged, so it was determined that it was inappropriate as a base material for ultrafine wire, and the study was stopped.

上記超極細銅合金線について、直径0.02mmに伸線したときの引張強度(MPa)、および導電率(%IACS)、20kg伸線したときの1断線あたりの伸線量(kg/break)を測定した。   For the above ultra-fine copper alloy wire, the tensile strength (MPa) when drawn to a diameter of 0.02 mm, the electrical conductivity (% IACS), and the drawing dose (kg / break) per break when drawn by 20 kg It was measured.

表1は、その測定結果を示す。

Figure 2007077505
また、上記実施例1〜4および比較例5の極細銅合金線を用いて図1および図2に示す構造のサンプルを製作し、各サンプルに100gfの荷重をかけ、曲げr=1mm、速度30cycle/minの条件で左右90度の屈曲試験を行った。 Table 1 shows the measurement results.
Figure 2007077505
Also, samples of the structure shown in FIGS. 1 and 2 were manufactured using the ultrafine copper alloy wires of Examples 1 to 4 and Comparative Example 5, and a load of 100 gf was applied to each sample, bending r = 1 mm, speed 30 cycle. A bending test of 90 degrees on the left and right was performed under the condition of / min.

表2は、その試験結果を示す。

Figure 2007077505
表1から明らかなように、本実施例によれば、伸線量が比較例の約2倍に向上しているので、直径0.02mmの超極細銅合金線の生産性が従来の約2倍に向上した。また、従来のCu−0.3mass%Snに比べて引張強度で20%以上向上しているので、延性破壊による断線が起こりにくく、導電率も従来と同等以上の材料が得られた。
また、表2から明らかなように、本実施例の超極細銅合金線を用いた極細同軸ケーブルの屈曲寿命は、従来のCu−0.3mass%Snを用いたものに比べて50%以上向上することが確認された。 Table 2 shows the test results.
Figure 2007077505
As is apparent from Table 1, according to the present example, the stretched dose is improved about twice that of the comparative example, so that the productivity of the ultrafine copper alloy wire having a diameter of 0.02 mm is about twice that of the conventional case. Improved. In addition, since the tensile strength is improved by 20% or more compared to the conventional Cu-0.3 mass% Sn, disconnection due to ductile fracture hardly occurs, and a material having the same or higher conductivity as that of the conventional Cu-obtained material was obtained.
Further, as is apparent from Table 2, the bending life of the ultra-fine coaxial cable using the ultra-fine copper alloy wire of this example is improved by 50% or more compared to the conventional one using Cu-0.3 mass% Sn. Confirmed to do.

なお、導体として、上記実施例の超極細銅合金線からなる導体について熱処理を行い、伸びを5%以上に調整したものを用いてもよい。
また、導体として、高純度Cu(99.9999mass%)にCr,Fe,Nb等を添加した繊維強化型金属にMg,Inを微量添加し、超極細サイズまで伸線した導体を用いてもよい。
In addition, as a conductor, you may use what heat-processed about the conductor which consists of the ultra-fine copper alloy wire of the said Example, and adjusted elongation to 5% or more.
Further, as a conductor, a conductor obtained by adding a trace amount of Mg and In to a fiber reinforced metal obtained by adding Cr, Fe, Nb or the like to high-purity Cu (99.9999 mass%) and drawing to an ultrafine size may be used. .

本発明の第1の実施の形態に係る極細同軸ケーブルの断面図である。It is sectional drawing of the micro coaxial cable which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る極細同軸ケーブルの断面図である。It is sectional drawing of the micro coaxial cable which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1 中心導体
2 絶縁体
3 横巻きシールド線
4 ジャケット
1 Center conductor 2 Insulator 3 Horizontally wound shield wire 4 Jacket

Claims (4)

0.08mm以下の線径を有するCu−Ag合金線であって、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%添加した銅合金によって構成されることを特徴とするCu−Ag合金線。   A Cu-Ag alloy wire having a wire diameter of 0.08 mm or less, and 1.0 to 5.0 mass% of Ag having a purity of 99.99 mass% or more is added to high-purity Cu having a total of inevitable impurities of 1 massppm or less A Cu-Ag alloy wire, characterized by being made of a copper alloy. 上記Cu−Ag合金線は、その引張強度が1030MPa〜1290MPaであり、その導電率が64%IACS〜81%IACSであることを特徴とする請求項1に記載のCu−Ag合金線。   The Cu-Ag alloy wire according to claim 1, wherein the Cu-Ag alloy wire has a tensile strength of 1030 MPa to 1290 MPa and an electrical conductivity of 64% IACS to 81% IACS. 上記Cu−Ag合金線は、20kg伸線したときの1断線あたりの伸線量(kg/break)が2.00〜2.50であることを特徴とする請求項1乃至2に記載のCu−Ag合金線。   The Cu-Ag alloy wire according to claim 1 or 2, wherein a drawing dose per kg (kg / break) when the wire is drawn by 20 kg is 2.00 to 2.50. Ag alloy wire. 単線からなる中心導体と、該中心導体の周囲を覆っている絶縁体と、該絶縁体の周囲を覆っている外部導体とを備える同軸ケーブルの、該中心導体および該外部導体に使用する同軸ケーブル用Cu−Ag合金線であって、
該同軸ケーブル用Cu−Ag合金線は、不可避不純物の総和が1 massppm以下の高純度Cuに、純度99.99mass%以上のAgを1.0〜5.0mass%添加した銅合金によって構成されるものであり、
該同軸ケーブルに100gfの荷重をかけ、曲げr=1mm、速度30cycle/minの条件で左右90度の屈曲試験を行った場合の屈曲寿命が380回〜440回であることを特徴とする同軸ケーブル用Cu−Ag合金線。
A coaxial cable comprising a central conductor made of a single wire, an insulator covering the periphery of the center conductor, and an outer conductor covering the periphery of the insulator, the coaxial cable used for the center conductor and the outer conductor Cu-Ag alloy wire for
The Cu-Ag alloy wire for coaxial cable is made of a copper alloy in which 1.0 to 5.0 mass% of Ag having a purity of 99.99 mass% or more is added to high purity Cu having a total of inevitable impurities of 1 massppm or less. Is,
A coaxial cable having a bending life of 380 to 440 times when a load of 100 gf is applied to the coaxial cable, and a bending test of 90 degrees to the left and right is performed under conditions of bending r = 1 mm and speed 30 cycles / min. Cu-Ag alloy wire for use.
JP2006285729A 2006-10-20 2006-10-20 Cu-Ag alloy wire for coaxial cable Expired - Fee Related JP4501922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006285729A JP4501922B2 (en) 2006-10-20 2006-10-20 Cu-Ag alloy wire for coaxial cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006285729A JP4501922B2 (en) 2006-10-20 2006-10-20 Cu-Ag alloy wire for coaxial cable

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000312990A Division JP3948203B2 (en) 2000-10-13 2000-10-13 Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire

Publications (2)

Publication Number Publication Date
JP2007077505A true JP2007077505A (en) 2007-03-29
JP4501922B2 JP4501922B2 (en) 2010-07-14

Family

ID=37938101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006285729A Expired - Fee Related JP4501922B2 (en) 2006-10-20 2006-10-20 Cu-Ag alloy wire for coaxial cable

Country Status (1)

Country Link
JP (1) JP4501922B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061775A (en) * 2017-09-25 2019-04-18 住友電気工業株式会社 Coaxial wire and multicore cable
CN113789451A (en) * 2021-09-13 2021-12-14 江西云泰铜业有限公司 Preparation method of silver-copper alloy wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159338A (en) * 1987-12-15 1989-06-22 Fujikura Ltd Copper wire rod for extra fine wire
JPH02263939A (en) * 1989-04-03 1990-10-26 Nippon Mining Co Ltd High conductivity and high heat-resistant copper alloy and its manufacture
JPH11293365A (en) * 1998-04-09 1999-10-26 Furukawa Electric Co Ltd:The Super-fine conductor for winding, and its manufacture
JP2000169918A (en) * 1998-12-04 2000-06-20 Fujikura Ltd Extra-thin wire and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01159338A (en) * 1987-12-15 1989-06-22 Fujikura Ltd Copper wire rod for extra fine wire
JPH02263939A (en) * 1989-04-03 1990-10-26 Nippon Mining Co Ltd High conductivity and high heat-resistant copper alloy and its manufacture
JPH11293365A (en) * 1998-04-09 1999-10-26 Furukawa Electric Co Ltd:The Super-fine conductor for winding, and its manufacture
JP2000169918A (en) * 1998-12-04 2000-06-20 Fujikura Ltd Extra-thin wire and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019061775A (en) * 2017-09-25 2019-04-18 住友電気工業株式会社 Coaxial wire and multicore cable
CN113789451A (en) * 2021-09-13 2021-12-14 江西云泰铜业有限公司 Preparation method of silver-copper alloy wire

Also Published As

Publication number Publication date
JP4501922B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP3948203B2 (en) Copper alloy wire, copper alloy stranded wire conductor, coaxial cable, and method for producing copper alloy wire
JP3941304B2 (en) Super fine copper alloy wire, method for producing the same, and electric wire using the same
JP4311277B2 (en) Manufacturing method of extra fine copper alloy wire
JP5713230B2 (en) Cu-Ag alloy wire and method for producing Cu-Ag alloy wire
US6751855B2 (en) Process for forming an ultrafine copper alloy wire
JP2007169686A (en) Extra-fine copper alloy wire, extra-fine copper alloy stranded wire, and their manufacturing method
JP2012193417A (en) Soft dilute-copper alloy wire, soft dilute-copper alloy twisted wire and insulated wire, coaxial cable and composite cable using the same
JP5344151B2 (en) Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
KR20170041164A (en) Copper alloy wire, stranded copper alloy wire, coated electric wire, and terminal-equipped electric wire
JP2011146352A (en) Cu-Ag ALLOY WIRE
JP5652741B2 (en) Copper wire and method for producing the same
JP2009249660A (en) Drawn wire material, stranded wire, coaxial cable and cast material for drawn wire material
JPH11293365A (en) Super-fine conductor for winding, and its manufacture
JP4501922B2 (en) Cu-Ag alloy wire for coaxial cable
JP3775244B2 (en) Conductor for bending-resistant cable and method for manufacturing the same
JP5376396B2 (en) Wire conductor for wire harness
JP5344150B2 (en) Method for producing Cu-Ag alloy wire and Cu-Ag alloy wire
JP4973437B2 (en) Copper alloy wire, copper alloy twisted wire, coaxial cable, multi-core cable, and copper alloy wire manufacturing method
CN113299421B (en) Copper alloy wire, plated wire, wire and cable
JP5510879B2 (en) Wire conductor and wire
JP5896185B2 (en) Conductor for electric wire
JP2021123794A (en) Copper alloy wire, plated wire, electric wire, and cable
JPWO2020039710A1 (en) Manufacturing method of coated electric wire, electric wire with terminal, copper alloy wire, copper alloy stranded wire, and copper alloy wire
JP2003073760A (en) Sn-PLATED EXTRA FINE COPPER WIRE, STRAND WIRE USING THE SAME, AND METHOD FOR MANUFACTURING Sn-PLATED EXTRA FINE COPPER WIRE

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

R150 Certificate of patent or registration of utility model

Ref document number: 4501922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees