WO2023171770A1 - Cement composition - Google Patents

Cement composition Download PDF

Info

Publication number
WO2023171770A1
WO2023171770A1 PCT/JP2023/009168 JP2023009168W WO2023171770A1 WO 2023171770 A1 WO2023171770 A1 WO 2023171770A1 JP 2023009168 W JP2023009168 W JP 2023009168W WO 2023171770 A1 WO2023171770 A1 WO 2023171770A1
Authority
WO
WIPO (PCT)
Prior art keywords
cement
mass
cement composition
parts
gypsum
Prior art date
Application number
PCT/JP2023/009168
Other languages
French (fr)
Japanese (ja)
Inventor
聖一 寺崎
泰一郎 森
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2023531695A priority Critical patent/JPWO2023171770A1/ja
Publication of WO2023171770A1 publication Critical patent/WO2023171770A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/06Carboxylic acids; Salts, anhydrides or esters thereof containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Definitions

  • the present invention relates to a cement composition.
  • Patent Document 1 is a blend of Portland cement with calcium aluminate, anhydrous gypsum, and lithium carbonate.
  • Patent Document 1 does not discuss the amount of tricalcium aluminate in cement, and therefore, it was necessary to further add lithium carbonate to ordinary Portland cement in order to promote the reaction of calcium aluminate.
  • An object of the present invention is to provide a cement composition that can exhibit high initial strength by examining the amount of tricalcium aluminate in cement.
  • the present invention is as follows.
  • the cement composition according to the present embodiment includes cement, amorphous calcium aluminate, and gypsum, and contains 5 to 10.5 of tricalcium aluminate (hereinafter sometimes referred to as "C 3 A") in the cement. Including mass%. It is inferred that by including these, it is possible to improve the rapid hardening property, especially the initial strength shown in the compressive strength after 3 hours. Further, it is presumed that the tricalcium aluminate present in a predetermined amount in the cement efficiently exhibits good rapid hardening properties.
  • amorphous calcium aluminate (Amorphous calcium aluminate)
  • the amorphous calcium aluminate (hereinafter sometimes referred to as "amorphous CA") used in this embodiment is made by mixing raw materials containing calcia and raw materials containing alumina, heating and melting the mixture, and then rapidly cooling the mixture. It is a general term for amorphous substances with hydration activity, which are mainly composed of CaO and Al 2 O 3 and have a vitrification rate of 70% or more.
  • the vitrification rate of the amorphous calcium aluminate is preferably 70% or more, more preferably 80% or more.
  • Amorphous calcium aluminate can be obtained, for example, by bringing a clinker of calcium aluminate melted in an electric furnace into contact with compressed air or water and rapidly cooling it.
  • raw materials containing calcia include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, and calcium oxide such as quicklime.
  • examples of raw materials containing alumina include bauxite and industrial byproducts called aluminum residual ash.
  • the molar ratio of CaO to Al 2 O 3 in the amorphous calcium aluminate should be 1.65 to 1.85 from the viewpoint of hydration activity and strength development. is preferable, and 1.7 to 1.8 is more preferable.
  • the target material is annealed at 1000°C for 2 hours, and then slowly cooled at a cooling rate of 5°C per minute to crystallize it. Then, the crystallized material is measured by powder X-ray diffraction to determine the area S of the main peak of the crystalline mineral. Next, the main peak area S 0 of the crystal of the substance before annealing is determined, and the vitrification rate X is determined using the following formula.
  • X (%) 100 x (1-S 0 /S)
  • the fineness of the amorphous calcium aluminate is preferably 3000 to 9000 cm 2 /g, more preferably 4000 to 8000 cm 2 /g in terms of Blaine specific surface area (hereinafter sometimes referred to as "Blaine value"). preferable.
  • Blaine value Blaine specific surface area
  • the Blaine value is 3000 cm 2 /g or more, the rapid hardening, initial strength development, etc. of the cement composition are likely to be improved.
  • the Blaine value is 9000 cm 2 /g or less, a decrease in workability can be prevented while maintaining good effects.
  • the amorphous calcium aluminate preferably has a loss on ignition of 0.2 to 1.5%, more preferably 0.5 to 1%.
  • the loss on ignition is 0.2 to 1.5%, it becomes easier to ensure fluidity and pot life, and it becomes easier to obtain good strength development.
  • the method for achieving an ignition loss of 0.2 to 1.5% is not particularly limited, but examples include a method of supplying moisture or moisture, a method of supplying carbon dioxide gas, and the like.
  • the loss on ignition can be determined by the method specified in JIS R 5202 (Method of Chemical Analysis of Cement), Method for Quantifying Loss on Ignition.
  • Gypsum is used from the viewpoint of setting properties and strength development properties.
  • Gypsum is a general term for anhydrous, hemihydrous, and dihydric, and is not particularly limited, but from the viewpoint of initial strength development, it is preferable to use anhydrous gypsum or semihydrous gypsum, and it is more preferable to use anhydrous gypsum.
  • the particle size of the gypsum is preferably a Blaine value of 3000 cm 2 /g or more, more preferably 3000 to 9000 cm 2 /g, and 4000 to 8000 cm 2 /g, considering the initial strength development of the cement composition. It is more preferable that
  • the content of gypsum is preferably 100 to 200 parts by mass, more preferably 150 to 200 parts by mass, based on 100 parts by mass of amorphous calcium aluminate.
  • amount of gypsum is 100 parts by mass or more, it is easy to promote long-term strength development of the cement composition, while when it is 200 parts by mass or less, delay in initial setting is prevented and the initial strength development is improved. Can be done.
  • the rapid hardening component consisting of amorphous calcium aluminate and gypsum is preferably 10 to 35 parts by mass, more preferably 15 to 25 parts by mass out of the total 100 parts by mass of the cement composition.
  • the amount is 10 parts by mass or more, it is possible to improve initial strength development, and when it is 35 parts by mass or less, good workability and long-term strength can be easily obtained.
  • the cement according to this embodiment contains 5 to 10.5% by mass of tricalcium aluminate. If the C 3 A content is less than 5% by mass, the time from the start of setting to hardening becomes longer, resulting in lower initial strength development. If it exceeds 10.5% by mass, the time from the start of setting to hardening will be shortened, but the initial strength development will be low.
  • the amount of tricalcium aluminate is preferably 6 to 10.5% by mass, more preferably 7 to 10.5% by mass.
  • the above cement can be prepared by using various cements alone or in combination so that the content of tricalcium aluminate is 5 to 10.5% by mass.
  • the types of cement used for preparation include ordinary, early strength, ultra early strength, moderate heat, low heat, and sulfate-resistant Portland cement; these Portland cements are mixed with blast furnace slag, fly ash, or fine limestone powder. Examples include various mixed cements.
  • the cement composition of this embodiment preferably further contains a setting modifier from the viewpoint of ensuring sufficient working time and satisfying initial strength development.
  • the above-mentioned setting modifier is not particularly limited. Specific examples thereof include oxycarboxylic acids or salts thereof such as citric acid, tartaric acid, malic acid, gluconic acid, and succinic acid or their salts such as sodium, potassium, calcium, magnesium, ammonium, and aluminum; , alkali metal carbonates of sodium carbonate, potassium carbonate, and lithium carbonate (hereinafter referred to as alkali carbonates), ammonium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, and carbonates such as ammonium bicarbonate. , one or more of these can be used.
  • oxycarboxylic acids or a salt thereof such as citric acid, tartaric acid, malic acid, gluconic acid, and succinic acid or their salts such as sodium, potassium, calcium, magnesium, ammonium, and aluminum
  • the amount of setting modifier used is determined based on 100 parts by mass of the cement composition consisting of cement, amorphous calcium aluminate, and gypsum according to this embodiment, from the viewpoint of ensuring sufficient working time and satisfying initial strength development.
  • the amount is preferably 0.1 to 2 parts by weight, more preferably 0.5 to 1.5 parts by weight.
  • the total of each component of cement, amorphous calcium aluminate, and gypsum is 100% by mass or less, and from the viewpoint of fully exhibiting these effects, 90% by mass It is preferably at least 95% by mass, more preferably at least 98% by mass, even more preferably at least 99.9% by mass.
  • each material when producing a cement composition is not particularly limited, and each material may be mixed at the time of construction, or some or all of the materials may be mixed in advance. There is no harm in leaving it as is.
  • the mixing device any existing device can be used, such as a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer.
  • a cement composition was prepared by mixing each of the prepared trial cements, calcium aluminate (CA-1 or crystalline CA), and various types of gypsum in the proportions shown in Table 2, and a setting modifier was added to 100 parts of the cement composition. One part was mixed.
  • a mortar was prepared by adding 200 parts of fine aggregate to 100 parts of the cement composition, adding 40 parts of water to 100 parts of the cement composition, and kneading the mixture. The compressive strength of the mortar was measured. The compressive strength was measured in accordance with JIS R 5201 by preparing a 4 x 4 x 16 cm test piece and measuring it after 3 hours, 1 day, and 28 days. The results are shown in Table 1.
  • Calcium aluminate CA-1 (amorphous): CaO/Al 2 O 3 molar ratio 1.78, vitrification rate 91%, Blaine value 5900 cm 2 /g, loss on ignition: 0.9% Limestone was used as a calcia source and bauxite was used as an alumina source so that the CaO/Al 2 O 3 molar ratio was in the range of 1.7 to 1.8, melted at 1650° C., then rapidly cooled and pulverized.
  • ⁇ Crystalline CA (crystalline): CaO/Al 2 O 3 molar ratio 1.77, vitrification rate 0%, Blaine value 6000 cm 2 /g Limestone was used as a calcia source and bauxite was used as an alumina source. After firing at 1450° C., it was slowly cooled and pulverized.
  • Gypsum/anhydrous gypsum Commercially available product, Blaine value 5600 cm 2 /g ⁇ Hemihydrate gypsum: Commercial product, Blaine value 5700cm 2 /g ⁇ Dihydrate gypsum: Commercial product, Blaine value 5500cm 2 /g (3) A mixture of 25 parts by mass of citric acid, a first-grade reagent, and 75 parts by mass of potassium carbonate, a first-grade reagent (4) Fine aggregate, silica sand: Commercially available product, No. 3: 30 parts by mass, No. 5 : 40 parts by mass, No. 6: 30 parts by mass mixture
  • Example 2 Experiment No. of Experimental Example 1.
  • a cement composition was prepared in the same manner as in Experimental Example 1, except that each of the following CA-2 to CA-5 was used instead of CA-1, and mortar was prepared to increase the compressive strength. It was measured. The results are shown in Table 3.
  • ⁇ CA-3 (amorphous): CaO/Al 2 O 3 molar ratio 1.67, vitrification rate 92%, Blaine value 5800 cm 2 /g, loss on ignition: 0.9% Limestone was used as a calcia source and bauxite was used as an alumina source so that the CaO/Al 2 O 3 molar ratio was in the range of 1.6 to 1.7, melted at 1650° C., then rapidly cooled and pulverized.
  • ⁇ CA-4 (amorphous): CaO/Al 2 O 3 molar ratio 1.83, vitrification rate 90%, Blaine value 6070 cm 2 /g, loss on ignition: 0.9% Limestone was used as a calcia source and bauxite was used as an alumina source so that the CaO/Al 2 O 3 molar ratio was in the range of 1.8 to 1.9, melted at 1650° C., then rapidly cooled and pulverized.
  • ⁇ CA-5 (amorphous): CaO/Al 2 O 3 molar ratio 1.96, vitrification rate 91%, Blaine value 6240 cm 2 /g, loss on ignition: 0.9% Limestone was used as a calcia source and bauxite was used as an alumina source so that the CaO/Al 2 O 3 molar ratio was in the range of 1.9 to 2.0, melted at 1650° C., then rapidly cooled and pulverized.
  • the present invention can be widely used in the civil engineering and construction fields, etc., in situations where early use is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

A cement composition comprising cement, amorphous calcium aluminate, and gypsum, the cement containing 5-10.5 mass% of tricalcium aluminate (C3A).

Description

セメント組成物cement composition
 本発明は、セメント組成物に関する。 The present invention relates to a cement composition.
 世界各地で急速にインフラ整備が進められており、用いられるセメントの生産量が増加している。インフラ整備が急がれる国においては、使用する材料として早期に供用可能とする材料が求められている。 Infrastructure development is progressing rapidly around the world, and the production volume of cement used is increasing. In countries where infrastructure development is urgent, there is a need for materials that can be put into use quickly.
 そこで、最近では、急硬性セメント組成物の改良が検討され、ポルトランドセメントに、カルシウムアルミネート、無水セッコウ、及び炭酸リチウムを配合した超速硬セメント(特許文献1参照)が提案されている。 Therefore, recently, improvements in rapidly hardening cement compositions have been studied, and an ultra-fast hardening cement (see Patent Document 1) has been proposed, which is a blend of Portland cement with calcium aluminate, anhydrous gypsum, and lithium carbonate.
特開平01-290543号公報Japanese Patent Application Publication No. 01-290543
 しかし、特許文献1にはセメント中のアルミン酸三カルシウムの量についての検討は無く、そのため、カルシウムアルミネートの反応を促進するために、通常のポルトランドセメントにさらに炭酸リチウムを添加する必要があった。
 本発明は、セメント中のアルミン酸三カルシウムの量を検討することで、高い初期強度を発現できるセメント組成物を提供することを目的とする。
However, Patent Document 1 does not discuss the amount of tricalcium aluminate in cement, and therefore, it was necessary to further add lithium carbonate to ordinary Portland cement in order to promote the reaction of calcium aluminate. .
An object of the present invention is to provide a cement composition that can exhibit high initial strength by examining the amount of tricalcium aluminate in cement.
 上記課題に鑑み鋭意検討した結果、本発明者らは、下記本発明に想到し当該課題を解決できることを見出した。すなわち、本発明は下記のとおりである。 As a result of intensive studies in view of the above problems, the present inventors came up with the following invention and found that the problems could be solved. That is, the present invention is as follows.
[1] セメント、非晶質カルシウムアルミネート、及びセッコウを含み、前記セメント中にアルミン酸三カルシウムを5~10.5質量%含むセメント組成物。
[2] 前記非晶質カルシウムアルミネートのCaOとAlとのモル比(CaO/Al)が1.65~1.85である[1]に記載のセメント組成物。
[3] 前記非晶質カルシウムアルミネート100質量部に対して前記セッコウが100~200質量部である[1]又は[2]に記載のセメント組成物。
[4] さらに、凝結調整剤を含む[1]~[3]のいずれかに記載のセメント組成物。
[1] A cement composition containing cement, amorphous calcium aluminate, and gypsum, and containing 5 to 10.5% by mass of tricalcium aluminate in the cement.
[2] The cement composition according to [1], wherein the amorphous calcium aluminate has a molar ratio of CaO to Al 2 O 3 (CaO/Al 2 O 3 ) of 1.65 to 1.85.
[3] The cement composition according to [1] or [2], wherein the gypsum is contained in an amount of 100 to 200 parts by mass based on 100 parts by mass of the amorphous calcium aluminate.
[4] The cement composition according to any one of [1] to [3], further comprising a setting modifier.
 本発明によれば、高い初期強度を発現できるセメント組成物を提供することができる。 According to the present invention, it is possible to provide a cement composition that can exhibit high initial strength.
 以下、本発明の一実施形態(本実施形態)を詳細に説明する。なお、本明細書における部や%は、特に規定しない限り質量基準で示す。 Hereinafter, one embodiment of the present invention (this embodiment) will be described in detail. Note that parts and percentages in this specification are expressed on a mass basis unless otherwise specified.
 本実施形態に係るセメント組成物は、セメント、非晶質カルシウムアルミネート、及びセッコウを含み、セメント中にアルミン酸三カルシウム(以下、「CA」ということがある)を5~10.5質量%含む。これらを含むことで、良好な急硬性、特に3時間後圧縮強度に示される初期強度を高くすることができると推察される。また、セメント中に所定量存在するアルミン酸三カルシウムにより、効率よく良好な急硬性が発現されると推察される。 The cement composition according to the present embodiment includes cement, amorphous calcium aluminate, and gypsum, and contains 5 to 10.5 of tricalcium aluminate (hereinafter sometimes referred to as "C 3 A") in the cement. Including mass%. It is inferred that by including these, it is possible to improve the rapid hardening property, especially the initial strength shown in the compressive strength after 3 hours. Further, it is presumed that the tricalcium aluminate present in a predetermined amount in the cement efficiently exhibits good rapid hardening properties.
(非晶質カルシウムアルミネート)
 本実施形態で使用する非晶質カルシウムアルミネート(以下、「非晶質CA」ということがある)は、カルシアを含む原料とアルミナを含む原料などを混合して、加熱溶融し、これを急冷することによって得られるCaOとAlとを主成分とする水和活性を有する非晶質物質の総称で、ガラス化率が70%以上である。
 非晶質カルシウムアルミネートのガラス化率は70%以上が好ましく、80%以上がより好ましい。
(Amorphous calcium aluminate)
The amorphous calcium aluminate (hereinafter sometimes referred to as "amorphous CA") used in this embodiment is made by mixing raw materials containing calcia and raw materials containing alumina, heating and melting the mixture, and then rapidly cooling the mixture. It is a general term for amorphous substances with hydration activity, which are mainly composed of CaO and Al 2 O 3 and have a vitrification rate of 70% or more.
The vitrification rate of the amorphous calcium aluminate is preferably 70% or more, more preferably 80% or more.
 非晶質カルシウムアルミネートは、例えば、電気炉で溶融したカルシウムアルミネートのクリンカーを圧縮空気や水に接触させ、急冷することで得られる。
 なお、カルシアを含む原料としては、石灰石や貝殻等の炭酸カルシウム、消石灰等の水酸化カルシウム、生石灰等の酸化カルシウム等が挙げられる。またアルミナを含む原料としては、ボーキサイト、アルミ残灰と呼ばれる産業副産物等が挙げられる。
Amorphous calcium aluminate can be obtained, for example, by bringing a clinker of calcium aluminate melted in an electric furnace into contact with compressed air or water and rapidly cooling it.
In addition, examples of raw materials containing calcia include calcium carbonate such as limestone and shells, calcium hydroxide such as slaked lime, and calcium oxide such as quicklime. Further, examples of raw materials containing alumina include bauxite and industrial byproducts called aluminum residual ash.
 非晶質カルシウムアルミネートのCaOとAlとの含有モル比(CaO/Alモル比)は、水和活性や強度発現の観点から、1.65~1.85であることが好ましく、1.7~1.8であることがより好ましい。 The molar ratio of CaO to Al 2 O 3 in the amorphous calcium aluminate (CaO/Al 2 O 3 molar ratio) should be 1.65 to 1.85 from the viewpoint of hydration activity and strength development. is preferable, and 1.7 to 1.8 is more preferable.
 非晶質カルシウムアルミネートのガラス化率は、まず、対象物質を1000℃で2時間焼きなました後、毎分5℃の冷却速度で徐冷して結晶化させる。そして、結晶化させたものを粉末X線回折法により測定し、結晶鉱物のメインピークの面積Sを求める。次いで、焼きなます前の物質の結晶のメインピーク面積Sを求め、以下の式によりガラス化率Xを求める。
X(%)=100×(1-S/S)
To determine the vitrification rate of amorphous calcium aluminate, first, the target material is annealed at 1000°C for 2 hours, and then slowly cooled at a cooling rate of 5°C per minute to crystallize it. Then, the crystallized material is measured by powder X-ray diffraction to determine the area S of the main peak of the crystalline mineral. Next, the main peak area S 0 of the crystal of the substance before annealing is determined, and the vitrification rate X is determined using the following formula.
X (%) = 100 x (1-S 0 /S)
 非晶質カルシウムアルミネートの粉末度は、ブレーン比表面積(以下、「ブレーン値」ということがある)で3000~9000cm/gであることが好ましく、4000~8000cm/gであることがより好ましい。ブレーン値で3000cm/g以上であることで、セメント組成物の急硬性や初期強度発現性等が向上しやすくなる。一方、ブレーン値が9000cm/g以下であれば、良好な効果を維持しながら、作業性の低下を防ぐことができる。 The fineness of the amorphous calcium aluminate is preferably 3000 to 9000 cm 2 /g, more preferably 4000 to 8000 cm 2 /g in terms of Blaine specific surface area (hereinafter sometimes referred to as "Blaine value"). preferable. When the Blaine value is 3000 cm 2 /g or more, the rapid hardening, initial strength development, etc. of the cement composition are likely to be improved. On the other hand, if the Blaine value is 9000 cm 2 /g or less, a decrease in workability can be prevented while maintaining good effects.
 非晶質カルシウムアルミネートは、強熱減量が0.2~1.5%のものを使用することが好ましく、0.5~1%がより好ましい。強熱減量が0.2~1.5%であることで、流動性や可使時間が確保しやすくなり、良好な強度発現性が得られやすくなる。強熱減量を0.2~1.5%とする方法は特に限定されるものではないが、水分や湿分を供給する方法や炭酸ガスを供給する方法等が挙げられる。
 なお、強熱減量は、JIS R 5202(セメントの化学分析方法)強熱減量の定量方法に規定される方法で求めることができる。
The amorphous calcium aluminate preferably has a loss on ignition of 0.2 to 1.5%, more preferably 0.5 to 1%. When the loss on ignition is 0.2 to 1.5%, it becomes easier to ensure fluidity and pot life, and it becomes easier to obtain good strength development. The method for achieving an ignition loss of 0.2 to 1.5% is not particularly limited, but examples include a method of supplying moisture or moisture, a method of supplying carbon dioxide gas, and the like.
Incidentally, the loss on ignition can be determined by the method specified in JIS R 5202 (Method of Chemical Analysis of Cement), Method for Quantifying Loss on Ignition.
(セッコウ)
 本実施形態では、凝結性や強度発現性の観点からセッコウを使用する。セッコウは無水、半水、二水の総称であり、特に限定されるものではないが、初期強度発現性の観点から無水セッコウ又は半水セッコウの使用が好ましく、無水セッコウの使用がより好ましい。
(Gypsum)
In this embodiment, gypsum is used from the viewpoint of setting properties and strength development properties. Gypsum is a general term for anhydrous, hemihydrous, and dihydric, and is not particularly limited, but from the viewpoint of initial strength development, it is preferable to use anhydrous gypsum or semihydrous gypsum, and it is more preferable to use anhydrous gypsum.
 セッコウの粒度は、セメント組成物の初期強度発現性を考慮して、ブレーン値3000cm/g以上であることが好ましく、3000~9000cm/gであることがより好ましく、4000~8000cm/gであることがさらに好ましい。 The particle size of the gypsum is preferably a Blaine value of 3000 cm 2 /g or more, more preferably 3000 to 9000 cm 2 /g, and 4000 to 8000 cm 2 /g, considering the initial strength development of the cement composition. It is more preferable that
 セッコウの含有量は、非晶質カルシウムアルミネート100質量部に対して、100~200質量部であることが好ましく、150~200質量部であることがより好ましい。セッコウが100質量部以上であると、セメント組成物の長期強度発現性を促進しやすくなり、一方、200質量部以下であると、初期凝結の遅れを防ぎ、初期強度発現性を良好にすることができる。 The content of gypsum is preferably 100 to 200 parts by mass, more preferably 150 to 200 parts by mass, based on 100 parts by mass of amorphous calcium aluminate. When the amount of gypsum is 100 parts by mass or more, it is easy to promote long-term strength development of the cement composition, while when it is 200 parts by mass or less, delay in initial setting is prevented and the initial strength development is improved. Can be done.
 非晶質カルシウムアルミネートとセッコウからなる急硬成分は、セメント組成物の合計100質量部中、10~35質量部が好ましく、15~25質量部がより好ましい。10質量部以上であることで初期強度発現性を良好にすることが可能で、35質量部以下であることで良好な作業性や長期強度が得やすくなる。 The rapid hardening component consisting of amorphous calcium aluminate and gypsum is preferably 10 to 35 parts by mass, more preferably 15 to 25 parts by mass out of the total 100 parts by mass of the cement composition. When the amount is 10 parts by mass or more, it is possible to improve initial strength development, and when it is 35 parts by mass or less, good workability and long-term strength can be easily obtained.
(セメント)
 本実施形態に係るセメントは、当該セメント中にアルミン酸三カルシウムを5~10.5質量%含む。CAが5質量%未満では、凝結開始から硬化までの時間が長くなることで初期強度発現性は小さくなってしまう。また10.5質量%を超えると、凝結開始から硬化までの時間は短くなるものの初期強度発現性は小さくなる。アルミン酸三カルシウムは、6~10.5質量%であることが好ましく、7~10.5質量%であることがより好ましい。
(cement)
The cement according to this embodiment contains 5 to 10.5% by mass of tricalcium aluminate. If the C 3 A content is less than 5% by mass, the time from the start of setting to hardening becomes longer, resulting in lower initial strength development. If it exceeds 10.5% by mass, the time from the start of setting to hardening will be shortened, but the initial strength development will be low. The amount of tricalcium aluminate is preferably 6 to 10.5% by mass, more preferably 7 to 10.5% by mass.
 上記のようなセメントは、アルミン酸三カルシウムを5~10.5質量%となるように、各種セメントを単独あるいは組み合わせて調製することができる。調製に使用するセメントの種類としては、普通、早強、超早強、中庸熱、低熱及び耐硫酸塩等の各種ポルトランドセメント;これらポルトランドセメントに高炉スラグ、フライアッシュ、又は、石灰石微粉末を混合した各種混合セメント等が挙げられる。 The above cement can be prepared by using various cements alone or in combination so that the content of tricalcium aluminate is 5 to 10.5% by mass. The types of cement used for preparation include ordinary, early strength, ultra early strength, moderate heat, low heat, and sulfate-resistant Portland cement; these Portland cements are mixed with blast furnace slag, fly ash, or fine limestone powder. Examples include various mixed cements.
(凝結調整剤)
 本実施形態のセメント組成物は、充分な作業時間の確保と初期強度発現性を満足する観点から、さらに、凝結調整剤を含むことが好ましい。
 上記凝結調整剤は特に限定されるものではない。その具体例としては、例えば、クエン酸、酒石酸、リンゴ酸、グルコン酸、及びコハク酸又はそれらのナトリウム、カリウム、カルシウム、マグネシウム、アンモニウム、及びアルミニウムなどの塩のオキシカルボン酸又はそれらの塩、さらに、炭酸ナトリウム、炭酸カリウム、及び炭酸リチウムのアルカリ金属炭酸塩(以下、炭酸アルカリという)、炭酸アンモニウム、重炭酸ナトリウム、重炭酸カリウム、重炭酸リチウム、並びに、重炭酸アンモニウムなどの炭酸塩類が挙げられ、これらの一種又は二種以上が使用可能である。
 本実施形態では、充分な可使時間と初期強度発現性の双方を良好に満足する観点から、オキシカルボン酸又はその塩と炭酸アルカリの併用が好ましい。
(setting regulator)
The cement composition of this embodiment preferably further contains a setting modifier from the viewpoint of ensuring sufficient working time and satisfying initial strength development.
The above-mentioned setting modifier is not particularly limited. Specific examples thereof include oxycarboxylic acids or salts thereof such as citric acid, tartaric acid, malic acid, gluconic acid, and succinic acid or their salts such as sodium, potassium, calcium, magnesium, ammonium, and aluminum; , alkali metal carbonates of sodium carbonate, potassium carbonate, and lithium carbonate (hereinafter referred to as alkali carbonates), ammonium carbonate, sodium bicarbonate, potassium bicarbonate, lithium bicarbonate, and carbonates such as ammonium bicarbonate. , one or more of these can be used.
In this embodiment, from the viewpoint of satisfactorily satisfying both sufficient pot life and early strength development, it is preferable to use oxycarboxylic acid or a salt thereof in combination with an alkali carbonate.
 凝結調整剤の使用量は、充分な作業時間の確保と初期強度発現性を満足する観点から、本実施形態に係るセメント、非晶質カルシウムアルミネート、セッコウからなるセメント組成物100質量部に対して、0.1~2質量部であることが好ましく、0.5~1.5質量部であることがより好ましい。 The amount of setting modifier used is determined based on 100 parts by mass of the cement composition consisting of cement, amorphous calcium aluminate, and gypsum according to this embodiment, from the viewpoint of ensuring sufficient working time and satisfying initial strength development. The amount is preferably 0.1 to 2 parts by weight, more preferably 0.5 to 1.5 parts by weight.
 ここで、本実施形態のセメント組成物において、セメント、非晶質カルシウムアルミネート、及びセッコウの各成分の合計は100質量%以下であり、これらの効果を充分に発揮させる観点から、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、98質量%以上であることがより好ましく、99.9質量%以上であることがよりさらに好ましい。 Here, in the cement composition of this embodiment, the total of each component of cement, amorphous calcium aluminate, and gypsum is 100% by mass or less, and from the viewpoint of fully exhibiting these effects, 90% by mass It is preferably at least 95% by mass, more preferably at least 98% by mass, even more preferably at least 99.9% by mass.
 本実施形態において、セメント組成物を作製する際の各材料の混合方法は特に限定されるものではなく、それぞれの材料を施工時に混合しても良いし、あらかじめ一部を、あるいは全部を混合しておいても差し支えない。混合装置としては、既存のいかなる装置、例えば、傾胴ミキサ、オムニミキサ、ヘンシェルミキサ、V型ミキサ、及びナウタミキサなどの使用が可能である。 In this embodiment, the method of mixing each material when producing a cement composition is not particularly limited, and each material may be mixed at the time of construction, or some or all of the materials may be mixed in advance. There is no harm in leaving it as is. As the mixing device, any existing device can be used, such as a tilting mixer, an omni mixer, a Henschel mixer, a V-type mixer, and a Nauta mixer.
[実験例1]
 市販品である、普通セメント、早強セメント、高CAセメント、及び中庸熱セメントの少なくともいずれかを用いて、セメント組成中のCSを一定としCAを変化させて、表1に示す鉱物組成の試製セメント1~6を作製した。
[Experiment example 1]
Using at least one of commercially available ordinary cement, early strength cement, high C 3 A cement, and moderate heat cement, C 3 S in the cement composition was kept constant and C 3 A was varied. Table 1 Trial cements 1 to 6 with the mineral compositions shown below were prepared.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 作製した各試製セメント、カルシウムアルミネート(CA-1若しくは結晶CA)、各種セッコウを表2に示す配合で混合してセメント組成物を作製し、さらに凝結調整剤をセメント組成物100部に対して1部混合した。セメント組成物100部に対して細骨材を200部とし、セメント組成物100部に対しに水40部を加え練り混ぜてモルタルを作製し、その圧縮強度を測定した。圧縮強度はJIS R 5201に準じて4×4×16cmの試験体を作製し、3時間後、1日後、及び28日後のそれぞれを測定した。結果を表1に示す。 A cement composition was prepared by mixing each of the prepared trial cements, calcium aluminate (CA-1 or crystalline CA), and various types of gypsum in the proportions shown in Table 2, and a setting modifier was added to 100 parts of the cement composition. One part was mixed. A mortar was prepared by adding 200 parts of fine aggregate to 100 parts of the cement composition, adding 40 parts of water to 100 parts of the cement composition, and kneading the mixture.The compressive strength of the mortar was measured. The compressive strength was measured in accordance with JIS R 5201 by preparing a 4 x 4 x 16 cm test piece and measuring it after 3 hours, 1 day, and 28 days. The results are shown in Table 1.
<使用材料>
(1)カルシウムアルミネート
・CA-1(非晶質):CaO/Alモル比1.78、ガラス化率91%、ブレーン値5900cm/g、強熱減量:0.9%
 CaO/Alモル比1.7~1.8の範囲となるようにカルシア源として石灰石とアルミナ源としてのボーキサイトを使用し、1650℃で溶融後に急冷し、粉砕して作製した。
・結晶CA(結晶質):CaO/Alモル比1.77、ガラス化率0%、ブレーン値6000cm/g
 カルシア源として石灰石とアルミナ源としてボーキサイトを使用し、1450℃で焼成後に徐冷し、粉砕して作製した。
(2)セッコウ
・無水セッコウ:市販品、ブレーン値5600cm/g
・半水セッコウ:市販品、ブレーン値5700cm/g
・二水セッコウ:市販品、ブレーン値5500cm/g
(3)凝結調整剤
・試薬1級のクエン酸25質量部と試薬1級の炭酸カリウム75質量部の混合品
(4)細骨材
・珪砂:市販品、3号:30質量部、5号:40質量部、6号:30質量部の混合品
<Materials used>
(1) Calcium aluminate CA-1 (amorphous): CaO/Al 2 O 3 molar ratio 1.78, vitrification rate 91%, Blaine value 5900 cm 2 /g, loss on ignition: 0.9%
Limestone was used as a calcia source and bauxite was used as an alumina source so that the CaO/Al 2 O 3 molar ratio was in the range of 1.7 to 1.8, melted at 1650° C., then rapidly cooled and pulverized.
・Crystalline CA (crystalline): CaO/Al 2 O 3 molar ratio 1.77, vitrification rate 0%, Blaine value 6000 cm 2 /g
Limestone was used as a calcia source and bauxite was used as an alumina source. After firing at 1450° C., it was slowly cooled and pulverized.
(2) Gypsum/anhydrous gypsum: Commercially available product, Blaine value 5600 cm 2 /g
・Hemihydrate gypsum: Commercial product, Blaine value 5700cm 2 /g
・Dihydrate gypsum: Commercial product, Blaine value 5500cm 2 /g
(3) A mixture of 25 parts by mass of citric acid, a first-grade reagent, and 75 parts by mass of potassium carbonate, a first-grade reagent (4) Fine aggregate, silica sand: Commercially available product, No. 3: 30 parts by mass, No. 5 : 40 parts by mass, No. 6: 30 parts by mass mixture
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[実験例2]
 実験例1の実験No.4において、CA-1の代わりに、下記のCA-2~CA-5をそれぞれ用いた以外は、実験例1と同様にして、セメント組成物を作製し、さらにモルタルを作製して圧縮強度を測定した。結果を表3に示す。
[Experiment example 2]
Experiment No. of Experimental Example 1. In Example 4, a cement composition was prepared in the same manner as in Experimental Example 1, except that each of the following CA-2 to CA-5 was used instead of CA-1, and mortar was prepared to increase the compressive strength. It was measured. The results are shown in Table 3.
<使用材料>
・CA-2(非晶質):CaO/Alモル比1.55、ガラス化率90%、ブレーン値6310cm/g、強熱減量:0.9%
 CaO/Alモル比1.5~1.6の範囲となるようにカルシア源として石灰石とアルミナ源としてのボーキサイトを使用し、1650℃で溶融後に急冷し、粉砕して作製した。
・CA-3(非晶質):CaO/Alモル比1.67、ガラス化率92%、ブレーン値5800cm/g、強熱減量:0.9%
 CaO/Alモル比1.6~1.7の範囲となるようにカルシア源として石灰石とアルミナ源としてのボーキサイトを使用し、1650℃で溶融後に急冷し、粉砕して作製した。
・CA-4(非晶質):CaO/Alモル比1.83、ガラス化率90%、ブレーン値6070cm/g、強熱減量:0.9%
 CaO/Alモル比1.8~1.9の範囲となるようにカルシア源として石灰石とアルミナ源としてのボーキサイトを使用し、1650℃で溶融後に急冷し、粉砕して作製した。
・CA-5(非晶質):CaO/Alモル比1.96、ガラス化率91%、ブレーン値6240cm/g、強熱減量:0.9%
 CaO/Alモル比1.9~2.0の範囲となるようにカルシア源として石灰石とアルミナ源としてのボーキサイトを使用し、1650℃で溶融後に急冷し、粉砕して作製した。
<Materials used>
・CA-2 (amorphous): CaO/Al 2 O 3 molar ratio 1.55, vitrification rate 90%, Blaine value 6310 cm 2 /g, loss on ignition: 0.9%
Limestone was used as a calcia source and bauxite was used as an alumina source so that the CaO/Al 2 O 3 molar ratio was in the range of 1.5 to 1.6, melted at 1650° C., then rapidly cooled and pulverized.
・CA-3 (amorphous): CaO/Al 2 O 3 molar ratio 1.67, vitrification rate 92%, Blaine value 5800 cm 2 /g, loss on ignition: 0.9%
Limestone was used as a calcia source and bauxite was used as an alumina source so that the CaO/Al 2 O 3 molar ratio was in the range of 1.6 to 1.7, melted at 1650° C., then rapidly cooled and pulverized.
・CA-4 (amorphous): CaO/Al 2 O 3 molar ratio 1.83, vitrification rate 90%, Blaine value 6070 cm 2 /g, loss on ignition: 0.9%
Limestone was used as a calcia source and bauxite was used as an alumina source so that the CaO/Al 2 O 3 molar ratio was in the range of 1.8 to 1.9, melted at 1650° C., then rapidly cooled and pulverized.
・CA-5 (amorphous): CaO/Al 2 O 3 molar ratio 1.96, vitrification rate 91%, Blaine value 6240 cm 2 /g, loss on ignition: 0.9%
Limestone was used as a calcia source and bauxite was used as an alumina source so that the CaO/Al 2 O 3 molar ratio was in the range of 1.9 to 2.0, melted at 1650° C., then rapidly cooled and pulverized.
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
[実験例3]
 実験例1の実験No.4において、無水セッコウの量を表4のように変更した以外は、実験例1と同様にして、セメント組成物を作製し、さらにモルタルを作製して圧縮強度を測定した(実験No.14~17)。結果を表4に示す。
[Experiment example 3]
Experiment No. of Experimental Example 1. In Experiment No. 4, a cement composition was prepared in the same manner as in Experimental Example 1, except that the amount of anhydrous gypsum was changed as shown in Table 4, and mortar was further prepared and the compressive strength was measured (Experiment No. 14 to 17). The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
 本発明は、土木・建築分野等で、早期に供用が必要な状況下で幅広く使用することができる。 The present invention can be widely used in the civil engineering and construction fields, etc., in situations where early use is required.

Claims (4)

  1.  セメント、非晶質カルシウムアルミネート、及びセッコウを含み、前記セメント中にアルミン酸三カルシウムを5~10.5質量%含むセメント組成物。 A cement composition containing cement, amorphous calcium aluminate, and gypsum, and containing 5 to 10.5% by mass of tricalcium aluminate in the cement.
  2.  前記非晶質カルシウムアルミネートのCaOとAlとのモル比(CaO/Al)が1.65~1.85である請求項1に記載のセメント組成物。 The cement composition according to claim 1, wherein the amorphous calcium aluminate has a molar ratio of CaO to Al 2 O 3 (CaO/Al 2 O 3 ) of 1.65 to 1.85.
  3.  前記非晶質カルシウムアルミネート100質量部に対して前記セッコウが100~200質量部である請求項1又は2に記載のセメント組成物。 The cement composition according to claim 1 or 2, wherein the gypsum is present in an amount of 100 to 200 parts by mass based on 100 parts by mass of the amorphous calcium aluminate.
  4.  さらに、凝結調整剤を含む請求項1~3のいずれか1項に記載のセメント組成物。
     

     
    The cement composition according to any one of claims 1 to 3, further comprising a setting modifier.


PCT/JP2023/009168 2022-03-10 2023-03-09 Cement composition WO2023171770A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023531695A JPWO2023171770A1 (en) 2022-03-10 2023-03-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022037437 2022-03-10
JP2022-037437 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023171770A1 true WO2023171770A1 (en) 2023-09-14

Family

ID=87935306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009168 WO2023171770A1 (en) 2022-03-10 2023-03-09 Cement composition

Country Status (2)

Country Link
JP (1) JPWO2023171770A1 (en)
WO (1) WO2023171770A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297250A (en) * 2006-05-02 2007-11-15 Denki Kagaku Kogyo Kk Ultrarapid hardening cement composition, ultrarapid hardening mortar composition and ultrarapid hardening grout mortar
WO2013031246A1 (en) * 2011-08-29 2013-03-07 株式会社デイ・シイ Neutralization-preventive high-early-strength cement composition
JP2019006611A (en) * 2017-06-21 2019-01-17 太平洋マテリアル株式会社 Spray Concrete
WO2020039908A1 (en) * 2018-08-22 2020-02-27 デンカ株式会社 Hardening agent for ready-mix shipped rapid-hardening concrete, ready-mix shipped rapid-hardening concrete material, ready-mix shipped rapid-hardening concrete composition, and method for preparing same
WO2020100925A1 (en) * 2018-11-15 2020-05-22 デンカ株式会社 Cement admixture, expansion material, and cement composition
JP2020152607A (en) * 2019-03-20 2020-09-24 デンカ株式会社 Quick-hardening cement, cement mortar, cement concrete, road repair material, and, repair method of road
WO2021106876A1 (en) * 2019-11-26 2021-06-03 デンカ株式会社 Powdered quick-setting agent
JP2022152501A (en) * 2021-03-29 2022-10-12 デンカ株式会社 Concrete containing attractant and concrete structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297250A (en) * 2006-05-02 2007-11-15 Denki Kagaku Kogyo Kk Ultrarapid hardening cement composition, ultrarapid hardening mortar composition and ultrarapid hardening grout mortar
WO2013031246A1 (en) * 2011-08-29 2013-03-07 株式会社デイ・シイ Neutralization-preventive high-early-strength cement composition
JP2019006611A (en) * 2017-06-21 2019-01-17 太平洋マテリアル株式会社 Spray Concrete
WO2020039908A1 (en) * 2018-08-22 2020-02-27 デンカ株式会社 Hardening agent for ready-mix shipped rapid-hardening concrete, ready-mix shipped rapid-hardening concrete material, ready-mix shipped rapid-hardening concrete composition, and method for preparing same
WO2020100925A1 (en) * 2018-11-15 2020-05-22 デンカ株式会社 Cement admixture, expansion material, and cement composition
JP2020152607A (en) * 2019-03-20 2020-09-24 デンカ株式会社 Quick-hardening cement, cement mortar, cement concrete, road repair material, and, repair method of road
WO2021106876A1 (en) * 2019-11-26 2021-06-03 デンカ株式会社 Powdered quick-setting agent
JP2022152501A (en) * 2021-03-29 2022-10-12 デンカ株式会社 Concrete containing attractant and concrete structure

Also Published As

Publication number Publication date
JPWO2023171770A1 (en) 2023-09-14

Similar Documents

Publication Publication Date Title
JP6718551B1 (en) Powder quick-setting agent
JP2001328856A (en) Nonshrinking mortar composition and quick-hardenable nonshrinking mortar composition
JPH07237950A (en) Cement admixture for grout and cement composition
WO2023171770A1 (en) Cement composition
JPH0497932A (en) Cement admixture and cement composition
JP3199454B2 (en) Cement admixture and cement composition
JP5855902B2 (en) Alumina cement
JP7026741B1 (en) Cement admixture and cement composition
JP4877886B2 (en) Cement quick setting agent and cement composition
JP3377604B2 (en) Cement quick setting material and cement composition
WO2021215509A1 (en) Cement admixture, expansion material, and cement composition
JP6988689B2 (en) Cement composition and its manufacturing method, cement mortar manufacturing method
WO2021024853A1 (en) Cement admixture and hydraulic composition
CS241477B2 (en) Method of calcium hydroxide ca(oh)2 occurence limitation in hydraulic binder on base of portland cement clinker
JP6956502B2 (en) Cement admixtures and cement compositions and hydraulic compositions
JP3124578B2 (en) Cement admixture and cement composition
JP4293324B2 (en) Cement admixture and cement composition
JP3370192B2 (en) Cement quick setting material and cement composition
JP6071483B2 (en) Fast-curing agent and fast-curing admixture
JP2000034150A (en) Suppressant for heat of hydration of cement and cement composition
JPH08143348A (en) Cement composition
WO2012169005A1 (en) Process for producing expanding-material clinker
JP3460161B2 (en) Cement admixture and cement composition
JP3367576B2 (en) Hydration heat generation time adjusting material for cement and cement composition
JP3370186B2 (en) Cement admixture and cement composition

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023531695

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766946

Country of ref document: EP

Kind code of ref document: A1