JP2007076966A - Method for producing hauyne - Google Patents

Method for producing hauyne Download PDF

Info

Publication number
JP2007076966A
JP2007076966A JP2005268098A JP2005268098A JP2007076966A JP 2007076966 A JP2007076966 A JP 2007076966A JP 2005268098 A JP2005268098 A JP 2005268098A JP 2005268098 A JP2005268098 A JP 2005268098A JP 2007076966 A JP2007076966 A JP 2007076966A
Authority
JP
Japan
Prior art keywords
caso
cao
mass
fired
erwin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005268098A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tsuchida
良明 土田
Yasutaka Kuroki
康貴 黒木
Kazuyoshi Tsuchiya
和義 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2005268098A priority Critical patent/JP2007076966A/en
Publication of JP2007076966A publication Critical patent/JP2007076966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing hauyne efficiently with stable quality and production volume while suppressing reduction and variation in production volume caused by decomposition of CaSO<SB>4</SB>which takes place when a firing temperature around the decomposition temperature of CaSO<SB>4</SB>is adopted for avoiding the difficulty in forming hauyne due to dominant formation of calcium aluminate, and without using an excessive amount of CaSO<SB>4</SB>. <P>SOLUTION: The method for producing hauyne comprises firing an object to be fired at 1,250-1,400°C, the object to be fired comprising 100 pts.mass of CaSO<SB>4</SB>, 150-260 pts.mass of Al<SB>2</SB>O<SB>3</SB>, and 80-130 pts.mass of CaO, wherein at least 30 mass% of CaO is a powder of unslaked lime. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水硬性物質や水硬性組成物の速硬性付与成分などとして知られている化合物アーウィン(3CaO・3Al23・CaSO4)の製造方法に関する。 The present invention relates to a method for producing a compound Erwin (3CaO.3Al 2 O 3 .CaSO 4 ) known as a quick hardening component of a hydraulic substance or a hydraulic composition.

アーウィン(3CaO・3Al23・CaSO4)は、早い水和速度を有する化合物で速硬性や超速硬性のセメントの速硬成分として、またモルタルやコンクリート用の速硬性混和材や膨張性混和材などに活用されている。(例えば、特許文献1〜2参照。)アーウィンの製造方法は、工業的には、CaO源として例えば石灰石や炭酸カルシウム等の石灰質原料、Al23源として例えば粘土鉱物やボーキサイト、CaSO4源として例えば排脱石膏等を原料に用い、これらを所定量混合したものを被焼成物とし、ロータリーキルン等の焼成装置で約1200℃〜1300℃の焼成によってアーウィン相を含むクリンカが得られる。(例えば、特許文献3参照。)アーウィンの生成反応と結晶成長は焼成温度が高い程進み易くなるが、1300℃前後の温度で原料中のCaSO4が分解し始め、ガス状の硫黄酸化物が生成するため、該硫黄酸化物の揮発量が増すとアーウィンの生成量は必然的に減少する。一方、CaSO4の分解を避けるため、その分解温度より低い温度、例えば1000〜1200℃で前記のような原料よりなる被焼成物を焼成すると、アーウィンの生成よりも12CaO・7Al23等のカルシウムアルミネートの生成が支配的になり、カルシウムアルミネートとCaSO4が共存し、アーウィンが殆ど見られないクリンカーしか得られない。また、これよりもやや高い、例えば1250〜1400℃で焼成すると、昇温過程中で一旦カルシウムアルミネートが形成されるが、引続きこのカルシウムアルミネートとCaSO4からアーウィンが形成されるため、大量のアーウィンが得られる可能性がある。(例えば、特許文献4〜5参照。) Erwin (3CaO · 3Al 2 O 3 · CaSO 4 ) is a compound with a fast hydration rate, and is used as a fast-hardening component of fast- and ultra-hard-hardening cements. It is utilized for such as. (For example, refer to Patent Documents 1 and 2.) Industrially, Irwin's production method is, for example, a calcareous raw material such as limestone or calcium carbonate as a CaO source, and a clay mineral, bauxite, or CaSO 4 source as an Al 2 O 3 source. As a raw material, for example, waste gypsum or the like is used as a raw material, and a mixture of a predetermined amount thereof is used as a material to be fired, and a clinker containing an Irwin phase is obtained by firing at about 1200 ° C. to 1300 ° C. with a firing device such as a rotary kiln. (For example, refer to Patent Document 3.) Irwin generation reaction and crystal growth become easier as the firing temperature is higher, but CaSO 4 in the raw material starts to decompose at a temperature around 1300 ° C., and gaseous sulfur oxides are formed. Therefore, when the volatilization amount of the sulfur oxide increases, the generation amount of Irwin inevitably decreases. On the other hand, in order to avoid decomposition of CaSO 4, when a fired product made of the raw material as described above is baked at a temperature lower than the decomposition temperature, for example, 1000 to 1200 ° C., 12CaO · 7Al 2 O 3 etc. The formation of calcium aluminate becomes dominant, and only clinker in which calcium aluminate and CaSO 4 coexist and erwin is hardly seen can be obtained. In addition, when calcined at a slightly higher temperature, for example, 1250 to 1400 ° C., calcium aluminate is once formed during the temperature rising process, but erwin is subsequently formed from this calcium aluminate and CaSO 4 . Irwin may be obtained. (For example, see Patent Documents 4 to 5.)

しかし、この温度は前記の如くCaSO4の分解温度に相当するため、分解によって被焼成物中のCaSO4成分の喪失が起る。被焼成物のCaO、Al23、CaSO4の原料配合をアーウィン構成成分の化学量論比(CaO:Al23:CaSO4=3:3:1)よりも過剰のCaSO4量となる配合にすれば、過剰分のCaSO4量を増すに連れ、CaSO4分解によるアーウィン生成量の不足を補い、アーウィン生成量を増やすことができる。この方法ではアーウィン生成効率が低いため、過剰CaSO4量の使用という不経済さを伴うもので、加えて分解揮発する硫黄酸化物の排ガス処理も必要となる。また、CaSO4の分解速度は、特に分解開始温度付近では焼成温度等の僅かな差で大きく左右される傾向があり、この僅かな差がアーウィン形成に寄与できる残存CaSO4量、即ちアーウィンの生成量に影響を及ぼすことになる。特に、工業的規模での焼成装置では概して微妙な温度条件の制御が容易ではなく、アーウィン生成量やその結晶性を始めとする品質について安定した再現性を得ることは難しい。
特開昭57−175762号公報 特開2002−316860号公報 特開昭57−200252号公報 特公昭51−22013号公報 特開平11−12009号公報
However, since this temperature corresponds to the decomposition temperature of CaSO 4 as described above, the loss of the CaSO 4 component in the material to be fired occurs due to the decomposition. The raw material composition of CaO, Al 2 O 3 , and CaSO 4 to be baked is an excess amount of CaSO 4 than the stoichiometric ratio (CaO: Al 2 O 3 : CaSO 4 = 3: 3: 1) of the Erwin component. With this formulation, as the excess amount of CaSO 4 is increased, the shortage of erwin production due to decomposition of CaSO 4 can be compensated and the erwin production can be increased. Since this method has low erwin generation efficiency, it involves the uneconomical use of excess CaSO 4 , and in addition, exhaust gas treatment of sulfur oxides that decompose and volatilize is also required. Furthermore, the degradation rate of CaSO 4, it is highly dependent trend slight differences, such as the firing temperature in the vicinity of particular decomposition temperature, residual CaSO 4 weight this slight difference can contribute to Irwin formation, i.e. formation of Erwin Will affect the amount. In particular, in an industrial-scale baking apparatus, it is generally not easy to control delicate temperature conditions, and it is difficult to obtain a stable reproducibility with respect to the amount of erwin formation and its crystallinity.
JP-A-57-175762 JP 2002-316860 A Japanese Unexamined Patent Publication No. 57-200252 Japanese Patent Publication No. 51-222013 Japanese Patent Application Laid-Open No. 11-12009

本発明は、カルシウムアルミネートが共存せずにアーウィンが安定に生成する可能性がある温度をアーウィン製造のための焼成温度とした場合に起る、CaSO4の熱分解に伴うCaSO4成分損失によるアーウィン生成量の低減や変動を抑制し、安定した品質と生成量でアーウィンを容易に得ることができ、且つ過剰量のCaSO4を使用することなく大量のアーウィンを得ることもできるアーウィンの製造方法を提供することを課題とする。 The present invention is based on the loss of CaSO 4 components accompanying the thermal decomposition of CaSO 4 that occurs when the temperature at which erwin can be stably generated without the presence of calcium aluminate is set as the firing temperature for erwin production. Irwin production method capable of suppressing the reduction and fluctuation of the amount of erwin generation, easily obtaining erwin with stable quality and generation amount, and obtaining a large amount of erwin without using excessive amount of CaSO 4 It is an issue to provide.

本発明者らは、アーウィン製造のための原料を含む被焼成物を、カルシウムアルミネートの生成が支配的となってアーウィンが生成し難くなるのを避けるために、CaSO4の分解温度近傍で焼成し、その際被焼成物に使用するCaO源原料の特定割合を生石灰粉末で使用すると、焼成によりCaSO4が分解して生じる二酸化硫黄などのガス状硫黄酸化物が、被焼成物中のCaO粉末に捕捉されて再度CaSO4を呈してアーウィン形成に費やされるという知見を得、過剰量のCaSO4原料を用いることなく、豊富な量のアーウィンを安定して生成させることができたことから本発明を完成させた。 In order to avoid the fact that the formation of calcium aluminate is dominant and it is difficult to form erwin, the present inventors have fired the material to be baked near the decomposition temperature of CaSO 4. At that time, when a specific ratio of the CaO source material used for the object to be baked is used as quick lime powder, gaseous sulfur oxides such as sulfur dioxide generated by decomposition of CaSO 4 due to calcination are generated in the CaO powder in the object to be baked. From the fact that it was captured in the process and again exhibited CaSO 4 to be consumed for erwin formation, and an abundant amount of erwin could be stably generated without using an excessive amount of CaSO 4 raw material. Was completed.

即ち、本発明は、CaSO4100質量部、Al23150〜260質量部、CaO80〜130質量部を含有し、且つCaOの少なくとも30質量%が生石灰粉末である被焼成物を、1250〜1400℃で焼成することを特徴とするアーウィンの製造方法である。 That is, the present invention is, CaSO 4 100 parts by weight of Al 2 O 3 150 to 260 parts by weight, containing CaO80~130 parts by mass, and the target heating object at least 30 wt% is a quicklime powder CaO, 1250~ It is a manufacturing method of Irwin characterized by baking at 1400 ° C.

また、本発明は、生石灰粉末がブレーン比表面積2500〜4000cm2/gの粉末であることを特徴とする前記のアーウィンの製造方法である。 The present invention is also the above-mentioned Irwin production method, wherein the quicklime powder is a powder having a Blaine specific surface area of 2500 to 4000 cm 2 / g.

本発明の製造方法によれば、アーウィンを、過剰量のCaSO4原料使用や微妙な焼成制御を行い続けることなく、高い生成効率で且つ生成量のバラツキも少なく得ることができる。また、焼成時のCaSO4成分分解に由来するガス状の硫黄酸化物(SOx)の排出量も著しく少なくなる。 According to the production method of the present invention, Irwin can be obtained with high production efficiency and little variation in production amount without continuing to use an excessive amount of CaSO 4 raw material and delicate firing control. In addition, the amount of gaseous sulfur oxide (SOx) derived from the decomposition of CaSO 4 components during firing is significantly reduced.

本発明のアーウィンの製造方法の被焼成物に使用するCaSO4は、無水石膏、半水石膏、二水石膏が挙げられ、天然石膏のみならず所謂化学石膏と称されるものであっても良い。好ましくは無水石膏を使用する。また、被焼成物に使用するAl22は、例えばコスト面で安価なアルミノ珪酸塩系の粘土鉱物やアルミドロス等の廃棄物再資源化原料でも良いが、アーウィンと共にカルシウムシリケート等の他の化合物が共存生成するのを避けたい場合は、アルミナ又はその水和物の使用が好ましい。CaSO4及びAl22源原料は何れも粉末状のものを使用するのが望ましい。また被焼成物に使用するCaOは特に限定されず、例えば石灰石、炭酸カルシウム、水酸化カルシウムといったCaO源原料でもよいが、好ましくは生石灰を使用する。本発明では特に、使用するCaO源原料のCaO換算値の少なくとも30質量%を生石灰粉末にすることを必須とする。好ましくは70質量%以上を生石灰粉末とする。使用する生石灰粉末は、ブレーン比表面積が2500〜4000cm2/gの粉末が好ましい。ブレーン比表面積が2500cm2/g未満では反応活性が低く、CaSO4の熱分解によって生じる硫黄酸化物を反応捕捉し難くなることがあり、またブレーン比表面積が4000cm2/gを超えるものではロータリーキルンなどで焼成するとキルン内通風で飛散したり、また吸湿性も高くなり扱い勝手が悪くなるので適当でない。 Examples of the CaSO 4 used for the object to be fired in the Irwin production method of the present invention include anhydrous gypsum, hemihydrate gypsum, and dihydrate gypsum, and may be not only natural gypsum but also so-called chemical gypsum. . Preferably anhydrous gypsum is used. In addition, Al 2 O 2 used for the object to be fired may be a waste recycling raw material such as aluminosilicate clay mineral or aluminum dross which is inexpensive in terms of cost. When it is desired to avoid the co-generation of compounds, the use of alumina or a hydrate thereof is preferable. It is desirable to use powdery materials for both the CaSO 4 and Al 2 O 2 source materials. Moreover, CaO used for a to-be-baked material is not specifically limited, For example, although CaO source materials, such as limestone, a calcium carbonate, and calcium hydroxide, may be used, Preferably quick lime is used. In the present invention, in particular, it is essential that at least 30% by mass of the CaO equivalent value of the CaO source material to be used is quicklime powder. Preferably 70 mass% or more is quicklime powder. The quicklime powder to be used is preferably a powder having a Blaine specific surface area of 2500 to 4000 cm 2 / g. When the specific surface area of the brane is less than 2500 cm 2 / g, the reaction activity is low, and it may be difficult to react and trap the sulfur oxide generated by the thermal decomposition of CaSO 4 , and when the specific surface area of the brane exceeds 4000 cm 2 / g, a rotary kiln, etc. If it is fired, it will be scattered by the ventilation in the kiln, and the hygroscopicity will be high and the handling will be poor, so it is not suitable.

被焼成物を作製する上でのCaO、Al22及びCaSO4の配合割合は、CaSO4100質量部に対し、Al22150〜260質量部、CaO80〜130質量部とする。好ましくは、CaSO4100質量部に対し、Al22200〜220質量部、CaO100〜130質量部とする。ここに示した各成分の配合割合の値は、CaO源原料ではCaOに換算した値、CaSO4源原料ではCaSO4に換算した値、Al22源原料ではAl22に換算した値である。Al22150質量部未満またはCaO80質量部未満ではアーウィン形成に活用されない余剰CaSO4が増え、使用する原料量に対し、アーウィンの生成量が低位の水準となるので好ましくない。またAl22260質量部を超えるかまたはCaO130質量部を超えるとアーウィン形成に活用されない余剰CaOやAl22が増え、やはりアーウィンの生成量が低位の水準となるので好ましくない。また本発明では被焼成物に配合するCaOのうち、30質量%以上を生石灰粉末を使用するものとするが、これは焼成中に起るCaSO4の熱分解によって生じた硫黄酸化物を捕捉し安定化させるためのものであり、CaO原料中の生石灰粉末の割合が30質量%未満では、CaSO4の熱分解による硫黄酸化物の揮発喪失によるアーウィン生成量の低下を抑止できないので好ましくない。被焼成物の作製はこのような配合割合にCaO、Al22及びCaSO4を混合すれば良い。混合方法は限定されず、例えば乾式混合することができる。得られた混合物は、成形物等の形状にする必要は特にはなく、粉末混合物の状態で焼成に供することができる。また、所望のアーウィン生成量が確保できれば、被焼成物に、CaO、Al22及びCaSO4以外の成分が含有されていても良い。このような成分として例えばSiO2、MgO、Fe23等が挙げられるが、該成分に由来する生成相の共存によっては、焼成物としての性状が変化することがあるので、所望の性状に適った焼成物を得る上では、該成分の種類や量を調整しておくことが望ましい。 The mixing ratio of CaO, Al 2 O 2 and CaSO 4 in producing the object to be fired is 150 to 260 parts by mass of Al 2 O 2 and 80 to 130 parts by mass of CaO with respect to 100 parts by mass of CaSO 4 . Preferably, it is set as 200 to 220 parts by mass of Al 2 O 2 and 100 to 130 parts by mass of CaO with respect to 100 parts by mass of CaSO 4 . The value of the mixing ratio of the components shown here, value converted into CaO in CaO source material, value converted to CaSO 4 in CaSO 4 source material, a value in terms of Al 2 O 2 in Al 2 O 2 source material It is. Less than 150 parts by mass of Al 2 O 2 or less than 80 parts by mass of CaO is not preferable because excess CaSO 4 that is not utilized for erwin formation increases, and the amount of erwin produced is at a low level relative to the amount of raw material used. On the other hand, if it exceeds 260 parts by mass of Al 2 O 2 or exceeds 130 parts by mass of CaO, excess CaO and Al 2 O 2 that are not utilized for erwin formation increase, and the amount of erwin formation is low, which is not preferable. Further, in the present invention, quick lime powder is used for 30% by mass or more of CaO to be blended in the object to be fired. This captures sulfur oxides generated by thermal decomposition of CaSO 4 occurring during firing. If the ratio of quicklime powder in the CaO raw material is less than 30% by mass, it is not preferable because the decrease in the amount of Irwin due to loss of volatilization of sulfur oxide due to thermal decomposition of CaSO 4 cannot be suppressed. Preparation of the baked product in such proportion CaO, may be mixed Al 2 O 2, and CaSO 4. The mixing method is not limited, and for example, dry mixing can be performed. The obtained mixture is not particularly required to have a shape such as a molded product, and can be subjected to firing in the form of a powder mixture. Moreover, as long as a desired amount of Irwin generation can be ensured, components other than CaO, Al 2 O 2 and CaSO 4 may be contained in the object to be fired. Examples of such components include SiO 2 , MgO, Fe 2 O 3, etc., but depending on the coexistence of the product phase derived from the components, the properties as a fired product may change, so that the desired properties are obtained. In order to obtain a suitable fired product, it is desirable to adjust the types and amounts of the components.

被焼成物は1250℃〜1400℃で焼成することにより、アーウィン化合物が生成した焼成物を得ることができる。1250℃未満の焼成ではカルシウムアルミネートの形成が支配的となって安定に存在し、アーウィンが生成され難くなるので好ましくなく、1400℃を超える焼成ではCaSO4の分解が過度に進行し、生石灰粉末によるガス状硫黄酸化物の捕捉が行い難くなる他、3CaO・Al23等の非晶質カルシウムアルミネートが生成されるので好ましくない。また昇温速度は特に限定されないが、冷却は、徐冷または自然放冷が望ましい。急冷処理すると、硫黄酸化物捕捉により形成されるCaSO4がアーウィン化合物形成に寄与しないことがあり、また非晶質相が生成することもあるので適当でない。また、焼成は大気中で行うことができる。焼成装置は特に限定されず、例えば電気炉、ガス炉等が挙げられる。また、工業的規模での生産にはロータリーキルンによる焼成が推奨される。 The fired product can be fired at 1250 ° C. to 1400 ° C. to obtain a fired product in which an Irwin compound is generated. When calcining below 1250 ° C., formation of calcium aluminate is dominant and stable, and it is not preferable because erwin is hardly generated. When calcining above 1400 ° C., decomposition of CaSO 4 proceeds excessively, and quicklime powder Further, it is difficult to capture the gaseous sulfur oxide due to the above, and amorphous calcium aluminate such as 3CaO.Al 2 O 3 is generated, which is not preferable. The temperature raising rate is not particularly limited, but cooling is preferably slow cooling or natural cooling. When quenched, CaSO 4 formed by trapping sulfur oxides may not contribute to the formation of an Irwin compound, and an amorphous phase may be formed, which is not appropriate. Moreover, baking can be performed in air | atmosphere. A baking apparatus is not specifically limited, For example, an electric furnace, a gas furnace, etc. are mentioned. In addition, firing on a rotary kiln is recommended for production on an industrial scale.

以下、実施例により本発明を具体的に詳しく説明するが、本発明はここで表す実施例に限定されるものではない。
<被焼成物の作製>
次に記す各原料を表1に表す配合量となるよう、エアーブレンディング混合機に一括投入し、約10分間乾式混合し、これを被焼成物とした。
・II型無水石膏(ブレーン比表面積4500cm2/g)
・アルミ灰 (α−Al23含有率90.9%)
・生石灰A(ブレーン比表面積3300cm2/g)
・生石灰B(ブレーン比表面積1500cm2/g)
・炭酸カルシウム(ブレーン比表面積3300cm2/g)
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to the examples shown here.
<Preparation of the object to be fired>
Next, the raw materials described below were all put into an air blending mixer so as to have the blending amounts shown in Table 1, and dry-mixed for about 10 minutes, and this was used as a material to be fired.
Type II anhydrous gypsum (Blaine specific surface area 4500 cm 2 / g)
・ Aluminum ash (α-Al 2 O 3 content 90.9%)
・ Quicklime A (Blaine specific surface area 3300cm 2 / g)
・ Quicklime B (Brain specific surface area 1500cm 2 / g)
・ Calcium carbonate (Brain specific surface area 3300cm 2 / g)

Figure 2007076966
Figure 2007076966

<被焼成物の焼成>
前記の如く作製した被焼成物を、ロータリーキルン(直径1100cm、長さ800cm)を用い、表2に表す実測最高温度で、送り速度150Kg/Hで焼成した。焼成の際、ロータリーキルンの窯尻から煙道までの間に、硫黄酸化物(SOx)濃度測定センサーを約1m間隔で設置し、キルン内ガス中のSOx濃度を測定した。測定値の平均値を表2にSOx濃度として表す。
<Firing of the object to be fired>
The material to be fired as described above was fired at a measured maximum temperature shown in Table 2 at a feed rate of 150 kg / H using a rotary kiln (diameter 1100 cm, length 800 cm). During firing, a sulfur oxide (SOx) concentration measurement sensor was installed at intervals of about 1 m between the kiln bottom of the rotary kiln and the flue, and the SOx concentration in the gas in the kiln was measured. The average value of the measured values is shown in Table 2 as the SOx concentration.

Figure 2007076966
Figure 2007076966

<焼成物中の生成相の検出とその量>
得られた焼成物を粉末エックス線回折によって生成相を調べ、また粉末エックス線回折の内部標準法により焼成物中のアーウィンの生成割合を調べた。また樹脂に焼成物片を埋め込んだものを切断し、次いで切断面を鏡面研磨して、この面に現れたアーウィン化合物の結晶径をエックス線マイクロアナライザーで測定した。以上の結果を表2に併せて表す。
<Detection and amount of product phase in fired product>
The produced phase of the fired product was examined by powder X-ray diffraction, and the rate of Erwin formation in the fired product was examined by an internal standard method of powder X-ray diffraction. Moreover, what embedded the baked material piece in resin was cut | disconnected, then the cut surface was mirror-polished, and the crystal diameter of the Irwin compound which appeared on this surface was measured with the X-ray microanalyzer. The above results are also shown in Table 2.

本発明により得られる良質のアーウィンは速硬性基材や膨張成分としてセメントの混和材として、またセメンペースト、モルタルやコンクリート用の速硬材や膨張材として使用できる。また、本法は原料成分にアルカリ土類硫酸塩を含むものを該硫酸塩の分解温度以上で焼成する場合、原料分解による硫黄酸化物ガスの排気ガス中への混入を抑制する方法としても活用できる。   The high-quality Irwin obtained by the present invention can be used as a quick-hardening base material and an admixture of cement as an expansion component, and as a fast-hardening material and expansion material for cement paste, mortar and concrete. This method can also be used as a method to suppress the inclusion of sulfur oxide gas into the exhaust gas due to the decomposition of raw materials when the raw material containing alkaline earth sulfate is baked at a temperature higher than the decomposition temperature of the sulfate. it can.

Claims (2)

CaSO4100質量部、Al23150〜260質量部、CaO80〜130質量部を含有し、且つCaOの少なくとも30質量%が生石灰粉末である被焼成物を、1250〜1400℃で焼成することを特徴とするアーウィンの製造方法。 Firing an object to be fired at 1250 to 1400 ° C. containing 100 parts by weight of CaSO 4 , 150 to 260 parts by weight of Al 2 O 3 and 80 to 130 parts by weight of CaO, and at least 30% by weight of CaO being quicklime powder. Irwin manufacturing method characterized by this. 生石灰粉末がブレーン比表面積2500〜4000cm2/gの粉末であることを特徴とする請求項1記載のアーウィンの製造方法。 The method for producing Irwin according to claim 1, wherein the quicklime powder is a powder having a Blaine specific surface area of 2500 to 4000 cm 2 / g.
JP2005268098A 2005-09-15 2005-09-15 Method for producing hauyne Pending JP2007076966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005268098A JP2007076966A (en) 2005-09-15 2005-09-15 Method for producing hauyne

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005268098A JP2007076966A (en) 2005-09-15 2005-09-15 Method for producing hauyne

Publications (1)

Publication Number Publication Date
JP2007076966A true JP2007076966A (en) 2007-03-29

Family

ID=37937635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005268098A Pending JP2007076966A (en) 2005-09-15 2005-09-15 Method for producing hauyne

Country Status (1)

Country Link
JP (1) JP2007076966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510670A (en) * 2018-04-26 2021-04-30 カルセム ゲーエムベーハーCalucem GmbH Low Belite CSA Cement for Construction Chemicals

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189410A (en) * 1997-12-25 1999-07-13 Taiheiyo Cement Corp Production of hauyne

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11189410A (en) * 1997-12-25 1999-07-13 Taiheiyo Cement Corp Production of hauyne

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021510670A (en) * 2018-04-26 2021-04-30 カルセム ゲーエムベーハーCalucem GmbH Low Belite CSA Cement for Construction Chemicals
JP7001318B2 (en) 2018-04-26 2022-01-19 カルセム ゲーエムベーハー Low Belite CSA Cement for Construction Chemicals

Similar Documents

Publication Publication Date Title
US8409344B2 (en) Cement and methods of preparing cement
EP2297062A1 (en) Binder composition
JP2012530037A (en) Industrial production method of clinker containing a lot of belite
JP4616113B2 (en) Quick-hardening clinker and cement composition
MX2012009301A (en) Hydraulic lime composition.
EA029364B1 (en) Phosphorus-doped sulfo-belitic clinker
US20220227666A1 (en) A Method for the Manufacture of Hydraulic Binders from Water Treatment Residuals
JPWO2013027704A1 (en) Method for producing γ-2CaO · SiO 2
JP5852964B2 (en) Method for producing β-2CaO · SiO 2
JP2010120787A (en) Method for manufacturing low-heat portland cement
KR100216432B1 (en) Quick-hardening clinker composition and preparing method the same
JP2007076966A (en) Method for producing hauyne
JP2005320207A (en) Slaked dolomite powder and manufacturing method thereof
JP4877886B2 (en) Cement quick setting agent and cement composition
JP6988689B2 (en) Cement composition and its manufacturing method, cement mortar manufacturing method
JP4293324B2 (en) Cement admixture and cement composition
WO2023153260A1 (en) Co2 fixation ceramic and method for producing co2 fixation product
CN1718557A (en) Expanding agent used for cement or concrete and its manufacturing method
CN115849740B (en) Dicalcium silicate-calcium sulfoaluminate-calcium sulfosilicate cement clinker and preparation process thereof
JP4592165B2 (en) Adjustment method for setting time of hydraulic material
JP4164242B2 (en) Cement composition
WO2023153259A1 (en) Cement, cement composition, cured cement product, and method for producing cured cement product
KR20040001079A (en) a Method for Manufacturing Aluminate Clinker and Cement using a By-Product Steel and By-Plaster
WO2023171770A1 (en) Cement composition
JP4023792B2 (en) Method for producing cement clinker composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080905

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100907

A131 Notification of reasons for refusal

Effective date: 20111116

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A02 Decision of refusal

Effective date: 20120921

Free format text: JAPANESE INTERMEDIATE CODE: A02