JP2007076985A - LOW LOSS Ni-Cu-Zn-BASED FERRITE - Google Patents

LOW LOSS Ni-Cu-Zn-BASED FERRITE Download PDF

Info

Publication number
JP2007076985A
JP2007076985A JP2005270263A JP2005270263A JP2007076985A JP 2007076985 A JP2007076985 A JP 2007076985A JP 2005270263 A JP2005270263 A JP 2005270263A JP 2005270263 A JP2005270263 A JP 2005270263A JP 2007076985 A JP2007076985 A JP 2007076985A
Authority
JP
Japan
Prior art keywords
loss
tio
ferrite
magnetic flux
based ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005270263A
Other languages
Japanese (ja)
Inventor
Kenichi Chatani
健一 茶谷
Tadakuni Sato
忠邦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2005270263A priority Critical patent/JP2007076985A/en
Publication of JP2007076985A publication Critical patent/JP2007076985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sintered article of a low loss Ni-Cu-Zn-based ferrite which is smaller in the core loss than conventional without being accompanied by the marked decrease of the saturated magnetic flux density. <P>SOLUTION: In Ni-Cu-Zn-based ferrites having a chemical composition of (Ni<SB>(1-a)</SB>Cu<SB>a</SB>)O-yZnO-zFe<SB>2</SB>O<SB>3</SB>, a low loss Ni-Cu-Zn-based ferrite for which x+y+z=100, 47.0≤z≤49.7, 18.0≤y≤28.0, 0.05≤a≤0.40, and which is formed by firing a raw material containing 0.02-0.50 wt.% of V<SB>2</SB>O<SB>5</SB>and 0.02-0.60 wt.% of TiO<SB>2</SB>as sub-components, can be reduced in core loss by about 10-20% as compared with the case of no addition of V<SB>2</SB>O<SB>5</SB>and TiO<SB>2</SB>. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、小型電子機器の電源供給回路に使用されるトランス、チョークコイルに適した低損失Ni−Cu−Zn系フェライトに関するものである。   The present invention relates to a low-loss Ni—Cu—Zn ferrite suitable for a transformer and choke coil used in a power supply circuit of a small electronic device.

携帯電話やノートパソコン、小型ゲーム機等の携帯型電子機器において、機能の増加に加えて電源持続時間の維持、改善が求められる結果、電源回路素子における低損失化の要求は近年益々高まっている。電源回路全体の効率改善と小型化には、電源回路中のコイルのコア材として用いられるフェライト材料の特性向上がきわめて重要である。電源回路中のコイルに用いられるフェライト材料に対する技術要求として、下記に示す項目が挙げられる。   In portable electronic devices such as mobile phones, notebook PCs, and small game machines, in addition to increasing functions, the need to maintain and improve the power supply duration has been increasing. As a result, the demand for low power supply circuit elements has been increasing in recent years. . In order to improve the efficiency and miniaturization of the entire power supply circuit, it is extremely important to improve the characteristics of the ferrite material used as the core material of the coil in the power supply circuit. The technical requirements for the ferrite material used for the coil in the power supply circuit include the following items.

最初に、高い飽和磁束密度を有するフェライト材料が求められている。これは飽和磁束密度が高い磁芯材料ほど、小さなコアでも磁気飽和が起こりにくくなる為、小型のコイル形状を実現できるからである。   First, a ferrite material having a high saturation magnetic flux density is required. This is because a magnetic core material having a higher saturation magnetic flux density is less likely to cause magnetic saturation even with a small core, and thus a small coil shape can be realized.

次に、低損失のフェライト材料が求められている。電源回路上のトランス、チョークコイル等のコイルコア中では、数10kHzから数MHzの周波数で磁束密度が変化するが、この際、磁化過程の不可逆性によって損失(コアロス)が生ずる。コイル形状が小型化するほど、磁束が狭い領域に集中することとなり、結果コイルコア中の磁束密度の変化量が大きくなる。フェライト材料における損失は、一般的に磁束密度の変化幅の2.5〜3乗に比例して増大するため、コイルの損失を増大させずにコイルを小型化するためには、コイルコア材の低損失化が必要である。   Next, a low-loss ferrite material is required. In a coil core such as a transformer or a choke coil on a power supply circuit, the magnetic flux density changes at a frequency of several tens of kHz to several MHz. At this time, a loss (core loss) occurs due to irreversibility of the magnetization process. As the coil shape becomes smaller, the magnetic flux concentrates in a narrow region, and as a result, the amount of change in the magnetic flux density in the coil core increases. Since the loss in the ferrite material generally increases in proportion to the 2.5-3rd power of the change width of the magnetic flux density, in order to reduce the size of the coil without increasing the loss of the coil, the loss of the coil core material is low. Loss is necessary.

最後に、大きな比抵抗を持つフェライト材料が求められている。特に携帯型電子機器の電源回路においては、表面実装の集積度はますます高まると考えられる。この場合、直巻線、積層構造を可能にする高い電気抵抗を持つNi−Cu−Zn系フェライト材料は、コイルコア材料として現状では最適な材料である。   Finally, a ferrite material having a large specific resistance is required. In particular, in the power supply circuits of portable electronic devices, it is considered that the degree of surface mounting integration will increase. In this case, a Ni—Cu—Zn ferrite material having a high electrical resistance that enables a series winding and a laminated structure is an optimal material as a coil core material at present.

ここで、現在、携帯電子機器の電源回路に使用されるコイルコア用のNi−Cu−Zn系フェライト材としては、飽和磁束密度が4400G以上の材質ではコアロスが2000mW/cc(励磁条件:周波数500kHz、励磁全振幅1000G)以下、飽和磁束密度が4000G以上4400G未満の材質ではコアロスが1200mW/cc(励磁条件:周波数500kHz、励磁全振幅1000G)以下となる材質が使用されているが、携帯電子機器の機能集積化と電源持続時間の延長という相反する要求に対し、これら既存材料では対応できない事例が現れはじめている。コイルの損失を同等としたまま、コイルコアの断面積を20%減ずるためには、飽和磁束密度が4400G以上の材質ではコアロスが1200mW/cc(励磁条件:周波数500kHz、励磁全振幅1000G)以下、飽和磁束密度が4000G以上4400G未満の材質ではコアロスが800mW/cc(励磁条件:周波数500kHz、励磁全振幅1000G)以下となる材質が必要である。   Here, as a Ni-Cu-Zn ferrite material for a coil core used for a power supply circuit of a portable electronic device, a core loss is 2000 mW / cc (excitation condition: frequency 500 kHz, with a material having a saturation magnetic flux density of 4400 G or more. For materials having a total excitation amplitude of 1000 G) or less and a saturation magnetic flux density of 4000 G or more and less than 4400 G, a material having a core loss of 1200 mW / cc (excitation conditions: frequency 500 kHz, excitation total amplitude 1000 G) or less is used. In response to conflicting demands for functional integration and extended power supply duration, there are now cases where these existing materials cannot respond. In order to reduce the cross-sectional area of the coil core by 20% while maintaining the same coil loss, the core loss is 1200 mW / cc (excitation condition: frequency 500 kHz, excitation total amplitude 1000 G) or less when the saturation magnetic flux density is 4400 G or more. A material having a magnetic flux density of 4000 G or more and less than 4400 G requires a material having a core loss of 800 mW / cc or less (excitation conditions: frequency 500 kHz, excitation total amplitude 1000 G).

このように、高飽和磁束密度、低損失及び大きな比抵抗を持つには、Ni−Cu−Zn系フェライト材料の主成分調整に加え、副成分として焼結促進効果のあるV25、コアロス低減効果のあるTiO2の複合添加により、前記要求条件を満たすフェライト材質が期待されている。 Thus, in order to have a high saturation magnetic flux density, a low loss and a large specific resistance, in addition to the adjustment of the main component of the Ni—Cu—Zn ferrite material, V 2 O 5 which has a sintering promoting effect as a subsidiary component, core loss Due to the composite addition of TiO 2 having a reduction effect, a ferrite material satisfying the above requirements is expected.

そこで、Ni−Cu−Zn系フェライトに、V25,とTiO2を複合添加した例が特許文献1、特許文献2に開示されている。 Therefore, Patent Documents 1 and 2 disclose examples in which V 2 O 5 and TiO 2 are added in combination to Ni—Cu—Zn ferrite.

特開平06−084622号公報Japanese Patent Laid-Open No. 06-084622 特開2001−093718号公報JP 2001-093718 A

しかしながら、特許文献1に記載されている技術では、フェライト材料の損失が大きくなる周波数領域で電波吸収体としての機能を向上させようとするものであり、主成分ZnO量が32〜35mol%という電源回路素子用としては不適合な組成領域であり、かつ、V25,TiO2の複合添加によるフェライト材料の損失低減を目的とするものではない。 However, the technique described in Patent Document 1 intends to improve the function as a radio wave absorber in a frequency region where the loss of the ferrite material is large, and the power source having a main component ZnO amount of 32 to 35 mol%. It is an incompatible composition region for circuit elements, and is not intended to reduce the loss of ferrite material by the combined addition of V 2 O 5 and TiO 2 .

また、特許文献2に記載されている技術では、フェライト焼結体中の炭素の含有量を96重量ppmとし、V25、TiO2の許容添加量を各々0.0011重量%、0.012重量%に限定して抗折強度の上昇を図ることを目的とするものであり、V25、TiO2の複合添加は、フェライト材料の損失低減を目的とするものではない。 Further, in the technique described in Patent Document 2, the content of carbon in the ferrite sintered body is 96 ppm by weight, and the allowable addition amounts of V 2 O 5 and TiO 2 are 0.0011% by weight, 0.00%, respectively. The purpose is to increase the bending strength by limiting to 012% by weight, and the composite addition of V 2 O 5 and TiO 2 is not intended to reduce the loss of the ferrite material.

Ni−Cu−Zn系フェライトの一般的性質として、大きな飽和磁束密度を持つ組成ではコアロスも大きくなる傾向が知られている。しかし、小型電子機器の電源回路の小型化、高効率化要求に応えるためには、飽和磁束密度が大きく、コアロスが小さく、かつ、比抵抗値の大きなフェライト材料が必要となってくる。   As a general property of Ni—Cu—Zn-based ferrite, it is known that the core loss tends to increase in a composition having a large saturation magnetic flux density. However, in order to meet demands for miniaturization and high efficiency of power supply circuits of small electronic devices, a ferrite material having a high saturation magnetic flux density, a small core loss, and a large specific resistance value is required.

従って、本発明の課題は、上記の課題を解決し、飽和磁束密度の顕著な減少を伴うことなく、従来よりもコアロスが小さい低損失Ni−Cu−Zn系フェライトの焼成体を提供することにある。   Accordingly, an object of the present invention is to solve the above-described problems and provide a sintered body of low-loss Ni—Cu—Zn-based ferrite having a core loss smaller than that of the prior art without significantly reducing the saturation magnetic flux density. is there.

本発明は、前記課題の解決のため、Ni、Cu、Zn、Feの酸化物を主成分とし、化学組成がx(Ni(1-a)Cua)O・yZnO・zFe23で表されるNi−Cu−Zn系フェライトにおいて、x+y+z=100、47.0≦z≦49.7、18.0≦y≦28.0、0.05≦a≦0.40であり、副成分としてV25を0.02〜0.50重量%、およびTiO2を0.02〜0.60重量%含む原材料を焼成してなることを特徴とする低損失Ni−Cu−Zn系フェライトである。 The present invention, the table because, Ni, Cu, Zn, as a main component an oxide of Fe, the chemical composition of x (Ni (1-a) Cu a) O · yZnO · zFe 2 O 3 Solve the Problems In the Ni—Cu—Zn based ferrite, x + y + z = 100, 47.0 ≦ z ≦ 49.7, 18.0 ≦ y ≦ 28.0, 0.05 ≦ a ≦ 0.40, A low-loss Ni—Cu—Zn-based ferrite obtained by firing a raw material containing 0.02 to 0.50% by weight of V 2 O 5 and 0.02 to 0.60% by weight of TiO 2 is there.

詳述すれば、Ni−Cu−Zn系フェライトにおいて、Fe23含有量zが47mol%未満の場合、飽和磁束密度が明らかに減少し、またFe23含有量zが49.7mol%を越える場合、局所的に比抵抗が明らかに減少する傾向となるので望ましくない。またZnO含有量yが18.0mol%未満の場合、コアロスが大きく、明らかに初透磁率が減少する傾向となり、ZnO含有量yが28.0mol%を越える場合、飽和磁束密度が明らかに減少する傾向となり、磁気転移温度Tcが低くなるので望ましくない。さらに、NiO/CuO比に関しては、aが0.05未満の場合、焼結温度が上昇し、コアロスの増大が生ずるので望ましくなく、aが0.40を越える場合、コアロスが明らかに増加する傾向となるので望ましくない。 More specifically, in the Ni—Cu—Zn-based ferrite, when the Fe 2 O 3 content z is less than 47 mol%, the saturation magnetic flux density is clearly reduced, and the Fe 2 O 3 content z is 49.7 mol%. In the case of exceeding the value, the specific resistance tends to decrease clearly locally, which is not desirable. Further, when the ZnO content y is less than 18.0 mol%, the core loss is large and the initial magnetic permeability tends to decrease clearly. When the ZnO content y exceeds 28.0 mol%, the saturation magnetic flux density is clearly decreased. This is not desirable because the magnetic transition temperature Tc is lowered. Further, regarding the NiO / CuO ratio, when a is less than 0.05, the sintering temperature is increased, which is undesirable because an increase in core loss occurs. When a exceeds 0.40, the core loss tends to increase obviously. This is not desirable.

副成分としての添加物については、V25には焼結促進効果があり、主成分総重量に対して0.02重量%以上添加することにより、焼結温度をおよそ50℃低下させて980℃以下での焼結が可能となり、同時にコアロスの低減を伴う。またTiO2にはコアロス低減効果とともに焼結温度幅の拡大効果があり、主成分総重量に対して0.02重量%以上添加することにより、コアロスが10%以上低減し、V25添加のみではコアロスの顕著な上昇がみられる1080℃での焼結によっても、添加物を含まない組成と比較して10%以上のコアロス低減が可能となる。また、V25添加量が0.50重量%を超えると、初透磁率の低下とともにコアロスの増大が顕著である。TiO2添加量が0.60重量%を超えると、初透磁率の低下と焼結温度の上昇に伴うコアロスの増大が顕著である。以上により、V25、TiO2各々の添加量は、各々0.02重量%以上0.5重量%以下、0.02重量%以上0.60重量%以下に限定される。この範囲内においてさらにV25、TiO2を同時に添加調整、即ち、V25を0.15〜0.40重量%、TiO2を0.05〜0.40重量%に限定することにより、飽和磁束密度が4400G以上の材質ではコアロスが1200mW/cc(励磁条件:周波数500kHz、励磁全振幅1000G)以下、飽和磁束密度が4000G以上4400G未満の材質ではコアロスが800mW/cc(励磁条件:周波数500kHz、励磁全振幅1000G)以下となるスピネル型Ni−Cu−Zn系フェライト焼結体が得られ、かつ、焼結温度の変動に対してコアロス値の変動が小さくなることを見出した。 As for the additive as an accessory component, V 2 O 5 has a sintering promoting effect. By adding 0.02% by weight or more based on the total weight of the main component, the sintering temperature is lowered by about 50 ° C. Sintering at 980 ° C. or lower becomes possible, and at the same time, the core loss is reduced. TiO 2 has the effect of expanding the sintering temperature range as well as the effect of reducing the core loss. By adding 0.02% by weight or more with respect to the total weight of the main component, the core loss is reduced by 10% or more, and V 2 O 5 is added. Only by sintering at 1080 ° C. where a significant increase in core loss is observed, the core loss can be reduced by 10% or more compared to the composition containing no additive. On the other hand, when the amount of V 2 O 5 added exceeds 0.50% by weight, the core permeability is significantly increased along with the decrease in the initial magnetic permeability. When the added amount of TiO 2 exceeds 0.60% by weight, the increase in core loss accompanying the decrease in initial permeability and the increase in sintering temperature is remarkable. As described above, the addition amounts of V 2 O 5 and TiO 2 are respectively limited to 0.02 wt% or more and 0.5 wt% or less and 0.02 wt% or more and 0.60 wt% or less. Within this range, V 2 O 5 and TiO 2 are simultaneously added and adjusted, that is, V 2 O 5 is limited to 0.15 to 0.40 wt% and TiO 2 is limited to 0.05 to 0.40 wt%. Therefore, the core loss is 1200 mW / cc or less for materials with a saturation magnetic flux density of 4400 G or more (excitation conditions: frequency 500 kHz, excitation total amplitude 1000 G), and the core loss is 800 mW / cc for materials with a saturation magnetic flux density of 4000 G or more and less than 4400 G (excitation conditions: It was found that a spinel-type Ni—Cu—Zn-based ferrite sintered body having a frequency of 500 kHz and an excitation total amplitude of 1000 G) or less was obtained, and the fluctuation of the core loss value became smaller with respect to the fluctuation of the sintering temperature.

さらに、焼成体の平均結晶粒径が1.5〜10μmとなるような980〜1060℃の焼結温度で焼成してなることを特徴とする低損失Ni−Cu−Zn系フェライトでもある。   Furthermore, it is also a low-loss Ni—Cu—Zn-based ferrite that is fired at a sintering temperature of 980 to 1060 ° C. so that the average crystal grain size of the fired body is 1.5 to 10 μm.

従って、本発明によれば、飽和磁束密度の顕著な減少を伴うことなく、従来よりも飽和磁束密度が大きく、コアロスが小さく、かつ、比抵抗値の大きなフェライト材料であり、従来組成と比較して焼結温度の上昇に伴うコアロスの増大が抑制されるため、焼結温度管理の手間が軽減され、製造コスト低減と歩留まり率上昇が可能となる低損失Ni−Cu−Zn系フェライトの焼成体を提供することができる。   Therefore, according to the present invention, it is a ferrite material having a higher saturation magnetic flux density, a smaller core loss, and a higher specific resistance value than the conventional composition without causing a significant decrease in the saturation magnetic flux density. Since the increase in the core loss accompanying the increase in the sintering temperature is suppressed, the labor for controlling the sintering temperature is reduced, and the low-loss Ni—Cu—Zn ferrite sintered body that can reduce the manufacturing cost and increase the yield rate. Can be provided.

次に、本発明による低損失Ni−Cu−Zn系フェライトの実施の形態について、具体的な例を挙げて説明する。   Next, embodiments of the low-loss Ni—Cu—Zn-based ferrite according to the present invention will be described with specific examples.

Ni、Cu、Zn、Feの酸化物を主成分とし、化学組成がx(Ni(1-a)Cua)O・yZnO・zFe23で表されるNi−Cu−Zn系フェライトにおいて、x+y+z=100、47.0≦z≦49.7、18.0≦y≦28.0、0.05≦a≦0.40であり、副成分としてV25を0.02〜0.50重量%、およびTiO2を0.02〜0.60重量%含むことを特徴とする低損失Ni−Cu−Zn系フェライトにおいて、前記の組成になるように、原料粉末を秤量し、これを湿式混合し、脱水処理の後、700〜850℃で2〜10時間の仮焼を行う。その後、粉砕造粒し、所要形状に成形して脱バインダー処理する。これを酸素濃度を21%(大気中)の焼結雰囲気中で、900℃〜1180℃の温度範囲で1〜10時間焼結を行う。 In a Ni—Cu—Zn based ferrite whose main component is an oxide of Ni, Cu, Zn, and Fe and whose chemical composition is represented by x (Ni (1-a) Cu a ) O · yZnO · zFe 2 O 3 , x + y + z = 100, 47.0 ≦ z ≦ 49.7, 18.0 ≦ y ≦ 28.0, 0.05 ≦ a ≦ 0.40, and V 2 O 5 as a subcomponent is 0.02 to 0. In the low-loss Ni—Cu—Zn-based ferrite characterized by containing 50 wt% and TiO 2 in an amount of 0.02 to 0.60 wt%, the raw material powder is weighed so as to have the above-described composition, After wet mixing and dehydration treatment, calcination is performed at 700 to 850 ° C. for 2 to 10 hours. Thereafter, it is pulverized and granulated, formed into a required shape, and debindered. This is sintered in a sintering atmosphere having an oxygen concentration of 21% (in the air) at a temperature range of 900 ° C. to 1180 ° C. for 1 to 10 hours.

本発明においては、焼結温度として、平均結晶粒径が1.5〜10μmとなるような980〜1060℃の焼結温度範囲を選択する事が望ましい。これは、これよりも低い焼結温度では焼結密度を上昇させて大きな飽和磁束密度を得ることが困難となること、またこれよりも高い焼結温度では、交流磁化過程における不可逆性が増大する結果、コアロスの増大が顕著となるためである   In the present invention, it is desirable to select a sintering temperature range of 980 to 1060 ° C. so that the average crystal grain size is 1.5 to 10 μm as the sintering temperature. This is because it becomes difficult to increase the sintering density to obtain a large saturation magnetic flux density at a sintering temperature lower than this, and the irreversibility in the AC magnetization process increases at a sintering temperature higher than this. As a result, the increase in core loss becomes remarkable.

次に、具体的な実施例を挙げ、本発明の低損失Ni−Cu−Zn系フェライトについて、さらに詳しく説明する。   Next, specific examples will be given to describe the low-loss Ni—Cu—Zn-based ferrite of the present invention in more detail.

主成分原料粉末をx(Ni(1-a)Cua)O・yZnO・zFe23(x、y、zはmol%、x=25.0、y=26.0、z=49.0,a=0.2)の比で配合し、さらに主成分総重量に対してV25、TiO2をそれぞれ添加物として表1に示す通り配合し、湿式混合後、脱水処理を行い、大気中で800℃、2時間の仮焼を行ったのち粉砕造粒した。その後、この粉末を2000kg/cm2の圧力で外径16mm、内径10mm、高さ5.0mmのトロイダル状に加圧成形し、脱バインダー処理の上、大気雰囲気中950〜1050℃で4時間焼結を行った。得られた焼結体の飽和磁化4πMsはおよそ4500〜4800G、初透磁率は500〜550であった。得られたコアロス値(単位:mW/cc、励磁条件:周波数500kHz、励磁全振幅1000G)を表1に示す。 Main component material powder x (Ni (1-a) Cu a) O · yZnO · zFe 2 O 3 (x, y, z are mol%, x = 25.0, y = 26.0, z = 49. 0, a = 0.2), and V 2 O 5 and TiO 2 as additives are added to the total weight of the main components as shown in Table 1, and after wet mixing, dehydration is performed. Then, after calcination at 800 ° C. for 2 hours in the air, pulverization and granulation were performed. Thereafter, this powder is pressure-molded into a toroidal shape having an outer diameter of 16 mm, an inner diameter of 10 mm, and a height of 5.0 mm at a pressure of 2000 kg / cm 2 , and is baked at 950 to 1050 ° C. for 4 hours in an air atmosphere after debinding. Yui was done. The obtained sintered body had a saturation magnetization of 4πMs of about 4500 to 4800 G and an initial permeability of 500 to 550. The obtained core loss values (unit: mW / cc, excitation condition: frequency 500 kHz, excitation total amplitude 1000 G) are shown in Table 1.

Figure 2007076985
Figure 2007076985

表1に示すように、V25、TiO2添加量が、各々0.02重量%以上0.50重量%以下、0.02重量%以上0.60重量%の場合に、V25、TiO2無添加の場合と比較して10%程度コアロスが低減する。この範囲内においてさらにV25:0.15〜0.40重量%、TiO2:0.05〜0.40重量%とすることにより、V25、TiO2無添加の場合と比較して20%程度コアロスが低減した。 As shown in Table 1, when V 2 O 5 and TiO 2 are added in amounts of 0.02 wt% to 0.50 wt% and 0.02 wt% to 0.60 wt%, V 2 O 5. Compared with the case where TiO 2 is not added, the core loss is reduced by about 10%. Within this range, V 2 O 5 : 0.15 to 0.40 wt% and TiO 2 : 0.05 to 0.40 wt% are compared with the case where V 2 O 5 and TiO 2 are not added. As a result, the core loss was reduced by about 20%.

主成分原料粉末をx(Ni(1-a)Cu)O・yZnO・zFe23(x、y、zはmol%、x=25.0、y=26.0、z=49.0,a=0.2)の比で配合し、さらに主成分総重量に対してV25、TiO2をそれぞれ0.20重量%、0.40重量%添加物として配合し、湿式混合後、脱水処理を行い、大気中で800℃、2時間の仮焼を行ったのち粉砕造粒した。その後、この粉末を2000kg/cm2の圧力で外径16mm、内径10mm、高さ5.0mmのトロイダル状に加圧成形し、脱バインダー処理の上、大気雰囲気中940〜1050℃で4時間焼結を行った。得られた焼結体の飽和磁化4πMsはおよそ4400〜4800G、初透磁率は450〜550であった。得られたコアロス値(励磁条件:周波数500kHz、励磁全振幅1000G)、飽和磁束密度B50(磁場50Oeの条件下の時)、平均結晶粒径を表2に示す。ここで結晶粒径は、鏡面研磨し、140℃リン酸中でエッチングした焼結体表面の顕微鏡写真上に任意直線を引き、結晶粒30個分の切片長を平均して得た。 Main component material powder x (Ni (1-a) Cu a) O · yZnO · zFe 2 O 3 (x, y, z are mol%, x = 25.0, y = 26.0, z = 49. 0, blended with a = 0.2) ratio, further main component total weight V 2 O 5, TiO 2, respectively 0.20 wt% with respect to, formulated as 0.40% by weight additives, wet-mixed Thereafter, dehydration treatment was performed, and calcination was performed in the air at 800 ° C. for 2 hours, followed by pulverization and granulation. Thereafter, this powder is pressure-molded into a toroidal shape having an outer diameter of 16 mm, an inner diameter of 10 mm, and a height of 5.0 mm at a pressure of 2000 kg / cm 2 , and after baking for 4 hours at 940 to 1050 ° C. in an air atmosphere. Yui was done. The obtained sintered body had a saturation magnetization 4πMs of about 4400 to 4800 G and an initial permeability of 450 to 550. Table 2 shows the obtained core loss values (excitation conditions: frequency 500 kHz, excitation total amplitude 1000 G), saturation magnetic flux density B 50 (under the condition of magnetic field 50 Oe), and average crystal grain size. Here, the crystal grain size was obtained by mirror-polishing and drawing an arbitrary straight line on the micrograph of the surface of the sintered body etched in 140 ° C. phosphoric acid, and averaging the section lengths of 30 crystal grains.

Figure 2007076985
Figure 2007076985

表2に示すように、飽和磁束密度B50が4400G以上で、平均結晶粒径が1.5〜10.0μmの範囲内は、焼結温度が980〜1060℃であり、特に焼結温度が上昇し、平均結晶粒径が10μmを超える場合、コアロスの増大する傾向が顕著となる。コアロスが増大する傾向は、表1に示した複数の焼結体においても共通に見られた。 As shown in Table 2, when the saturation magnetic flux density B 50 is 4400 G or more and the average crystal grain size is in the range of 1.5 to 10.0 μm, the sintering temperature is 980 to 1060 ° C., and particularly the sintering temperature is When the average grain size exceeds 10 μm, the tendency to increase the core loss becomes remarkable. The tendency for the core loss to increase was also commonly seen in the plurality of sintered bodies shown in Table 1.

Claims (3)

Ni、Cu、Zn、Feの酸化物を主成分とし、化学組成がx(Ni(1-a)Cua)O・yZnO・zFe23で表されるNi−Cu−Zn系フェライトにおいて、x+y+z=100、47.0≦z≦49.7、18.0≦y≦28.0、0.05≦a≦0.40であり、副成分としてV25を0.02〜0.50重量%、およびTiO2を0.02〜0.60重量%含む原材料を焼成してなることを特徴とする低損失Ni−Cu−Zn系フェライト。 In a Ni—Cu—Zn based ferrite whose main component is an oxide of Ni, Cu, Zn, and Fe and whose chemical composition is represented by x (Ni (1-a) Cu a ) O · yZnO · zFe 2 O 3 , x + y + z = 100, 47.0 ≦ z ≦ 49.7, 18.0 ≦ y ≦ 28.0, 0.05 ≦ a ≦ 0.40, and V 2 O 5 as a subcomponent is 0.02 to 0. A low-loss Ni—Cu—Zn-based ferrite obtained by firing a raw material containing 50 wt% and TiO 2 in an amount of 0.02 to 0.60 wt%. 前記副成分としてV25を0.15〜0.40重量%、およびTiO2を0.05〜0.40重量%含むことを特徴とする請求項1に記載の低損失Ni−Cu−Zn系フェライト。 2. The low-loss Ni—Cu— according to claim 1, comprising 0.15 to 0.40 wt% of V 2 O 5 and 0.05 to 0.40 wt% of TiO 2 as the subcomponents. Zn-based ferrite. 焼成体の平均結晶粒径が1.5〜10μmとなるような980〜1060℃の焼結温度で焼成してなることを特徴とする請求項1又は2に記載の低損失Ni−Cu−Zn系フェライト。   The low-loss Ni—Cu—Zn according to claim 1, wherein the sintered body is fired at a sintering temperature of 980 to 1060 ° C. such that an average crystal grain size of the fired body is 1.5 to 10 μm. Ferrite.
JP2005270263A 2005-09-16 2005-09-16 LOW LOSS Ni-Cu-Zn-BASED FERRITE Pending JP2007076985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005270263A JP2007076985A (en) 2005-09-16 2005-09-16 LOW LOSS Ni-Cu-Zn-BASED FERRITE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005270263A JP2007076985A (en) 2005-09-16 2005-09-16 LOW LOSS Ni-Cu-Zn-BASED FERRITE

Publications (1)

Publication Number Publication Date
JP2007076985A true JP2007076985A (en) 2007-03-29

Family

ID=37937653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005270263A Pending JP2007076985A (en) 2005-09-16 2005-09-16 LOW LOSS Ni-Cu-Zn-BASED FERRITE

Country Status (1)

Country Link
JP (1) JP2007076985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679362B2 (en) 2011-09-14 2014-03-25 Samsung Electro-Mechanics Co., Ltd. Nickel-zinc-copper based ferrite composition, and multilayered chip device using the same
CN114853461A (en) * 2022-06-20 2022-08-05 西安锐磁电子科技有限公司 Wide-temperature-range low-loss NiZn soft magnetic ferrite material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8679362B2 (en) 2011-09-14 2014-03-25 Samsung Electro-Mechanics Co., Ltd. Nickel-zinc-copper based ferrite composition, and multilayered chip device using the same
CN114853461A (en) * 2022-06-20 2022-08-05 西安锐磁电子科技有限公司 Wide-temperature-range low-loss NiZn soft magnetic ferrite material and preparation method thereof

Similar Documents

Publication Publication Date Title
CN108885938B (en) MnZn ferrite magnetic core and preparation method thereof
JP4244193B2 (en) Method for producing MnZn ferrite and MnZn ferrite
CN107001150B (en) Method for producing MnZn ferrite, and MnZn ferrite
JPWO2008133152A1 (en) Low loss ferrite and electronic parts using the same
CN110204325B (en) Ferrite material and preparation method thereof
JP2006306693A (en) Ferrite sintered body and method for manufacturing same
JP4129917B2 (en) Ferrite material and manufacturing method thereof
JP2006206347A (en) Oxide magnetic material
JP5181175B2 (en) Mn-Zn-Co ferrite
JP2006202796A (en) HIGH SATURATION MAGNETIC FLUX DENSITY Mn-Zn-Ni BASED FERRITE
JP2007204349A (en) Manufacturing method of low-loss oxide magnetic material
JP3907642B2 (en) Ferrite material and method for producing ferrite material
JP2005132715A (en) Ni-Cu-Zn SYSTEM FERRITE MATERIAL AND ITS MANUFACTURING METHOD
JP2006213532A (en) Mn-Zn-Co-BASED FERRITE MATERIAL
JP4656949B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP4404408B2 (en) High saturation magnetic flux density ferrite material and ferrite core using the same
JP2007076985A (en) LOW LOSS Ni-Cu-Zn-BASED FERRITE
JP2010120808A (en) MnZn FERRITE AND METHOD OF PRODUCING THE SAME
JP2004247370A (en) MnZn FERRITE
JP4813025B2 (en) High saturation magnetic flux density Mn-Zn-Ni ferrite
JP2006290632A (en) Ferrite sintered compact, method for producing the same, and electronic component using the same
JPWO2018168974A1 (en) Ni-based ferrite sintered body, coil component, and method of manufacturing Ni-based ferrite sintered body
JP2007031210A (en) Mn-Zn FERRITE
JP2007297232A (en) Method for producing oxide magnetic material
JP6964556B2 (en) MnZnNiCo-based ferrite and its manufacturing method