JP2007073344A - Lithium ion secondary battery and electric automobile using same - Google Patents

Lithium ion secondary battery and electric automobile using same Download PDF

Info

Publication number
JP2007073344A
JP2007073344A JP2005259344A JP2005259344A JP2007073344A JP 2007073344 A JP2007073344 A JP 2007073344A JP 2005259344 A JP2005259344 A JP 2005259344A JP 2005259344 A JP2005259344 A JP 2005259344A JP 2007073344 A JP2007073344 A JP 2007073344A
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005259344A
Other languages
Japanese (ja)
Inventor
Kazuki Miyatake
一希 宮竹
Shin Nagayama
森 長山
Tamaki Miura
環 三浦
Mikio Kawai
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005259344A priority Critical patent/JP2007073344A/en
Publication of JP2007073344A publication Critical patent/JP2007073344A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery having electrode composition same as that of conventional lithium ion secondary battery (having large particle diameter) for general use, capable of securing a battery capacity same as that of the conventional one, and to provide an electric automobile using the same. <P>SOLUTION: The lithium ion secondary battery has a cathode and/or an anode of which porosity is 38% or lower and average particle diameter D50 of activator material is 1μm or less. The cathode and the anode are constituted of activator by 80% or more and conductive assistant by 10% or less. An electrode, formed by successively laminating an activator layer having film thickness of 30μm or less and a current collector layer, is provided. Lithium-transition metal oxide is contained in cathode activator, and carbon material or lithium-transition metal compound is contained in anode activator. The lithium ion secondary battery is mounted on the electric automobile as a driving power source. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウムイオン二次電池及びこれを用いた電気自動車に係り、更に詳細には、従来の二次電池では実現できなかった高出力特性の発現に寄与し得るリチウムイオン二次電池及びこれを用いた電気自動車に関する。   The present invention relates to a lithium ion secondary battery and an electric vehicle using the same, and more specifically, a lithium ion secondary battery that can contribute to the development of high output characteristics that could not be realized by a conventional secondary battery, and the same. The present invention relates to an electric vehicle using the.

従来から、自動車用の二次電池には、より高出力の特性が求められていた(例えば特許文献1,2参照。)。
特開2004−111242号公報 特開平11−329406号公報
Conventionally, secondary batteries for automobiles have been required to have higher output characteristics (see, for example, Patent Documents 1 and 2).
Japanese Patent Laid-Open No. 2004-111242 Japanese Patent Laid-Open No. 11-329406

また、従来の民生用リチウムイオン二次電池は、容量重視型で自動車用高出力電池には適していなかった(例えば特許文献3〜6参照。)。
特開2004−319105号公報 特開2004−103280号公報 特開2003−068299号公報 特願2002−572660号公報
In addition, conventional consumer lithium ion secondary batteries are capacity-oriented and are not suitable for high-power automobile batteries (see, for example, Patent Documents 3 to 6).
JP 2004-319105 A JP 2004-103280 A JP 2003-068299 A Japanese Patent Application No. 2002-572660

一方、小粒径化活物質電極を用いたリチウムイオン電池は、現行の民生用リチウムイオン電池より高出力なHEV型電池を設計することができる。
しかし、小粒径化電極は活物質間の接触点が増大するため、導電ネットワーク抵抗の低減化が必要となる。
On the other hand, a lithium ion battery using a particle size-reduced active material electrode can be designed as a HEV battery having a higher output than current consumer lithium ion batteries.
However, since the contact point between the active materials is increased in the small particle size electrode, it is necessary to reduce the conductive network resistance.

この対策として、電極内の導電助剤の配合量を増大させて、導電ネットワーク抵抗を低減することが行われている。
しかしながら、導電助剤の配合量を増大させると電極内の活物質量が減少し、電池容量が減少してしまうという問題点があった。
As a countermeasure, the conductive network resistance is reduced by increasing the amount of the conductive additive in the electrode.
However, when the blending amount of the conductive assistant is increased, there is a problem that the amount of the active material in the electrode is decreased and the battery capacity is decreased.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、従来(粒径大)の民生用リチウムイオン二次電池と同様の電極組成であり且つ同程度の電池容量を確保できるリチウムイオン二次電池及びこれを用いた電気自動車を提供することにある。   The present invention has been made in view of such problems of the prior art, and its object is an electrode composition similar to that of a conventional (large particle size) consumer lithium ion secondary battery, and An object of the present invention is to provide a lithium ion secondary battery capable of securing the same battery capacity and an electric vehicle using the same.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、小粒径化電極の電極密度(空隙率)を小さくして導電ネットワーク抵抗を低減させることにより、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by reducing the electrode density (porosity) of the small particle size electrode to reduce the conductive network resistance. The headline and the present invention were completed.

即ち、本発明のリチウムイオン二次電池は、正極及び/又は負極において、空隙率が38%以下であり、活物質材料の平均粒径D50が1μm以下であることを特徴とする。   That is, the lithium ion secondary battery of the present invention is characterized in that, in the positive electrode and / or the negative electrode, the porosity is 38% or less and the average particle diameter D50 of the active material is 1 μm or less.

また、本発明のリチウムイオン二次電池の好適形態は、正極及び/又は負極の電極組成は、質量換算で、活物質が80%以上であり、導電助剤が10%以下であることを特徴とする。   Moreover, the suitable form of the lithium ion secondary battery of the present invention is characterized in that the electrode composition of the positive electrode and / or the negative electrode is, in terms of mass, the active material is 80% or more and the conductive assistant is 10% or less. And

更に、本発明のリチウムイオン二次電池の他の好適形態は、電解質側から活物質層、集電体層を順次積層して成る電極を備え、該活物質層の膜厚が30μm以下であることを特徴とする。   Furthermore, another preferred embodiment of the lithium ion secondary battery of the present invention includes an electrode formed by sequentially laminating an active material layer and a current collector layer from the electrolyte side, and the thickness of the active material layer is 30 μm or less. It is characterized by that.

更にまた、本発明のリチウムイオン二次電池の更に他の好適形態は、正極活物質にはリチウム−遷移金属酸化物が含まれ、負極活物質には炭素材料又はリチウム−遷移金属化合物が含まれることを特徴とする。   Furthermore, in another preferred embodiment of the lithium ion secondary battery of the present invention, the positive electrode active material includes a lithium-transition metal oxide, and the negative electrode active material includes a carbon material or a lithium-transition metal compound. It is characterized by that.

また、本発明の電気自動車は、上記リチウムイオン二次電池を駆動用電源として搭載したことを特徴とする。   Moreover, the electric vehicle of the present invention is characterized in that the lithium ion secondary battery is mounted as a driving power source.

本発明によれば、小粒径化電極の電極密度(空隙率)を小さくして導電ネットワーク抵抗を低減させることとしたため、従来(粒径大)の民生用リチウムイオン二次電池と同様の電極組成であり且つ同程度の電池容量を確保できるリチウムイオン二次電池が得られる。   According to the present invention, since the conductive network resistance is reduced by reducing the electrode density (porosity) of the small particle size electrode, the same electrode as that of a conventional (large particle size) consumer lithium ion secondary battery A lithium ion secondary battery having a composition and capable of securing the same battery capacity is obtained.

以下、本発明のリチウムイオン二次電池について詳細に説明する。なお、本特許請求の範囲及び本明細書において、「%」は特記しない限り質量百分率を表すものとする。   Hereinafter, the lithium ion secondary battery of the present invention will be described in detail. In the claims and the specification, “%” represents a mass percentage unless otherwise specified.

本発明のリチウムイオン二次電池は、電解質を挟持する正極、負極のいずれか一方又は双方の空隙率を38%以下とする。また、正極、負極のいずれか一方又は双方の活物質材料の平均粒径D50を1μm以下とする。   In the lithium ion secondary battery of the present invention, the porosity of one or both of the positive electrode and the negative electrode sandwiching the electrolyte is 38% or less. Moreover, the average particle diameter D50 of the active material of either one or both of the positive electrode and the negative electrode is set to 1 μm or less.

このように、平均粒子径D50(50%累積粒子径)が1μm以下である非常に小さい活物質を用いることで、体積当たりの電極反応表面積が増大し、反応抵抗が低減する。
電極活物質材料を微粒子化する方法としては、例えば、ジェットミル粉砕、湿式のビーズミル粉砕、湿式の加圧衝突粉砕方法等の方法を適宜採用できる。
Thus, by using a very small active material having an average particle diameter D50 (50% cumulative particle diameter) of 1 μm or less, the electrode reaction surface area per volume increases and the reaction resistance decreases.
As a method for forming the electrode active material into fine particles, for example, methods such as jet mill pulverization, wet bead mill pulverization, and wet pressure collision pulverization can be appropriately employed.

また、電極内の空隙率を38%以下と小さくすることで、粒子間の接触抵抗を低減させ大電流放電初期の電圧降下の低減が可能となり、電池出力特性が向上する。
電極構成材料の組み合わせにもよるが、小粒径化活物質を用いた電極を備えるリチウムイオン二次電池は、電極内の空隙率を38%以下にすることで導電ネットワークを形成でき、接触抵抗を低減させる効果と反応有効活物質が増大する効果を両立させて発揮できる。
In addition, by reducing the porosity in the electrode to 38% or less, the contact resistance between the particles can be reduced, the voltage drop at the initial stage of large current discharge can be reduced, and the battery output characteristics are improved.
Although it depends on the combination of electrode constituent materials, a lithium ion secondary battery equipped with an electrode using an active material with a reduced particle size can form a conductive network by reducing the porosity in the electrode to 38% or less, and the contact resistance It is possible to achieve both the effect of reducing the reaction and the effect of increasing the reaction effective active material.

なお、上記空隙率とは、
空隙率[%]=(1−電極密度/理論電極密度)×100
電極密度[g/cc] :スラリー単位面積あたり塗布量/電極膜厚
理論電極密度[g/cc] :Σ(電極構成物質真密度×電極内組成比)
をいう。
The porosity is as follows:
Porosity [%] = (1-electrode density / theoretical electrode density) × 100
Electrode density [g / cc]: coating amount per unit area of slurry / electrode thickness theoretical electrode density [g / cc]: Σ (electrode material true density × inside electrode composition ratio)
Say.

また、より好ましくは、電極内の空隙率は33%以下であることが良い。
このときは、導電ネットワークをより多く形成でき、接触抵抗を低減させる効果と反応有効活物質が増大する効果がより大きくなり易い。
更に、特に好ましくは、電極内の空隙率は15〜33%であることが良い。
このときは、特に取り扱い易く、導電ネットワークをきわめて多く形成でき、接触抵抗を低減させる効果と反応有効活物質が増大する効果もきわめて大きくなり易い。
More preferably, the porosity in the electrode is 33% or less.
In this case, more conductive networks can be formed, and the effect of reducing the contact resistance and the effect of increasing the reaction active active material are likely to increase.
Furthermore, the porosity in the electrode is particularly preferably 15 to 33%.
At this time, it is particularly easy to handle, an extremely large number of conductive networks can be formed, and the effect of reducing the contact resistance and the effect of increasing the reaction effective active material are likely to become extremely large.

また、本発明のリチウムイオン二次電池において、正極、負極のいずれか一方又は双方の電極組成は、質量換算で、活物質が80%以上、導電助剤が10%以下であることが好ましい。
このように、従来の電池高容量重視の民生用リチウムイオン二次電池と同様な電極組成で電池を設計することで、高容量、高出力のリチウムイオン二次電池を構築できる。
In the lithium ion secondary battery of the present invention, the electrode composition of one or both of the positive electrode and the negative electrode is preferably 80% or more of the active material and 10% or less of the conductive auxiliary agent in terms of mass.
Thus, a high capacity, high output lithium ion secondary battery can be constructed by designing a battery with an electrode composition similar to that of a conventional consumer lithium ion secondary battery that emphasizes high capacity.

ここで、正極活物質には、リチウム−遷移金属酸化物が含まれ、上記負極活物質には炭素材料又はリチウム−遷移金属化合物が含まれることが好ましい。
各電極活物質にかかる材料を用いることにより、電池容量、出力特性に優れたリチウムイオン二次電池を構築できる。
Here, the positive electrode active material preferably includes a lithium-transition metal oxide, and the negative electrode active material preferably includes a carbon material or a lithium-transition metal compound.
By using a material related to each electrode active material, a lithium ion secondary battery excellent in battery capacity and output characteristics can be constructed.

また、上記導電助剤としては、代表的には、カーボンブラック、黒鉛のいずれか一方又は双方を含む炭素材料を使用できる。
このときは、電極内の導電性が確保され、二次電池に用いるときは高出力を得ることができる。
上記導電付与剤の粒子径は、10nm〜100μmであることが望ましく、微粒子化する方法は、上記電極活物質と同様の処理を採用できる。
Further, as the conductive auxiliary agent, typically, a carbon material containing one or both of carbon black and graphite can be used.
At this time, the conductivity in the electrode is ensured, and high output can be obtained when used in a secondary battery.
The particle size of the conductivity-imparting agent is desirably 10 nm to 100 μm, and the same treatment as that for the electrode active material can be adopted as a method for forming fine particles.

上記カーボンブラックとしては、例えば、アセチレンブラック、ケッチェンブラック、ファーネスブラック等が挙げられ、上記黒鉛としては、燐片状や繊維状の黒鉛が挙げられ、これらは天然由来のものでも良いし、人造のものでも良い。   Examples of the carbon black include acetylene black, ketjen black, and furnace black. Examples of the graphite include flake-like and fibrous graphite. These may be naturally derived or artificial. May be good.

更に、本発明のリチウムイオン二次電池で用いる電解質としては、代表的には、液体電解質、ポリマー電解質又はゲル電解質、及びこれらを任意に組合わせたものを用いることができる。
好ましくは、ポリマー電解質、ゲル電解質を用いることが良い。ポリマー電解質、ゲル電解質は、液体電解質に比べ可燃性が低く、高温時の電池の安全性に優れるので有効である。
Further, as the electrolyte used in the lithium ion secondary battery of the present invention, typically, a liquid electrolyte, a polymer electrolyte, a gel electrolyte, and an arbitrary combination thereof can be used.
Preferably, a polymer electrolyte or a gel electrolyte is used. Polymer electrolytes and gel electrolytes are effective because they are less flammable than liquid electrolytes and are excellent in battery safety at high temperatures.

上記液体電解質としては、例えば、非水溶媒に支持塩が溶解されたもの、例えばプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、γ−ブチルラクトン(BL)などを単独もしくは複数を組み合わせた非水溶媒とLiClO4、LiPF6、LiBF4、LiAsF6、などの支持塩などが挙げられる。   Examples of the liquid electrolyte include those in which a supporting salt is dissolved in a non-aqueous solvent, such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), γ-butyllactone ( BL) and the like, and non-aqueous solvents in which one or more are combined and supporting salts such as LiClO4, LiPF6, LiBF4, and LiAsF6.

上記ポリマー電解質としては、例えば、ポロエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリビニリデンジフルオライド(PVDF)、これらの共重合体などの固体高分子と、LiPF6、LiBF4、LiN(SO、LiN(SOなどの支持塩などが挙げられる。 Examples of the polymer electrolyte include solid polymers such as polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene difluoride (PVDF), and copolymers thereof, LiPF6, LiBF4, and LiN (SO 2 C). Supporting salts such as 2 F 3 ) 2 and LiN (SO 2 C 2 F 5 ) 2 are listed.

上記ゲル電解質としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、γ−ブチルラクトン(BL)などを単独もしくは複数を組み合わせた非水溶媒(可塑剤)とポロエチレンオキシド(PEO)、ポリプロピレンオキシド(PPO)、ポリビニリデンジフルオライド(PVDF)、これらの共重合体などの固体高分子と、LiPF6、LiBF4、LiN(SO、LiN(SOなどの支持塩が挙げられる。
なお、ゲル電解質中の固体高分子と電解液の重量比率は、使用目的などに応じて決定すればよいが、2:98〜90:10の範囲である。
Examples of the gel electrolyte include non-aqueous solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and γ-butyl lactone (BL) alone or in combination. (Plasticizer) and solid polymers such as polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene difluoride (PVDF), and copolymers thereof, and LiPF6, LiBF4, LiN (SO 2 C 2 F 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and the like.
In addition, what is necessary is just to determine the weight ratio of the solid polymer and electrolyte solution in a gel electrolyte according to the intended purpose etc., but it is the range of 2: 98-90: 10.

また、本発明のリチウムイオン二次電池において、正極、負極のいずれか一方又は双方は、電解質側から活物質層、集電体層を順次積層して構成できる。図1に、正極及び負極の双方が活物質層と集電体層の2層構造から成る電池要素を示す。
かかる2層構造は、HEV用二次電池に用いる観点からは、該活物質層の膜厚を30μm以下とすることが好ましい。
In the lithium ion secondary battery of the present invention, either one or both of the positive electrode and the negative electrode can be formed by sequentially laminating an active material layer and a current collector layer from the electrolyte side. FIG. 1 shows a battery element in which both a positive electrode and a negative electrode have a two-layer structure of an active material layer and a current collector layer.
From the viewpoint of using such a two-layer structure in a secondary battery for HEV, the thickness of the active material layer is preferably 30 μm or less.

これより、拡散抵抗を減少させることができ、大電流放電時での容量利用率の増大、出力特性の向上に効果を発揮し得る。
なお、電極膜厚は厚いほど高容量電池を設計することが可能となるが、本発明品のように、小粒径化活物質を用い、従来の電池高容量重視の民生用リチウムイオン二次電池と同様な電極組成とするときは、大電流放電時の電解液からのリチウムイオン拡散が起こり易くなる。
As a result, the diffusion resistance can be reduced, which can be effective in increasing the capacity utilization rate and improving the output characteristics during large current discharge.
In addition, it is possible to design a high-capacity battery as the electrode film thickness is thicker. However, as in the present invention product, using a small particle size active material, a conventional lithium ion secondary for consumer use that emphasizes the high capacity of the battery. When the electrode composition is the same as that of the battery, lithium ion diffusion from the electrolytic solution during large current discharge tends to occur.

上記集電体層の構成材料としては、例えば、アルミ、銅又はステンレス、及びこれらの任意の組合わせに係る金属箔又は合金箔を用いることができる。
このときは、小粒子径の活物質と導電付与剤を含むスラリーを、上記電極用集電体としての金属箔又は合金箔に塗布して電極が製造できるため、生産性が良好となる。
As a constituent material of the current collector layer, for example, aluminum, copper, or stainless steel, and a metal foil or alloy foil according to any combination thereof can be used.
In this case, since an electrode can be manufactured by applying a slurry containing an active material having a small particle diameter and a conductivity-imparting agent to the metal foil or alloy foil as the electrode current collector, productivity is improved.

次に、本発明の電気自動車について詳細に説明する。
上述の如く、本発明の電気自動車は、上記リチウムイオン二次電池を駆動用電源として搭載して成る。
即ち、電極内の空隙率を制御し、電極構成材料の粒子径をより細かくした高出力且つ高容量なリチウムイオン二次電池を適用するので、高出力の車両となる。
なお、本発明の電気自動車には、上述のリチウムイオン二次電池を動力源として含み、その他の動力源と組合わせて走行し得る「ハイブリットカー」なども含まれるものとする。
Next, the electric vehicle of the present invention will be described in detail.
As described above, the electric vehicle of the present invention includes the lithium ion secondary battery mounted as a driving power source.
That is, a high-output and high-capacity lithium ion secondary battery in which the porosity in the electrode is controlled and the particle diameter of the electrode constituent material is finer is applied, so that a high-output vehicle is obtained.
The electric vehicle of the present invention includes the above-described lithium ion secondary battery as a power source, and includes a “hybrid car” that can travel in combination with other power sources.

以下、本発明を実施例及び比較例により更に詳述するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in full detail, this invention is not limited to these Examples.

(実施例1)
粒径0.8μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る固形分を、溶媒NNPに溶解させて正極スラリーを作製した。
この正極スラリーを目付け量3mg/cm2で正極集電体であるAl箔(膜厚20μm)に自走型ダイコータで塗布し、空隙率33%になるようプレスを行い、正極を得た。
Example 1
A solid content obtained by mixing Li- (Ni-Co-Al) -based composite oxide having a particle diameter of 0.8 μm, acetylene black, and PVDF at a weight ratio of 80:10:10 is dissolved in a solvent NNP to obtain a positive electrode slurry. Produced.
This positive electrode slurry was applied to an Al foil (film thickness: 20 μm) as a positive electrode current collector with a basis weight of 3 mg / cm 2 by a self-propelled die coater and pressed to a porosity of 33% to obtain a positive electrode.

粒径5μmのハードカーボン、VGCF、PVDFを重量比85:5:10で混合して成る固形分を、溶媒NMPに溶解させて負極スラリーを作製した。
この負極スラリーを目付け量1.5mg/cm2で負極集電体であるCu箔(膜厚10μm)に自走型ダイコータで塗布し、空隙率55%になるようプレスを行い、負極を得た。
A solid content obtained by mixing hard carbon having a particle size of 5 μm, VGCF, and PVDF at a weight ratio of 85: 5: 10 was dissolved in a solvent NMP to prepare a negative electrode slurry.
This negative electrode slurry was applied to a Cu foil (film thickness: 10 μm) as a negative electrode current collector with a basis weight of 1.5 mg / cm 2 by a self-propelled die coater and pressed to a porosity of 55% to obtain a negative electrode.

上記正極と上記負極をリチウムイオン電池用セパレータに介して対面させて電池素子を形成した。
この電池素子を三方シール済みの外装材アルミラミネートに挿入した。次いで、アルミネート内にリチウムイオン電池用電解液1M LiPF6/EC+PC+DEC(体積比2:2:6)を注入した後、該外装材からタブが出るように真空シールを行い、密封ラミネート型リチウムイオン電池を作製した。
The positive electrode and the negative electrode were opposed to each other through a lithium ion battery separator to form a battery element.
This battery element was inserted into a three-side sealed exterior aluminum laminate. Next, after injecting electrolyte solution 1M LiPF6 / EC + PC + DEC (volume ratio 2: 2: 6) for lithium ion battery into aluminate, vacuum sealing is performed so that a tab comes out from the outer packaging material, and a sealed laminated lithium ion battery Was made.

(実施例2)
粒径0.8μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率38%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Example 2)
Self-propelled die coater with a weight per unit area of 3 mg / cm2 of positive electrode slurry formed by mixing Li- (Ni-Co-Al) composite oxide having a particle size of 0.8 [mu] m, acetylene black and PVDF at a weight ratio of 80:10:10 And was pressed to a porosity of 38% to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(実施例3)
粒径0.8μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率25%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Example 3)
Self-propelled die coater with a weight per unit area of 3 mg / cm2 of positive electrode slurry formed by mixing Li- (Ni-Co-Al) composite oxide having a particle size of 0.8 [mu] m, acetylene black and PVDF at a weight ratio of 80:10:10 And was pressed to a porosity of 25% to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(実施例4)
粒径0.8μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率20%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
Example 4
Self-propelled die coater with a weight per unit area of 3 mg / cm2 of positive electrode slurry formed by mixing Li- (Ni-Co-Al) composite oxide having a particle size of 0.8 [mu] m, acetylene black and PVDF at a weight ratio of 80:10:10 And was pressed to a porosity of 20% to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(実施例5)
粒径0.8μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率15%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Example 5)
Self-propelled die coater with a weight per unit area of 3 mg / cm2 of positive electrode slurry formed by mixing Li- (Ni-Co-Al) composite oxide having a particle size of 0.8 [mu] m, acetylene black and PVDF at a weight ratio of 80:10:10 And was pressed to a porosity of 15% to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(実施例6)
粒径0.7μmのマンガン酸スピネルリチウム、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量4mg/cm2で自走型ダイコータを用いて塗布し、空隙率33%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Example 6)
A positive electrode slurry prepared by mixing spinel lithium manganate having a particle diameter of 0.7 μm, acetylene black, and PVDF at a weight ratio of 80:10:10 was applied at a basis weight of 4 mg / cm 2 using a self-propelled die coater, and a porosity of 33 % Was pressed to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(比較例1)
粒径0.8μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率48%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Comparative Example 1)
Self-propelled die coater with a weight per unit area of 3 mg / cm2 of positive electrode slurry formed by mixing Li- (Ni-Co-Al) composite oxide having a particle size of 0.8 [mu] m, acetylene black and PVDF at a weight ratio of 80:10:10 And was pressed to a porosity of 48% to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(比較例2)
前記リチウムイオン電池の電極の正極は粒径5μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率33%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Comparative Example 2)
The positive electrode of the electrode of the lithium ion battery is a positive electrode slurry obtained by mixing Li- (Ni-Co-Al) -based composite oxide having a particle diameter of 5 μm, acetylene black, and PVDF at a weight ratio of 80:10:10. A positive electrode was obtained by coating with a self-propelled die coater at / cm 2 and pressing to a porosity of 33%.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(比較例3)
粒径5μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率38%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Comparative Example 3)
Using a self-propelled die coater with a weight of 3 mg / cm 2 of a positive electrode slurry formed by mixing Li— (Ni—Co—Al) composite oxide having a particle size of 5 μm, acetylene black, and PVDF at a weight ratio of 80:10:10 Then, pressing was performed to obtain a porosity of 38% to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(比較例4)
粒径5μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率46%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Comparative Example 4)
Using a self-propelled die coater with a weight of 3 mg / cm 2 of a positive electrode slurry formed by mixing Li— (Ni—Co—Al) composite oxide having a particle size of 5 μm, acetylene black, and PVDF at a weight ratio of 80:10:10 Then, pressing was performed so that the porosity was 46% to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(比較例5)
粒径5μmのニッケル酸リチウム、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率52%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Comparative Example 5)
A positive electrode slurry made by mixing lithium nickelate having a particle diameter of 5 μm, acetylene black, and PVDF at a weight ratio of 80:10:10 is applied at a basis weight of 3 mg / cm 2 using a self-propelled die coater, resulting in a porosity of 52%. A positive electrode was obtained.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(比較例6)
粒径5μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率25%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Comparative Example 6)
Using a self-propelled die coater with a weight of 3 mg / cm 2 of a positive electrode slurry formed by mixing Li— (Ni—Co—Al) composite oxide having a particle size of 5 μm, acetylene black, and PVDF at a weight ratio of 80:10:10 Then, pressing was performed so that the porosity was 25% to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(比較例7)
粒径5μmのLi−(Ni−Co−Al)系複合酸化物、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量3mg/cm2で自走型ダイコータを用いて塗布し、空隙率15%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Comparative Example 7)
Using a self-propelled die coater with a weight of 3 mg / cm 2 of a positive electrode slurry formed by mixing Li— (Ni—Co—Al) composite oxide having a particle size of 5 μm, acetylene black, and PVDF at a weight ratio of 80:10:10 Then, pressing was performed to obtain a porosity of 15% to obtain a positive electrode.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(比較例8)
粒径10μmのマンガン酸スピネルリチウム、アセチレンブラック、PVDFを重量比80:10:10で混合して成る正極スラリーを目付け量4mg/cm2で自走型ダイコータを用いて塗布し、空隙率33%になるようプレスを行い、正極を得た。
この正極を用いたこと以外は、実施例1と同様の操作を繰返して、密封ラミネート型リチウムイオン電池を作製した。
(Comparative Example 8)
A positive electrode slurry prepared by mixing spinel lithium manganate having a particle diameter of 10 μm, acetylene black, and PVDF at a weight ratio of 80:10:10 was applied at a basis weight of 4 mg / cm 2 using a self-propelled die coater, and the porosity was 33%. A positive electrode was obtained by pressing.
Except that this positive electrode was used, the same operation as in Example 1 was repeated to produce a sealed laminate type lithium ion battery.

(評価)
実施例1〜6、比較例1〜8それぞれの電池で充放電試験を行った。
実験は0.2Cの電流で初充電、0.5Cの放電後、1Cで10サイクル充放電試験を行った後、満充電(4.2V)で100C(20mA/cm2以上)のレート特性と交流インピーダンスによる反応抵抗を評価した。
(Evaluation)
The charging / discharging test was done with each battery of Examples 1-6 and Comparative Examples 1-8.
In the experiment, after initial charge at a current of 0.2 C, discharge at 0.5 C, and after performing a 10-cycle charge / discharge test at 1 C, rate characteristics and AC with a full charge (4.2 V) of 100 C (20 mA / cm 2 or more) Reaction resistance due to impedance was evaluated.

Figure 2007073344
Figure 2007073344

Figure 2007073344
Figure 2007073344

Figure 2007073344
Figure 2007073344

図2の実施例1、比較例2を比較すると、100Cレート特性において初期IRドロップ抵抗値はほとんど同じであった。
一方、図3の実施例1、比較例2を比較すると、容量利用率は、粒径の小さい実施例1の方が優れていた。
このことから、空隙率33%以下の小粒径化電極では、高出力な電池を設計できることが確認された。
When Example 1 and Comparative Example 2 in FIG. 2 were compared, the initial IR drop resistance values were almost the same in the 100 C rate characteristics.
On the other hand, when Example 1 and Comparative Example 2 in FIG. 3 were compared, the capacity utilization was better in Example 1 with a smaller particle size.
From this, it was confirmed that a high-power battery can be designed with a small particle size electrode having a porosity of 33% or less.

また、表1,3より、正極活物質にマンガン酸スピネルリチウムを用いた実施例6、比較例8では、IRドロップ抵抗値を比較すると100Cレート特性において初期IRドロップ抵抗値、容量利用率の両方とも粒径の小さい実施例6の方が優れていた。
このことから、正極の材料の種類によらず空隙率33%の小粒径化電極では、高出力な電池を設計できることが確認された。
From Tables 1 and 3, in Example 6 and Comparative Example 8 in which spinel lithium manganate was used as the positive electrode active material, when comparing the IR drop resistance values, both the initial IR drop resistance value and the capacity utilization rate were 100 C rate characteristics. In both cases, Example 6 having a smaller particle diameter was superior.
From this, it was confirmed that a high-power battery can be designed with a small particle size electrode having a porosity of 33% regardless of the type of positive electrode material.

表2、図2の実施例1〜5より、小粒径化電極においては、空隙率33%超の領域では、空隙率上昇と伴に初期IRドロップ抵抗値が増大し、空隙率33%以下ではIRドロップ抵抗は減少しないが、従来の電極よりIRドロップ抵抗値が小さくなることが判明した。
このことから、従来と同様の電極組成、電池容量で構成される小粒径化電極では、空隙率33%以下で良好な導電ネットワークが形成することが分かった。
From Tables 1 and 2 of Examples 1 to 5, in the small-diameter electrode, in the region where the porosity exceeds 33%, the initial IR drop resistance value increases with increasing porosity, and the porosity is less than 33%. The IR drop resistance did not decrease, but the IR drop resistance value was found to be smaller than that of the conventional electrode.
From this, it was found that a small conductive electrode having the same electrode composition and battery capacity as in the prior art forms a good conductive network with a porosity of 33% or less.

また、表2、図2の比較例2〜7より、粒径が大きい電極においては、空隙率上昇と伴に初期IRドロップ抵抗値の変化がないことが判明した。
このことから、粒径大の電極では、空隙率が大きくても電極内に導電ネットワークが十分形成されていることが分かった。
Further, from Table 2 and Comparative Examples 2 to 7 in FIG. 2, it was found that in the electrode having a large particle size, there was no change in the initial IR drop resistance value as the porosity increased.
From this, it was found that in the electrode having a large particle size, a sufficient conductive network was formed in the electrode even when the porosity was large.

更に、図4の比較例2〜7より、交流インピーダンス測定において、粒径が大きい場合は空隙率による反応抵抗の依存性は見られなかった。
このことから、どの空隙率においても導電ネットワークは形成されていることが確認された。
Further, from Comparative Examples 2 to 7 in FIG. 4, in the AC impedance measurement, when the particle size is large, the dependence of the reaction resistance on the porosity is not observed.
From this, it was confirmed that the conductive network was formed at any porosity.

一方、図4の実施例2より、粒径が小さい場合は、空隙率38%超になると反応抵抗は、粒径大の電極よりも大きくなる。
このことから、粒径が小さい場合は、空隙率38%超で導電ネットワークの形成が減少し、一部の粒子しか反応に関与しなくなり、反応抵抗が増大することが分かった。
On the other hand, from Example 2 in FIG. 4, when the particle size is small, the reaction resistance becomes larger than that of the electrode having a large particle size when the porosity exceeds 38%.
From this, it was found that when the particle size is small, the formation of the conductive network is reduced when the porosity is more than 38%, and only some of the particles are involved in the reaction, thereby increasing the reaction resistance.

また、図4の実施例1,3〜5より、反応抵抗は空隙率依存性を示さなかったことから、空隙率33%以下では、良好な導電ネットワークが形成されていることが確認された。
また、導電ネットワークのとれた実施例1と比較例2、実施例6と比較例8を比較すると、反応抵抗は小粒径化電極を用いることで低減することができ、空隙率33%以下の小粒径化電極を用いた電池では高出力な電池を設計できることが判明した。
In addition, from Examples 1 and 3 to 5 in FIG. 4, since the reaction resistance did not show porosity dependency, it was confirmed that a favorable conductive network was formed at a porosity of 33% or less.
Further, when Example 1 and Comparative Example 2 with a conductive network are compared, and Example 6 and Comparative Example 8 are compared, the reaction resistance can be reduced by using a small particle size electrode, and the porosity is 33% or less. It has been found that a battery with a small particle size electrode can be designed with a high output.

リチウムイオン二次電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of a lithium ion secondary battery. 空隙率とIRドロップ抵抗の関係を示すグラフである。It is a graph which shows the relationship between a porosity and IR drop resistance. 空隙率と容量利用率の関係を示すグラフである。It is a graph which shows the relationship between a porosity and a capacity utilization rate. 空隙率と相対反応抵抗の関係を示すグラフである。It is a graph which shows the relationship between a porosity and relative reaction resistance.

符号の説明Explanation of symbols

1 正極活物質層
2 正極集電体
3 負極集電体
4 負極活物質層
5 電解液を含むセパレータ
DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Positive electrode collector 3 Negative electrode collector 4 Negative electrode active material layer 5 Separator containing electrolyte solution

Claims (8)

正極及び/又は負極において、空隙率が38%以下であり、活物質材料の平均粒径D50が1μm以下であることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery, wherein the positive electrode and / or the negative electrode have a porosity of 38% or less and an average particle diameter D50 of the active material of 1 μm or less. 正極及び/又は負極において、空隙率が33%以下であることを特徴とする請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein a porosity of the positive electrode and / or the negative electrode is 33% or less. 正極及び/又は負極において、空隙率が15〜33%であることを特徴とする請求項1又は2に記載のリチウムイオン二次電池。   3. The lithium ion secondary battery according to claim 1, wherein a porosity of the positive electrode and / or the negative electrode is 15 to 33%. 正極及び/又は負極の電極組成は、質量換算で、活物質が80%以上であり、導電助剤が10%以下であることを特徴とする請求項1〜3のいずれか1つの項に記載のリチウムイオン二次電池。   The electrode composition of the positive electrode and / or the negative electrode is, in terms of mass, the active material is 80% or more and the conductive auxiliary is 10% or less, according to any one of claims 1 to 3. Lithium ion secondary battery. 電解質側から活物質層、集電体層を順次積層して成る電極を備え、該活物質層の膜厚が30μm以下であることを特徴とする請求項1〜4に記載のリチウムイオン二次電池。   The lithium ion secondary according to claim 1, comprising an electrode formed by sequentially laminating an active material layer and a current collector layer from the electrolyte side, wherein the active material layer has a thickness of 30 μm or less. battery. 正極活物質にはリチウム−遷移金属酸化物が含まれ、負極活物質には炭素材料又はリチウム−遷移金属化合物が含まれることを特徴とする請求項1〜5に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the positive electrode active material includes a lithium-transition metal oxide, and the negative electrode active material includes a carbon material or a lithium-transition metal compound. 電解質は、液体電解質、ポリマー電解質及びゲル電解質から成る群より選ばれた少なくとも1種のものであることを特徴とする請求項1〜6に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the electrolyte is at least one selected from the group consisting of a liquid electrolyte, a polymer electrolyte, and a gel electrolyte. 請求項1〜7のいずれか1つの項に記載のリチウムイオン二次電池を駆動用電源として搭載したことを特徴とする電気自動車。   An electric vehicle comprising the lithium ion secondary battery according to any one of claims 1 to 7 mounted as a driving power source.
JP2005259344A 2005-09-07 2005-09-07 Lithium ion secondary battery and electric automobile using same Pending JP2007073344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259344A JP2007073344A (en) 2005-09-07 2005-09-07 Lithium ion secondary battery and electric automobile using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259344A JP2007073344A (en) 2005-09-07 2005-09-07 Lithium ion secondary battery and electric automobile using same

Publications (1)

Publication Number Publication Date
JP2007073344A true JP2007073344A (en) 2007-03-22

Family

ID=37934632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259344A Pending JP2007073344A (en) 2005-09-07 2005-09-07 Lithium ion secondary battery and electric automobile using same

Country Status (1)

Country Link
JP (1) JP2007073344A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220653A (en) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2015156259A (en) * 2014-02-19 2015-08-27 株式会社日本触媒 lithium ion secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007220653A (en) * 2006-01-18 2007-08-30 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2015156259A (en) * 2014-02-19 2015-08-27 株式会社日本触媒 lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP4636341B2 (en) Lithium secondary battery and manufacturing method thereof
KR101513821B1 (en) Battery electrode and use thereof
KR101477873B1 (en) Nonaqueous electrolyte solution type lithium ion secondary battery
JP5822089B2 (en) Sealed lithium secondary battery
JP5963022B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2008097879A (en) Lithium ion secondary battery
JP5488899B2 (en) Lithium secondary battery
JPWO2014073113A1 (en) Nonaqueous electrolyte secondary battery
JP2015037008A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, and method for manufacturing the same
JP7102831B2 (en) Positive electrode and lithium ion secondary battery
JP2012138217A (en) Battery manufacturing method
JP2013062089A (en) Lithium ion secondary battery
JP6156406B2 (en) Electrode manufacturing method
KR101170172B1 (en) Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
JP6103315B2 (en) Non-aqueous secondary battery and method for producing the battery
JP2017054739A (en) Secondary battery
JP2005317469A (en) Cathode for lithium-ion secondary battery, and lithium-ion secondary battery using cathode
JP6083289B2 (en) Lithium ion secondary battery
JP5838952B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5418828B2 (en) Lithium secondary battery and manufacturing method thereof
JP2007073344A (en) Lithium ion secondary battery and electric automobile using same
JP7096981B2 (en) Lithium ion secondary battery
JP2014143064A (en) Secondary battery and method for manufacturing the same
JP2017084648A (en) Method for manufacturing composition for positive electrode active material layer formation
JP2011134589A (en) Manufacturing method of electrode for secondary battery