JP2007077126A - Endogenous bacterium coating lettuce seed, method for producing the same, and method for controlling lettuce big-vein virus disease - Google Patents

Endogenous bacterium coating lettuce seed, method for producing the same, and method for controlling lettuce big-vein virus disease Download PDF

Info

Publication number
JP2007077126A
JP2007077126A JP2005271020A JP2005271020A JP2007077126A JP 2007077126 A JP2007077126 A JP 2007077126A JP 2005271020 A JP2005271020 A JP 2005271020A JP 2005271020 A JP2005271020 A JP 2005271020A JP 2007077126 A JP2007077126 A JP 2007077126A
Authority
JP
Japan
Prior art keywords
lettuce
seeds
antagonistic
endogenous
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005271020A
Other languages
Japanese (ja)
Inventor
Takeshi Kobayashi
剛 小林
Yoshihiro Hashimoto
好弘 橋本
Kenji Takebayashi
謙二 竹林
Kimitaka Aino
公孝 相野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo Prefectural Government
Sakata Seed Corp
Original Assignee
Hyogo Prefectural Government
Sakata Seed Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Prefectural Government, Sakata Seed Corp filed Critical Hyogo Prefectural Government
Priority to JP2005271020A priority Critical patent/JP2007077126A/en
Priority to US11/991,962 priority patent/US20100154299A1/en
Priority to PCT/JP2006/318337 priority patent/WO2007032458A1/en
Priority to EP06810179A priority patent/EP1935245A1/en
Publication of JP2007077126A publication Critical patent/JP2007077126A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antagonistic endogenous bacterium coating lettuce seed which has a high lettuce big-vein virus disease-controlling effect and high storage stability. <P>SOLUTION: A method for producing an antagonistic endogenous bacterium coating lettuce seed is characterized by vacuum-inoculating an endogenous bacterium exhibiting an antagonistic property against Olpidium brassicae holding lettuce big-vein virus into a lettuce seed, drying the antagonistic endogenous bacterium-inoculated lettuce seed under low temperature low moisture conditions without adopting a conventional heating ventilation drying method, or combining both the methods. The survival rate of the antagonistic endogenous bacterium on the lettuce seed coated with the antagonistic endogenous bacterium can rapidly be enhanced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌がコーティングされたレタス種子、その製造方法、及びレタスビッグベイン病害の防除方法に関する。   The present invention relates to a lettuce seed coated with an endogenous bacterium that is antagonistic to the genus Orpidium that retains a lettuce big vein virus, a method for producing the seed, and a method for controlling a lettuce big bain disease.

レタスビッグベイン病は、土壌生息菌類であるオルピディウム属菌(Olpidium brassicae)によって媒介されるウイルス病であり、発病すると葉が網目症状になり、球は小さくなることから商品価値が低下してしまう。また、病徴が激しい場合には結球せず、商品にならない。これまでに兵庫県・香川県・静岡県・千葉県などで発生しており、最も発生規模の大きい兵庫県の場合には、栽培面積の26%まで被害が広がり、今後、更なる被害の拡大が危惧されている。現在のところ有効な登録農薬がない為に、抵抗性品種を用いた栽培、または土壌消毒などによる媒介菌を対象とした防除方法などが行われているが、激発地域ではその効果が十分に発揮されない。また、これらの効果は一時的であり、長期間にわたって防除することは困難である。   Lettuce Big-Bain disease is a viral disease mediated by the soil-inhabiting fungus Olpidium brassicae, and when it develops, the leaves become reticulated and the spheres become smaller, reducing the commercial value. Also, if the symptom is severe, it will not form a ball and will not become a product. It has occurred in Hyogo Prefecture, Kagawa Prefecture, Shizuoka Prefecture, Chiba Prefecture, etc., and in the case of Hyogo Prefecture with the largest occurrence scale, damage spread to 26% of the cultivation area, and further damage will be expanded in the future Is feared. At present, there are no effective registered pesticides. Therefore, cultivation using resistant varieties or control methods targeting vector bacteria such as soil disinfection are being carried out. Not. In addition, these effects are temporary and difficult to control over a long period of time.

したがって、いくつかの技術を組み合わせたレタスビッグベイン病害の総合的防除方法が検討されている。その中の1つとして、拮抗微生物を用いた生物防除技術の研究が進められており、すでに相野らにより土壌病原微生物に対して有効な内生細菌が分離され、防除効果が確認されている(特許文献1、2、3、非特許文献1)。しかしながら、内生細菌を広大な圃場に施用する方法、あるいはレタス育苗苗に施用する方法は、内生細菌を大量に製造する必要があり、製造にコストがかかり、また生産者にとっても新たな資材を施用することは作業的な負担になる。また、多様な土壌環境や栽培条件・育苗培土の種類により内生細菌のレタス根への定着が影響を受ける為に、安定した効果を出す事は難しかった。   Therefore, a comprehensive control method for lettuce big vein disease that combines several techniques has been studied. One of them is research on biocontrol technology using antagonistic microorganisms, and Aino et al. Have already isolated endophytic bacteria effective against soil pathogenic microorganisms and confirmed their control effects ( Patent Documents 1, 2, and 3, Non-Patent Document 1). However, the method of applying endophytic bacteria to a vast field or the method of applying it to lettuce seedlings requires the production of a large amount of endophytic bacteria, which is expensive to produce and is a new material for producers. Applying is a work burden. In addition, the establishment of endogenous bacteria on lettuce roots was affected by various soil environments, cultivation conditions, and seedling cultivation soils, so it was difficult to produce stable effects.

生産者にとって、最も簡単で安価なレタスビッグベイン病害の防除方法は、レタスの種子と内生細菌が一体となった内生細菌コーティング種子を播種することである。使用する内生細菌の量が少なくて済むうえ、内生細菌が生きてさえいれば、他の方法と比較して最も早く内生細菌がレタスの根内に定着することができると考えられる。実験室レベルではレタス種子に内生細菌を付着させて、乾燥しないですぐに播種することを行えば、高い防除効果が得られることが確認されている(非特許文献2)。しかしながら、内生細菌コーティング種子を用いる方法は実用化することは困難であった。なぜなら、実用的なレタスのペレット種子製造は、造粒工程・ペレットの粒径および形状の選別工程・乾燥工程からなるが、乾燥工程では加温した空気を送風することから、加温と乾燥により内生細菌は容易に死滅してしまううえに、ペレット種子製造後から播種までの貯蔵期間中にも内生細菌が死滅しやすいからである。   For producers, the simplest and cheapest method for controlling lettuce big-vein disease is to sow seeds coated with endogenous bacteria in which lettuce seeds and endogenous bacteria are integrated. If the amount of endogenous bacteria to be used is small and the endogenous bacteria are alive, it is considered that the endogenous bacteria can establish in the roots of lettuce the earliest compared to other methods. At the laboratory level, it has been confirmed that a high control effect can be obtained by attaching endogenous bacteria to lettuce seeds and immediately seeding them without drying (Non-patent Document 2). However, it has been difficult to put the method using endophytic bacteria-coated seeds into practical use. Because practical seed production of lettuce pellets consists of a granulation process, a pellet particle size and shape selection process, and a drying process. In the drying process, since heated air is blown, it is heated and dried. This is because the endogenous bacteria are easily killed, and the endobacterium is easily killed during the storage period from the production of the pellet seed to the sowing.

特開平9-308372号公報JP-A-9-308372 特開平8-268826号公報JP-A-8-268826 特開平7-163334号公報JP-A-7-163334 微生物の資材化:研究の最前線、(2000)、編集 鈴井孝仁他、ソフトサイエンス社Microbial materialization: The forefront of research, (2000), edited by Takahito Suzui et al., Soft Science 日本植物病理学会報 第68巻、第2号、p240Journal of the Japanese Society for Plant Pathology Vol.68, No.2, p240

本発明は、レタスビッグベイン病害防除効果が高く保存安定性の高い、拮抗性内生細菌コーティングレタス種子を提供することを目的とする。   An object of the present invention is to provide an antagonistic endogenous bacterial-coated lettuce seed having a high lettuce big vein disease control effect and a high storage stability.

本発明者らは、上記の課題を解決すべく、レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌(本明細書において「拮抗性内生細菌」と称する場合がある)のレタス種子への安定導入方法と保存安定性およびその防除効果について検討を行った。   In order to solve the above-mentioned problems, the present inventors have proposed an endophytic bacterium that exhibits antagonistic properties against the genus Orpidium that retains the lettuce big vein virus (sometimes referred to herein as “antagonizing endophytic bacteria”). The method of stable introduction to lettuce seeds, storage stability, and its control effect were investigated.

その結果、本発明者らは、驚くべきことに、レタス種子のペレット造粒工程の前に拮抗性内生細菌を減圧接種すること、拮抗性内生細菌を接種した種子をペレット造粒工程の後、従来の加温通風乾燥ではなく低温低湿条件下で乾燥させること、またはその両方を組み合わせることにより、拮抗性内生細菌がコーティングされたレタス種子における拮抗性内生細菌の生存率を飛躍的に高めることが可能となることを見出した。また、こうして製造された拮抗性内生細菌コーティングレタス種子は、播種、発芽に対しても問題がなく、作物に対する土壌病害に対して高い防除価を示すことを見出した。上記の本発明者らにより初めて確認された現象は、例えば以下のように説明することができる。減圧接種法により拮抗性内生細菌は種子の表皮の内側まで導入させることができる。種子の表皮の内側は、乾燥した種子表面とは異なり、種子が生存できるだけの水分が保持されていることから、種子の表皮の内側まで導入させた拮抗性内生細菌はその水分を利用して生存することができ、拮抗性内生細菌の生存率が飛躍的に高まるものと推定される。また、拮抗性内生細菌接種後に種子を低温低湿条件で乾燥処理することにより、拮抗性内生細菌が温度又は湿度によりダメージを受けることが少なくなるため、拮抗性内生細菌の生存率が飛躍的に高まる。   As a result, the present inventors surprisingly found that inoculating the antagonistic endogenous bacteria under reduced pressure before the pellet granulation step of the lettuce seed, Later, by drying under low-temperature and low-humidity conditions instead of the conventional warming-air drying, or a combination of both, the survival rate of antagonistic endogenous bacteria in lettuce seeds coated with antagonistic endogenous bacteria has been dramatically improved. It has been found that it is possible to increase it. Moreover, it discovered that the antagonistic endophytic-coated lettuce seed produced in this way had no problem with sowing and germination, and showed high control value with respect to the soil disease with respect to a crop. The phenomenon for the first time confirmed by the present inventors can be explained as follows, for example. Antagonistic endophytic bacteria can be introduced to the inside of the seed epidermis by vacuum inoculation. Unlike the dried seed surface, the inside of the seed epidermis retains enough water for the seeds to survive, so the antagonistic endogenous bacteria introduced to the inside of the seed epidermis make use of that moisture. It is estimated that the survival rate of antagonistic endogenous bacteria can be increased dramatically. In addition, by drying seeds under low-temperature and low-humidity conditions after inoculation with antagonistic endogenous bacteria, the antagonistic endogenous bacteria are less likely to be damaged by temperature or humidity. Increase.

本発明者らは更にまた、こうして製造された拮抗性内生細菌コーティングレタス種子は、低温条件下で貯蔵することにより、長期間安定保存できることを見出した。   Furthermore, the present inventors have found that the antagonistic endobacterium-coated lettuce seeds thus produced can be stably stored for a long period of time by storing under low temperature conditions.

即ち本発明は、より具体的には、下記の発明を包含する。
(1)レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌をレタス種子に減圧接種することを特徴とする、前記内生細菌がコーティングされたレタス種子の製造方法。
(2)レタス種子に内生細菌を減圧接種した後に、低温低湿条件下で乾燥することを更なる特徴とする(1)記載の方法。
That is, the present invention more specifically includes the following inventions.
(1) A method for producing a lettuce seed coated with an endogenous bacterium, comprising inoculating the lettuce seed with an endophytic bacterium that is antagonistic to the genus Olpidium that retains the lettuce bigbein virus.
(2) The method according to (1), further characterized in that lettuce seeds are inoculated with endophytic bacteria under reduced pressure and then dried under low-temperature and low-humidity conditions.

(3)レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌をレタス種子に接種し、接種後に前記種子を低温低湿条件下で乾燥することを特徴とする、前記内生細菌がコーティングされたレタス種子の製造方法。
(4)(1)〜(3)のいずれか1つに記載の方法により製造された、レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌がコーティングされたレタス種子。
(3) characterized in that an endophytic bacterium that is antagonistic to the genus Olpidium that retains the lettuce big bain virus is inoculated into lettuce seeds, and the seeds are dried under low-temperature and low-humidity conditions after inoculation. A method for producing lettuce seeds coated with live bacteria.
(4) Lettuce seeds produced by the method according to any one of (1) to (3) and coated with an endogenous bacterium that is antagonistic to the genus Orpidium that retains the lettuce big bein virus .

(5)レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌をレタス種子に減圧接種し、前記種子を播種することを特徴とする、レタスビッグベイン病害の防除方法。
(6)レタス種子に内生細菌を減圧接種した後に、前記種子を低温低湿条件下で乾燥することを更なる特徴とする(5)記載の方法。
(5) A method for controlling a lettuce big bain disease, characterized by inoculating lettuce seeds under reduced pressure with endophytic bacteria having antagonistic properties against the genus Olpidium that retains the lettuce big bain virus, and sowing the seeds.
(6) The method according to (5), further comprising drying the seeds under low-temperature and low-humidity conditions after inoculating the lettuce seeds with endophytic bacteria under reduced pressure.

(7)レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌をレタス種子に接種し、接種後に前記種子を低温低湿条件下で乾燥し、前記種子を播種することを特徴とする、レタスビッグベイン病害の防除方法。
(8)内生細菌を接種したレタス種子を、乾燥終了後から播種までの間に、低温低湿条件下で貯蔵することを更なる特徴とする(5)〜(7)のいずれか1つに記載の方法。
なお(8)において、「拮抗微生物を接種した作物の種子」とは、(8)が(5)又は(6)に従属する場合には、「拮抗微生物を減圧接種した作物の種子」を意味する。
(7) Inoculating lettuce seeds with endophytic bacteria having antagonistic properties against the genus Olpidium that retains the lettuce big bain virus, drying the seeds under low-temperature and low-humidity conditions after inoculation, and sowing the seeds A method for controlling lettuce big vein disease.
(8) According to any one of (5) to (7), the lettuce seeds inoculated with endophytic bacteria are stored under low temperature and low humidity conditions between the end of drying and sowing. The method described.
In (8), “a crop seed inoculated with an antagonistic microorganism” means “a seed of a crop inoculated with an antagonistic microorganism under reduced pressure” when (8) is subordinate to (5) or (6). To do.

本発明は、レタスビッグベイン病害防除効果が高く保存安定性の高い拮抗性内生細菌コーティングレタス種子、その製造方法、及び前記拮抗性内生細菌コーティングレタス種子を用いた、レタスビッグベイン病害の防除方法を提供する。   The present invention relates to an antagonistic endogenous bacteria-coated lettuce seed having a high effect of controlling lettuce bigbein disease and high storage stability, a method for producing the same, and control of lettuce bigbain disease using the antagonistic endobacterium-coated lettuce seed. Provide a method.

以下、本発明について詳細に説明する。
本発明において「レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌がコーティングされたレタス種子」又は「拮抗性内生細菌コーティングレタス種子」とは、拮抗性内生細菌をレタス種子にコーティングしたものを言う。すなわち、拮抗性内生細菌がレタス種子にコーティングされている限り、裸種子のままであっても良いし、フィルムコート種子、ペレット種子、ゲル被覆種子、シーダーテープ、シードグラフ、プライミング処理種子など様々な加工処理が施された種子であっても良い。通常は、レタス種子はペレット造粒によりペレット種子に加工される。コーティングされた拮抗性内生細菌の量は特に限定されないが、101〜1010 cells/粒の範囲内で含まれていれば良い。
Hereinafter, the present invention will be described in detail.
In the present invention, “lettuce seed coated with an endogenous bacterium that exhibits antagonistic properties against the genus Olpidium that retains the lettuce big vein virus” or “antagonistic endophytic-coated lettuce seed” refers to an antagonistic endogenous bacterium. Refers to the one coated with lettuce seeds. That is, as long as the antagonistic endogenous bacteria are coated on the lettuce seeds, the seeds may remain as they are, various kinds such as film-coated seeds, pellet seeds, gel-coated seeds, cedar tape, seed graphs, priming-treated seeds, etc. It may be a seed subjected to various processing. Usually, lettuce seeds are processed into pellet seeds by pellet granulation. The amount of the antagonistic endogenous bacteria coated is not particularly limited, but may be contained within a range of 10 1 to 10 10 cells / grain.

レタス種子をペレット造粒する場合の造粒工程は、通常のペレット造粒機などを用いて造粒すれば良く、特に制限はない。造粒サイズは、レタス種子よりもわずかでも大きければ良く、造粒層の厚さは、1 nm〜50 mmの範囲であればよい。造粒後の形状は、球状またはラグビーボール状であるほうが好ましいが、特に制限はない。造粒後、粒径および粒の形状による選別を行うことは、播種作業の効率を上げる上で好ましい。   The granulation process in the case of pelletizing lettuce seeds is not particularly limited, and may be performed using a normal pellet granulator. The granulation size may be slightly larger than the lettuce seed, and the thickness of the granulation layer may be in the range of 1 nm to 50 mm. The shape after granulation is preferably spherical or rugby ball, but is not particularly limited. After granulation, it is preferable to perform selection based on the particle size and the shape of the particles in order to increase the efficiency of the sowing operation.

本発明に用いる種子はレタス種子であり、品種は特に限定するものではない。
本発明に用いる内生細菌としては、レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌であれば特に限定されない。例えば、シュードモナス・プチダFP-16株(トマトの根面から分離された菌株で、青枯菌に抗菌活性物質を産生し、圃場においても高い青枯病発病抑制効果を有する菌株)、シュードモナス・フルオレッセンス FPH9601株(FERM BP-5479)、シュードモナス sp. HAI00377株(ハクサイの根内からP-1培地(蛍光性pseudomonads選択培地)を用いて平板希釈法にて分離、高いハクサイ根こぶ病発病抑制効果を示す菌株)(非特許文献1)、シュードモナス(Pseudomonas sp.) FPH-2003株(FERM AP-20654)、FPH-2005-1株(FERM AP-20653)などが挙げられる。
The seeds used in the present invention are lettuce seeds, and the variety is not particularly limited.
The endobacterium used in the present invention is not particularly limited as long as it is an endobacterium that exhibits an antagonistic property to the genus Orpidium that retains the lettuce bigbein virus. For example, Pseudomonas putida FP-16 strain (a strain isolated from the root surface of tomato, which produces an antibacterial active substance against bacterial wilt and has a high bacterial wilt control effect in the field), Pseudomonas fluo Lessence FPH9601 strain (FERM BP-5479), Pseudomonas sp. HAI00377 strain (isolated from roots of Chinese cabbage using P-1 medium (fluorescent pseudomonads selective medium) by plate dilution method) (Non-patent document 1), Pseudomonas sp. FPH-2003 strain (FERM AP-20654), FPH-2005-1 strain (FERM AP-20653), and the like.

これらの拮抗性内生細菌は、種子、植物体、土壌などからスクリーニングし、単離して用いることも出来る。更にまた、レタスビッグベインウイルスを媒介するオルピディウム属菌汚染土に、候補菌をコーティングした種子を播種し、オルピディウム属菌の生育適温下において数週間培養し、オルピディウム属菌の根への感染を明らかに阻害するものを、拮抗性を持つ内生細菌として選択して本発明に使用することができる(日本植物病理学会 第68巻、第2号、p240)。本発明の拮抗性内生細菌の培養条件に関しては、実験書(新編 土壌微生物実験法 (1997) 土壌微生物研究会編、養賢堂)等に記載されている条件を用いることができる。培地は、例えば肉エキス培地、LB培地、ポテトデキストロース(PD)培地、1/10 PD培地、キングB寒天培地などを用い、培養方法は、例えば、シャーレ、試験管、フラスコ、ジャーファメンターなどの容器内で、静置、振とう、攪拌などの条件で行えばよく、特殊な培養条件で行う必要はない。   These antagonistic endogenous bacteria can be screened from seeds, plants, soils, etc., and isolated for use. Furthermore, seeds coated with candidate bacteria were sown in soil contaminated with Orpidium genus that mediates lettuce big bain virus, and cultured for several weeks at a suitable temperature for the growth of Orpidium genus. Can be selected as an endophytic bacterium having antagonistic properties and used in the present invention (Japanese Society for Plant Pathology, Vol. 68, No. 2, p240). Regarding the culture conditions for the antagonistic endogenous bacteria of the present invention, the conditions described in the experiment document (new edition of soil microorganism experiment method (1997) edited by Soil Microorganism Research Group, Yokendo) and the like can be used. The medium is, for example, meat extract medium, LB medium, potato dextrose (PD) medium, 1/10 PD medium, King B agar medium, etc. The culture method is, for example, petri dish, test tube, flask, jar fermenter, etc. What is necessary is just to carry out on conditions, such as standing still, shaking, and stirring, in a container, and it is not necessary to carry out on special culture conditions.

本発明において「減圧接種」とは、吸引機と連結した密閉容器を作成し、その中に拮抗微生物を混和・接触させたレタス種子を入れ、容器内部の空気を吸引することにより陰圧条件を作り出し種子表面の空気を除去した後、常圧(約760 mmHg)に戻すことで、拮抗微生物を種子表皮の内側に導入させる方法を言う。吸引機としては、一般に広く使用されているものでよく、例えばアスピレーター(aspirator)、サッカー(sucker)、油回転真空ポンプ、ドライ真空ポンプなどを使用することができる。陰圧にした時の到達圧力はレタス種子と拮抗性内生細菌が死滅したり、細胞に実質的な障害を受けない範囲であれば良く、例えば1 mmHg〜755 mmHg、好ましくは、100 mmHg〜700 mmHg(大気圧を0 mmHgとした時の真空度で表記した)の範囲である。常圧から最高陰圧に達するまでの時間は特に限定されないが例えば1 秒〜120 分の範囲で行えば良い。また、最高陰圧条件下に置く時間は、1 分〜100 分の範囲であれば良い。その後、ゆっくり常圧に戻すが、陰圧条件から常圧に戻す時間は、1 秒〜120 分の範囲で行えばよい。最高陰圧条件下に120分以上の長時間置くことは、内生細菌の生存率が低下したり、発芽率が著しく低下する為に好ましくない場合がある。減圧接種処理の回数は、1回以上20回までの範囲であれば良い。減圧接種を繰り返す事により、内生細菌の種子内部への導入率は高くなる場合があるが、過度に行った場合には種子にダメージを与え、発芽率低下などを招く場合がある。密閉容器は、吸引ビンや耐圧ビンにゴム栓を付けたり、シールテープで塞ぐことにより密閉系としたものなどを作成して使用することができ、密閉系が保てる様になっていれば形状・材質などに特別な制限はない。容器のサイズは、レタス種子と拮抗性内生細菌の量に応じて適宜選択することができ、例えば、1ml〜1000 m3の範囲から選択できる。吸引機と密閉容器をつなぐ連結部分は、密閉系が保て、かつ陰圧条件に耐えうる耐圧のパイプであればよく、レタス種子や拮抗性内生細菌に害を与えない材質のものであれば特に制限はない。装置を組み立てるのが難しければ、既存の減圧乾燥装置、低温減圧乾燥装置、ロータリーエバポレーター、凍結乾燥機などを利用する事も可能である。 In the present invention, “vacuum inoculation” refers to creating a sealed container connected to a suction machine, putting lettuce seeds mixed and contacted with antagonistic microorganisms therein, and sucking air inside the container to reduce the negative pressure condition. After removing the air on the seed surface that has been created, the method returns the pressure to normal pressure (about 760 mmHg) to introduce antagonistic microorganisms inside the seed epidermis. The suction machine may be a widely used one. For example, an aspirator, a sucker, an oil rotary vacuum pump, or a dry vacuum pump can be used. The ultimate pressure at the time of negative pressure may be in a range where lettuce seeds and antagonistic endogenous bacteria are killed or cells are not substantially damaged, for example, 1 mmHg to 755 mmHg, preferably 100 mmHg to It is a range of 700 mmHg (expressed as a degree of vacuum when the atmospheric pressure is 0 mmHg). The time from the normal pressure to the maximum negative pressure is not particularly limited, but may be, for example, in the range of 1 second to 120 minutes. In addition, the time under the maximum negative pressure condition may be in the range of 1 minute to 100 minutes. Thereafter, the pressure is slowly returned to normal pressure, but the time for returning to normal pressure from the negative pressure condition may be in the range of 1 second to 120 minutes. It may not be preferable to leave for 120 minutes or longer under the maximum negative pressure because the viability of endophytic bacteria decreases or the germination rate significantly decreases. The number of times of vacuum inoculation treatment may be in the range of 1 to 20 times. By repeating the vacuum inoculation, the rate of introduction of endophytic bacteria into the seed may increase, but if excessively performed, the seed may be damaged, resulting in a decrease in germination rate. The sealed container can be used by creating a closed system by attaching a rubber stopper to the suction bottle or pressure bottle or sealing with a sealing tape. If the sealed system can be maintained, There are no special restrictions on materials. The size of the container can be appropriately selected according to the amounts of lettuce seeds and antagonistic endogenous bacteria, and can be selected, for example, from the range of 1 ml to 1000 m 3 . The connecting part that connects the suction device and the sealed container may be a pressure-resistant pipe that can maintain a closed system and can withstand negative pressure conditions, and should be of a material that does not harm lettuce seeds or antagonistic endogenous bacteria. There are no particular restrictions. If it is difficult to assemble the apparatus, an existing vacuum drying apparatus, a low-temperature vacuum drying apparatus, a rotary evaporator, a freeze dryer, or the like can be used.

減圧接種のためにレタス種子と拮抗性内生細菌を混和・接触させる方法としては、一般に行われる方法であれば良く、特別な制限はない。例えば、拮抗性内生細菌を含む懸濁液中にレタス種子を浸す、拮抗性内生細菌を含む懸濁液をレタス種子に噴霧する、拮抗性内生細菌を含む粉剤中にレタス種子を投入して粉衣するなどである。攪拌や混合を行うことはレタス種子と拮抗性内生細菌との接触効率を上げる上で好ましいが、過度に行うとレタス種子を傷つける場合もあるので注意が必要である。   As a method of mixing and contacting lettuce seeds and antagonistic endogenous bacteria for vacuum inoculation, any method that is generally used may be used, and there is no particular limitation. For example, lettuce seeds are immersed in a suspension containing antagonistic endogenous bacteria, sprayed with a suspension containing antagonistic endogenous bacteria on lettuce seeds, and put into lettuce seeds containing antagonistic endogenous bacteria And then dress up. Stirring and mixing are preferable in order to increase the contact efficiency between the lettuce seeds and the antagonistic endogenous bacteria, but care should be taken because lettuce seeds may be damaged if performed excessively.

レタス種子に接種する拮抗性内生細菌の量は特に限定されないが例えば101〜1010 cells/粒の範囲であれば良い。 The amount of antagonistic endogenous bacteria inoculated into the lettuce seed is not particularly limited, and may be in the range of, for example, 10 1 to 10 10 cells / grain.

本発明の拮抗性内生細菌コーティングレタス種子の製造方法は、上記の方法でレタス種子に拮抗性内生細菌を減圧接種した後に、前記種子を低温低湿条件下で乾燥する工程を行うものであることがより好ましい。或いはまた、本発明の拮抗性内生細菌コーティングレタス種子の製造方法は、上記の減圧接種以外の方法でレタス種子に拮抗性内生細菌を接種した後に、前記種子を低温低湿条件下で乾燥する工程を行う方法であっても良い。ここで、「レタス種子に拮抗性内生細菌を(減圧)接種した後に、前記種子を低温低湿条件下で乾燥する」とは、低温低湿条件下での乾燥工程が、拮抗性内生細菌のレタス種子への接種よりも時間的に後に行われる限りいずれの形態をも包含する。すなわち、本発明においては、拮抗性内生細菌のレタス種子への接種の後に続けて、レタス種子を低温低湿条件下で乾燥する工程を行っても良いし、拮抗性内生細菌のレタス種子への接種の後に追加的な処理(例えばペレット造粒)を施した後に、種子を低温低湿条件下で乾燥する工程を行っても良い。減圧接種以外の方法でレタス種子に拮抗性内生細菌を接種する方法としては、拮抗性内生細菌を含む懸濁液中にレタス種子を浸す、拮抗性内生細菌を含む懸濁液をレタス種子に噴霧する、拮抗性内生細菌を含む粉剤中にレタス種子を投入して粉衣するなどの方法が挙げられるがこれらには限定されない。   The method for producing an antagonistic endogenous bacterial-coated lettuce seed according to the present invention comprises the step of drying the seed under low-temperature and low-humidity conditions after inoculating the lettuce seed under reduced pressure with the antagonistic endogenous bacteria according to the method described above. It is more preferable. Alternatively, in the method for producing an antagonistic endogenous bacterial-coated lettuce seed of the present invention, the seed is dried under a low temperature and low humidity condition after inoculating the antagonistic endogenous bacteria into the lettuce seed by a method other than the above-described reduced pressure inoculation. It may be a method of performing a process. Here, “the seed is dried under low-temperature and low-humidity conditions after inoculating the antagonistic endogenous bacteria into the lettuce seeds (under reduced pressure)” means that the drying step under the low-temperature and low-humidity conditions means that the antagonistic endogenous bacteria are Any form is included as long as it is performed after the inoculation of lettuce seeds. That is, in the present invention, a step of drying lettuce seeds under low-temperature and low-humidity conditions may be performed subsequent to inoculation of lettuce seeds with antagonistic endogenous bacteria. After the inoculation, an additional treatment (for example, pellet granulation) may be performed, followed by a step of drying the seeds under low temperature and low humidity conditions. As a method of inoculating lettuce seeds with antagonistic endogenous bacteria by a method other than vacuum inoculation, lettuce is prepared by immersing lettuce seeds in a suspension containing antagonistic endogenous bacteria. Examples include, but are not limited to, methods of spraying seeds and putting lettuce seeds in a powder containing antagonistic endogenous bacteria.

本発明においてコーティング種子処理における「低温低湿条件」とは、常温(約25℃)以下の温度(低温)で、かつ室内の湿度以下の湿度(低湿)である条件のことを言う。
「低温」とはより具体的には、−80℃以上常温以下の範囲の温度であり、その中でも特に−10℃以上20℃以下の範囲の温度が望ましい。「低湿」とは室内の湿度以下であることを言い、室内の湿度によって変わるが、通常0%以上80%以下の範囲の湿度である。その中でも特に0%以上40%以下の範囲が望ましい。低温にする方法としては、冷却装置を有する部屋または冷却剤を入れた容器、クーラーボックス、冷蔵庫、冷凍庫などを用いる方法が挙げられる。湿度を下げる方法としては、生石灰などの化学的乾燥剤や、シリカゲル、ゼオライト、粘土鉱物などの物理的乾燥剤、除湿機などを用いる方法が挙げられる。
In the present invention, the “low temperature and low humidity condition” in the coating seed treatment refers to a condition that is a temperature (low temperature) equal to or lower than normal temperature (about 25 ° C.) and a humidity equal to or lower than indoor humidity (low humidity).
More specifically, the “low temperature” is a temperature in the range of −80 ° C. to normal temperature, and among them, a temperature in the range of −10 ° C. to 20 ° C. is particularly desirable. “Low humidity” means indoor humidity or lower, which varies depending on indoor humidity, but is usually in the range of 0% to 80%. Of these, a range of 0% to 40% is particularly desirable. Examples of the method for reducing the temperature include a room having a cooling device or a method using a container containing a coolant, a cooler box, a refrigerator, a freezer and the like. Examples of the method for decreasing the humidity include a method using a chemical desiccant such as quick lime, a physical desiccant such as silica gel, zeolite, and clay mineral, a dehumidifier.

乾燥後のレタス種子の含水率は、0.01%以上20%以下の範囲であることが望ましい。より好ましい含水率は0.1%以上10%以下である。それよりも含水率が高い場合は、貯蔵中にレタス種子の発芽率が低下する、あるいは貯蔵中にレタス種子の発芽が起こる、カビなどの雑菌がレタス種子に付着し増殖する、などの問題が発生する。逆に、含水率が低い場合は、拮抗性内生細菌の生存率が低下してしまう。また、レタス種子の発芽率低下が起こる場合もある。   The moisture content of the lettuce seeds after drying is desirably in the range of 0.01% to 20%. A more preferable moisture content is 0.1% or more and 10% or less. If the moisture content is higher than that, problems such as reduction of germination rate of lettuce seeds during storage, germination of lettuce seeds during storage, and growth of bacteria and other germs attached to lettuce seeds. appear. On the contrary, when the water content is low, the survival rate of the antagonistic endogenous bacteria is lowered. In addition, the germination rate of lettuce seeds may be reduced.

本発明の方法に従って製造した拮抗性内生細菌コーティングレタス種子の貯蔵は、拮抗性内生細菌の生菌数、種子の発芽などに出来るだけ影響の少ない条件で行うことが望ましい。このような条件としては低温低湿条件が挙げられる。貯蔵条件に関して「低温」とは、−80℃以上30℃以下であることが好ましく、0℃以上20℃以下であることがより好ましい。また、貯蔵条件に関して「低湿」とは、0%以上80%以下であることが好ましく、0%以上50%以下であることがより好ましい。   It is desirable to store the antagonistic endobacterium-coated lettuce seed produced according to the method of the present invention under conditions that have as little influence as possible on the viable count of the antagonistic endobacterium and germination of the seed. Such conditions include low temperature and low humidity conditions. Regarding the storage conditions, “low temperature” is preferably −80 ° C. or higher and 30 ° C. or lower, and more preferably 0 ° C. or higher and 20 ° C. or lower. In terms of storage conditions, “low humidity” is preferably 0% or more and 80% or less, and more preferably 0% or more and 50% or less.

本発明の方法で製造した拮抗性内生細菌コーティングレタス種子を播種することにより、レタスビッグベイン病害を軽減、抑制することができる。すなわち本発明は、拮抗性内生細菌コーティングレタス種子を用いた、レタスビッグベイン病害の防除方法に関する。例えば、拮抗性内生細菌コーティングレタス種子を播種、育苗した後、レタスビッグベインウイルスを保持するオルピディウム属菌に汚染された土壌を含む圃場またはポットに苗を定植して栽培した場合に、レタスビッグベイン病害の発生が軽減・抑制される。   By sowing the antagonistic endobacterium-coated lettuce seeds produced by the method of the present invention, lettuce big bain disease can be reduced or suppressed. That is, the present invention relates to a method for controlling lettuce big vein disease using an antagonistic endogenous bacterial-coated lettuce seed. For example, after sowing and raising seedlings of lettuce seeds coated with antagonistic endophytic bacteria, lettuce big The incidence of Bain's disease is reduced or suppressed.

本発明のレタスビッグベイン病害の防除方法は、他の病害防除方法と併用することが可能である。他の病害防除方法としては、例えば、レタスビッグベインウイルスを保持するオルピディウム属菌の土壌菌密度を下げる為の土壌消毒処理、薬剤処理、土壌改良剤処理、高畝処理などが挙げられる。また、拮抗性内生細菌でコーティングするレタス種子として、レタスビッグベイン病害抵抗性の品種あるいはレタスビッグベイン病害耐病性の品種のレタス種子を用いることは防除効果をさらに高める上で好ましい。   The method for controlling a lettuce big vein disease of the present invention can be used in combination with other disease control methods. Other disease control methods include, for example, soil disinfection treatment, chemical treatment, soil amendment treatment, and culm treatment for reducing the soil fungus density of the Orpidium spp. In addition, it is preferable to use lettuce seeds of a lettuce big bain disease resistant variety or lettuce big bain disease resistant variety as a lettuce seed coated with an antagonistic endobacterium.

以下に本発明の実施例を掲げて、さらに具体的に説明するが、本発明はこれらの実施例に制限されるものではない。   Examples of the present invention will be described below in more detail, but the present invention is not limited to these examples.

参考例1:レタスフィルムコート種子への拮抗性内生細菌の接種および乾燥が拮抗性内生細菌の生存率に与える影響
拮抗性内生細菌として、シュードモナス(Pseudomonas sp.) FPH-2003株(FERM AP-20654)を用いた。
Reference Example 1: Effects of inoculation and drying of lettuce film-coated seeds on the survival rate of antagonistic endogenous bacteria As an antagonistic endogenous bacteria, Pseudomonas sp. FPH-2003 strain (FERM AP-20654) was used.

キングB寒天培地を入れた9cmシャーレにシュードモナスFPH-2003株を植菌し、25℃で2日間静置培養した。コーンラージ棒を用いて集菌し、これを接種源とした。   Pseudomonas FPH-2003 strain was inoculated into a 9 cm petri dish containing King B agar medium, and statically cultured at 25 ° C. for 2 days. Bacteria were collected using a corn large stick and used as an inoculum.

集菌したFPH-2003株に、ポリビニルアルコール(PVA)又はポリビニルアセテート(PVAc)で作製したバインダー溶液10mlを加え、回転子(攪拌子)を用いてFPH-2003株を十分に分散させ、レタス種子100g(品種:ロジック)に少量ずつ加えながら、十分に攪拌した。この種子を、25℃又は35℃の温風循環乾燥機に入れ、24時間乾燥させた。   To the collected FPH-2003 strain, add 10 ml of a binder solution made of polyvinyl alcohol (PVA) or polyvinyl acetate (PVAc), and sufficiently disperse the FPH-2003 strain using a rotor (stirrer), and lettuce seeds While adding a small amount to 100 g (variety: logic), it was thoroughly stirred. The seeds were placed in a hot air circulating dryer at 25 ° C. or 35 ° C. and dried for 24 hours.

種子中におけるFPH-2003株の菌密度は、下記の方法で求めた。種子100粒を10 mlの滅菌水に懸濁し、さらに10倍・100倍・1000倍・10000倍希釈液を作成した。これらの菌懸濁液を希釈平板法によりストレプトマイシンを添加したキングB寒天培地上に塗布した。25℃で96時間培養し、コロニーの出現により判定した。   The bacterial density of the FPH-2003 strain in seeds was determined by the following method. 100 seeds were suspended in 10 ml of sterilized water, and 10-fold, 100-fold, 1000-fold and 10000-fold dilutions were made. These bacterial suspensions were spread on a King B agar medium supplemented with streptomycin by a dilution plate method. The cells were cultured at 25 ° C. for 96 hours and judged by the appearance of colonies.

参考例1の結果を表1に示す。PVAフィルムコート剤を用いてFPH-2003株を接種したレタス種子では、いずれの乾燥温度区でも乾燥前に6.2×104cfu/粒の菌密度であったが、乾燥6時間後には全滅していた。また、PVAcフィルムコート剤を用いてFPH-2003株を接種したレタス種子では、いずれの乾燥温度区でも乾燥前に1.2×105cfu/粒の菌密度であったが、乾燥24時間後には全滅していた。このことから、レタス種子に拮抗性内生細菌を接種し乾燥後に、拮抗性内生細菌を生存させることは、きわめて難しい事が明らかになった。 The results of Reference Example 1 are shown in Table 1. The lettuce seeds inoculated with the FPH-2003 strain using the PVA film coating agent had a bacterial density of 6.2 × 10 4 cfu / grain before drying in any drying temperature range, but it was completely destroyed after 6 hours of drying. It was. In addition, lettuce seeds inoculated with the FPH-2003 strain using PVAc film coating agent had a bacterial density of 1.2 × 10 5 cfu / grain before drying in any drying temperature range, but was completely destroyed after 24 hours of drying. Was. From this, it became clear that it is very difficult to survive the antagonistic endogenous bacteria after inoculating the lettuce seeds with the antagonistic endogenous bacteria and drying.

Figure 2007077126
Figure 2007077126

参考例2:拮抗性内生細菌を接種したレタスペレット種子の含水率による拮抗性内生細菌の生存に与える影響
拮抗性内生細菌として、シュードモナス(Pseudomonas sp.) FPH-2003株(FERM AP-20654)を用いた。キングB寒天培地を入れた9cmシャーレにシュードモナス FPH-2003株を植菌し、25℃で2日間静置培養した。コーンラージ棒を用いて集菌し、これを接種源とした。
Reference Example 2: Effect of water content of lettuce pellet seeds inoculated with antagonistic endogenous bacteria on survival of antagonistic endogenous bacteria Pseudomonas (Pseudomonas sp.) FPH-2003 strain (FERM AP- 20654) was used. Pseudomonas strain FPH-2003 was inoculated into a 9 cm petri dish containing King B agar medium, and statically cultured at 25 ° C. for 2 days. Bacteria were collected using a corn large stick and used as an inoculum.

集菌したFPH-2003株に滅菌水20mlを加え、回転子(攪拌子)を用いてFPH-2003株を十分に分散させた。この拮抗性内生細菌分散溶液をレタス種子のペレット造粒に用いた。次にペレット造粒工程について説明する。造粒装置Pelletizing unit(SEED PROCESSING社製)を回転させながら、レタス種子100g(品種:ロジック)を投入し、種子を攪拌しながら上記の拮抗性内生細菌分散溶液をスプレーし種子を十分に湿らせた。その種子に造粒用粉体(珪藻土・炭酸カルシウムなどの混合物)を少量加え攪拌した。さらに、拮抗性内生細菌分散溶液をスプレーし造粒用粉体を少量加える作業を、拮抗性内生細菌分散溶液がなくなるまで繰り返した。その後、造粒用バインダーを3.0%ポリビニルアルコールに切り替え、造粒用バインダーと造粒用粉体を交互に添加しながらペレットを造粒した。造粒後、篩を使用し粒径3.0〜3.5mmのペレットのみ選別した。この種子を、30℃の温風循環乾燥機に入れ、24時間乾燥させた。このときの部屋の湿度は約45%であった。   20 ml of sterilized water was added to the collected FPH-2003 strain, and the FPH-2003 strain was sufficiently dispersed using a rotor (stirrer). This antagonistic endogenous bacterial dispersion was used for pellet granulation of lettuce seeds. Next, the pellet granulation process will be described. While rotating the granulating device Pelletizing unit (SEED PROCESSING), 100g of lettuce seeds (variety: logic) is added, and the seeds are thoroughly moistened by spraying the above-mentioned antagonistic endogenous bacterial dispersion while stirring the seeds. Let A small amount of granulating powder (a mixture of diatomaceous earth and calcium carbonate) was added to the seeds and stirred. Further, the operation of spraying the antagonistic endogenous bacterial dispersion solution and adding a small amount of granulating powder was repeated until the antagonistic endogenous bacterial dispersion solution disappeared. Thereafter, the granulating binder was switched to 3.0% polyvinyl alcohol, and pellets were granulated while alternately adding the granulating binder and the granulating powder. After granulation, only a pellet having a particle size of 3.0 to 3.5 mm was selected using a sieve. The seeds were put in a hot air circulating dryer at 30 ° C. and dried for 24 hours. The humidity of the room at this time was about 45%.

ペレット造粒種子中におけるFPH-2003株の菌密度の測定は、参考例1と同様の方法を用いた。また、ペレット造粒種子中におけるFPH-2003株の生存率は、下記の方法で求めた。ペレット種子50粒(10粒×5反復)をストレプトマイシン添加キングB寒天培地上に置床し、25℃で96時間培養した。培養後に、FPH-2003株のコロニーをカウントし、その数から百分率を求め生存率とした。   The method similar to Reference Example 1 was used to measure the bacterial density of the FPH-2003 strain in the pelleted seeds. Further, the survival rate of the FPH-2003 strain in the pelleted granulated seed was determined by the following method. 50 pellet seeds (10 seeds × 5 repeats) were placed on a streptomycin-added King B agar medium and cultured at 25 ° C. for 96 hours. After the culture, colonies of the FPH-2003 strain were counted, and the percentage was determined from the number to determine the survival rate.

参考例2の結果を表2に示す。FPH-2003株をレタス種子にスプレー接種した種子は、ペレット種子の含水率が高いほどFPH-2003株の生存率および菌密度が高い、つまりペレット種子を乾燥させるにつれて、FPH-2003株が減少していくことが明らかになった。通常の実用に供試し得るペレットの含水率は、0.5〜3.0%であるが、含水率を0.8%に下げた場合、FPH-2003株が完全に死滅してしまうことが明らかになった。レタス種子の場合に含水率が10%を超えると保存中にカビが発生したり、腐敗が始まったり、発芽したりする為に実用的に使用できない。したがって、拮抗性内生細菌をレタス種子にスプレー接種後、ペレット造粒し、加温通風で乾燥させる従来の方法では、拮抗性内生細菌をレタス種子に定着させることが、きわめて困難であることが判明した。   The results of Reference Example 2 are shown in Table 2. Seeds sprayed with lettuce seeds with FPH-2003 strain have higher viability and fungal density of FPH-2003 strains as the moisture content of pellet seeds increases, that is, FPH-2003 strains decrease as pellet seeds are dried. It became clear to go. The moisture content of pellets that can be put to practical use is 0.5 to 3.0%, but it was revealed that the FPH-2003 strain was completely killed when the moisture content was lowered to 0.8%. In the case of lettuce seeds, if the moisture content exceeds 10%, it cannot be used practically because mold occurs during storage, rot starts or germinates. Therefore, it is extremely difficult to establish the antagonistic endogenous bacteria on the lettuce seeds by the conventional method in which the antagonistic endogenous bacteria are spray-inoculated on the lettuce seeds, pelletized, and then dried with warm air. There was found.

Figure 2007077126
Figure 2007077126

参考例3: レタス品種の違いが拮抗性内生細菌の根部定着量に及ぼす影響(1)
拮抗性内生細菌シュードモナス(Pseudomonas sp.)FPH-2003株(FERM AP-20654)をキングB寒天培地で28℃、48時間培養し、殺菌水中にそれぞれ107cfu/ml になるように懸濁した。8種類のレタス品種を準備し、拮抗性内生細菌懸濁液を種子にコーティングした。そして得られた種子をバーミキュライトに播種した。播種後、28℃、24時間照明下で25日間培養した。レタスの根部を95%エタノールで10秒間表面殺菌を行い、乳鉢ですりつぶし、キングB寒天培地を用いて希釈平板法で拮抗性内生細菌の検出を行った。
結果を表3に示す。
Reference Example 3: Effect of lettuce varieties on root colonization of antagonistic endogenous bacteria (1)
Antagonistic endophytic bacterium Pseudomonas sp. FPH-2003 (FERM AP-20654) was cultured on King B agar at 28 ° C for 48 hours and suspended in sterile water at 10 7 cfu / ml each. did. Eight kinds of lettuce varieties were prepared and seeds were coated with an antagonistic endogenous bacterial suspension. The obtained seeds were sown on vermiculite. After seeding, the cells were cultured for 25 days under illumination at 28 ° C. for 24 hours. The root of lettuce was sterilized with 95% ethanol for 10 seconds, ground in a mortar, and antagonistic endogenous bacteria were detected by the dilution plate method using King B agar medium.
The results are shown in Table 3.

Figure 2007077126
Figure 2007077126

参考例4:レタス品種の違いが拮抗性内生細菌の根部定着量に及ぼす影響(2)
参考例3と同様の試験を拮抗性内生細菌シュードモナス(Pseudomonas sp.)FPH-2005-1株(FERM AP-20653)を用い、育成中のレタス品種および市販品種を用いて行った。
結果を表4に示す。
Reference Example 4: Effect of different lettuce varieties on root colonization of antagonistic endogenous bacteria (2)
A test similar to that of Reference Example 3 was carried out using the antagonistic endogenous bacterium Pseudomonas sp. FPH-2005-1 strain (FERM AP-20653), and using lettuce cultivars and commercial cultivars that were being cultivated.
The results are shown in Table 4.

Figure 2007077126
Figure 2007077126

表3および表4の結果より、レタスの品種の違いにより拮抗性内生細菌の菌株の定着率にはかなりの差があることが明らかとなった。従って、本発明を実施するにあたって、レタス種子の品種と拮抗性内生細菌の親和性について確認しておくことは、拮抗性内生細菌コーティング種子の製造において重要であることがわかった。このようにして選抜したレタス品種と拮抗性内生細菌の組み合わせを用いてペレット種子の製造方法を検討した。   From the results of Tables 3 and 4, it was revealed that there is a considerable difference in the colonization rate of antagonistic endogenous bacteria due to the difference in the variety of lettuce. Therefore, it has been found that it is important in the production of seeds coated with an antagonistic endobacterium to confirm the affinity between the varieties of lettuce seeds and the antagonistic endogenous bacteria in carrying out the present invention. Using the combination of lettuce cultivar thus selected and antagonistic endogenous bacteria, a method for producing pellet seeds was examined.

実施例1:レタス種子への拮抗性内生細菌の接種方法および加温通風乾燥が拮抗性内生細菌の生存に与える影響
拮抗性内生細菌として、シュードモナス(Pseudomonas sp.) FPH-2003株(FERM AP-20654)を用いた。キングB寒天培地を入れた9cmシャーレにシュードモナス(Pseudomonas sp.) FPH-2003株を植菌し、25℃で2日間静置培養した。コーンラージ棒を用いて集菌し、1/5000 Tween80を添加した滅菌水に懸濁した。希釈平板法で生菌数を測定したところ、約1 x 1010 cfu/mlであった。レタス種子100g(品種:ロジック)をメッシュで包みイチゴパックに収め、浮かばないように重りを載せ、種子が沈むように菌懸濁液300mlを注いだ。減圧接種法は、コンパクトエアーポンプNUP-2(アズワン製)を用いて、陰圧条件とした。ポンプ排気能力は、12 l/min、到達圧力は、300 mmHg 、最高陰圧条件に達するまでの時間は、約2分であった。5分間、最高陰圧条件に置いた後、ゆっくりコックを開いて常圧に戻した。常圧に戻るまでの時間は、約20秒であった。余剰水分を除去する為に恒温乾燥機(MOV-212F)(SANYO製)にて、30℃、1時間通風乾燥を行った。
Example 1: Method for inoculating lettuce seeds with antagonistic endogenous bacteria and the effect of heated draft drying on the survival of antagonistic endogenous bacteria As an antagonistic endogenous bacteria, Pseudomonas sp. FPH-2003 strain ( FERM AP-20654) was used. Pseudomonas (Pseudomonas sp.) Strain FPH-2003 was inoculated into a 9 cm petri dish containing King B agar medium, and statically cultured at 25 ° C. for 2 days. Bacteria were collected using a corn large stick and suspended in sterilized water to which 1/5000 Tween 80 was added. When the viable cell count was measured by the dilution plate method, it was about 1 × 10 10 cfu / ml. 100g of lettuce seeds (variety: logic) was wrapped in a mesh and placed in a strawberry pack, a weight was placed so that it did not float, and 300ml of the bacterial suspension was poured so that the seeds would sink. The vacuum inoculation method was a negative pressure condition using a compact air pump NUP-2 (manufactured by ASONE). The pumping capacity was 12 l / min, the ultimate pressure was 300 mmHg, and the time to reach the maximum negative pressure condition was about 2 minutes. After 5 minutes of maximum negative pressure, the cock was slowly opened to return to normal pressure. The time to return to normal pressure was about 20 seconds. In order to remove surplus moisture, it was air-dried at 30 ° C. for 1 hour in a constant temperature dryer (MOV-212F) (manufactured by SANYO).

こうして得られた拮抗性内生細菌コーティングレタス種子を更にペレット造粒した。以下にペレット造粒工程について説明する。上記で得られたコーティング済みのレタス種子の全量(約100g)を回転している造粒装置Pelletizing unit(SEED PROCESSING社製)に投入し、種子を攪拌しながら造粒用バインダー3.0%ポリビニルアルコールを種子にスプレーし湿らせた。種子が十分に湿った後、造粒用粉体(珪藻土・炭酸カルシウムなどの混合物)を所定量加えた。さらに造粒用バインダーと造粒用粉体を交互に添加しながらペレットを造粒した。造粒後、篩を使用して、得られたペレットのうち直径3.0〜3.5mmのもののみを選別した。この種子を、30℃の温風循環乾燥機に入れ、24時間乾燥させた。このときの部屋の湿度は約45%であった。   The antagonistic endobacterium-coated lettuce seeds thus obtained were further pelletized. The pellet granulation process will be described below. The whole amount of coated lettuce seeds obtained above (about 100 g) is put into a rotating granulator Pelletizing unit (SEED PROCESSING), and a 3.0% polyvinyl alcohol for granulation is added while stirring the seeds. The seeds were sprayed and moistened. After the seeds were sufficiently moistened, a predetermined amount of granulating powder (a mixture of diatomaceous earth and calcium carbonate) was added. Furthermore, pellets were granulated while alternately adding a granulating binder and a granulating powder. After granulation, using a sieve, only pellets having a diameter of 3.0 to 3.5 mm were selected. The seeds were put in a hot air circulating dryer at 30 ° C. and dried for 24 hours. The humidity of the room at this time was about 45%.

比較例1
実施例1と同様の方法でFPH-2003株を培養、集菌した。FPH-2003株の浸漬処理は、レタス種子100g(品種:ロジック)と拮抗性内生細菌懸濁液を用いて、常圧条件下にて行った。実施例1と同様に余剰水分を除去、ペレット造粒を行った。この種子を30℃の温風循環乾燥機に入れ、24時間乾燥させた。このときの部屋の湿度は約45%であった。
ペレット造粒種子中におけるFPH-2003株の生存率は、参考例2と同様の方法を用いた。
Comparative Example 1
The FPH-2003 strain was cultured and collected in the same manner as in Example 1. The immersion treatment of the FPH-2003 strain was performed under normal pressure conditions using 100 g of lettuce seeds (variety: logic) and an antagonistic endogenous bacterial suspension. Excess water was removed and pellet granulation was performed in the same manner as in Example 1. The seeds were placed in a hot air circulating dryer at 30 ° C. and dried for 24 hours. The humidity of the room at this time was about 45%.
The survival rate of the FPH-2003 strain in pelleted granulated seeds was the same as in Reference Example 2.

実施例1と比較例1の結果を表5に示す。FPH-2003株を減圧接種後ペレット加工した区(実施例1)では、FPH-2003株の生存率は、乾燥してもほとんど低下せず、通常の商品用ペレットの含水率である1.1%になっても、93%と高い値を示した。それに対して、FPH-2003株を浸漬接種後ペレット加工した区(比較例1)では、FPH-2003株の生存率は、乾燥とともに徐々に低下し、通常の商品用ペレットの含水率である1.1%では、FPH-2003株の生存率が3%となり、ほとんどのFPH-2003株が死滅していることがわかった。このことからレタスペレット種子の製造において、用いられるレタス種子に拮抗性内生細菌を減圧接種する方法が、拮抗性内生細菌をレタス種子に定着させるのに有効であることが明らかになった。   The results of Example 1 and Comparative Example 1 are shown in Table 5. In the section (Example 1) where the FPH-2003 strain was pelleted after vacuum inoculation (Example 1), the survival rate of the FPH-2003 strain hardly decreased even when dried, and the moisture content of ordinary pellets for commercial use was 1.1%. Even so, it was as high as 93%. On the other hand, in the section (Comparative Example 1) in which the FPH-2003 strain was pelletized after immersion inoculation, the survival rate of the FPH-2003 strain gradually decreased with drying, which is 1.1%, which is the moisture content of normal commercial pellets. %, The survival rate of the FPH-2003 strain was 3%, indicating that most of the FPH-2003 strains were killed. From this, it was revealed that in the production of lettuce pellet seeds, the method of inoculating the antagonistic endogenous bacteria on the lettuce seeds used under reduced pressure is effective for fixing the antagonistic endogenous bacteria on the lettuce seeds.

Figure 2007077126
Figure 2007077126

実施例2:レタス種子への拮抗性内生細菌の接種方法および乾燥方法が拮抗性内生細菌の生存および種子の発芽に与える影響
拮抗性内生細菌として、シュードモナス(Pseudomonas sp.) FPH-2003株(FERM AP-20654)を用いた。実施例1と同様の条件で減圧接種およびペレット造粒を行った。この種子の低温低湿乾燥は、下記の方法で行った。15℃の低温室にデシケーターを入れ、その中に乾燥剤としてシリカゲルを入れた。ペレット種子をデシケーター中に置き、24時間乾燥させた。このときのデシケーター中の湿度は約20%であった。
Example 2: Effect of Inoculation Method and Drying Method of Antagonistic Endogenous Bacteria on Lettuce Seed on Survival and Seed Germination of Antagonistic Endogenous Pseudomonas (Pseudomonas sp.) FPH-2003 A strain (FERM AP-20654) was used. Under reduced pressure inoculation and pellet granulation were performed under the same conditions as in Example 1. This seed was dried at low temperature and low humidity by the following method. A desiccator was placed in a low-temperature room at 15 ° C., and silica gel was placed therein as a desiccant. The pelleted seeds were placed in a desiccator and allowed to dry for 24 hours. At this time, the humidity in the desiccator was about 20%.

比較例2
比較例1と同様の方法でFPH-2003株を浸漬処理し、ペレット造粒を行った。この種子を30℃の温風循環乾燥機に入れ、24時間乾燥させた。このときの部屋の湿度は約45%であった。
Comparative Example 2
The FPH-2003 strain was dipped in the same manner as in Comparative Example 1, and pellet granulation was performed. The seeds were placed in a hot air circulating dryer at 30 ° C. and dried for 24 hours. The humidity of the room at this time was about 45%.

ペレット造粒種子中におけるFPH-2003株の生存率は、参考例2と同様の方法を用いた。また、種子の発芽率は下記の方法で確認した。脱イオン水を吸水させたろ紙上に、ペレット種子150粒(50粒×3反復)を置床し、20℃暗黒条件下で14日間栽培した。胚軸と幼根の存在を確認したものをカウントし、その数から百分率を求め発芽率とした。   The survival rate of the FPH-2003 strain in pelleted granulated seeds was the same as in Reference Example 2. Moreover, the germination rate of seeds was confirmed by the following method. On the filter paper in which deionized water was absorbed, 150 pellet seeds (50 grains × 3 repetitions) were placed and cultivated under dark conditions at 20 ° C. for 14 days. Those that confirmed the presence of hypocotyls and radicles were counted, and the percentage was determined from the number to determine the germination rate.

実施例2と比較例2の結果を表6に示す。FPH-2003株を減圧接種後15℃で低温低湿乾燥した区(実施例2)では、FPH-2003株の生存率は100%、FPH-2003株を浸漬接種後30℃で通風乾燥した区(比較例2)では、FPH-2003株の生存率は11%となり、比較例2よりも実施例2の方がより高い生存率となった。種子の発芽率に関しても95%以上の高い値を示し、問題のないことがわかった。これらのことからレタス種子において、拮抗性内生細菌を減圧接種した後、低温低湿乾燥する方法が、拮抗性内生細菌を定着させるのに有効であることが明らかになった。   The results of Example 2 and Comparative Example 2 are shown in Table 6. In the group (Example 2) in which the FPH-2003 strain was vacuum-inoculated and dried at low temperature and low humidity at 15 ° C. (Example 2), the survival rate of the FPH-2003 strain was 100%. In Comparative Example 2), the survival rate of the FPH-2003 strain was 11%, and Example 2 had a higher survival rate than Comparative Example 2. The seed germination rate also showed a high value of 95% or more, indicating that there was no problem. From these facts, it has been clarified that the method of low-temperature, low-humidity drying after inoculating antagonistic endogenous bacteria under reduced pressure in lettuce seeds is effective for colonizing the antagonistic endogenous bacteria.

Figure 2007077126
Figure 2007077126

実施例3:拮抗性内生細菌を減圧接種後、低温低湿乾燥したレタスペレット種子における拮抗性内生細菌の保存安定性試験(拮抗性内生細菌の生存率および種子の発芽率の推移)
実施例2でFPH-2003株を減圧接種後、造粒し15℃で低温低湿乾燥したペレット種子を密封し、(1)温度5℃・湿度20%、(2)温度15℃・湿度40%、(3)温度20/30℃変温・湿度80%の3つの異なる条件下で3ヶ月間貯蔵した。貯蔵期間0ヶ月・1ヶ月・3ヶ月の時点で、FPH-2003株の生存率および種子の発芽率を調査した。
実施例3の結果を表7に示す。
Example 3: Storage stability test of antagonistic endogenous bacteria in lettuce pellet seeds dried under low temperature and low humidity after inoculation with antagonistic endogenous bacteria (transition of survival rate of antagonistic endogenous bacteria and germination rate of seeds)
After inoculating the FPH-2003 strain under reduced pressure in Example 2, the pelleted seeds that were granulated and dried at 15 ° C at low temperature and low humidity were sealed. (1) Temperature 5 ° C, humidity 20%, (2) Temperature 15 ° C, humidity 40% (3) It was stored for 3 months under three different conditions of temperature 20/30 ° C temperature change and humidity 80%. The survival rate and seed germination rate of the FPH-2003 strain were investigated at the storage period of 0 month, 1 month, and 3 months.
The results of Example 3 are shown in Table 7.

このレタスペレット種子を、温度5℃・湿度20%で保存した区(実施例3−1)では、FPH-2003株の生存率は貯蔵1ヶ月後には96%、貯蔵3ヶ月後には36%であった。一方、この種子を温度15℃・湿度40%で保存した区(実施例3−2)では、FPH-2003株の生存率は貯蔵1ヶ月後には30%、貯蔵3ヶ月後には0%であった。また温度20/30℃変温・湿度80%で保存した区(実施例3−3)では、FPH-2003株の生存率は貯蔵1ヶ月後には4%、貯蔵3ヶ月後には0%であった。種子の発芽率に関してはいずれの区でも93%以上の高い値を示し、問題のないことがわかった。これらのことから、レタス種子において拮抗性内生細菌を減圧接種した後、造粒後、乾燥を低温低湿条件下で行ったペレット種子を低温低湿下で貯蔵することで、拮抗性内生細菌の生存率が高まり、拮抗性内生細菌を種子に長い期間定着させるのに有効であることが明らかになった。   In the section where the lettuce pellet seeds were stored at a temperature of 5 ° C. and a humidity of 20% (Example 3-1), the survival rate of the FPH-2003 strain was 96% after 1 month of storage and 36% after 3 months of storage. there were. On the other hand, in the group (Example 3-2) where this seed was stored at a temperature of 15 ° C. and a humidity of 40%, the survival rate of the FPH-2003 strain was 30% after 1 month of storage and 0% after 3 months of storage. It was. In the section where the temperature was changed at 20/30 ° C and the humidity was 80% (Example 3-3), the survival rate of the FPH-2003 strain was 4% after 1 month of storage and 0% after 3 months of storage. It was. Regarding the germination rate of seeds, it showed a high value of 93% or more in any group, and it was found that there was no problem. From these facts, lettuce seeds were inoculated with antagonistic endogenous bacteria under reduced pressure, and after granulation, pellet seeds dried under low-temperature and low-humidity conditions were stored under low-temperature and low-humidity conditions. The survival rate was increased, and it was proved that it was effective in establishing antagonistic endogenous bacteria on seeds for a long time.

Figure 2007077126
Figure 2007077126

実施例4:拮抗性内生細菌コーティング種子のレタスビッグベイン病を媒介するOlpidium brassicaeの感染阻害効果
拮抗性内生細菌として、シュードモナス(Pseudomonas sp.) FPH-2005-1株(FERM AP-20653)を用いた。実施例2と同様の条件で減圧接種およびペレット造粒を行い、低温低湿乾燥を行った。拮抗性内生細菌コーティング種子及び通常種子(拮抗性内生細菌をコーティングしていない種子)それぞれを、ビッグベイン病汚染土壌を充填したプランター(25cm×60cm)に播種し、ガラス温室内で育成した。播種26日後にレタス苗を抜き取り、生物顕微鏡下で根部に形成したOlpidium brassicaeの遊走子のうの数を調べた。通常種子では1株当たり86.3個感染していたが拮抗性内生細菌コーティング種子では、5.5個とOlpidium brassicaeの感染数を約1/15に減少させることができた。
結果を表8に示す。
Example 4: Inhibitory effect of infection of Olpidium brassicae mediating lettuce big vein disease of seeds coated with antagonistic endogenous bacteria As antagonistic endogenous bacteria, Pseudomonas sp. FPH-2005-1 strain (FERM AP-20653) Was used. Under reduced pressure inoculation and pellet granulation were performed under the same conditions as in Example 2, followed by low temperature and low humidity drying. Seeded seeds coated with antagonistic endophytic bacteria and normal seeds (seed not coated with antagonistic endophytic bacteria) in a planter (25cm x 60cm) filled with Big-Bain disease contaminated soil and grown in a glass greenhouse . Twenty-six days after sowing, lettuce seedlings were extracted and the number of Olpidium brassicae zoosporangium formed at the root was examined under a biological microscope. In normal seeds, 86.3 infections per strain, but in the case of seeds coated with antagonistic endogenous bacteria, the number of infections with 5.5 and Olpidium brassicae could be reduced to about 1/15.
The results are shown in Table 8.

Figure 2007077126
Figure 2007077126

実施例5:レタスビッグベイン病に対する拮抗性内生細菌コーティング種子の防除効果
拮抗性内生細菌として、シュードモナス(Pseudomonas sp.) FPH-2005-1株(FERM AP-20653)を用いた。実施例2と同様の条件で減圧接種およびペレット造粒を行い、低温低湿乾燥を行った。拮抗性内生細菌コーティング種子及び通常種子(拮抗性内生細菌をコーティングしていない種子)それぞれを、ビッグベイン病汚染土壌を充填したプランター(25cm×60cm)に播種し、ガラス温室内で育成した。播種80及び110日後に発病を調査した。通常種子では播種80日後には発病株率30.0%、播種110日後には100%となった。拮抗性内生細菌コーティング種子区では、播種80日後では5.9%、播種110日後には67.7%となり、それぞれ通常種子と比べ低い発病株率であった。本結果より拮抗性内生細菌コーティング種子はレタスビッグベイン病に対して高い発病抑制効果を示した。
結果を表9に示す。
Example 5: Control effect of seed coated with antagonistic endogenous bacteria against lettuce big bene disease Pseudomonas (Pseudomonas sp.) FPH-2005-1 strain (FERM AP-20653) was used as an antagonistic endogenous bacteria. Under reduced pressure inoculation and pellet granulation were performed under the same conditions as in Example 2, followed by low temperature and low humidity drying. Seeded seeds coated with antagonistic endophytic bacteria and normal seeds (seed not coated with antagonistic endophytic bacteria) in a planter (25cm x 60cm) filled with Big-Bain disease contaminated soil and grown in a glass greenhouse . The disease was investigated 80 and 110 days after sowing. With normal seeds, the disease rate was 30.0% after 80 days of sowing and 100% after 110 days of sowing. In the seed group with antagonistic endophytic bacteria, the rate was 5.9% after 80 days of sowing and 67.7% after 110 days of sowing, which was a lower disease rate compared to normal seeds. From these results, the seeds coated with antagonistic endogenous bacteria showed a high disease-inhibiting effect against lettuce big-vein disease.
The results are shown in Table 9.

Figure 2007077126
Figure 2007077126

実施例6:減圧接種条件の検討
拮抗性内生細菌として、シュードモナス(Pseudomonas sp.)FPH-2005-1株(FERM AP-20653)を用いた。キングB寒天培地を入れた9cmシャーレにシュードモナス(Pseudomonas sp.) FPH-2005-1株を植菌し、25℃で2日間静置培養した。コーンラージ棒を用いて集菌し、1/5000 Tween80を添加した滅菌水に懸濁した。希釈平板法で生菌数を測定したところ、約1 x 109 cfu/mlであった。レタス種子20g(品種:ロジック)をメッシュで包みイチゴパックに収め、浮かばないように重りを載せ、種子が沈むように菌懸濁液150mlを注いだ。減圧接種法は、MDA-015ポンプを用い減圧接種条件の検討を行った。減圧接種後、脱水し、恒温乾燥機にて30℃、15時間通風乾燥した。種子からの菌の検出は、下記の方法で行った。種子100粒をストレプトマイシン添加キングB寒天培地に置床し、25℃で2日間培養後、蛍光コロニーの出現する種子をカウントした。また、種子の発芽率は、脱イオン水を吸水させたろ紙上に、ペレット種子150粒(50粒×3反復)を置床し、20℃暗黒条件下で14日間栽培した。胚軸と幼根の存在を確認したものをカウントし、その数から百分率を求め発芽率とした。
Example 6: Examination of reduced-pressure inoculation conditions Pseudomonas (Pseudomonas sp.) FPH-2005-1 strain (FERM AP-20653) was used as an antagonistic endogenous bacterium. Pseudomonas (Pseudomonas sp.) Strain FPH-2005-1 was inoculated into a 9 cm petri dish containing King B agar medium, and statically cultured at 25 ° C. for 2 days. Bacteria were collected using a corn large stick and suspended in sterile water to which 1/5000 Tween 80 was added. When the viable cell count was measured by the dilution plate method, it was about 1 × 10 9 cfu / ml. Lettuce seeds 20g (variety: logic) were wrapped in a mesh and placed in a strawberry pack, a weight was placed so that it did not float, and 150ml of the bacterial suspension was poured so that the seeds would sink. In the vacuum inoculation method, the conditions of vacuum inoculation were examined using an MDA-015 pump. After inoculation under reduced pressure, it was dehydrated and dried in a constant temperature dryer at 30 ° C. for 15 hours. Detection of bacteria from seeds was performed by the following method. 100 seeds were placed on a streptomycin-added King B agar medium, cultured at 25 ° C. for 2 days, and then seeds with fluorescent colonies appeared were counted. The seed germination rate was determined by placing 150 pellet seeds (50 grains x 3 repetitions) on filter paper that had absorbed deionized water, and cultivated under dark conditions at 20 ° C for 14 days. Those that confirmed the presence of hypocotyls and radicles were counted, and the percentage was calculated from the number to determine the germination rate.

(実施例6-1)最高陰圧条件の検討
ポンプMDA-15の圧力調節弁を調節し、最高陰圧条件を変えた。
(実施例6−2)最高陰圧から常圧への戻し時間の検討
空気穴の開閉を調節して常圧への戻し時間を調節した。
(実施例6−3)最高陰圧の保持時間の検討
最高陰圧条件下に保持する時間を変更した。
比較例として、浸漬処理を行った種子を用いて菌の検出率と発芽率を調べた。
(Example 6-1) Examination of maximum negative pressure condition The pressure control valve of the pump MDA-15 was adjusted to change the maximum negative pressure condition.
(Example 6-2) Examination of return time from maximum negative pressure to normal pressure The return time to normal pressure was adjusted by adjusting the opening and closing of the air holes.
(Example 6-3) Examination of retention time of maximum negative pressure The retention time of the maximum negative pressure was changed.
As a comparative example, the detection rate and germination rate of the fungus were examined using the seeds subjected to the immersion treatment.

結果を表10に示した。実施例6-1の結果から、最高陰圧150 mmHg〜680 mmHgの範囲では、菌の検出率、発芽率ともに問題ないことがわかった。実施例6-2の結果から、最高陰圧から常圧への戻し時間が25 秒〜50 秒の範囲では、菌の検出率、発芽率ともに問題ないことがわかった。実施例6-3の結果から、最高陰圧の保持時間は、300 秒に比べ、1200 秒〜3600 秒では、菌の検出率がやや低下する事がわかった。   The results are shown in Table 10. From the result of Example 6-1, it was found that there was no problem in both the bacteria detection rate and germination rate in the range of maximum negative pressure of 150 mmHg to 680 mmHg. From the results of Example 6-2, it was found that both the detection rate of germs and the germination rate were satisfactory when the return time from the maximum negative pressure to normal pressure was in the range of 25 to 50 seconds. From the results of Example 6-3, it was found that the retention rate of the maximum negative pressure was slightly decreased in the range of 1200 to 3600 seconds compared to 300 seconds.

実施例6の減圧接種条件の範囲であれば、内生細菌をレタス種子に接種するのに問題ないことがわかった。   It was found that there was no problem in inoculating the lettuce seeds with endogenous bacteria within the range of the vacuum inoculation conditions of Example 6.

Figure 2007077126
Figure 2007077126

実施例7:レタス種子への拮抗性内生細菌の接種方法および乾燥方法が拮抗性内生細菌の生存に与える影響
実施例6と同様の方法でFPH-2005-1株(FERM AP-20653)を培養し、実施例1と同様の減圧接種と低温低湿乾燥および比較例1と同様の常温・常圧条件における接種と加温通風乾燥を組合せた試験を行った。
Example 7: Effect of inoculation method and drying method of lettuce seeds on survival of antagonistic endogenous bacteria FPH-2005-1 strain (FERM AP-20653) in the same manner as in Example 6 The test was conducted by combining inoculation under reduced pressure and low-temperature and low-humidity drying similar to Example 1, and inoculation and warm-air drying under normal temperature and normal pressure conditions similar to Comparative Example 1.

内生細菌の検出は、96穴のマイクロウエルにペレット種子を入れ、ストレプトマイシン200 ppm、チオファメートメチル1,000 ppm加用キングB液体培地を100μl注入後、25℃、48時間培養後、340 nmの紫外光を照射し、蛍光を示したウエルを数えた。蛍光強度を3段階に分類した(+:かすかに蛍光が見られる。++:蛍光が見られる。+++:強い蛍光が確認される。)。そして各蛍光強度を示すウエルの、全ウエルに対する百分率を求めた。
結果を表11に示した。
Endogenous bacteria were detected by placing pelleted seeds into 96-well microwells, injecting 100 μl of King B liquid medium supplemented with streptomycin 200 ppm and thiofamate methyl 1,000 ppm, culturing at 25 ° C. for 48 hours, and 340 nm The wells that were irradiated with ultraviolet light and showed fluorescence were counted. The fluorescence intensity was classified into three levels (+: faint fluorescence is seen. ++: fluorescence is seen. +++: strong fluorescence is confirmed). Then, the percentage of the wells showing each fluorescence intensity with respect to all the wells was determined.
The results are shown in Table 11.

Figure 2007077126
Figure 2007077126

表11の結果から、減圧接種、低温低湿乾燥のそれぞれ単独処理および併用処理により接種した内生細菌FPH-2005-1株がレタスペレット種子から高頻度で検出されることが確認された。   From the results in Table 11, it was confirmed that endophytic bacteria FPH-2005-1 strains inoculated by single treatment and combined treatment of reduced-pressure inoculation and low-temperature and low-humidity drying were frequently detected from lettuce pellet seeds.

以上の結果から、レタス種子に拮抗性内生細菌を減圧接種する方法、レタス種子に拮抗性内生細菌を接種後、低温低湿条件下で乾燥する方法、およびこれらを組み合わせる方法により、レタス種子へ接種した拮抗性内生細菌の生存率は著しく高まることは明らかである。更に、本発明に基づいて作成した拮抗性内生細菌コーティングレタス種子は、レタスビッグベイン病害に対して高い防除価を示した。本発明を利用することにより、レタスビッグベイン病害防除効果が高く保存安定性の高いレタス種子を安価かつ簡便に提供することが可能になる。   From the above results, lettuce seeds can be obtained by inoculating lettuce seeds under reduced pressure, inoculating lettuce seeds with antagonistic endogenous bacteria, then drying under low temperature and low humidity conditions, and a combination thereof. It is clear that the survival rate of the inoculated antagonistic bacteria is significantly increased. Furthermore, the antagonistic endophytic-coated lettuce seeds prepared according to the present invention showed a high control value against lettuce big bain disease. By using the present invention, it becomes possible to provide lettuce seeds that are highly effective in controlling lettuce big vein disease and have high storage stability at low cost and in a simple manner.

Claims (8)

レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌をレタス種子に減圧接種することを特徴とする、前記内生細菌がコーティングされたレタス種子の製造方法。   A method for producing a lettuce seed coated with an endogenous bacterium, comprising inoculating the lettuce seed with an endophytic bacterium having an antagonistic property to an genus Orpidium having a lettuce big bean virus. レタス種子に内生細菌を減圧接種した後に、低温低湿条件下で乾燥することを更なる特徴とする請求項1記載の方法。   The method according to claim 1, further comprising drying the lettuce seeds under low-temperature and low-humidity conditions after inoculating endophytic bacteria under reduced pressure. レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌をレタス種子に接種し、接種後に前記種子を低温低湿条件下で乾燥することを特徴とする、前記内生細菌がコーティングされたレタス種子の製造方法。   Characterized in that an endophytic bacterium that is antagonistic to the genus Orpidium that retains the lettuce big bain virus is inoculated on a lettuce seed, and the seed is dried under low-temperature and low-humidity conditions after inoculation. A method for producing coated lettuce seeds. 請求項1〜3のいずれか1項記載の方法により製造された、レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌がコーティングされたレタス種子。   A lettuce seed produced by the method according to any one of claims 1 to 3, coated with an endogenous bacterium that exhibits an antagonistic property to an genus Orpidium that retains a lettuce big bain virus. レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌をレタス種子に減圧接種し、前記種子を播種することを特徴とする、レタスビッグベイン病害の防除方法。   A method for controlling a lettuce big bain disease, characterized by inoculating lettuce seeds under reduced pressure with endophytic bacteria having antagonistic properties against the genus Orpidium that retains the lettuce big bain virus, and sowing the seeds. レタス種子に内生細菌を減圧接種した後に、前記種子を低温低湿条件下で乾燥することを更なる特徴とする請求項5記載の方法。   The method according to claim 5, further comprising drying the seeds under low-temperature and low-humidity conditions after inoculating the lettuce seeds with endogenous bacteria under reduced pressure. レタスビッグベインウイルスを保持するオルピディウム属菌に対して拮抗性を示す内生細菌をレタス種子に接種し、接種後に前記種子を低温低湿条件下で乾燥し、前記種子を播種することを特徴とする、レタスビッグベイン病害の防除方法。   Inoculating lettuce seeds with endophytic bacteria having an antagonistic property against the genus Orpidium that retains the lettuce big bain virus, drying the seeds under low-temperature and low-humidity conditions after inoculation, and sowing the seeds , A method of controlling lettuce big bain disease. 内生細菌を接種したレタス種子を、乾燥終了後から播種までの間に、低温低湿条件下で貯蔵することを更なる特徴とする請求項5〜7のいずれか1項記載の方法。   The method according to any one of claims 5 to 7, further comprising storing the lettuce seeds inoculated with endophytic bacteria under low temperature and low humidity conditions between the end of drying and sowing.
JP2005271020A 2005-09-16 2005-09-16 Endogenous bacterium coating lettuce seed, method for producing the same, and method for controlling lettuce big-vein virus disease Pending JP2007077126A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005271020A JP2007077126A (en) 2005-09-16 2005-09-16 Endogenous bacterium coating lettuce seed, method for producing the same, and method for controlling lettuce big-vein virus disease
US11/991,962 US20100154299A1 (en) 2005-09-16 2006-09-15 Seed Coated with Antagonistic Microorganism, Method for Producing the Seed, and Disease Control Method for Crop
PCT/JP2006/318337 WO2007032458A1 (en) 2005-09-16 2006-09-15 Seed coated with antagonistic microorganism, method of producing the same and method of protecting crop from diseases
EP06810179A EP1935245A1 (en) 2005-09-16 2006-09-15 Seed coated with antagonistic microorganism, method of producing the same and method of protecting crop from diseases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005271020A JP2007077126A (en) 2005-09-16 2005-09-16 Endogenous bacterium coating lettuce seed, method for producing the same, and method for controlling lettuce big-vein virus disease

Publications (1)

Publication Number Publication Date
JP2007077126A true JP2007077126A (en) 2007-03-29

Family

ID=37937776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005271020A Pending JP2007077126A (en) 2005-09-16 2005-09-16 Endogenous bacterium coating lettuce seed, method for producing the same, and method for controlling lettuce big-vein virus disease

Country Status (1)

Country Link
JP (1) JP2007077126A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077118A (en) * 2005-09-16 2007-03-29 Hyogo Prefecture Antagonistic microorganism coating seed, method for producing the same, and method for controlling disease in crop
WO2015093595A1 (en) * 2013-12-20 2015-06-25 学校法人東京農業大学 Microbe-protecting agent, coated seeds using said microbe-protecting agent, and method for producing said coated seeds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007077118A (en) * 2005-09-16 2007-03-29 Hyogo Prefecture Antagonistic microorganism coating seed, method for producing the same, and method for controlling disease in crop
WO2015093595A1 (en) * 2013-12-20 2015-06-25 学校法人東京農業大学 Microbe-protecting agent, coated seeds using said microbe-protecting agent, and method for producing said coated seeds
JP5884098B2 (en) * 2013-12-20 2016-03-15 学校法人東京農業大学 Microbial protective agent, coating agent containing the microorganism protective agent, coated seed using the same, and method for producing the same
JPWO2015093595A1 (en) * 2013-12-20 2017-03-23 学校法人東京農業大学 Microbial protective agent, coating agent containing the microorganism protective agent, coated seed using the same, and method for producing the same

Similar Documents

Publication Publication Date Title
WO2007032458A1 (en) Seed coated with antagonistic microorganism, method of producing the same and method of protecting crop from diseases
JP3776919B2 (en) Plant disease control method and control agent using Bacillus bacteria
US7422737B1 (en) Porous freeze-dried hydrocolloid beads containing viable microorganisms for biological control
Bennett et al. Beneficial microorganism survival on seed, roots and in rhizosphere soil following application to seed during drum priming
AU2020260526B2 (en) Clonostachys rosea inoculated plant materials with fungicides and adjuvants
CN100566574C (en) Method and control agent with the bacillus controlling plant diseases
CN107325821B (en) Biomass charcoal-based microbial inoculant for preventing and treating watermelon fusarium wilt and preparation method and application thereof
NO316012B1 (en) Pseudomonas strain, as well as composition and method of controlling plant diseases
Wiwattanapatapee et al. Preparation and evaluation of Bacillus megaterium-alginate microcapsules for control of rice sheath blight disease
CN113243390A (en) Novel method for preventing and treating field diseases and weeds by using recombinant bacillus pumilus
Benizri et al. Fate of two microorganisms in maize simulated rhizosphere under hydroponic and sterile conditions
JP2006176533A (en) Method of controlling plant disease damage by using bacillus and controlling agent
JP5111747B2 (en) Antagonistic microorganism-coated seed, method for producing the same, and method for controlling diseases in crops
JP5193626B2 (en) Preservation method of microbial pesticide preparation
CN111869682B (en) Application of chaetomium globosum in preventing and treating wheat take-all
Fiddaman et al. Screening of bacteria for the suppression of Botrytis cinerea and Rhizoctonia solani on lettuce (Lactuca sativa) using leaf disc bioassays
JP2007077126A (en) Endogenous bacterium coating lettuce seed, method for producing the same, and method for controlling lettuce big-vein virus disease
JP6429143B2 (en) Plant growth enhancer and plant cultivation method using the same
JP5909695B1 (en) Microbial control agent and seed coating agent for bacterial disease of plant, and seed coated with said seed coating agent
EP3462879B1 (en) Method for improving the development of plants
EP2062966A1 (en) Material for control of soil-borne disease in plant utilizing novel filamentous fungi
KR20050040285A (en) Penibacillus polymyxa h210 and method of enhancement of plant growth and controlling soil pest using the same
US20160165894A1 (en) Microbe-protective agent, processing agent of plant protection against diseases and coated seed treated thereby
US11690374B2 (en) Biocontrol compositions
RU2776948C2 (en) Composition and method for improvement of plant development