JP2007074846A - Method of controlling voltage of distribution system, device and program - Google Patents

Method of controlling voltage of distribution system, device and program Download PDF

Info

Publication number
JP2007074846A
JP2007074846A JP2005260443A JP2005260443A JP2007074846A JP 2007074846 A JP2007074846 A JP 2007074846A JP 2005260443 A JP2005260443 A JP 2005260443A JP 2005260443 A JP2005260443 A JP 2005260443A JP 2007074846 A JP2007074846 A JP 2007074846A
Authority
JP
Japan
Prior art keywords
voltage
reactive power
output
change
subsidy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005260443A
Other languages
Japanese (ja)
Other versions
JP4498247B2 (en
Inventor
Hirotake Kobayashi
広武 小林
Hiroyuki Hatsuta
啓行 八太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005260443A priority Critical patent/JP4498247B2/en
Publication of JP2007074846A publication Critical patent/JP2007074846A/en
Application granted granted Critical
Publication of JP4498247B2 publication Critical patent/JP4498247B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a difference of facility utilization factors between distributed power supplies in a distribution system and a difference between power selling incomes, and to suppress the deterioration of the energy utilization efficiency of the power supply in the distribution system as whole. <P>SOLUTION: This voltage control method calculates voltage sensitivity with respect to the change amount of active power from the change amount of active power at a tie point between a distribution line and the distributed power supply B and the change amount of a voltage, and when the voltage sensitivity is not higher than a threshold for determining whether aid by an output of inactive power should be performed or not, the voltage control method determines that the other distributed power supply A is shifted to voltage-rise suppression control, and makes the distributed power supply B start the aid by the output of the inactive power. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、配電系統の電圧制御方法、装置並びにプログラムに関する。さらに詳述すると、本発明は、複数の分散型電源が連系している配電系統の電圧制御方法、装置並びにプログラムに関する。   The present invention relates to a voltage control method, apparatus, and program for a distribution system. More specifically, the present invention relates to a voltage control method, apparatus, and program for a distribution system in which a plurality of distributed power sources are interconnected.

わが国では、商用電力系統への分散型電源の連系が進められている。それに伴い、分散型電源が配電系統に大量導入された場合の分散型電源からの逆潮流による電圧上昇が懸念されている。場合によっては、電気事業法で定められている適正範囲の上限である107[V]を超えてしまう可能性もある。   In Japan, interconnection of distributed power sources to commercial power systems is underway. Along with this, there is a concern about a voltage increase due to reverse power flow from the distributed power source when a large amount of the distributed power source is introduced into the distribution system. In some cases, it may exceed 107 [V], which is the upper limit of the appropriate range defined by the Electricity Business Law.

分散型電源を系統連系する場合、分散型電源系統連系技術指針に従って対策をとることになっている(非特許文献1)。   When a distributed power source is connected to the grid, measures are taken in accordance with the distributed power system connection technical guidelines (Non-Patent Document 1).

分散型電源系統連系技術指針による従来の配電系統の電圧上昇を抑制する対策は、まず進相無効電力の制御を行い、それによっては十分な抑制効果が得られない場合は出力有効電力を低減させるものである。   The countermeasure to suppress the voltage increase of the conventional distribution system based on the distributed power system interconnection technical guidelines is to first control the phase advance reactive power, and if this does not provide a sufficient suppression effect, the output active power is reduced. It is something to be made.

日本電気協会:分散型電源系統連系技術指針(JEAG9701−2001), 2001年.NEC Association: Distributed Power System Integration Technical Guidelines (JEAG 9701-2001), 2001.

しかしながら、複数の分散型電源が同一の配電系統に導入される際には、配電系統の線路インピーダンス等の影響により一部の地点の電圧が上昇しやすい場合がある。このような場合には、分散型電源系統連系技術指針による対策では、条件によっては一部の地点の分散型電源のみが電圧上昇抑制を行うこととなり、これら一部の分散型電源の出力有効電力の低減を招くことになる。   However, when a plurality of distributed power sources are introduced into the same distribution system, the voltage at some points may easily increase due to the influence of the line impedance of the distribution system. In such a case, according to the countermeasures based on the distributed power system interconnection technical guidelines, depending on the conditions, only the distributed power supplies at some points will suppress the voltage rise, and the output of some of these distributed power supplies is effective. This leads to a reduction in power.

このため、配電系統内の分散型電源間で出力有効電力の不均等を招き、分散型電源設置地点による設備利用率の格差や、余剰電力を売電しているような場合には収入格差を招くという問題がある。更に、この結果、配電系統内の電源全体としてのエネルギー利用効率が低下してしまうという問題がある。   For this reason, non-uniformity of output active power is caused between distributed power sources in the distribution system, and there is a disparity in equipment utilization rates at the locations where distributed power sources are installed, and income disparities when surplus power is sold. There is a problem of inviting. Furthermore, as a result, there is a problem that the energy utilization efficiency of the entire power supply in the distribution system is reduced.

そこで、本発明は、配電系統内の分散型電源間の設備利用率や売電収入の格差を抑制すると共に配電系統内の電源全体としてのエネルギー利用効率の低下を抑制することができる配電系統の電圧制御方法、装置並びにプログラムを提供することを目的とする。   Therefore, the present invention provides a distribution system that can suppress the facility utilization rate between the distributed power sources in the power distribution system and the difference in power sales revenue, and can suppress a decrease in energy use efficiency as the entire power source in the power distribution system. It is an object to provide a voltage control method, apparatus, and program.

かかる目的を達成するため、請求項1記載の配電系統の電圧制御方法は、配電線に複数の分散型電源が連系している配電系統において、配電線と分散型電源Bとの連系点における有効電力の変化分と電圧の変化分とから有効電力変化分に対する電圧感度を算出し、有効電力変化分に対する電圧感度が無効電力出力による助成を行うか否かを判定するための閾値以下の場合に他の分散型電源Aが電圧上昇抑制制御に移行したと判断して分散型電源Bが無効電力出力による助成を開始するようにしている。   In order to achieve this object, a voltage control method for a distribution system according to claim 1 is a connection point between a distribution line and a distributed power source B in a distribution system in which a plurality of distributed power sources are linked to the distribution line. The voltage sensitivity for the active power change is calculated from the change in the active power and the change in the voltage, and the voltage sensitivity for the active power change is less than the threshold for determining whether or not subsidy by reactive power output is performed. In this case, it is determined that the other distributed power source A has shifted to the voltage rise suppression control, and the distributed power source B starts subsidy with reactive power output.

また、請求項5記載の配電系統の電圧制御装置は、配電線と分散型電源との連系点における有効電力の変化分と電圧の変化分とから有効電力変化分に対する電圧感度を算出する手段と、有効電力変化分に対する電圧感度が無効電力出力による助成を行うか否かを判定するための閾値以下の場合に分散型電源に無効電力出力による助成を開始させる内容の制御指令を出力する手段とを含む制御装置を有するようにしている。   Further, the voltage control device for the distribution system according to claim 5 is a means for calculating the voltage sensitivity for the change in the effective power from the change in the active power and the change in the voltage at the connection point between the distribution line and the distributed power source. And a means for outputting a control command with a content that causes the distributed power source to start subsidy by reactive power output when the voltage sensitivity to the active power change is equal to or less than a threshold for determining whether or not subsidy by reactive power output is performed And a control device including

更にまた、請求項9記載の配電系統の電圧制御プログラムは、コンピュータを、少なくとも、配電線と分散型電源との連系点における有効電力の変化分と電圧の変化分とから有効電力変化分に対する電圧感度を算出する手段、有効電力変化分に対する電圧感度が無効電力出力による助成を行うか否かを判定するための閾値以下の場合に分散型電源に無効電力出力による助成を開始させる内容の制御指令を出力する手段として機能させるようにしている。   Furthermore, the voltage control program for the distribution system according to claim 9, wherein the computer controls at least the amount of change in active power from the amount of change in active power and the amount of change in voltage at the connection point between the distribution line and the distributed power source. Means for calculating voltage sensitivity, control of content that causes distributed power source to start subsidy by reactive power output when voltage sensitivity to active power change is below threshold for determining whether to subsidize by reactive power output It is made to function as a means for outputting a command.

ここで、複数の分散型電源が連系している配電系統において、配電系統の電圧が適正範囲の上限に達してある分散型電源が一定力率の通常運転から電圧上昇抑制制御に移行することは、その分散型電源が定電力源から定電圧源に切り替わることと概略等価であり、同一配電線に連系している他の分散型電源からみた系統インピーダンスが低下し、特に有効電力の出力変化中の分散型電源では有効電力変化分に対する電圧感度(電圧の変化分を有効電力の変化分で除したもの)が低下することとなる。したがって、この配電系統の電圧制御方法、装置並びにプログラムによると、配電線と分散型電源Bとの連系点における有効電力変化分に対する電圧感度が低下したときに、同一配電線に連系している他の分散型電源Aが電圧上昇抑制制御に移行したものと判断して分散型電源Bによる無効電力出力による助成が開始される。また、配電線と分散型電源との連系点における有効電力と電圧を監視することにより配電系統に連系している分散型電源が単独で自律的に機能して配電系統全体の電圧制御を行う。   Here, in a distribution system in which a plurality of distributed power sources are interconnected, the distributed power source in which the voltage of the distribution system has reached the upper limit of the appropriate range shifts from normal operation with a constant power factor to voltage rise suppression control. Is roughly equivalent to switching the distributed power source from a constant power source to a constant voltage source, and the system impedance of other distributed power sources connected to the same distribution line is reduced. In the distributed power source that is changing, the voltage sensitivity to the change in active power (the voltage change divided by the change in active power) decreases. Therefore, according to the voltage control method, apparatus and program of this distribution system, when the voltage sensitivity to the active power change at the connection point between the distribution line and the distributed power source B decreases, the distribution line is connected to the same distribution line. It is determined that the other distributed power source A has shifted to the voltage rise suppression control, and the subsidy by the reactive power output from the distributed power source B is started. In addition, by monitoring the active power and voltage at the connection point between the distribution lines and the distributed power supply, the distributed power supply connected to the distribution system functions autonomously to control the voltage of the entire distribution system. Do.

また、請求項2記載の発明は、請求項1記載の配電系統の電圧制御方法において、分散型電源Bが出力可能な最大出力での無効電力出力による助成を開始するようにしている。   According to a second aspect of the present invention, in the voltage control method for the distribution system according to the first aspect, the subsidy by the reactive power output at the maximum output that the distributed power source B can output is started.

請求項6記載の発明は、請求項5記載の配電系統の電圧制御装置において、無効電力出力による助成を開始させる内容の制御指令を出力する手段が、分散型電源に出力可能な最大出力での無効電力出力による助成を開始させる内容の制御指令を出力するようにしている。   According to a sixth aspect of the present invention, in the voltage control device for the distribution system according to the fifth aspect, the means for outputting a control command for starting the subsidy by the reactive power output is a maximum output that can be output to the distributed power source. A control command for starting subsidy by reactive power output is output.

請求項10記載の発明は、請求項9記載の配電系統の電圧制御プログラムにおいて、コンピュータを、分散型電源に出力可能な最大出力での無効電力出力による助成を開始させる内容の制御指令を出力する手段として機能させるようにしている。   A tenth aspect of the present invention is the distribution system voltage control program according to the ninth aspect, wherein the computer outputs a control command having a content for starting subsidy by reactive power output at a maximum output that can be output to the distributed power source. It is made to function as a means.

この場合には、分散型電源が出力可能な最大出力での無効電力出力による助成を開始し、配電系統の電圧の適正範囲の超過が助成開始当初から早急に解消され得る。   In this case, the subsidy by the reactive power output at the maximum output that can be output by the distributed power source is started, and exceeding the appropriate range of the voltage of the distribution system can be quickly resolved from the beginning of the subsidy.

また、請求項3記載の発明は、請求項1または2記載の配電系統の電圧制御方法において、分散型電源Bが無効電力出力による助成を開始した後に、配電線と分散型電源Bとの連系点における無効電力の変化分と電圧の変化分とから無効電力変化分に対する電圧感度を算出し、無効電力変化分に対する電圧感度が助成のための無効電力出力の低下を停止するか否かを判定するための閾値よりも大きい場合には分散型電源Bが助成のための無効電力出力を段階的に低下し、無効電力変化分に対する電圧感度が助成のための無効電力出力の低下を停止するか否かを判定するための閾値以下の場合には分散型電源Aが電圧一定制御に移行したと判断して分散型電源Bが助成のための無効電力出力の低下を停止するようにしている。   According to a third aspect of the present invention, in the voltage control method for a power distribution system according to the first or second aspect, after the distributed power source B starts subsidy by reactive power output, the distribution line and the distributed power source B are connected. The voltage sensitivity for the reactive power change is calculated from the reactive power change and the voltage change at the system point, and whether or not the voltage sensitivity for the reactive power change stops the reduction of the reactive power output for the subsidy. When it is larger than the threshold for determination, the distributed power source B gradually reduces the reactive power output for the subsidy, and the voltage sensitivity with respect to the reactive power change amount stops the reduction of the reactive power output for the subsidy. If it is below the threshold value for determining whether or not the distributed power source A has shifted to constant voltage control, the distributed power source B stops the reduction of the reactive power output for subsidy. .

請求項7記載の発明は、請求項5または6記載の配電系統の電圧制御装置において、制御装置が、連系点における無効電力の変化分と電圧の変化分とから無効電力変化分に対する電圧感度を算出する手段と、無効電力変化分に対する電圧感度が助成のための無効電力出力の低下を停止するか否かを判定するための閾値よりも大きい場合には分散型電源に助成のための無効電力出力を段階的に低下させる内容の制御指令を出力する手段と、無効電力変化分に対する電圧感度が助成のための無効電力出力の低下を停止するか否かを判定するための閾値以下の場合には分散型電源に助成のための無効電力出力の低下を停止させる内容の制御指令を出力する手段とを含むようにしている。   According to a seventh aspect of the present invention, in the voltage control device for a distribution system according to the fifth or sixth aspect, the control device senses a voltage sensitivity with respect to a reactive power variation from a reactive power variation and a voltage variation at the interconnection point. If the voltage sensitivity to the reactive power change is greater than the threshold value for determining whether to stop the reduction of reactive power output for subsidy, the distributed power source is disabled for subsidy A means for outputting a control command with a content that lowers the power output step by step, and a voltage sensitivity with respect to the reactive power change is below a threshold for determining whether or not to stop the reduction of the reactive power output for the subsidy Includes a means for outputting a control command with a content to stop the decrease in reactive power output for subsidizing the distributed power source.

請求項11記載の発明は、請求項9または10記載の配電系統の電圧制御プログラムにおいて、コンピュータを、連系点における無効電力の変化分と電圧の変化分とから無効電力変化分に対する電圧感度を算出する手段、無効電力変化分に対する電圧感度が助成のための無効電力出力の低下を停止するか否かを判定するための閾値よりも大きい場合には分散型電源に助成のための無効電力出力を段階的に低下させる内容の制御指令を出力する手段、無効電力変化分に対する電圧感度が助成のための無効電力出力の低下を停止するか否かを判定するための閾値以下の場合には分散型電源に助成のための無効電力出力の低下を停止させる内容の制御指令を出力する手段として機能させるようにしている。   According to the eleventh aspect of the present invention, in the voltage control program for the distribution system according to the ninth or tenth aspect, the computer is provided with a voltage sensitivity to the reactive power variation from the reactive power variation and the voltage variation at the interconnection point. Means for calculating, reactive power output for subsidy to distributed power source if voltage sensitivity to reactive power change is greater than threshold for determining whether to stop reduction of reactive power output for subsidy A means for outputting a control command with a content that lowers the power step by step, and if the voltage sensitivity with respect to the reactive power change is equal to or less than a threshold value for determining whether to stop the reduction of the reactive power output for subsidy The type power supply is made to function as a means for outputting a control command with a content for stopping the decrease in reactive power output for subsidy.

ここで、ある分散型電源が電圧上昇抑制制御から電圧一定制御に移行すると、電圧上昇方向に加えて電圧下降方向に対しても電圧制御を行うこととなり、電圧上昇時に加えて電圧下降時にも同一配電線に連系している他の分散型電源からみた系統インピーダンスは低下することとなる。したがって、この配電系統の電圧制御方法、装置並びにプログラムの場合には、配電線と分散型電源Bとの連系点における無効電力変化分に対する電圧感度(電圧の変化分を無効電力の変化分で除したもの)が低下して他の分散型電源Aが電圧一定制御に移行したと判断されるまで分散型電源Bが助成のための無効電力出力を低下させて無効電力出力が調整される。   Here, when a distributed power source shifts from voltage rise suppression control to voltage constant control, voltage control is performed not only in the voltage rise direction but also in the voltage drop direction, and the same when the voltage rises as well as when the voltage rises. The system impedance viewed from other distributed power sources connected to the distribution line will decrease. Therefore, in the case of the voltage control method, apparatus, and program for this distribution system, the voltage sensitivity (the change in voltage is the change in reactive power) with respect to the change in reactive power at the connection point between the distribution line and the distributed power source B. The distributed power source B reduces the reactive power output for subsidy and the reactive power output is adjusted until it is determined that the other distributed power source A has shifted to constant voltage control.

更に、請求項4記載の発明は、請求項1から3のいずれか1つに記載の配電系統の電圧制御方法において、分散型電源Bが無効電力出力による助成を開始した後に、又は分散型電源Bが助成のための無効電力出力の低下を停止した後に、連系点における無効電力の変動分と電圧の変化分とから無効電力変動分に対する電圧感度を算出し、無効電力変動分に対する電圧感度が助成のための無効電力出力を停止するか否かを判定するための閾値よりも大きい場合に分散型電源Aが電圧上昇抑制制御又は電圧上昇抑制制御後に移行した電圧一定制御を解除したと判断して分散型電源Bが助成のための無効電力出力を停止するようにしている。   Furthermore, the invention according to claim 4 is the voltage control method for the distribution system according to any one of claims 1 to 3, after the distributed power source B starts subsidy by reactive power output, or the distributed power source After B stops the reduction of the reactive power output for subsidy, the voltage sensitivity for the reactive power fluctuation is calculated from the reactive power fluctuation and the voltage change at the interconnection point, and the voltage sensitivity for the reactive power fluctuation is calculated. Is larger than a threshold value for determining whether or not to stop the reactive power output for subsidy, it is determined that the distributed power source A has released the voltage increase suppression control or the voltage constant control that has been shifted after the voltage increase suppression control Thus, the distributed power source B stops the reactive power output for the subsidy.

請求項8記載の発明は、請求項5から7のいずれか1つに記載の配電系統の電圧制御装置において、制御装置が、連系点における無効電力の変動分と電圧の変化分とから無効電力変動分に対する電圧感度を算出する手段と、無効電力変動分に対する電圧感度が助成のための無効電力出力を停止するか否かを判定するための閾値よりも大きい場合に分散型電源に助成のための無効電力出力を停止させる内容の制御指令を出力する手段とを含むようにしている。   According to an eighth aspect of the present invention, in the voltage control device for a distribution system according to any one of the fifth to seventh aspects, the control device is ineffective based on a reactive power variation and a voltage variation at the interconnection point. A means for calculating the voltage sensitivity for the power fluctuation, and a subsidy for the distributed power source when the voltage sensitivity for the reactive power fluctuation is greater than a threshold value for determining whether to stop the reactive power output for the subsidy. And a means for outputting a control command for stopping the reactive power output.

請求項12記載の発明は、請求項9から11のいずれか1つに記載の配電系統の電圧制御プログラムにおいて、コンピュータを、連系点における無効電力の変動分と電圧の変化分とから無効電力変動分に対する電圧感度を算出する手段、無効電力変動分に対する電圧感度が助成のための無効電力出力を停止するか否かを判定するための閾値よりも大きい場合に分散型電源に助成のための無効電力出力を停止させる内容の制御指令を出力する手段として機能させるようにしている。   According to a twelfth aspect of the present invention, in the voltage control program for a power distribution system according to any one of the ninth to eleventh aspects, the computer is configured to change the reactive power from the variation of the reactive power and the voltage variation at the interconnection point. Means for calculating voltage sensitivity for fluctuations, for subsidizing distributed power sources when voltage sensitivity for reactive power fluctuations is greater than a threshold for determining whether to stop reactive power output for subsidies It is made to function as a means for outputting a control command with the content of stopping the reactive power output.

ここで、ある分散型電源が電圧一定制御を解除することは、その分散型電源が再び定電力源に切り替わることと等価であり、同一配電線に連系している他の分散型電源からみた系統インピーダンスが元に戻ることとなる。したがって、この配電系統の電圧制御方法、装置並びにプログラムの場合には、配電線と分散型電源Bとの連系点における無効電力変動分に対する電圧感度が大きくなったときに、同一配電線に連系している他の分散型電源Aが電圧一定制御を解除したものと判断して分散型電源Bによる助成のための無効電力出力が停止される。   Here, releasing a constant voltage control from a certain distributed power source is equivalent to switching the distributed power source to a constant power source again, as seen from other distributed power sources connected to the same distribution line. The system impedance will be restored. Therefore, in the case of the voltage control method, apparatus, and program for this distribution system, when the voltage sensitivity to the reactive power fluctuation at the connection point between the distribution line and the distributed power source B increases, the distribution line is connected to the same distribution line. It is determined that the other distributed power source A in the system has released the constant voltage control, and the reactive power output for subsidy by the distributed power source B is stopped.

以上説明したように、請求項1、5並びに9記載の配電系統の電圧制御方法、装置並びにプログラムによれば、電圧上昇抑制制御を行う分散型電源の有効電力の出力低下が抑制されるので、配電系統内の分散型電源間で生じる出力有効電力の不均等を抑制することができ、分散型電源設置地点による設備利用率の格差や余剰電力を売電している場合の収入格差を抑制することが可能である。   As described above, according to the voltage control method, apparatus, and program of the distribution system according to claims 1, 5, and 9, since the output decrease of the active power of the distributed power source that performs the voltage increase suppression control is suppressed, It is possible to suppress the non-uniformity of the output active power that occurs between distributed power sources in the distribution system, and to suppress the disparity in equipment utilization rates at the locations where distributed power sources are installed and the income disparity when surplus power is sold. It is possible.

また、請求項2、6並びに10記載の配電系統の電圧制御方法、装置並びにプログラムによれば、最大出力の無効電力の供給により配電系統の電圧の適正範囲の超過を助成開始当初から早急に解消し得るので、配電系統の電圧制御を迅速に行うことが可能である。   In addition, according to the voltage control method, apparatus, and program of the distribution system according to claims 2, 6, and 10, the excess of the appropriate range of the distribution system voltage is quickly resolved from the start of the subsidy by supplying the maximum output reactive power. Therefore, it is possible to quickly control the voltage of the distribution system.

また、請求項3、7並びに11記載の配電系統の電圧制御方法、装置並びにプログラムによれば、分散型電源が助成のための無効電力出力を低下させて無効電力出力が調整されるので、配電系統の電圧制御に必要とされる無効電力出力を適正化して分散型電源による助成のための無効電力出力の負担を最小限に抑えることができ、配電系統内の電源全体としてのエネルギー利用効率の低下をより適切に制御して配電系統が有する電力供給能力をより適切に活用することが可能となる。   In addition, according to the voltage control method, apparatus, and program of the distribution system according to claims 3, 7 and 11, the distributed power supply reduces the reactive power output for subsidy and adjusts the reactive power output. By optimizing the reactive power output required for voltage control of the grid, the burden of reactive power output for subsidy by the distributed power source can be minimized, and the energy utilization efficiency of the entire power source in the distribution system can be reduced. It becomes possible to more appropriately utilize the power supply capability of the distribution system by controlling the decrease more appropriately.

更に、請求項4、8並びに12記載の配電系統の電圧制御方法、装置並びにプログラムによれば、一定の条件の場合に分散型電源による助成のための無効電力出力が停止されるので、配電系統の電圧制御に必要とされる無効電力出力による助成の運用を適正化し、分散型電源による不要な助成を回避することができる。   Furthermore, according to the voltage control method, apparatus, and program for the distribution system according to claims 4, 8, and 12, the reactive power output for subsidization by the distributed power source is stopped under certain conditions. The operation of the subsidy by the reactive power output required for the voltage control of the power supply can be optimized, and unnecessary subsidy by the distributed power source can be avoided.

更にまた、本発明によれば、配電系統に連系している分散型電源が単独で自律的に機能して配電系統全体の電圧制御を行うことができるので、配電系統全体の電圧制御のための機構を簡便に構築することが可能である。   Furthermore, according to the present invention, the distributed power source linked to the power distribution system can function autonomously and perform voltage control of the entire power distribution system. This mechanism can be constructed easily.

以下、本発明の構成を図面に示す最良の形態に基づいて詳細に説明する。   Hereinafter, the configuration of the present invention will be described in detail based on the best mode shown in the drawings.

図1及び図2に、本発明の配電系統の電圧制御方法並びに装置の実施形態の一例を示す。なお、本実施形態では、複数の分散型電源が連系した配電系統として、図2に示すように、変電所2に接続していると共に線路インピーダンス4を有する配電線3に分散型電源A及びBが連系点5a及び5bにおいて連系している配電系統1を例に挙げている。   1 and 2 show an example of an embodiment of a voltage control method and apparatus for a distribution system according to the present invention. In this embodiment, as shown in FIG. 2, as a distribution system in which a plurality of distributed power sources are connected, a distributed power source A and a distribution line 3 connected to a substation 2 and having a line impedance 4 are connected. The power distribution system 1 in which B is connected at the connection points 5a and 5b is taken as an example.

本発明の電圧制御装置は、第一の電圧感度算出手段と、第一の電圧感度比較手段と、第二の電圧感度算出手段と、第二の電圧感度比較手段と、第三の電圧感度比較手段と、制御指令出力手段とから構成されている。第一の電圧感度算出手段は、配電線と分散型電源との連系点における有効電力の変化分と電圧の変化分とから有効電力変化分に対する電圧感度の算出を行う。第一の電圧感度比較手段は、配電線と分散型電源との連系点における有効電力変化分に対する電圧感度と無効電力出力による助成を行うか否かを判定するための閾値とを比較して分散型電源が無効電力出力による助成を開始すべきか否かの判断を行う。   The voltage control device of the present invention includes a first voltage sensitivity calculation unit, a first voltage sensitivity comparison unit, a second voltage sensitivity calculation unit, a second voltage sensitivity comparison unit, and a third voltage sensitivity comparison. And a control command output means. The first voltage sensitivity calculation means calculates the voltage sensitivity for the active power change from the change in active power and the change in voltage at the connection point between the distribution line and the distributed power source. The first voltage sensitivity comparison means compares the voltage sensitivity with respect to the amount of change in active power at the connection point between the distribution line and the distributed power source and a threshold value for determining whether or not subsidy by reactive power output is performed. It is determined whether or not the distributed power source should start subsidy with reactive power output.

更に、第二の電圧感度算出手段は、配電線と分散型電源との連系点における無効電力の変化分と電圧の変化分とから無効電力変化分に対する電圧感度の算出を行う。第二の電圧感度比較手段は、配電線と分散型電源との連系点における無効電力変化分に対する電圧感度と助成のための無効電力出力の低下を停止するか否かを判定するための閾値とを比較して分散型電源が助成のための無効電力出力を段階的に低下すべきか否かの判断を行う。   Further, the second voltage sensitivity calculation means calculates the voltage sensitivity for the reactive power change from the change of the reactive power and the voltage change at the connection point between the distribution line and the distributed power source. The second voltage sensitivity comparison means is a threshold for determining whether or not to stop the decrease in reactive power output for voltage sensitivity and subsidy for the reactive power change at the interconnection point between the distribution line and the distributed power source. And the distributed power source determines whether or not the reactive power output for subsidy should be reduced step by step.

また更に、第三の電圧感度比較手段は、配電線と分散型電源との連系点における無効電力の変動分と電圧の変化分とから無効電力変動分に対する電圧感度の算出を行うと共にこの電圧感度と助成のための無効電力出力を停止するか否かを判定するための閾値とを比較して分散型電源が助成のための無効電力出力を停止すべきか否かの判断を行う。そして、制御指令出力手段は、第一の電圧感度比較手段等の判断結果に基づいて分散型電源に対して制御指令の出力を行う。   Still further, the third voltage sensitivity comparison means calculates the voltage sensitivity for the reactive power fluctuation from the reactive power fluctuation and the voltage change at the connection point between the distribution line and the distributed power source and this voltage. The sensitivity and the threshold value for determining whether to stop the reactive power output for the subsidy are compared to determine whether the distributed power source should stop the reactive power output for the subsidy. Then, the control command output means outputs a control command to the distributed power source based on the determination result of the first voltage sensitivity comparison means or the like.

ここで、本発明は、配電系統に連系している分散型電源のそれぞれを自律的に制御して配電系統の電圧を制御するものであり、本実施形態で言えば、分散型電源Aが無効電力出力による助成を行う場合と助成を受ける場合の両方が考えられ、分散型電源Bについても無効電力出力による助成を行う場合と助成を受ける場合の両方が考えられる。本実施形態では、分散型電源Aが無効電力出力による助成を受け、分散型電源Bが無効電力出力による助成を行う場合を例に挙げて説明する。   Here, the present invention autonomously controls each of the distributed power sources connected to the power distribution system to control the voltage of the power distribution system. In this embodiment, the distributed power source A is Both the case where the subsidy by the reactive power output is performed and the case where the subsidy is received are conceivable, and the distributed power source B can be both subsidized by the reactive power output and the subsidy. In the present embodiment, an example will be described in which the distributed power source A is subsidized by reactive power output and the distributed power source B is subsidized by reactive power output.

上記前提の場合の分散型電源AとBの関わり並びにそれぞれの動作の流れを図4を用いて説明する。分散型電源Aは一定力率の通常運転を行っている(F1)。また、分散型電源Bは有効電力の出力開始若しくは出力変化を行うと共に有効電力変化分に対する電圧感度の監視を行っている(F2)。具体的には、電圧制御装置の第一の電圧感度算出手段が配電線3と分散型電源Bとの連系点5bにおける有効電力の変化分と電圧の変化分とから有効電力変化分に対する電圧感度の算出を行う。そして、分散型電源Aと配電線3との連系点5aにおける電圧が上昇して連系点5aの電圧が配電系統1の規格値の上限に達すると(F3)、分散型電源Aが無効電力出力による電圧上昇抑制制御を開始する(F4)。このとき、同一配電線3に連系している分散型電源Bには、連系点5bにおける有効電力変化分に対する電圧感度が低下して検出される。この電圧感度の低下が予め定めた閾値以下になった場合(F5)に分散型電源Bは分散型電源Aが電圧上昇抑制制御に移行したものと判断して自ら助成のための無効電力出力を開始する(F6)。具体的には、第一の電圧感度比較手段が連系点5bにおける有効電力変化分に対する電圧感度と無効電力出力による助成を行うか否かを判定するための閾値とを比較する。そして、電圧感度が閾値以下になった場合(F5)に、第一の電圧感度比較手段の判断結果に基づいて制御指令出力手段が分散型電源Bに対して助成のための無効電力出力を開始する内容の制御指令を出力する(F6)。この際、助成のための無効電力の出力は最大出力で行うことが好ましい。   The relationship between the distributed power sources A and B and the flow of each operation under the above assumption will be described with reference to FIG. The distributed power source A performs a normal operation with a constant power factor (F1). The distributed power source B starts or changes the output of active power and monitors the voltage sensitivity for the change in active power (F2). Specifically, the first voltage sensitivity calculation means of the voltage control device determines the voltage corresponding to the change in active power from the change in active power and the change in voltage at the interconnection point 5b between the distribution line 3 and the distributed power source B. Calculate the sensitivity. When the voltage at the interconnection point 5a between the distributed power source A and the distribution line 3 rises and the voltage at the interconnection point 5a reaches the upper limit of the standard value of the distribution system 1 (F3), the distributed power source A becomes invalid. Voltage rise suppression control by power output is started (F4). At this time, the distributed power source B connected to the same distribution line 3 is detected with a decrease in voltage sensitivity to the amount of change in active power at the connection point 5b. When the decrease in the voltage sensitivity falls below a predetermined threshold (F5), the distributed power source B determines that the distributed power source A has shifted to the voltage increase suppression control and generates a reactive power output for further assistance by itself. Start (F6). Specifically, the first voltage sensitivity comparison unit compares the voltage sensitivity with respect to the amount of change in the active power at the interconnection point 5b and a threshold value for determining whether or not the subsidy by the reactive power output is performed. When the voltage sensitivity falls below the threshold value (F5), the control command output means starts to output reactive power for subsidy to the distributed power source B based on the determination result of the first voltage sensitivity comparison means. A control command with the content to be output is output (F6). At this time, it is preferable to output the reactive power for subsidization at the maximum output.

更に、分散型電源Bは自らの無効電力変化分に対する電圧感度の監視を開始する(F7)。具体的には、電圧制御装置の第二の電圧感度算出手段が配電線3と分散型電源Bとの連系点5bにおける無効電力の変化分と電圧の変化分とから無効電力変化分に対する電圧感度の算出を行う。続いて、分散型電源Bは助成のための無効電力出力の段階的低下を開始する(F8)。そして、分散型電源Bの無効電力出力の低下に伴い分散型電源Aの無効電力出力が増加して無効電力出力上限値に達した場合(F9)に分散型電源Aは電圧一定制御を開始する(F10)。このとき、連系点5bにおける無効電力変化分に対する電圧感度が低下して予め定めた閾値以下になった場合(F11)に分散型電源Bは助成のための無効電力出力の段階的低下を停止する(F12)。具体的には、第二の電圧感度比較手段が連系点5bにおける無効電力変化分に対する電圧感度と助成のための無効電力出力の低下を停止するか否かを判定するための閾値とを比較する。そして、電圧感度が閾値以下になった場合(F11)に、第二の電圧感度比較手段の判断結果に基づいて制御指令出力手段が分散型電源Bに対して助成のための無効電力出力の段階的低下を停止する内容の制御指令を出力する(F12)。   Further, the distributed power source B starts monitoring the voltage sensitivity with respect to its reactive power change (F7). Specifically, the second voltage sensitivity calculating means of the voltage control device determines the voltage corresponding to the reactive power change from the reactive power change and the voltage change at the interconnection point 5b between the distribution line 3 and the distributed power source B. Calculate the sensitivity. Subsequently, the distributed power source B starts to gradually reduce the reactive power output for subsidization (F8). When the reactive power output of the distributed power source A increases as the reactive power output of the distributed power source B decreases and reaches the reactive power output upper limit (F9), the distributed power source A starts constant voltage control. (F10). At this time, when the voltage sensitivity with respect to the reactive power change at the interconnection point 5b is reduced to be equal to or lower than a predetermined threshold value (F11), the distributed power source B stops the gradual decrease in the reactive power output for subsidy. (F12). Specifically, the second voltage sensitivity comparison unit compares the voltage sensitivity with respect to the reactive power change at the interconnection point 5b and a threshold value for determining whether or not to stop the reduction of the reactive power output for subsidy. To do. When the voltage sensitivity falls below the threshold value (F11), the control command output means outputs a reactive power output for subsidizing the distributed power source B based on the determination result of the second voltage sensitivity comparison means. A control command with the content of stopping the target drop is output (F12).

続いて、配電系統1の電圧が低下して連系点5aの電圧が配電系統1の規格値の上限を下回った場合(F13)に分散型電源Aは電圧一定制御を解除する(F14)。このとき、連系点5bにおける無効電力変化分に対する電圧感度が上昇して予め定めた閾値より大きくなった場合(F15)に分散型電源Bは助成のための無効電力出力を停止する(F16)。具体的には、電圧制御装置の第三の電圧感度比較手段が配電線3と分散型電源Bとの連系点5bにおける無効電力の変動分と電圧の変化分とから無効電力変動分に対する電圧感度の算出を行うと共にこの電圧感度と助成のための無効電力出力を停止するか否かを判定するための閾値とを比較する。そして、電圧感度が閾値より大きくなった場合(F15)に、第三の電圧感度比較手段の判断結果に基づいて制御指令出力手段が分散型電源Bに対して助成のための無効電力出力を停止する内容の制御指令を出力する(F16)。   Subsequently, when the voltage of the distribution system 1 decreases and the voltage at the connection point 5a falls below the upper limit of the standard value of the distribution system 1 (F13), the distributed power source A cancels the constant voltage control (F14). At this time, when the voltage sensitivity to the reactive power change at the interconnection point 5b increases and becomes greater than a predetermined threshold value (F15), the distributed power source B stops the reactive power output for subsidy (F16). . Specifically, the third voltage sensitivity comparison means of the voltage control device determines the voltage for the reactive power fluctuation from the reactive power fluctuation and the voltage fluctuation at the interconnection point 5b between the distribution line 3 and the distributed power source B. The sensitivity is calculated and the voltage sensitivity is compared with a threshold value for determining whether or not to stop the reactive power output for the subsidy. Then, when the voltage sensitivity becomes larger than the threshold value (F15), the control command output means stops the reactive power output for subsidizing the distributed power source B based on the determination result of the third voltage sensitivity comparison means. The control command with the content to be output is output (F16).

より具体的には、本発明の配電系統の電圧制御方法は、図1のフロー図に示すように、まず、無効電力出力による助成を開始する工程として、分散型電源Aの制御については、配電線3と分散型電源Aとの連系点5aにおける通常運転状態の電圧vsa及び電流Isaを電圧・電流検出装置6により検出する工程(S1)と、電圧vsaが配電系統1の規格値の上限を超えている場合(S2;Yes)に分散型電源Aが無効電力出力による電圧上昇抑制制御を開始する工程(S1−3)とを有するようにしている。また、分散型電源Bの制御については、配電線3と分散型電源Bとの連系点5bにおける通常運転状態の電圧vsb及び電流Isbを電圧・電流検出装置6により検出する工程(S1)と、電圧vsbが配電系統1の規格値の上限を超えていない場合(S2;No)に電圧vsb及び電流Isbを基に通常運転状態の有効電力Psの算出を行う工程(S2−3)と、分散型電源Bの有効電力の出力を変化させた場合(S2−4)の連系点5bにおける電圧vc及び電流Icを電圧・電流検出装置6により検出して電圧vc及び電流Icを基に有効電力の出力を変化させた状態の有効電力Pcの算出を行う工程(S2−5)と、電圧vsbと電圧vcとから電圧の変化分Δv1を算出すると共に有効電力Psと有効電力Pcとから有効電力の変化分ΔPを算出する工程(S2−6)と、電圧の変化分Δv1と有効電力の変化分ΔPとから有効電力変化分に対する電圧感度Spを算出する工程(S2−7)と、電圧感度Spと無効電力出力による助成を行うか否かを判定するための閾値Spsとの比較を行う工程(S2−8)と、電圧感度Spが閾値Spsよりも大きい場合(S2−8;No)には分散型電源Bが無効電力出力による助成を行わず通常運転を継続する工程(S2−9)と、電圧感度Spが閾値Sps以下の場合(S2−8;Yes)には分散型電源Bが無効電力出力による助成を開始する工程(S2−10)とを有するようにしている。   More specifically, as shown in the flow diagram of FIG. 1, the voltage control method for the distribution system according to the present invention starts with the subsidy by the reactive power output. The step (S1) of detecting the voltage vsa and the current Isa in the normal operation state at the interconnection point 5a between the electric wire 3 and the distributed power source A by the voltage / current detection device 6, and the voltage vsa is the upper limit of the standard value of the distribution system 1 (S2; Yes), the distributed power source A includes a step (S1-3) of starting voltage rise suppression control by reactive power output. As for the control of the distributed power source B, a step (S1) of detecting the voltage vsb and the current Isb in the normal operation state at the connection point 5b between the distribution line 3 and the distributed power source B by the voltage / current detection device 6; When the voltage vsb does not exceed the upper limit of the standard value of the distribution system 1 (S2; No), the step of calculating the active power Ps in the normal operation state based on the voltage vsb and the current Isb (S2-3), When the output of the active power of the distributed power source B is changed (S2-4), the voltage vc and current Ic at the connection point 5b are detected by the voltage / current detection device 6 and effective based on the voltage vc and current Ic. A step (S2-5) of calculating the active power Pc in a state where the output of the power is changed, a change Δv1 in the voltage is calculated from the voltage vsb and the voltage vc, and effective from the active power Ps and the active power Pc. Change in power A step (S2-6) for calculating the minute ΔP, a step (S2-7) for calculating the voltage sensitivity Sp with respect to the active power change amount from the voltage change Δv1 and the active power change ΔP, and the voltage sensitivity Sp. The step of comparing with the threshold value Sps for determining whether or not the subsidy by the reactive power output is performed (S2-8) and when the voltage sensitivity Sp is larger than the threshold value Sps (S2-8; No) If the power source B is not subsidized by reactive power output and continues normal operation (S2-9), and the voltage sensitivity Sp is less than or equal to the threshold Sps (S2-8; Yes), the distributed power source B is reactive power And a step (S2-10) of starting subsidy by output.

更に、無効電力助成量を調整する工程として、分散型電源Aの制御については、分散型電源Aが無効電力出力による電圧上昇抑制制御を開始した後(S1−4)、分散型電源Bの無効電力出力の段階的低下(S2−12)に伴って分散型電源Aの無効電力出力が増加して無効電力出力の上限値に達したとき(S1−5;Yes)に分散型電源Aが電圧上昇抑制に加えて電圧下降抑制も行う電圧一定制御に移行する工程(S1−6)と、分散型電源Aが電圧一定制御に移行した後に無効電力出力が無効電力出力閾値よりも低下したとき(S1−7;Yes)に分散型電源が電圧一定制御を解除する工程(S1−8)とを有するようにしている。また、分散型電源Bの制御については、分散型電源Bが無効電力出力による助成を開始した(S2−10)後に、連系点5bにおける電圧vm及び電流Imを電圧・電流検出装置6により検出して電圧vm及び電流Imを基に無効電力出力を開始した状態の無効電力Qmの算出を行う工程(S2−11)と、分散型電源Bによる助成のための無効電力出力を段階的に低下させる工程(S2−12)と、i回目(i=1,2,3,…)の助成のための無効電力出力の段階的低下をした状態の連系点5bにおける電圧vi及び電流Iiを電圧・電流検出装置6により検出して電圧vi及び電流Iiを基に助成のための無効電力出力を低下させた状態の無効電力Qiの算出を行う工程(S2−13)と、電圧viについて電圧の変化分Δv2iを算出すると共に無効電力Qiについて無効電力の変化分ΔQiを算出する工程(S2−14)と、電圧の変化分Δv2iと無効電力の変化分ΔQiとから無効電力変化分に対する電圧感度Sqiを算出する工程(S2−15)と、電圧感度Sqiと助成のための無効電力出力の低下を停止するか否かを判定するための閾値Sqsとの比較を行う工程(S2−16)と、電圧感度Sqiが閾値Sqsよりも大きい場合には分散型電源Bによる助成のための無効電力出力を段階的に低下させる工程(S2−12)に戻る工程(S2−16;No)と、電圧感度Sqiが閾値Sqs以下の場合(S2−16;Yes)には分散型電源Bが助成のための無効電力出力の低下を停止する工程(S2−17)と、分散型電源Bが助成のための無効電力出力の低下を停止した(S2−17)後に無効電力変動分に対する電圧感度Sqfが助成のための無効電力出力を停止するか否かを判定するための閾値Sqs’よりも大きい場合(S2−18;Yes)には分散型電源Bが助成のための無効電力出力を停止する工程(S2−19)とを有するようにしている。   Further, as a step of adjusting the reactive power subsidy amount, for the control of the distributed power source A, after the distributed power source A starts the voltage increase suppression control by the reactive power output (S1-4), the distributed power source B is disabled. When the reactive power output of the distributed power source A increases as the power output gradually decreases (S2-12) and reaches the upper limit value of the reactive power output (S1-5; Yes), the distributed power source A becomes a voltage. Step (S1-6) for shifting to constant voltage control that also suppresses voltage drop in addition to rising suppression, and when the reactive power output falls below the reactive power output threshold after the distributed power source A shifts to constant voltage control ( S1-7; Yes) has a step (S1-8) in which the distributed power source cancels the constant voltage control. As for the control of the distributed power source B, the voltage / current detection device 6 detects the voltage vm and the current Im at the interconnection point 5b after the distributed power source B starts subsidy by reactive power output (S2-10). Then, the reactive power Qm is calculated in a state where the reactive power output is started based on the voltage vm and the current Im (S2-11), and the reactive power output for subsidization by the distributed power source B is gradually reduced. Step (S2-12) and the voltage vi and current Ii at the interconnection point 5b in a state where the reactive power output is stepped down for the i-th (i = 1, 2, 3,...) A step (S2-13) of calculating the reactive power Qi in a state where the reactive power output for subsidy is reduced based on the voltage vi and the current Ii detected by the current detection device 6, and the voltage vi Calculate change Δv2i And calculating the reactive power change ΔQi for the reactive power Qi (S2-14) and calculating the voltage sensitivity Sqi for the reactive power change from the voltage change Δv2i and the reactive power change ΔQi ( S2-15), a step (S2-16) for comparing the voltage sensitivity Sqi with a threshold value Sqs for determining whether or not to stop the reduction of the reactive power output for the subsidy, and the voltage sensitivity Sqi is a threshold value When it is larger than Sqs, the step (S2-16; No) of returning to the step (S2-12) in which the reactive power output for the subsidization by the distributed power source B is reduced stepwise, and the voltage sensitivity Sqi is less than or equal to the threshold value Sqs. In the case of (S2-16; Yes), the step (S2-17) in which the distributed power source B stops the reduction of the reactive power output for the subsidy, and the reduction of the reactive power output for the subsidy of the distributed power source B Stop (S2-17) When the voltage sensitivity Sqf with respect to the reactive power fluctuation is greater than the threshold value Sqs ′ for determining whether or not to stop the reactive power output for the subsidy (S2-18; Yes) The distributed power source B has a step (S2-19) of stopping the reactive power output for the subsidy.

まず、本発明の電圧制御方法適用の初期状態として、配電系統1に連系している分散型電源AとBは一定力率の通常運転を行い配電系統1に電力を供給している(S0)。   First, as an initial state of application of the voltage control method of the present invention, distributed power sources A and B connected to the distribution system 1 perform normal operation with a constant power factor and supply power to the distribution system 1 (S0). ).

そして、分散型電源Aの制御については配電線3と分散型電源Aとの連系点5aにおける通常運転状態の電圧vsa及び電流Isaを電圧・電流検出装置6により検出し、分散型電源Bの制御については配電線3と分散型電源Bとの連系点5bにおける通常運転状態の電圧vsb及び電流Isbを電圧・電流検出装置6により検出する(S1)。   For the control of the distributed power source A, the voltage / current detection device 6 detects the voltage vsa and the current Isa in the normal operation state at the connection point 5a between the distribution line 3 and the distributed power source A. For the control, the voltage vs current detector 6 detects the voltage vsb and current Isb in the normal operation state at the connection point 5b between the distribution line 3 and the distributed power source B (S1).

電圧vsa及び電流Isa並びに電圧vsb及び電流Isbの検出は電圧・電流検出装置6を用い、予め定めた所定の時間間隔で行う。検出の時間間隔として例えば1秒間隔が考えられるが、これに限られるものではなく、これより短い時間間隔でも又はこれより長い時間間隔でも良い。   The voltage vsa and current Isa, and the voltage vsb and current Isb are detected using a voltage / current detector 6 at predetermined time intervals. For example, an interval of 1 second is conceivable as the detection time interval, but is not limited to this, and may be a time interval shorter than this or a time interval longer than this.

次に、S1で検出した電圧vsa、vsbと配電系統1の規格値の上限との比較を行う(S2)。なお、配電系統1の規格値の上限は、現在は107[V]である。   Next, the voltages vsa and vsb detected in S1 are compared with the upper limit of the standard value of the distribution system 1 (S2). In addition, the upper limit of the standard value of the power distribution system 1 is 107 [V] at present.

本実施形態では、前記の前提に則り、電圧vsaが配電系統1の規格値の上限を超えており、電圧vsbが配電系統1の規格値の上限を超えていない場合について説明する。   In the present embodiment, a case will be described in which the voltage vsa exceeds the upper limit of the standard value of the distribution system 1 and the voltage vsb does not exceed the upper limit of the standard value of the distribution system 1 in accordance with the above premise.

電圧vsaが配電系統1の規格値の上限を超えている(S2;Yes)ので、分散型電源Aの制御については、無効電力出力による連系点5aにおける電圧上昇抑制制御を開始する(S1−3)。   Since the voltage vsa exceeds the upper limit of the standard value of the distribution system 1 (S2; Yes), the control of the distributed power source A starts the voltage increase suppression control at the interconnection point 5a by the reactive power output (S1- 3).

一方、電圧vsbが配電系統1の規格値の上限を超えていない(S2;No)ので、分散型電源Bの制御については、S1で検出した電圧vsb及び電流Isbを基に通常運転状態の有効電力Psの算出を行う(S2−3)。   On the other hand, since the voltage vsb does not exceed the upper limit of the standard value of the distribution system 1 (S2; No), the control of the distributed power source B is effective in the normal operation state based on the voltage vsb and the current Isb detected in S1. The power Ps is calculated (S2-3).

有効電力Psは、例えば、電圧vsbと電流Isbの位相差をθsとして(式1)により算出することができるが、有効電力Psの算出方法はこれに限られるものではなく他の方法であっても構わない。   The active power Ps can be calculated by, for example, (Formula 1) with the phase difference between the voltage vsb and the current Isb as θs, but the method of calculating the active power Ps is not limited to this and is another method. It doesn't matter.

Ps=vsb・Isb・cos(θs) …(式1)   Ps = vsb · Isb · cos (θs) (Formula 1)

ここに、Ps:有効電力[W]、vsb:電圧[V]、Isb:電流[A]、θs:電圧vsbと電流Isbの位相差[deg]。   Here, Ps: active power [W], vsb: voltage [V], Isb: current [A], θs: phase difference [deg] between voltage vsb and current Isb.

次に、分散型電源Bの有効電力の出力を変化させる(S2−4)。   Next, the output of the active power of the distributed power source B is changed (S2-4).

分散型電源Bの有効電力の出力の変化は、例えば、分散型電源Bの起動時の出力の増加や、電力供給能力をより活用するための出力の増加、又は本発明の電圧制御を行うための意図的な出力の周期的な変化など、いずれの理由であっても構わない。   The change in the output of the active power of the distributed power source B is, for example, to increase the output at the start of the distributed power source B, increase the output to make better use of the power supply capability, or to perform voltage control of the present invention. Any reason may be used, such as a periodic change in the intentional output.

分散型電源Bの有効電力の出力の変化に合わせて、連系点5bにおける電圧vc及び電流Icを検出し、電圧vc及び電流Icを基に有効電力の出力を変化させた状態の有効電力Pcの算出を行う(S2−5)。なお、有効電力Pcの算出は(式1)等により行う。   The active power Pc in a state where the voltage vc and the current Ic at the interconnection point 5b are detected in accordance with the change in the active power output of the distributed power source B and the output of the active power is changed based on the voltage vc and the current Ic. Is calculated (S2-5). Note that the active power Pc is calculated by (Equation 1) or the like.

そして、S1で検出した電圧vsbとS2−5で検出した電圧vcとから(式2)により電圧の変化分Δv1を算出すると共に、S2−3で算出した有効電力PsとS2−5で算出した有効電力Pcとから(式3)により有効電力の変化分ΔPを算出する(S2−6)。   Then, the voltage change Δv1 is calculated from the voltage vsb detected in S1 and the voltage vc detected in S2-5 by (Equation 2), and the active power Ps calculated in S2-3 and S2-5 are calculated. A change ΔP of the active power is calculated from the active power Pc by (Equation 3) (S2-6).

Δv1=vc−vsb …(式2)   Δv1 = vc−vsb (Formula 2)

ここに、Δv1:電圧の変化分、vc:有効電力の出力を変化させた状態の電圧、vsb:通常運転状態の電圧。単位は全て[V]。   Here, Δv1: change in voltage, vc: voltage in a state where the output of active power is changed, vsb: voltage in a normal operation state. All units are [V].

ΔP=Pc−Ps …(式3)   ΔP = Pc−Ps (Formula 3)

ここに、ΔP:有効電力の変化分、Pc:有効電力の出力を変化させた状態の有効電力、Ps:通常運転状態の有効電力。単位は全て[W]。   Here, ΔP: active power change amount, Pc: active power in a state where the output of active power is changed, and Ps: active power in a normal operation state. All units are [W].

更に、S2−6で算出した電圧の変化分Δv1と有効電力の変化分ΔPとから(式4)により有効電力変化分に対する電圧感度Spを算出する(S2−7)。   Further, the voltage sensitivity Sp for the active power change is calculated from (Equation 4) from the voltage change Δv1 and the active power change ΔP calculated in S2-6 (S2-7).

Sp=Δv1/ΔP …(式4)   Sp = Δv1 / ΔP (Formula 4)

ここに、Sp:有効電力変化分に対する電圧感度[V/W]、Δv1:電圧の変化分[V]、ΔP:有効電力の変化分[W]。   Here, Sp: voltage sensitivity [V / W] with respect to the change in active power, Δv1: change in voltage [V], ΔP: change in active power [W].

次に、S2−7で算出した電圧感度Spと無効電力出力による助成を行うか否かを判定するための閾値Spsとの比較を行う(S2−8)。   Next, a comparison is made between the voltage sensitivity Sp calculated in S2-7 and a threshold value Sps for determining whether or not subsidy by reactive power output is performed (S2-8).

閾値Spsの大きさは、例えば、通常運転状態の電圧vsbや有効電力Ps、並びに電圧の変化分Δv1の大きさ等を考慮して作業者が適当な値を設定する。例えば、0.05〜0.1程度の範囲で閾値Spsを設定することが考えられるが、閾値Spsの値はこれに限られるものではなく、これより大きい値でも又はこれより小さい値でも良い。   The magnitude of the threshold value Sps is set to an appropriate value by the operator in consideration of, for example, the voltage vsb and active power Ps in the normal operation state and the magnitude of the voltage change Δv1. For example, it is conceivable to set the threshold value Sps in the range of about 0.05 to 0.1, but the value of the threshold value Sps is not limited to this, and may be a value larger or smaller than this.

そして、電圧感度Spが閾値Spsよりも大きい(Sp>Sps)場合(S2−8;No)には、分散型電源Bは無効電力出力による助成を行わず通常運転を継続する(S2−9)。   When the voltage sensitivity Sp is greater than the threshold value Sps (Sp> Sps) (S2-8; No), the distributed power source B continues normal operation without subsidy by reactive power output (S2-9). .

一方、電圧感度Spが閾値Sps以下(Sp≦Sps)の場合(S2−8;Yes)には、分散型電源Bが無効電力出力による助成を開始する(S2−10)。   On the other hand, when the voltage sensitivity Sp is equal to or less than the threshold value Sps (Sp ≦ Sps) (S2-8; Yes), the distributed power source B starts subsidy with reactive power output (S2-10).

上記は、配電系統の電圧上昇に伴って配電系統の電圧が適正範囲の上限に達し、分散型電源Aが一定力率の通常運転から電圧上昇抑制制御に移行することは分散型電源Aが定電力源から定電圧源に切り替わることと概略等価であり、同一配電線3に連系している分散型電源Bからみた系統インピーダンスが低下し、特に有効電力の出力変化中の分散型電源Bでは有効電力変化分に対する電圧感度Spが低下するとの考え方に基づくものである。言い換えれば、有効電力変化分に対する電圧感度Spが低下した場合には、同一配電線に連系している分散型電源Aが電圧上昇抑制制御に移行したものと判断し、分散型電源Bは無効電力出力による助成を開始するものである。   As described above, the distributed power source A is determined that the voltage of the power distribution system reaches the upper limit of the appropriate range as the voltage of the power distribution system rises, and the distributed power source A shifts from the normal operation with a constant power factor to the voltage rise suppression control. This is roughly equivalent to switching from a power source to a constant voltage source, and the system impedance viewed from the distributed power source B connected to the same distribution line 3 is reduced. In particular, in the distributed power source B in which the output of active power is changing, This is based on the idea that the voltage sensitivity Sp with respect to the amount of change in active power decreases. In other words, when the voltage sensitivity Sp with respect to the change in active power decreases, it is determined that the distributed power source A connected to the same distribution line has shifted to the voltage increase suppression control, and the distributed power source B is invalid. The subsidy by electric power output is started.

分散型電源Bによる助成のための無効電力出力は、出力開始から一定時間経過後に自動的に停止するようにしても良いし、又は、後述する本実施形態のように分散型電源Aの運転状態を判断してその運転状態に基づいて停止するようにしても良い。ここで、無効電力出力を自動的に停止する一定時間としては例えば一時間程度が考えられるが、これに限られるものではなく、これより短い時間でも又はこれより長い時間でも良い。なお、一定時間経過後に無効電力出力を自動的に停止した場合には、分散型電源Bの制御としてはS0の状態に戻ってS1以降の処理をあらためて行い、必要な場合には再度無効電力出力による助成を開始する。   The reactive power output for subsidization by the distributed power source B may be automatically stopped after a lapse of a certain time from the start of the output, or the operating state of the distributed power source A as in this embodiment described later. May be determined and stopped based on the operating state. Here, for example, about one hour is conceivable as the fixed time for automatically stopping the reactive power output, but it is not limited to this, and it may be shorter or longer. When the reactive power output is automatically stopped after a certain period of time, the control of the distributed power source B returns to the state of S0 and performs the processing after S1 again. If necessary, the reactive power output is output again. Start subsidy by

ここで、分散型電源Bが無効電力出力による助成を開始する際には、分散型電源Bが出力可能な最大出力の無効電力即ち最大助成量での助成を開始することが好ましい。なお、分散型電源Bが出力可能な最大出力での助成を開始しない場合には、例えば最大出力の80%程度の出力で助成を開始するようにすることが考えられる。   Here, when the distributed power source B starts subsidy by reactive power output, it is preferable to start subsidy with the maximum output reactive power that the distributed power source B can output, that is, the maximum subsidy amount. In the case where the subsidy at the maximum output that can be output by the distributed power source B is not started, for example, the subsidy may be started at an output of about 80% of the maximum output.

続いて、連系点5bにおける電圧vm及び電流Imを電圧・電流検出装置6により検出し、電圧vm及び電流Imを基に無効電力出力を開始した状態の無効電力Qmの算出を行う(S2−11)。   Subsequently, the voltage vm and the current Im at the interconnection point 5b are detected by the voltage / current detection device 6, and the reactive power Qm in a state where the reactive power output is started is calculated based on the voltage vm and the current Im (S2- 11).

無効電力Qmは、例えば、電圧vmと電流Imの位相差をθmとして(式5)により算出することができるが、無効電力Qmの算出方法はこれに限られるものではなく他の方法であっても構わない。   The reactive power Qm can be calculated by, for example, (Formula 5) where the phase difference between the voltage vm and the current Im is θm, but the method of calculating the reactive power Qm is not limited to this, and is another method. It doesn't matter.

Qm=vm・Im・sin(θm) …(式5)   Qm = vm · Im · sin (θm) (Formula 5)

ここに、Qm:無効電力[Var]、vm:電圧[V]、Im:電流[A]、θm:電圧vmと電流Imの位相差[deg]。   Here, Qm: reactive power [Var], vm: voltage [V], Im: current [A], θm: phase difference [deg] between voltage vm and current Im.

次に、分散型電源Bによる助成のための無効電力出力を段階的に低下させる(S2−12)。   Next, the reactive power output for subsidization by the distributed power source B is reduced stepwise (S2-12).

助成のための無効電力出力を段階的に低下させる際の一回あたりの低下の幅には特に制限はなく、例えば助成を開始した時点の無効電力の十分の一ずつ低下させること等が考えられる。しかしながら、一回あたりの低下の幅はこれに限られるものではなく、これより大きい幅でも又はこれより小さい幅でも良い。なお、段階的に低下させる際の各回の低下の幅は同じ幅でも又は異なる幅でも良い。例えば、段階的低下の初期の段階では低下の幅を比較的大きくして徐々に低下の幅を小さくするようにしても良い。   There is no particular limitation on the amount of reduction per one time when the reactive power output for subsidy is reduced stepwise, for example, it may be possible to reduce the reactive power one by one at the time of starting subsidy, etc. . However, the width of the decrease per time is not limited to this, and may be a width larger than this or a width smaller than this. In addition, the width | variety of each fall at the time of reducing in steps may be the same width | variety, or a different width | variety. For example, in the initial stage of the gradual decrease, the range of the decrease may be made relatively large and gradually decreased.

分散型電源Bによる助成のための無効電力出力の段階的な低下に合わせて、i回目(i=1,2,3,…)の段階的低下をした状態の連系点5bにおける電圧v及び電流Iを電圧・電流検出装置6により検出し、電圧v及び電流Iを基に助成のための無効電力出力を低下させた状態の無効電力Qの算出を行う(S2−13)。なお、無効電力Qの算出は(式5)等により行う。 In accordance with the gradual decrease in reactive power output for subsidization by the distributed power source B, the voltage v i at the interconnection point 5b in the ith (i = 1, 2, 3,...) Gradual decrease. And the current I i are detected by the voltage / current detector 6, and the reactive power Q i in a state in which the reactive power output for subsidy is reduced is calculated based on the voltage v i and the current I i (S2-13). ). The reactive power Q i is calculated by (Equation 5) or the like.

そして、S2−13で検出した電圧vについて(式6)で表される電圧の変化分Δv2を算出すると共に、S2−13で算出した無効電力Qについて(式7)で表される無効電力の変化分ΔQを算出する(S2−14)。 Then, as represented by the voltage v i detected by S2-13 and calculates the variation .DELTA.v2 i of the voltage represented by (Equation 6), the reactive power Q i calculated in S2-13 (Equation 7) Reactive power change ΔQ i is calculated (S2-14).

Δv2=v−vi−1 …(式6) Δv2 i = v i −v i−1 (Expression 6)

ここに、Δv2:電圧の変化分[V]、v:電圧[V]、添字i:無効電力出力の段階的低下の回数(i=1,2,3,…)。なお、段階的低下の1回目(i=1)ではvi−1はvとなるが、vはS2−11で計測したvmに等しい。 Where Δv2: voltage change [V], v: voltage [V], subscript i: number of stepwise reductions in reactive power output (i = 1, 2, 3,...). Note that, in the first stepwise decrease (i = 1), v i−1 becomes v 0 , but v 0 is equal to vm measured in S2-11.

ΔQ=Q−Qi−1 …(式7) ΔQ i = Q i −Q i−1 (Expression 7)

ここに、ΔQ:無効電力の変化分[Var]、Q:無効電力[Var]、添字i:無効電力出力の段階的低下の回数(i=1,2,3,…)。なお、段階的低下の1回目(i=1)ではQi−1はQとなるが、QはS2−11で算出したQmに等しい。 Where ΔQ: reactive power change [Var], Q: reactive power [Var], subscript i: number of stepwise reductions in reactive power output (i = 1, 2, 3,...). In the first stepwise decrease (i = 1), Q i−1 becomes Q 0 , but Q 0 is equal to Qm calculated in S2-11.

更に、S2−14で算出した電圧の変化分Δv2と無効電力の変化分ΔQとから(式8)により無効電力変化分に対する電圧感度Sqを算出する(S2−15)。 Further, the voltage sensitivity Sq i for the reactive power change is calculated from the voltage change Δv2 i and the reactive power change ΔQ i calculated in S2-14 by (Equation 8) (S2-15).

Sq=Δv2/ΔQ …(式8) Sq i = Δv2 i / ΔQ i (Expression 8)

ここに、Sq:無効電力変化分に対する電圧感度[V/Var]、Δv2:電圧の変化分[V]、ΔQ:無効電力の変化分[Var]、添字i:無効電力出力の段階的低下の回数(i=1,2,3,…)。   Here, Sq: voltage sensitivity [V / Var] with respect to reactive power variation, Δv2: voltage variation [V], ΔQ: reactive power variation [Var], subscript i: stepwise decrease in reactive power output Number of times (i = 1, 2, 3,...).

次に、S2−15で算出した電圧感度Sqと助成のための無効電力出力の低下を停止するか否かを判定するための閾値Sqsとの比較を行う(S2−16)。 Next, a comparison is made between the voltage sensitivity Sq i calculated in S2-15 and a threshold value Sqs for determining whether or not to stop the reduction of reactive power output for subsidy (S2-16).

閾値Sqsの大きさは、例えば、無効電力出力を開始した状態の電圧vmや無効電力Qm、並びに電圧の変化分Δv2の大きさ等を考慮して作業者が適当な値を設定する。例えば、0.05〜0.1程度の範囲で閾値Sqsを設定することが考えられるが、閾値Sqsの値はこれに限られるものではなく、これより大きい値でも又はこれより小さい値でも良い。 The threshold Sqs is set to an appropriate value by the operator in consideration of, for example, the voltage vm and reactive power Qm in a state where reactive power output is started, the magnitude of voltage change Δv2 i , and the like. For example, it is conceivable to set the threshold value Sqs in the range of about 0.05 to 0.1, but the value of the threshold value Sqs is not limited to this, and may be a value larger or smaller than this.

そして、電圧感度Sqが閾値Sqsよりも大きい(Sq>Sqs)場合(S2−16;No)には、分散型電源Bによる助成のための無効電力出力を段階的に低下させる工程(S2−12)に戻る。 When the voltage sensitivity Sq i is larger than the threshold value Sqs (Sq i > Sqs) (S2-16; No), the step of reducing the reactive power output for subsidy by the distributed power source B in a stepwise manner (S2 Return to -12).

一方、電圧感度Sqが閾値Sqs以下(Sq≦Sqs)の場合(S2−16;Yes)には、分散型電源Bは助成のための無効電力出力の低下を停止する(S2−17)。 On the other hand, when the voltage sensitivity Sq i is equal to or less than the threshold value Sqs (Sq i ≦ Sqs) (S2-16; Yes), the distributed power source B stops the reduction of the reactive power output for subsidy (S2-17). .

上記は、分散型電源Aが電圧上昇抑制制御から電圧一定制御に移行すると電圧上昇方向に加えて電圧下降方向に対しても電圧制御を行うこととなり、電圧上昇時に加えて電圧下降時にも同一配電線3に連系している分散型電源Bからみた系統インピーダンスは低下するとの考え方に基づくものである。言い換えれば、無効電力変化分に対する電圧感度Sqが低下した場合には、分散型電源Aが電圧一定制御に移行したものと判断し、分散型電源Bは助成のための無効電力出力の低下を停止するものである。 In the above, when the distributed power source A shifts from the voltage increase suppression control to the voltage constant control, the voltage control is performed not only in the voltage increase direction but also in the voltage decrease direction. This is based on the idea that the system impedance viewed from the distributed power source B connected to the electric wire 3 is lowered. In other words, when the voltage sensitivity Sq i with respect to the reactive power change is reduced, it is determined that the distributed power source A has shifted to the constant voltage control, and the distributed power source B reduces the reactive power output for subsidy. It will stop.

ここで、分散型電源Aについて、分散型電源Bが助成のための無効電力出力を段階的に低下させる(S2−12)と、それに伴い、無効電力出力による電圧上昇抑制制御を開始した(S1−3)分散型電源Aの進相無効電力出力が無効電力出力の上限値に達するまで増加する(S1−4、S1−5;No)。   Here, for the distributed power source A, when the distributed power source B gradually reduces the reactive power output for subsidization (S2-12), voltage increase suppression control by the reactive power output is started accordingly (S1). -3) Increase until the phase advance reactive power output of the distributed power source A reaches the upper limit of the reactive power output (S1-4, S1-5; No).

そして、分散型電源Aの無効電力出力が上限値に達したとき(S1−5;Yes)に分散型電源Aは連系点5aにおける電圧下降の抑制も行う電圧一定制御に移行する(S1−6)。   When the reactive power output of the distributed power source A reaches the upper limit (S1-5; Yes), the distributed power source A shifts to constant voltage control that also suppresses the voltage drop at the interconnection point 5a (S1-). 6).

以上の処理により、無効電力の分担化が完了する。   Through the above processing, the sharing of reactive power is completed.

更に、助成のための無効電力出力を停止するための処理として、分散型電源Bの制御については、分散型電源Bが助成のための無効電力出力の低下を停止した(S2−17)後、無効電力出力を周期的に変動させる。そして、無効電力出力を周期的に変動させた場合の無効電力変動分に対する電圧感度Sqfと助成のための無効電力出力を停止するか否かを判定するための閾値Sqs’を比較する(S2−18)。   Furthermore, as a process for stopping the reactive power output for the subsidy, for the control of the distributed power source B, after the distributed power source B stops the reduction of the reactive power output for the subsidy (S2-17), The reactive power output is periodically changed. Then, the voltage sensitivity Sqf with respect to the reactive power fluctuation when the reactive power output is periodically changed is compared with the threshold value Sqs ′ for determining whether or not to stop the reactive power output for assistance (S2−). 18).

無効電力の変動の大きさは、配電系統1の電圧の増減に影響を与えない程度の大きさであれば良く、例えば連系点5bにおける電圧の大きさ等を考慮して作業者が適当な大きさを設定する。具体的には例えば連系点5bで検出される電圧の0.1%程度の幅で変動させることが考えられる。   The magnitude of the fluctuation of the reactive power is not limited as long as it does not affect the increase or decrease of the voltage of the distribution system 1. For example, the operator can appropriately consider the magnitude of the voltage at the interconnection point 5b. Set the size. Specifically, for example, it is conceivable to vary the voltage detected at the interconnection point 5b by a width of about 0.1%.

閾値Sqs’の大きさは、本実施形態では、S2−16で用いた助成のための無効電力出力の低下を停止するか否かを判定するための閾値Sqsと同じとする。しかしながら、閾値Sqs’の値はこれに限られるものではなく、閾値Sqsと同じで値でも又は異なる値でも良く、更に、閾値Sqsよりも大きい値でも又は小さい値でも良い。   In this embodiment, the threshold value Sqs ′ is the same as the threshold value Sqs for determining whether or not to stop the reduction of the reactive power output for the subsidy used in S2-16. However, the value of the threshold value Sqs ′ is not limited to this, and may be the same value as the threshold value Sqs or a different value, and may be a value that is larger or smaller than the threshold value Sqs.

無効電力変動分に対する電圧感度Sqfの算出は前述の無効電力変化分に対する電圧感度Sqの算出と同様であるので詳細については省略するが、無効電力の変動前後の電圧及び電流を電圧・電流検出装置6により検出し、検出した電圧及び電流から(式5)により無効電力を算出し、算出した無効電力から(式7)により無効電力の変動分を算出し、更に検出した電圧から(式6)により電圧の変動分を算出し、そして算出した電圧の変動分と無効電力の変動分とから(式8)により無効電力変動分に対する電圧感度Sqfを算出する。   The calculation of the voltage sensitivity Sqf with respect to the reactive power fluctuation is the same as the calculation of the voltage sensitivity Sq with respect to the reactive power change described above. 6, reactive power is calculated from (Equation 5) from the detected voltage and current, a variation in reactive power is calculated from (Equation 7) from the calculated reactive power, and further, from the detected voltage (Equation 6) The voltage fluctuation Sqf is calculated from the calculated voltage fluctuation and the reactive power fluctuation by (Equation 8).

そして、電圧感度Sqfが閾値Sqs’よりも大きい場合(S2−18;Yes)には、分散型電源Bは助成のための無効電力出力を停止する(S2−19)。   When the voltage sensitivity Sqf is larger than the threshold value Sqs ′ (S2-18; Yes), the distributed power source B stops the reactive power output for the subsidy (S2-19).

一方、電圧感度Sqfが閾値Sqs’以下の場合(S2−18;No)には、無効電力出力を周期的に変動させ、無効電力変動分に対する電圧感度Sqfを算出して閾値Sqs’と比較する工程(S2−18)に戻る。   On the other hand, when the voltage sensitivity Sqf is equal to or less than the threshold value Sqs ′ (S2-18; No), the reactive power output is periodically varied, and the voltage sensitivity Sqf for the reactive power variation is calculated and compared with the threshold value Sqs ′. It returns to a process (S2-18).

なお、好ましくはS2−10の処理の後に上記のS2−11からS2−17までの処理を行うようにすることであるが、S2−10の処理の後にS2−18の処理を行うようにしても良い。   Preferably, the processes from S2-11 to S2-17 are performed after the process of S2-10, but the process of S2-18 is performed after the process of S2-10. Also good.

上記は、分散型電源Aが電圧一定制御を解除することにより再び定電力源に切り替わることとなり、同一配電線3に連系している分散型電源Bからみた系統インピーダンスが元に戻るとの考え方に基づくものである。言い換えれば、無効電力変動分に対する電圧感度Sqfが大きくなった場合には同一配電線に連系している分散型電源Aが電圧一定制御を解除したものと判断し、分散型電源Bは助成のための無効電力出力を停止するものである。   The above is based on the idea that the distributed power source A is switched to the constant power source again when the constant voltage control is released, and the system impedance viewed from the distributed power source B connected to the same distribution line 3 is restored. It is based on. In other words, when the voltage sensitivity Sqf with respect to the reactive power fluctuation increases, it is determined that the distributed power source A connected to the same distribution line has canceled the constant voltage control, and the distributed power source B is subsidized. Therefore, the reactive power output is stopped.

また、分散型電源Aの制御については、分散型電源Aが電圧一定制御に移行した(S1−6)後、無効電力出力と無効電力出力閾値との比較を行う(S1−7)。そして、無効電力出力が無効電力出力閾値よりも低下したとき(S1−7;Yes)には、分散型電源Aは電圧一定制御を解除する(S1−8)。   As for the control of the distributed power source A, after the distributed power source A shifts to the constant voltage control (S1-6), the reactive power output is compared with the reactive power output threshold (S1-7). When the reactive power output falls below the reactive power output threshold (S1-7; Yes), the distributed power source A cancels the constant voltage control (S1-8).

一方、無効電力出力が無効電力出力閾値以上のとき(S1−7;No)には、無効電力出力と無効電力出力閾値とを比較する工程(S1−7)に戻る。   On the other hand, when the reactive power output is equal to or greater than the reactive power output threshold (S1-7; No), the process returns to the step of comparing the reactive power output with the reactive power output threshold (S1-7).

無効電力出力閾値は、例えば最大無効電力出力の10%程度にすることが考えられるが、これに限られるものではなく、これより大きくても又はこれより小さくても良い。   For example, the reactive power output threshold value may be about 10% of the maximum reactive power output, but is not limited thereto, and may be larger or smaller.

なお、電圧一定制御を解除した分散型電源Aも助成のための無効電力出力を停止した分散型電源Bも通常運転を行ってS0の状態に戻り、必要な場合にはあらためて無効電力出力による助成を受けたり無効電力出力による助成を行ったりする。   In addition, the distributed power source A that has released the constant voltage control and the distributed power source B that has stopped the reactive power output for the subsidy also perform normal operation and return to the state of S0. Or subsidize by reactive power output.

上述の配電系統の電圧制御方法並びに装置は電圧制御プログラム13をコンピュータ上で実行することによっても実現される。この実施の一例を以下に示す。   The above-described voltage control method and apparatus for the distribution system can also be realized by executing the voltage control program 13 on a computer. An example of this implementation is shown below.

電圧制御プログラム13を実行するための電圧制御装置7の全体構成を図3に示す。電圧制御装置7は、制御部8、記憶部9、入力部10、表示部11及びメモリ12を備え相互にバス等の信号回線により接続されている。また、電圧制御装置7には電圧・電流検出装置6及び分散型電源A又はBが通信回線等により接続されており、その通信回線等を介して相互にデータや制御指令等の信号の送受信(出入力)が行われる。なお、電圧制御装置7は単独で自律的に一つの分散型電源を制御するものであり、分散型電源AとBの各々に電圧制御装置7が一台ずつ接続されている。   FIG. 3 shows the overall configuration of the voltage control device 7 for executing the voltage control program 13. The voltage control device 7 includes a control unit 8, a storage unit 9, an input unit 10, a display unit 11, and a memory 12, and is connected to each other by a signal line such as a bus. Further, the voltage / current detection device 6 and the distributed power source A or B are connected to the voltage control device 7 through a communication line or the like, and transmission / reception of signals such as data and control commands to / from each other via the communication line ( Input / output). The voltage control device 7 independently controls one distributed power source, and one voltage control device 7 is connected to each of the distributed power sources A and B.

制御部8は記憶部9に記憶されている電圧制御プログラム13により電圧制御装置7全体の制御並びに配電系統1の電圧制御に係る演算を行うものであり、例えばCPUである。記憶部9は少なくともデータやプログラムを記憶可能な装置であり、例えばハードディスクである。入力部10は少なくとも作業者の命令をCPUに与えるためのインターフェイスであり、例えばキーボードである。表示部11は制御部8の制御により文字や図形等の表示を行うものであり、例えばディスプレイである。メモリ12は制御部8が各種制御を実行する際に作業領域となるメモリ空間となる。   The control unit 8 performs a calculation related to the control of the entire voltage control device 7 and the voltage control of the distribution system 1 by the voltage control program 13 stored in the storage unit 9, and is a CPU, for example. The storage unit 9 is a device that can store at least data and programs, and is, for example, a hard disk. The input unit 10 is an interface for giving at least an operator command to the CPU, and is, for example, a keyboard. The display unit 11 displays characters, graphics, and the like under the control of the control unit 8 and is, for example, a display. The memory 12 becomes a memory space that becomes a work area when the control unit 8 executes various controls.

電圧制御装置7の制御部8は、電圧制御プログラム13を実行することにより、電圧と配電系統の規格値の上限との比較を行う電圧比較部8a、通常運転状態及び有効電力の出力を変化させた状態の有効電力の算出を行う有効電力算出部8b、無効電力出力と無効電力出力の上限値との比較を行う第一の無効電力出力比較部8c、無効電力出力と無効電力出力閾値との比較を行う第二の無効電力出力比較部8d、電圧の変化分と有効電力の変化分を算出する第一の変化分算出部8e、有効電力変化分に対する電圧感度を算出する第一の電圧感度算出部8f、電圧感度と無効電力出力による助成を行うか否かを判定するための閾値との比較を行う第一の電圧感度比較部8g、無効電力出力を開始した状態及び無効電力出力を低下させた状態の無効電力の算出を行う無効電力算出部8h、電圧の変化分と無効電力の変化分を算出する第二の変化分算出部8i、無効電力変化分に対する電圧感度を算出する第二の電圧感度算出部8j、電圧感度と無効電力出力の低下を停止するか否かを判定するための閾値との比較を行う第二の電圧感度比較部8k、電圧感度と無効電力出力を停止するか否かを判定するための閾値との比較を行う第三の電圧感度比較部8m、分散型電源に対して制御指令を出力する制御指令出力部8nが構成される。   The control unit 8 of the voltage control device 7 executes the voltage control program 13 to change the voltage comparison unit 8a that compares the voltage with the upper limit of the standard value of the distribution system, the normal operation state, and the output of the active power. Active power calculation unit 8b for calculating the active power in the state, a first reactive power output comparison unit 8c for comparing the reactive power output and the upper limit value of the reactive power output, the reactive power output and the reactive power output threshold A second reactive power output comparison unit 8d that performs comparison, a first change calculation unit 8e that calculates a change in voltage and a change in active power, and a first voltage sensitivity that calculates voltage sensitivity for the change in active power The calculation unit 8f, the first voltage sensitivity comparison unit 8g that compares the voltage sensitivity with a threshold value for determining whether or not to support the reactive power output, the state where the reactive power output is started, and the reactive power output are reduced. No let Reactive power calculation unit 8h that calculates power, a second change calculation unit 8i that calculates a change in voltage and a change in reactive power, and a second voltage sensitivity calculation unit that calculates voltage sensitivity for the change in reactive power 8j, the second voltage sensitivity comparison unit 8k that compares the voltage sensitivity with a threshold value for determining whether to stop the decrease in reactive power output, and determines whether to stop the voltage sensitivity and reactive power output A third voltage sensitivity comparison unit 8m that performs comparison with a threshold value and a control command output unit 8n that outputs a control command to the distributed power source are configured.

電圧制御プログラム13は、プログラム上に予め規定された時間間隔で、分散型電源Aの制御については通常運転状態の電圧vsa及び電流Isaを、また、分散型電源Bの制御については通常運転状態の電圧vsb及び電流Isbを電圧・電流検出装置6から通信回線等を介して入力して記憶部9又はメモリ12に記憶する(S1)。   The voltage control program 13 sets the voltage vsa and the current Isa in the normal operation state for the control of the distributed power source A, and the normal operation state for the control of the distributed power source B, at a time interval defined in advance in the program. The voltage vsb and current Isb are input from the voltage / current detection device 6 via a communication line or the like and stored in the storage unit 9 or the memory 12 (S1).

次に、制御部8の電圧比較部8aは、S1で記憶部9又はメモリ12に記憶した電圧vsa、vsbを読み込む。また、配電系統1の規格値の上限の値を読み込む。そして、電圧vsa、vsbと配電系統1の規格値の上限との比較を行う(S2)。ここで、規格値の上限の値は、例えば、予め入力部10により入力して記憶部9に記憶した値を読み込むようにする。   Next, the voltage comparison unit 8a of the control unit 8 reads the voltages vsa and vsb stored in the storage unit 9 or the memory 12 in S1. Further, the upper limit value of the standard value of the distribution system 1 is read. Then, the voltages vsa and vsb are compared with the upper limit of the standard value of the distribution system 1 (S2). Here, as the upper limit value of the standard value, for example, a value input in advance by the input unit 10 and stored in the storage unit 9 is read.

本実施形態では、前述の前提に則り、電圧vsaが配電系統1の規格値の上限を超えている(S2;Yes)ので、制御部8の電圧比較部8aの比較結果に基づき、制御指令出力部8nは分散型電源Aに対して無効電力出力による電圧上昇抑制制御を開始する内容の制御指令を出力する(S1−3)。また、必要に応じて、この制御指令の内容を記憶部9又はメモリ12に記憶する。   In the present embodiment, since the voltage vsa exceeds the upper limit of the standard value of the distribution system 1 (S2; Yes) in accordance with the above-mentioned assumption, the control command output is based on the comparison result of the voltage comparison unit 8a of the control unit 8. The unit 8n outputs to the distributed power source A a control command with a content for starting the voltage rise suppression control by the reactive power output (S1-3). Further, the contents of this control command are stored in the storage unit 9 or the memory 12 as necessary.

一方、電圧vsbが配電系統1の規格値の上限を超えていない(S2;No)ので、分散型電源Bの制御については、制御部8の有効電力算出部8bは、S1で記憶部9又はメモリ12に記憶した電圧vsb及び電流Isbを読み込む。そして、(式1)により通常運転状態の有効電力Psを算出する(S2−3)。更に、算出した有効電力Psを記憶部9又はメモリ12に記憶する。   On the other hand, since the voltage vsb does not exceed the upper limit of the standard value of the distribution system 1 (S2; No), the active power calculation unit 8b of the control unit 8 controls the storage unit 9 or the control unit 8 in S1 for the control of the distributed power source B. The voltage vsb and current Isb stored in the memory 12 are read. Then, the active power Ps in the normal operation state is calculated from (Equation 1) (S2-3). Further, the calculated active power Ps is stored in the storage unit 9 or the memory 12.

次に、分散型電源Bの有効電力の出力の変化(S2−4)について、本発明の電圧制御を行うために意図的に出力を周期的に変化させる場合には、制御部8の制御指令出力部8nは分散型電源Bに対して出力を変化させる内容の制御指令を出力する。   Next, regarding the change in the output of the active power of the distributed power source B (S2-4), if the output is intentionally changed in order to perform the voltage control of the present invention, the control command of the control unit 8 The output unit 8n outputs to the distributed power source B a control command whose content is changed.

次に、制御部8の有効電力算出部8bは、電圧vc及び電流Icの値を電圧・電流検出装置6から通信回線等を介して入力し、(式1)により有効電力の出力を変化させた状態の有効電力Pcを算出する(S2−5)。そして、入力した電圧vc及び電流Ic、並びに算出した有効電力Pcを記憶部9又はメモリ12に記憶する。   Next, the active power calculation unit 8b of the control unit 8 inputs the values of the voltage vc and the current Ic from the voltage / current detection device 6 through a communication line or the like, and changes the output of the active power according to (Equation 1). The active power Pc in the selected state is calculated (S2-5). Then, the input voltage vc and current Ic and the calculated active power Pc are stored in the storage unit 9 or the memory 12.

次に、制御部8の第一の変化分算出部8eは電圧の変化分Δv1と有効電力の変化分ΔPを算出する(S2−6)。制御部8の第一の変化分算出部8eは、まず、S1で記憶部9又はメモリ12に記憶した電圧vsb、並びにS2−5で記憶部9又はメモリ12に記憶した電圧vcを読み込む。そして、(式2)により電圧の変化分Δv1を算出する。続いて、制御部8の第一の変化分算出部8eは、S2−3で記憶部9又はメモリ12に記憶した有効電力Ps、並びにS2−5で記憶部9又はメモリ12に記憶した有効電力Pcを読み込む。そして、(式3)により有効電力の変化分ΔPを算出する。そして、算出した電圧の変化分Δv1及び有効電力の変化分ΔPを記憶部9又はメモリ12に記憶する。   Next, the first change calculation unit 8e of the control unit 8 calculates the voltage change Δv1 and the active power change ΔP (S2-6). The first change calculation unit 8e of the control unit 8 first reads the voltage vsb stored in the storage unit 9 or the memory 12 in S1 and the voltage vc stored in the storage unit 9 or the memory 12 in S2-5. Then, the voltage change Δv1 is calculated by (Equation 2). Subsequently, the first change calculation unit 8e of the control unit 8 stores the effective power Ps stored in the storage unit 9 or the memory 12 in S2-3 and the effective power stored in the storage unit 9 or the memory 12 in S2-5. Read Pc. Then, the change ΔP of the active power is calculated by (Equation 3). The calculated voltage change Δv 1 and active power change ΔP are stored in the storage unit 9 or the memory 12.

次に、制御部8の第一の電圧感度算出部8fは、S2−6で記憶部9又はメモリ12に記憶した電圧の変化分Δv1及び有効電力の変化分ΔPを読み込み、(式4)により有効電力変化分に対する電圧感度Spを算出する(S2−7)。そして、算出した有効電力変化分に対する電圧感度Spを記憶部9又はメモリ12に記憶する。   Next, the first voltage sensitivity calculation unit 8f of the control unit 8 reads the voltage change Δv1 and the active power change ΔP stored in the storage unit 9 or the memory 12 in S2-6, according to (Equation 4). The voltage sensitivity Sp with respect to the active power change is calculated (S2-7). The voltage sensitivity Sp corresponding to the calculated change in active power is stored in the storage unit 9 or the memory 12.

次に、制御部8の第一の電圧感度比較部8gは電圧感度Spと無効電力出力による助成を行うか否かを判定するための閾値Spsとの比較を行う(S2−8)。制御部8の第一の電圧感度比較部8gは、まず、S2−7で記憶部9又はメモリ12に記憶した有効電力変化分に対する電圧感度Spを読み込む。また、無効電力出力による助成を行うか否かを判定するための閾値Spsを読み込む。ここで、閾値Spsの値は、例えば、予め入力部10により入力して記憶部9に記憶した値を読み込むようにする。   Next, the first voltage sensitivity comparison unit 8g of the control unit 8 compares the voltage sensitivity Sp with a threshold value Sps for determining whether or not to perform subsidy by reactive power output (S2-8). The first voltage sensitivity comparison unit 8g of the control unit 8 first reads the voltage sensitivity Sp for the active power change stored in the storage unit 9 or the memory 12 in S2-7. In addition, a threshold value Sps for determining whether or not subsidy by reactive power output is performed is read. Here, as the value of the threshold Sps, for example, a value input in advance by the input unit 10 and stored in the storage unit 9 is read.

そして、電圧感度Spが閾値Spsよりも大きい(Sp>Sps)場合(S2−8;No)には、制御部8の第一の電圧感度比較部8gの比較結果に基づき、制御指令出力部8nは分散型電源Bに対して無効電力出力による助成を行わず通常運転を継続する内容の制御指令を出力する(S2−9)。また、必要に応じて、この制御指令の内容を記憶部9又はメモリ12に記憶する。   When the voltage sensitivity Sp is larger than the threshold value Sps (Sp> Sps) (S2-8; No), the control command output unit 8n is based on the comparison result of the first voltage sensitivity comparison unit 8g of the control unit 8. Outputs a control command to the distributed power source B with the content of continuing normal operation without subsidy by reactive power output (S2-9). Further, the contents of this control command are stored in the storage unit 9 or the memory 12 as necessary.

一方、電圧感度Spが閾値Sps以下(Sp≦Sps)の場合(S2−8;Yes)には、制御部8の第一の電圧感度比較部8gの比較結果に基づき、制御指令出力部8nは分散型電源Bに対して無効電力出力による助成を開始する内容の制御指令を出力する(S2−10)。また、必要に応じて、この制御指令の内容を記憶部9又はメモリ12に記憶する。ここで、制御指令出力部8nは分散型電源Bに対して出力可能な最大出力の無効電力出力による助成を開始する内容の制御指令を出力することが好ましい。更に、分散型電源Bによる助成のための無効電力出力を出力開始から一定時間経過後に自動的に停止するようにする場合には、制御部8の制御指令出力部8nは、電圧制御プログラム13上に予め規定された一定時間経過後に分散型電源Bに対して助成のための無効電力出力を停止する内容の制御指令を出力する。   On the other hand, when the voltage sensitivity Sp is equal to or less than the threshold value Sps (Sp ≦ Sps) (S2-8; Yes), the control command output unit 8n is based on the comparison result of the first voltage sensitivity comparison unit 8g of the control unit 8. A control command for starting subsidy by reactive power output is output to the distributed power source B (S2-10). Further, the contents of this control command are stored in the storage unit 9 or the memory 12 as necessary. Here, it is preferable that the control command output unit 8n outputs a control command having a content for starting subsidy by the maximum reactive power output that can be output to the distributed power source B. Further, when the reactive power output for subsidization by the distributed power source B is automatically stopped after a predetermined time has elapsed from the start of output, the control command output unit 8n of the control unit 8 The control command is output to stop the reactive power output for the subsidy to the distributed power source B after a predetermined time elapses.

次に、制御部8の無効電力算出部8hは、電圧vm及び電流Imの値を電圧・電流検出装置6から通信回線等を介して入力し、(式5)により無効電力出力を開始した状態の無効電力Qmを算出する(S2−11)。そして、入力した電圧vm及び電流Im、並びに算出した無効電力Qmを記憶部9又はメモリ12に記憶する。   Next, the reactive power calculation unit 8h of the control unit 8 inputs the values of the voltage vm and the current Im from the voltage / current detection device 6 through a communication line or the like, and starts reactive power output according to (Equation 5). The reactive power Qm is calculated (S2-11). Then, the input voltage vm and current Im, and the calculated reactive power Qm are stored in the storage unit 9 or the memory 12.

次に、制御部8の制御指令出力部8nは分散型電源Bに対して助成のための無効電力出力を段階的に低下させる内容の制御指令を出力する(S2−12)。ここで、無効電力出力を段階的に低下させる際の低下の幅は、例えば、予め入力部10により入力して記憶部9に記憶した値を読み込むようにする。   Next, the control command output unit 8n of the control unit 8 outputs to the distributed power source B a control command with a content that gradually reduces the reactive power output for subsidy (S2-12). Here, the range of decrease when the reactive power output is decreased stepwise is, for example, a value that is input in advance by the input unit 10 and stored in the storage unit 9 is read.

次に、制御部8の無効電力算出部8hは、電圧v及び電流Iの値を電圧・電流検出装置6から通信回線等を介して入力し、(式5)により助成のための無効電力出力を低下させた状態の無効電力Qを算出する(S2−13)。そして、入力した電圧v及び電流I、並びに算出した無効電力Qを記憶部9又はメモリ12に記憶する。なお、添字iは分散型電源Bの無効電力の段階的出力低下の回数(i=1,2,3,…)であり、記憶部9又はメモリ12には回数毎の値を記憶する。なお、以降では、分散型電源Bの無効電力の段階的出力低下の回数がi回目の場合について説明する。 Next, the reactive power calculation unit 8h of the control unit 8 inputs the values of the voltage v i and the current I i from the voltage / current detection device 6 through a communication line, etc. The reactive power Q i in a state where the power output is lowered is calculated (S2-13). The input voltage v i and current I i and the calculated reactive power Q i are stored in the storage unit 9 or the memory 12. Note that the subscript i is the number of stepwise reductions in the reactive power output of the distributed power source B (i = 1, 2, 3,...), And the storage unit 9 or the memory 12 stores a value for each number of times. Hereinafter, a case where the number of times of stepwise output reduction of the reactive power of the distributed power source B is i will be described.

次に、制御部8の第二の変化分算出部8iは電圧vについて電圧の変化分Δv2と無効電力Qについて無効電力の変化分ΔQを算出する(S2−14)。制御部8の第二の変化分算出部8iは、まず、S2−13で記憶部9又はメモリ12に記憶した電圧vとvi−1を読み込む。なお、無効電力出力の段階的低下の1回目(i=1)についての算出をする場合のvについては、S2−11で記憶部9又はメモリ12に記憶したvmを読み込む。そして、(式6)により電圧の変化分Δv2を算出する。続いて、制御部8の第二の変化分算出部8iは、S2−13で記憶部9又はメモリ12に記憶した無効電力QとQi−1を読み込む。なお、無効電力出力の段階的低下の1回目(i=1)についての算出をする場合のQについては、S2−11で記憶部9又はメモリ12に記憶したQmを読み込む。そして、(式7)により無効電力の変化分ΔQを算出する。そして、算出した電圧の変化分Δv2及び無効電力の変化分ΔQを記憶部9又はメモリ12に記憶する。 Next, a second variation calculation section 8i of the control unit 8 calculates the change amount Delta] Q i of the reactive power for voltage v i and disabled variation .DELTA.v2 i of the voltage for the power Q i (S2-14). The second change calculation unit 8i of the control unit 8 first reads the voltages v i and v i−1 stored in the storage unit 9 or the memory 12 in S2-13. Note that the v 0 in the case of the calculation of the first gradual reduction of the reactive power output (i = 1), reads the vm stored in the storage unit 9 or the memory 12 in S2-11. Then, a change Δv2 i in voltage is calculated by (Equation 6). Subsequently, the second change calculation unit 8i of the control unit 8 reads the reactive power Q i and Q i−1 stored in the storage unit 9 or the memory 12 in S2-13. Note that the Q 0 in the case of the calculation of the first gradual reduction of the reactive power output (i = 1), reads the Qm stored in the storage unit 9 or the memory 12 in S2-11. Then, the change ΔQ i of the reactive power is calculated by (Equation 7). The calculated voltage change Δv2 i and reactive power change ΔQ i are stored in the storage unit 9 or the memory 12.

次に、制御部8の第二の電圧感度算出部8jは、S2−14で記憶部9又はメモリ12に記憶した電圧の変化分Δv2及び無効電力の変化分ΔQを読み込む。そして、(式8)により無効電力変化分に対する電圧感度Sqを算出する(S2−15)。そして、算出した無効電力変化分に対する電圧感度Sqを記憶部9又はメモリ12に記憶する。 Next, the second voltage sensitivity calculation unit 8j of the control unit 8 reads the voltage change Δv2 i and the reactive power change ΔQ i stored in the storage unit 9 or the memory 12 in S2-14. Then, the voltage sensitivity Sq i with respect to the reactive power change is calculated by (Equation 8) (S2-15). The voltage sensitivity Sq i for the calculated reactive power change is stored in the storage unit 9 or the memory 12.

次に、制御部8の第二の電圧感度比較部8kは電圧感度Sqと助成のための無効電力出力の低下を停止するか否かを判定するための閾値Sqsとの比較を行う(S2−16)。制御部8の第二の電圧感度比較部8kは、まず、S2−15で記憶部9又はメモリ12に記憶した無効電力変化分に対する電圧感度Sqを読み込む。また、助成のための無効電力出力の低下を停止するか否かを判定するための閾値Sqsを読み込む。ここで、閾値Sqsの値は、例えば、予め入力部10により入力して記憶部9に記憶した値を読み込むようにする。 Next, the second voltage sensitivity comparison unit 8k of the control unit 8 compares the voltage sensitivity Sq i with a threshold value Sqs for determining whether or not to stop the reduction of the reactive power output for subsidy (S2). -16). First, the second voltage sensitivity comparison unit 8k of the control unit 8 reads the voltage sensitivity Sq i for the reactive power change stored in the storage unit 9 or the memory 12 in S2-15. In addition, a threshold value Sqs for determining whether or not to stop the reduction in reactive power output for subsidy is read. Here, as the value of the threshold value Sqs, for example, a value input in advance by the input unit 10 and stored in the storage unit 9 is read.

そして、電圧感度Sqが閾値Sqsよりも大きい(Sq>Sqs)場合(S2−16;No)には、制御部8の第二の電圧感度比較部8kの比較結果に基づいてS2−12のステップに戻り、制御部8の制御指令出力部8nは分散型電源Bに対して無効電力出力を更に低下する内容の制御指令を出力する。また、必要に応じて、この制御指令の内容を記憶部9又はメモリ12に記憶する。 When the voltage sensitivity Sq i is larger than the threshold value Sqs (Sq i > Sqs) (S2-16; No), S2-12 is based on the comparison result of the second voltage sensitivity comparison unit 8k of the control unit 8. Returning to the step, the control command output unit 8n of the control unit 8 outputs to the distributed power source B a control command having a content that further reduces the reactive power output. Further, the contents of this control command are stored in the storage unit 9 or the memory 12 as necessary.

一方、電圧感度Sqが閾値Sqs以下(Sq≦Sqs)の場合(S2−16;Yes)には、制御部8の第二の電圧感度比較部8kの比較結果に基づき、制御指令出力部8nは分散型電源Bに対して助成のための無効電力出力の低下を停止する内容の制御指令を出力する(S2−17)。また、必要に応じて、この制御指令の内容を記憶部9又はメモリ12に記憶する。 On the other hand, when the voltage sensitivity Sq i is equal to or less than the threshold value Sqs (Sq i ≦ Sqs) (S2-16; Yes), based on the comparison result of the second voltage sensitivity comparison unit 8k of the control unit 8, the control command output unit 8n outputs to the distributed power source B a control command with a content to stop the reduction of reactive power output for subsidy (S2-17). Further, the contents of this control command are stored in the storage unit 9 or the memory 12 as necessary.

ここで、分散型電源Aの制御について、分散型電源Aが無効電力出力による電圧上昇抑制制御を開始した(S1−3)後に制御部8の第一の無効電力出力比較部8cは無効電力出力の上限値を読み込むと共に分散型電源Aから無効電力出力の大きさを通信回線等を介して入力する。そして、無効電力出力と無効電力出力の上限値との比較を行う(S1−5)。ここで、無効電力出力の上限値は、例えば、予め入力部10により入力して記憶部9に記憶した値を読み込むようにする。   Here, regarding the control of the distributed power source A, after the distributed power source A starts the voltage increase suppression control by the reactive power output (S1-3), the first reactive power output comparison unit 8c of the control unit 8 outputs the reactive power output. And the magnitude of reactive power output from the distributed power source A is input via a communication line or the like. Then, the reactive power output is compared with the upper limit value of the reactive power output (S1-5). Here, as the upper limit value of the reactive power output, for example, a value input in advance by the input unit 10 and stored in the storage unit 9 is read.

そして、分散型電源Aの無効電力出力が無効電力出力の上限値に達した場合(S1−5;Yes)には、制御部8の制御指令出力部8nは分散型電源Aに対して電圧下降抑制も行う電圧一定制御に移行する内容の制御指令を出力する(S1−6)。   When the reactive power output of the distributed power source A reaches the upper limit value of the reactive power output (S1-5; Yes), the control command output unit 8n of the control unit 8 drops in voltage with respect to the distributed power source A. A control command with the content of transition to constant voltage control that also performs suppression is output (S1-6).

一方、分散型電源Aの無効電力出力が無効電力出力の上限値に達していない場合(S1−5;No)には、制御部8の第一の無効電力出力比較部8cが分散型電源Aから通信回線等を介して入力した無効電力出力と無効電力出力の上限値との比較を行う工程(S1−5)に戻る。   On the other hand, when the reactive power output of the distributed power source A has not reached the upper limit value of the reactive power output (S1-5; No), the first reactive power output comparing unit 8c of the control unit 8 is the distributed power source A. The process returns to the step (S1-5) for comparing the reactive power output input through the communication line or the like with the upper limit value of the reactive power output.

以上の処理により、電圧制御プログラム13は無効電力の分担化の処理を完了する。   With the above process, the voltage control program 13 completes the process of sharing reactive power.

更に、助成のための無効電力出力を停止するための処理として、分散型電源Bの制御については、分散型電源Bが助成のための無効電力出力の低下を停止した(S2−17)後、制御部8の制御指令出力部8nは分散型電源Bに対して無効電力を周期的に変動させる内容の制御指令を出力する。そして、無効電力出力を周期的に変動させた場合の無効電力変動分に対する電圧感度Sqfと助成のための無効電力出力を停止するか否かを判定するための閾値Sqs’とを比較する(S2−18)。   Furthermore, as a process for stopping the reactive power output for the subsidy, for the control of the distributed power source B, after the distributed power source B stops the reduction of the reactive power output for the subsidy (S2-17), The control command output unit 8n of the control unit 8 outputs a control command with a content of periodically changing the reactive power to the distributed power source B. Then, the voltage sensitivity Sqf with respect to the reactive power fluctuation when the reactive power output is periodically changed is compared with the threshold value Sqs ′ for determining whether or not to stop the reactive power output for the subsidy (S2). -18).

まず、制御部8の第三の電圧感度比較部8mは、無効電力変動分に対する電圧感度Sqfを算出する。電圧感度Sqfの算出は前述の無効電力変化分に対する電圧感度Sqの算出と同様であるので詳細についてはここでは省略する。また、助成のための無効電力出力を停止するか否かを判定するための閾値Sqs’を読み込む。ここで、閾値Sqs’の値は、例えば、予め入力部10により入力して記憶部9に記憶した値を読み込むようにする。   First, the third voltage sensitivity comparison unit 8m of the control unit 8 calculates the voltage sensitivity Sqf for the reactive power fluctuation. Since the calculation of the voltage sensitivity Sqf is the same as the calculation of the voltage sensitivity Sq with respect to the reactive power change, the details are omitted here. Further, a threshold value Sqs ′ for determining whether or not to stop the reactive power output for subsidy is read. Here, as the value of the threshold value Sqs ′, for example, a value that is input in advance by the input unit 10 and stored in the storage unit 9 is read.

そして、電圧感度Sqfが閾値Sqs’よりも大きい場合(S2−18;Yes)には、制御部8の第三の電圧感度比較部8mの比較結果に基づき、制御指令出力部8nは分散型電源Bに対して助成のための無効電力出力を停止する内容の制御指令を出力する(S2−19)。   When the voltage sensitivity Sqf is larger than the threshold value Sqs ′ (S2-18; Yes), the control command output unit 8n is based on the comparison result of the third voltage sensitivity comparison unit 8m of the control unit 8, and the distributed power source A control command for stopping the reactive power output for subsidy is output to B (S2-19).

一方、電圧感度Sqfが閾値Sqs’以下の場合(S2−18;No)には、制御部8の制御指令出力部8nが分散型電源Bに対して無効電力を周期的に変動させる内容の制御指令を出力すると共に、第三の電圧感度比較部8mが電圧感度Sqfを算出して電圧感度Sqfと閾値Sqs’との比較を行う工程(S2−18)に戻る。   On the other hand, when the voltage sensitivity Sqf is equal to or less than the threshold value Sqs ′ (S2-18; No), the control command output unit 8n of the control unit 8 controls the content that causes the distributed power source B to vary the reactive power periodically. While outputting a command, the third voltage sensitivity comparison unit 8m returns to the step (S2-18) in which the voltage sensitivity Sqf is calculated and the voltage sensitivity Sqf is compared with the threshold value Sqs ′.

また、分散型電源Aの制御について、分散型電源Aが電圧一定制御に移行した(S1−6)後、制御部8の第二の無効電力出力比較部8dは分散型電源Aから無効電力出力の大きさを通信回線等を介して入力する。また、無効電力出力閾値を読み込む。ここで、無効電力出力閾値は、例えば、予め入力部10により入力して記憶部9に記憶した値を読み込むようにする。   Regarding the control of the distributed power source A, after the distributed power source A shifts to the constant voltage control (S1-6), the second reactive power output comparison unit 8d of the control unit 8 outputs the reactive power output from the distributed power source A. Is input via a communication line or the like. Also, the reactive power output threshold is read. Here, as the reactive power output threshold, for example, a value input in advance by the input unit 10 and stored in the storage unit 9 is read.

そして、分散型電源Aの無効電力出力が無効電力出力閾値よりも低下した場合(S1−7;Yes)には、制御部8の制御指令出力部8nは分散型電源Aに対して電圧一定制御を解除する内容の制御指令を出力する(S1−8)。   When the reactive power output of the distributed power source A is lower than the reactive power output threshold (S1-7; Yes), the control command output unit 8n of the control unit 8 controls the voltage of the distributed power source A to be constant. A control command with the content of canceling is output (S1-8).

一方、分散型電源Aの無効電力出力が無効電力出力閾値以上の場合(S1−7;No)には、制御部8の第二の無効電力出力比較部8dが分散型電源Aから通信回線等を介して入力した無効電力出力と無効電力出力閾値との比較を行う工程(S1−7)に戻る。   On the other hand, when the reactive power output of the distributed power source A is greater than or equal to the reactive power output threshold (S1-7; No), the second reactive power output comparing unit 8d of the control unit 8 communicates from the distributed power source A to a communication line or the like. The process returns to the step of comparing the reactive power output input via the reactive power output threshold (S1-7).

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。   In addition, although the above-mentioned form is an example of the suitable form of this invention, it is not limited to this, A various deformation | transformation implementation is possible in the range which does not deviate from the summary of this invention.

本発明の配電系統の電圧制御方法、装置並びにプログラムの実施形態の一例を示すフローチャートである。It is a flowchart which shows an example of embodiment of the voltage control method, apparatus, and program of a power distribution system of this invention. 実施形態の配電系統を説明する図である。It is a figure explaining the power distribution system of embodiment. 本実施形態の配電系統の電圧制御方法をプログラムを用いて実施する場合の電圧制御装置の機能ブロック図である。It is a functional block diagram of the voltage control apparatus in the case of implementing the voltage control method of the power distribution system of this embodiment using a program. 同一の配電系統に連系している二つの分散型電源の関わりとそれぞれの動作の流れを説明する図である。It is a figure explaining the relationship of the two distributed power supplies linked to the same power distribution system, and the flow of each operation | movement.

符号の説明Explanation of symbols

1 配電系統
3 配電線
5a、5b 連系点
6 電圧・電流検出装置
7 電圧制御装置
8 制御部
9 記憶部
10 入力部
11 表示部
12 メモリ
13 電圧制御プログラム
A、B 分散型電源
DESCRIPTION OF SYMBOLS 1 Distribution system 3 Distribution line 5a, 5b Connection point 6 Voltage / current detection apparatus 7 Voltage control apparatus 8 Control part 9 Memory | storage part 10 Input part 11 Display part 12 Memory 13 Voltage control program A, B Distributed type power supply

Claims (12)

配電線に複数の分散型電源が連系している配電系統において、前記配電線と前記分散型電源Bとの連系点における有効電力の変化分と電圧の変化分とから有効電力変化分に対する電圧感度を算出し、前記有効電力変化分に対する電圧感度が無効電力出力による助成を行うか否かを判定するための閾値以下の場合に他の分散型電源Aが電圧上昇抑制制御に移行したと判断して前記分散型電源Bが無効電力出力による助成を開始することを特徴とする配電系統の電圧制御方法。   In a distribution system in which a plurality of distributed power sources are connected to a distribution line, the change in active power and the change in voltage at the connection point between the distribution line and the distributed power source B When the voltage sensitivity is calculated and the voltage sensitivity with respect to the change in the active power is equal to or less than a threshold value for determining whether or not to perform subsidy by reactive power output, the other distributed power source A has shifted to the voltage rise suppression control. A voltage control method for a power distribution system, characterized in that the distributed power source B starts subsidy by reactive power output. 前記分散型電源Bが出力可能な最大出力での前記無効電力出力による助成を開始することを特徴とする請求項1記載の配電系統の電圧制御方法。   2. The distribution system voltage control method according to claim 1, wherein subsidy by the reactive power output at a maximum output that can be output by the distributed power source B is started. 前記分散型電源Bが無効電力出力による助成を開始した後に、前記連系点における無効電力の変化分と電圧の変化分とから無効電力変化分に対する電圧感度を算出し、前記無効電力変化分に対する電圧感度が助成のための無効電力出力の低下を停止するか否かを判定するための閾値よりも大きい場合には前記分散型電源Bが助成のための無効電力出力を段階的に低下し、前記無効電力変化分に対する電圧感度が前記助成のための無効電力出力の低下を停止するか否かを判定するための閾値以下の場合には前記分散型電源Aが電圧一定制御に移行したと判断して前記分散型電源Bが助成のための無効電力出力の低下を停止することを特徴とする請求項1または2記載の配電系統の電圧制御方法。   After the distributed power source B starts subsidy by reactive power output, voltage sensitivity for reactive power change is calculated from the reactive power change and voltage change at the interconnection point, and the reactive power change If the voltage sensitivity is greater than a threshold for determining whether to stop the reduction of the reactive power output for the subsidy, the distributed power source B gradually reduces the reactive power output for the subsidy, When the voltage sensitivity to the reactive power change is equal to or less than a threshold for determining whether or not to stop the reduction of the reactive power output for the subsidy, it is determined that the distributed power source A has shifted to constant voltage control. The distribution system voltage control method according to claim 1, wherein the distributed power source B stops a reduction in reactive power output for subsidy. 前記分散型電源Bが無効電力出力による助成を開始した後に、又は前記分散型電源Bが助成のための無効電力出力の低下を停止した後に、前記連系点における無効電力の変動分と電圧の変化分とから無効電力変動分に対する電圧感度を算出し、前記無効電力変動分に対する電圧感度が助成のための無効電力出力を停止するか否かを判定するための閾値よりも大きい場合に前記分散型電源Aが電圧上昇抑制制御又は前記電圧上昇抑制制御後に移行した電圧一定制御を解除したと判断して前記分散型電源Bが助成のための無効電力出力を停止することを特徴とする請求項1から3のいずれか1つに記載の配電系統の電圧制御方法。   After the distributed power source B starts subsidy with reactive power output, or after the distributed power source B stops reducing the reactive power output for subsidy, the variation of reactive power and voltage at the interconnection point When the voltage sensitivity for the reactive power fluctuation is calculated from the change and the voltage sensitivity for the reactive power fluctuation is greater than a threshold for determining whether to stop the reactive power output for the subsidy, the variance is The distributed power source B stops the reactive power output for subsidy when it is determined that the type power source A has released the voltage increase suppression control or the constant voltage control that has been shifted after the voltage increase suppression control. The voltage control method of the distribution system as described in any one of 1-3. 配電線と分散型電源との連系点における有効電力の変化分と電圧の変化分とから有効電力変化分に対する電圧感度を算出する手段と、前記有効電力変化分に対する電圧感度が無効電力出力による助成を行うか否かを判定するための閾値以下の場合に前記分散型電源に無効電力出力による助成を開始させる内容の制御指令を出力する手段とを含む制御装置を有することを特徴とする配電系統の電圧制御装置。   Means for calculating the voltage sensitivity for the change in active power from the change in active power and the change in voltage at the connection point between the distribution line and the distributed power source, and the voltage sensitivity for the change in active power depends on the reactive power output A power distribution unit including a control device including means for outputting a control command with a content for starting the subsidy by reactive power output to the distributed power source when the value is equal to or less than a threshold for determining whether or not to perform the subsidy. System voltage controller. 前記無効電力出力による助成を開始させる内容の制御指令を出力する手段が、前記分散型電源に出力可能な最大出力での無効電力出力による助成を開始させる内容の制御指令を出力することを特徴とする請求項5記載の配電系統の電圧制御装置。   The means for outputting a control command with a content for starting subsidy with reactive power output outputs a control command with a content for starting subsidy with reactive power output at the maximum output that can be output to the distributed power source. The voltage control device for a power distribution system according to claim 5. 前記制御装置が、前記連系点における無効電力の変化分と電圧の変化分とから無効電力変化分に対する電圧感度を算出する手段と、前記無効電力変化分に対する電圧感度が助成のための無効電力出力の低下を停止するか否かを判定するための閾値よりも大きい場合には前記分散型電源に助成のための無効電力出力を段階的に低下させる内容の制御指令を出力する手段と、前記無効電力変化分に対する電圧感度が前記助成のための無効電力出力の低下を停止するか否かを判定するための閾値以下の場合には前記分散型電源に助成のための無効電力出力の低下を停止させる内容の制御指令を出力する手段とを含むことを特徴とする請求項5または6記載の配電系統の電圧制御装置。   The control device calculates a voltage sensitivity for the reactive power change from the reactive power change and the voltage change at the interconnection point; and the reactive power for substituting the voltage sensitivity for the reactive power change Means for outputting a control command with a content of stepwise reducing reactive power output for subsidy to the distributed power source when the threshold value is larger than a threshold for determining whether or not to stop the output reduction; and When the voltage sensitivity with respect to the reactive power change is equal to or less than the threshold for determining whether or not to stop the reduction of the reactive power output for the subsidy, the distributed power source is reduced in the reactive power output for subsidy. The voltage control device for a distribution system according to claim 5 or 6, further comprising means for outputting a control command for the content to be stopped. 前記制御装置が、前記連系点における無効電力の変動分と電圧の変化分とから無効電力変動分に対する電圧感度を算出する手段と、前記無効電力変動分に対する電圧感度が助成のための無効電力出力を停止するか否かを判定するための閾値よりも大きい場合に前記分散型電源に助成のための無効電力出力を停止させる内容の制御指令を出力する手段とを含むことを特徴とする請求項5から7のいずれか1つに記載の配電系統の電圧制御装置。   The control device calculates a voltage sensitivity for the reactive power fluctuation from the reactive power fluctuation and the voltage change at the interconnection point; and the reactive power for substituting the voltage sensitivity for the reactive power fluctuation And a means for outputting a control command with a content to stop reactive power output for subsidization to the distributed power source when the threshold value is larger than a threshold value for determining whether or not to stop the output. Item 8. The voltage control device for a power distribution system according to any one of Items 5 to 7. コンピュータを、少なくとも、配電線と分散型電源との連系点における有効電力の変化分と電圧の変化分とから有効電力変化分に対する電圧感度を算出する手段、前記有効電力変化分に対する電圧感度が無効電力出力による助成を行うか否かを判定するための閾値以下の場合に前記分散型電源に無効電力出力による助成を開始させる内容の制御指令を出力する手段として機能させるための配電系統の電圧制御プログラム。   Means for calculating a voltage sensitivity for an active power change from at least a change in active power and a change in voltage at a connection point between a distribution line and a distributed power source; and a voltage sensitivity for the active power change. Voltage of the distribution system for functioning as a means for outputting a control command for starting the subsidy by reactive power output to the distributed power source when it is below a threshold for determining whether or not subsidy by reactive power output is performed Control program. 前記コンピュータを、前記分散型電源に出力可能な最大出力での無効電力出力による助成を開始させる内容の制御指令を出力する手段として機能させるための請求項9記載の配電系統の電圧制御プログラム。   10. The voltage control program for a distribution system according to claim 9, which causes the computer to function as means for outputting a control command with a content for starting subsidy by reactive power output at a maximum output that can be output to the distributed power source. 前記コンピュータを、前記連系点における無効電力の変化分と電圧の変化分とから無効電力変化分に対する電圧感度を算出する手段、前記無効電力変化分に対する電圧感度が助成のための無効電力出力の低下を停止するか否かを判定するための閾値よりも大きい場合には前記分散型電源に助成のための無効電力出力を段階的に低下させる内容の制御指令を出力する手段、前記無効電力変化分に対する電圧感度が前記助成のための無効電力出力の低下を停止するか否かを判定するための閾値以下の場合には前記分散型電源に助成のための無効電力出力の低下を停止させる内容の制御指令を出力する手段として機能させるための請求項9または10記載の配電系統の電圧制御プログラム。   Means for calculating a voltage sensitivity for the reactive power change from the change of the reactive power and the voltage change at the interconnection point; the voltage sensitivity for the reactive power change is a reactive power output for subsidy. Means for outputting a control command with a content for stepwise reducing reactive power output for subsidization to the distributed power source when the threshold value is larger than a threshold value for determining whether or not to stop the reduction, the reactive power change Content that causes the distributed power source to stop reducing the reactive power output for the subsidy when the voltage sensitivity to the minute is equal to or less than the threshold for determining whether to stop the reduction of the reactive power output for the subsidy The voltage control program for a power distribution system according to claim 9 or 10 for functioning as means for outputting a control command. 前記コンピュータを、前記連系点における無効電力の変動分と電圧の変化分とから無効電力変動分に対する電圧感度を算出する手段、前記無効電力変動分に対する電圧感度が助成のための無効電力出力を停止するか否かを判定するための閾値よりも大きい場合に前記分散型電源に助成のための無効電力出力を停止させる内容の制御指令を出力する手段として機能させるための請求項9から11のいずれか1つに記載の配電系統の電圧制御プログラム。

Means for calculating the voltage sensitivity for the reactive power fluctuation from the fluctuation of the reactive power and the voltage change at the interconnection point; and the reactive power output for substituting the voltage sensitivity for the reactive power fluctuation. The function according to claim 9 to 11 for causing the distributed power source to function as a means for outputting a control command for stopping the reactive power output for subsidy when the threshold value is larger than a threshold value for determining whether to stop or not. The voltage control program of the power distribution system as described in any one.

JP2005260443A 2005-09-08 2005-09-08 Distribution system voltage control method, apparatus, and program Expired - Fee Related JP4498247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005260443A JP4498247B2 (en) 2005-09-08 2005-09-08 Distribution system voltage control method, apparatus, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005260443A JP4498247B2 (en) 2005-09-08 2005-09-08 Distribution system voltage control method, apparatus, and program

Publications (2)

Publication Number Publication Date
JP2007074846A true JP2007074846A (en) 2007-03-22
JP4498247B2 JP4498247B2 (en) 2010-07-07

Family

ID=37935800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005260443A Expired - Fee Related JP4498247B2 (en) 2005-09-08 2005-09-08 Distribution system voltage control method, apparatus, and program

Country Status (1)

Country Link
JP (1) JP4498247B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114642A1 (en) * 2011-02-21 2012-08-30 パナソニック電工株式会社 Power control system
JP2014225940A (en) * 2013-05-15 2014-12-04 一般財団法人電力中央研究所 Power generator and power control method
WO2016027483A1 (en) * 2014-08-22 2016-02-25 オムロン株式会社 Control device, power conversion device, power system and control method
US9600003B2 (en) 2012-03-21 2017-03-21 Mitsubishi Electric Corporation Power-distribution-system voltage control system
US9612584B2 (en) 2010-11-08 2017-04-04 Nec Corporation Electric power grid control system and method for electric power control
CN108173272A (en) * 2017-12-08 2018-06-15 云南电网有限责任公司 A kind of distributed voltage control method based in line sensitivity
US10090679B2 (en) 2013-08-30 2018-10-02 Mitsubishi Electric Corporation Voltage controller and voltage monitoring device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08280136A (en) * 1995-04-05 1996-10-22 Fuji Electric Co Ltd Method for controlling distributed power supply linked with power system
JP2000232736A (en) * 1999-02-12 2000-08-22 Tdk Corp Linked distributed power generation system
JP2003259554A (en) * 2002-03-04 2003-09-12 Toshiba Corp Device and program for voltage and reactive power monitoring control
JP2004135454A (en) * 2002-10-11 2004-04-30 Sharp Corp Output control method for a plurality of distributed power supplies and distributed power supply management system
JP2005160260A (en) * 2003-11-28 2005-06-16 Mitsubishi Electric Corp Distributed power supply control system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08280136A (en) * 1995-04-05 1996-10-22 Fuji Electric Co Ltd Method for controlling distributed power supply linked with power system
JP2000232736A (en) * 1999-02-12 2000-08-22 Tdk Corp Linked distributed power generation system
JP2003259554A (en) * 2002-03-04 2003-09-12 Toshiba Corp Device and program for voltage and reactive power monitoring control
JP2004135454A (en) * 2002-10-11 2004-04-30 Sharp Corp Output control method for a plurality of distributed power supplies and distributed power supply management system
JP2005160260A (en) * 2003-11-28 2005-06-16 Mitsubishi Electric Corp Distributed power supply control system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9612584B2 (en) 2010-11-08 2017-04-04 Nec Corporation Electric power grid control system and method for electric power control
WO2012114642A1 (en) * 2011-02-21 2012-08-30 パナソニック電工株式会社 Power control system
US9600003B2 (en) 2012-03-21 2017-03-21 Mitsubishi Electric Corporation Power-distribution-system voltage control system
JP2014225940A (en) * 2013-05-15 2014-12-04 一般財団法人電力中央研究所 Power generator and power control method
US10090679B2 (en) 2013-08-30 2018-10-02 Mitsubishi Electric Corporation Voltage controller and voltage monitoring device
WO2016027483A1 (en) * 2014-08-22 2016-02-25 オムロン株式会社 Control device, power conversion device, power system and control method
JP2016046915A (en) * 2014-08-22 2016-04-04 オムロン株式会社 Controller, power converter, power system, and control method
CN108173272A (en) * 2017-12-08 2018-06-15 云南电网有限责任公司 A kind of distributed voltage control method based in line sensitivity

Also Published As

Publication number Publication date
JP4498247B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP4498247B2 (en) Distribution system voltage control method, apparatus, and program
JP6033438B2 (en) Power control system
JP4713996B2 (en) Self-sustaining operation control device and control method
JP5390262B2 (en) Method and device for controlling power conditioner in solar power generation system
US9276402B2 (en) Photovoltaic system power optimization
WO2015136575A1 (en) Storage battery control device, storage battery control method, and storage battery control system
JP2008204073A (en) Power system
JP2012169447A (en) Photovoltaic power generation system
WO2013046894A1 (en) Power supply device and method for controlling same
JP2010250945A (en) Fuel cell power generation device
EP3334001B1 (en) Reactive power compensation apparatus and control method thereof
JP2012005277A (en) Reactive power compensation device having power current calculation function, and system and method thereof
KR102272179B1 (en) Apparatus for optimizing of ess(energy storage system) and pcs(power conditioning system) battery capacities estimation and control method for thereof
WO2013172012A1 (en) Power control device, power control method, and program
US20090300377A1 (en) Computer system for Managing Power consumption and Method Thereof
CN102789252B (en) Electric current Supply Method and current supply system
WO2014024731A1 (en) Linkage system switching device and power control system
KR20210148666A (en) Control apparatus for interlocking on distribution lines and method thereof
CN109804557B (en) Solar power generation system
JP2006223042A (en) Apparatus and method for parallel operation of inverter system
JP7042435B2 (en) Controllers, power storage systems and programs
KR101785496B1 (en) System for detecting islanding and method for detecting islanding
JP6629606B2 (en) Power generation system, power generation control method, and power generation device
JP2018153068A (en) Power supply system
JP2012121531A (en) Device and method for controlling inverter for ac feeding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100407

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4498247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees