JP2007071853A - Apparatus for measuring water retention curve capable of loading perpendicular stress thereon - Google Patents
Apparatus for measuring water retention curve capable of loading perpendicular stress thereon Download PDFInfo
- Publication number
- JP2007071853A JP2007071853A JP2005292941A JP2005292941A JP2007071853A JP 2007071853 A JP2007071853 A JP 2007071853A JP 2005292941 A JP2005292941 A JP 2005292941A JP 2005292941 A JP2005292941 A JP 2005292941A JP 2007071853 A JP2007071853 A JP 2007071853A
- Authority
- JP
- Japan
- Prior art keywords
- soil
- pressure
- test specimen
- water retention
- stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本発明は土壌および土質材料などの水分保持曲線を実験的に調べる際に試験対象の土壌および土質材料(以後、土供試体)に鉛直方向の圧縮力を加えることを可能にし、同時に土構造内に間隙空気圧、間隙水圧を与えることも出来る。さらに圧縮力、間隙空気、間隙水圧の載荷状態において供試体の鉛直方向の収縮量や膨張量を測定することができる。The present invention makes it possible to apply a compressive force in the vertical direction to the soil and soil material to be tested (hereinafter referred to as a soil specimen) when experimentally examining moisture retention curves of the soil and soil material, etc. It is also possible to give pore air pressure and pore water pressure. Further, the amount of contraction and expansion in the vertical direction of the specimen can be measured in a loaded state of compressive force, air gap and water pressure.
従来の土供試体の水分保持特性を調べる場合には、土供試体を耐圧容器の中に静置し、微細孔を有するセラミックディスクなどを併用して土供試体中の間隙空気圧および間隙水圧を制御して水分保持曲線が求められている。土骨格に伝播する大きな圧縮応力に伴う土供試体の鉛直方向の変位や土供試体中の間隙空気圧および間隙水圧の変化に伴う土供試体の鉛直方向の変位を測定する必要がある。When examining the moisture retention characteristics of a conventional soil specimen, place the soil specimen in a pressure-resistant container and use a ceramic disk with fine pores in combination with the pore air pressure and pore water pressure in the soil specimen. A moisture retention curve is determined by control. It is necessary to measure the vertical displacement of the soil specimen due to the large compressive stress propagating to the soil skeleton and the vertical displacement of the soil specimen accompanying changes in the pore air pressure and pore water pressure in the soil specimen.
土供試体を構成している土粒子が相互に接触し形成している土骨格に大きな圧縮力を伝播させると同時にその土骨格内の間隙空気圧あらびに間隙水圧の変化を伴った場合の土骨格全体の鉛直方向の変位を計測することが本発明が解決しようとする課題である。Soil skeleton in the case where a large compressive force is propagated to the soil skeleton formed by the soil particles constituting the soil specimen contacting each other, and at the same time, the pore air pressure in the soil skeleton and the change of pore water pressure are accompanied. It is a problem to be solved by the present invention to measure the overall vertical displacement.
課題は土供試体に大きな鉛直方向の応力を加えることを可能にすることと、土供試体の鉛直方向の変位を測ることである。大きな鉛直方向に耐えるように、土供試体を納めるモールドの肉厚を十分に確保すること。さらにモールドを支えている底版の厚さも十分に確保すること。土供試体の鉛直方向の変位を測定するために土供試体上面に置かれているロッド付の加圧板に変位計を取り付けること。The challenge is to make it possible to apply a large vertical stress to the soil specimen and to measure the vertical displacement of the soil specimen. Ensure sufficient thickness of the mold to store the soil specimen so that it can withstand a large vertical direction. In addition, ensure that the bottom plate supporting the mold has sufficient thickness. A displacement meter shall be attached to the pressure plate with a rod placed on the top of the soil specimen in order to measure the vertical displacement of the soil specimen.
土供試体中の間隙水圧と間隙空気圧の制御とともに鉛直方向の応力を載荷・制御するこことで、実際の土中の鉛直方向の応力を室内で再現することが可能になる。また土供試体の鉛直方向の変位を測定することで土供試体の体積変化を求めることが可能になり、土構成諸量を算出することが可能になる。By loading and controlling the stress in the vertical direction along with the control of the pore water pressure and the pore air pressure in the soil specimen, the actual vertical stress in the soil can be reproduced indoors. Moreover, it becomes possible to obtain the volume change of the soil specimen by measuring the vertical displacement of the soil specimen, and it is possible to calculate various amounts of soil composition.
以下、本発明の実施の形態を図1にもとづいて説明する。Hereinafter, an embodiment of the present invention will be described with reference to FIG.
図1は鉛直応力載荷可能水分保持曲線測定装置である。鉛直応力載荷可能水分保持曲線測定装置の主構成は受圧板、耐圧ロッド、上部鋼製プレート、鋼製リング、肉厚鋼製モールド、底版、台座、アクリル製円筒である。FIG. 1 shows a moisture retention curve measuring apparatus capable of loading a vertical stress. The main components of the vertical stress loadable moisture retention curve measuring device are a pressure receiving plate, a pressure-resistant rod, an upper steel plate, a steel ring, a thick steel mold, a bottom plate, a pedestal, and an acrylic cylinder.
鉛直応力載荷可能水分保持曲線測定装置の主構成のほかに付属されるものとして変位計、荷重計、セラミックディスクが備わっている。In addition to the main configuration of the vertical stress loadable moisture retention curve measuring device, a displacement meter, load meter, and ceramic disk are provided.
セラミックディスクは土供試体内に間隙空気圧と間隙水圧を分離する役割をもつ。そのセラミックディスクは底版中にはめ込まれており、エポキシ樹脂で固定されている。The ceramic disc has the role of separating pore air pressure and pore water pressure in the soil specimen. The ceramic disc is fitted in the bottom plate and fixed with epoxy resin.
土供試体を肉厚鋼製モールド内に入れ、肉厚鋼製モールドと底版を十分に固定する。Put the earth specimen in the thick steel mold and fix the thick steel mold and the bottom plate sufficiently.
アクリル製円筒を底版の溝にはめ込み、土供試体上端の上にポーラスストーン、有孔加圧板、耐圧ロッド、上部鋼製プレートアタッチメント、受圧板の順に組み立てる。最後に鋼製リングをはめ込むことで全体が組み上がる。An acrylic cylinder is fitted into the groove of the bottom plate, and a porous stone, a perforated pressure plate, a pressure rod, an upper steel plate attachment, and a pressure receiving plate are assembled in this order on the top of the soil specimen. Finally, the whole is assembled by fitting a steel ring.
脱気水供給口からアクリル製円筒内に脱気水を給水し、水浸作用孔からウォータスペース内に脱気水が流れ込むまで給水をつづける。The deaerated water is supplied into the acrylic cylinder from the deaerated water supply port, and the water supply is continued until the deaerated water flows into the water space from the water immersion hole.
荷重計と受圧板を接触させ、変位計先端を変位計アッチメントと接触させる。荷重計および変位計の初期値を読み取る。The load cell and the pressure receiving plate are brought into contact with each other, and the tip of the displacement meter is brought into contact with the displacement meter attachment. Read the initial values of load cell and displacement meter.
圧力載荷ピストンを土供試体方向へ可動させることで荷重計、受圧板、有孔加圧板を通じて土供試体に鉛直力が圧縮応力として土供試体を圧縮し、土供試体に変化が生まれる。By moving the pressure loading piston in the direction of the soil test piece, the vertical force is compressed on the soil test piece as a compressive stress through the load meter, the pressure receiving plate and the perforated pressure plate, and a change occurs in the soil test piece.
圧縮応力によって生じた変位は、耐圧ロッドの鉛直方向の移動量を変位計で計測することで求められる。The displacement caused by the compressive stress can be obtained by measuring the amount of vertical movement of the pressure-resistant rod with a displacement meter.
圧縮応力の載荷と同時に間隙空気圧供給口から土供試体の土間隙内に任意の大きさの間隙空気圧を作用させることができる。Simultaneously with the loading of the compressive stress, a gap air pressure of an arbitrary size can be applied to the soil gap of the soil specimen from the gap air pressure supply port.
圧縮応力の載荷と同時に排水口に間隙水圧を作用させることで間隙水圧はセラミックディスクを通って土供試体の土間隙内に働く。By applying pore water pressure to the drain outlet simultaneously with the loading of the compressive stress, the pore water pressure works through the ceramic disk and into the soil gap of the soil specimen.
間隙水圧、間隙空気圧を土供試体に作用させたことで生まれる土供試体の鉛直方向の変位はThe vertical displacement of the soil specimen produced by applying pore water pressure and pore air pressure to the soil specimen is
と同様に測定可能である。It can be measured in the same way.
1 変位計
2 変位計アタッチメント
3 荷重計
4 受圧板
5 固定ねじ
6 ボールベアリング
7 間隙空気圧
8 Oリング
9 アクリル製円筒
10 肉厚モールド
11 耐圧ロッド
12 有孔加圧板
13 ポーラスストーン
14 土供試体
15 セラミックディスク
16 排水口
17 脱気水供給口
18 エポキシ樹脂
19 台座
20 底盤
21 鋼製リング
22 上部鋼製プレート
23 水浸作用孔
24 ウォータスペース
25 圧力載荷ピストンDESCRIPTION OF SYMBOLS 1
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005292941A JP2007071853A (en) | 2005-09-07 | 2005-09-07 | Apparatus for measuring water retention curve capable of loading perpendicular stress thereon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005292941A JP2007071853A (en) | 2005-09-07 | 2005-09-07 | Apparatus for measuring water retention curve capable of loading perpendicular stress thereon |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007071853A true JP2007071853A (en) | 2007-03-22 |
Family
ID=37933397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005292941A Pending JP2007071853A (en) | 2005-09-07 | 2005-09-07 | Apparatus for measuring water retention curve capable of loading perpendicular stress thereon |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007071853A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101963556A (en) * | 2010-08-24 | 2011-02-02 | 清华大学 | Isostrain increment ratio test system |
CN105467098A (en) * | 2015-11-16 | 2016-04-06 | 天津城建大学 | Correction method for unsaturated soil soil-water characteristic curve based on axis translation technique test |
CN109900915A (en) * | 2019-03-18 | 2019-06-18 | 山西大学 | A kind of full-automatic chemical Polluted Soil modulus of resilience tester |
CN113176391A (en) * | 2021-03-29 | 2021-07-27 | 中国电建集团西北勘测设计研究院有限公司 | Soil testing device |
CN117871267A (en) * | 2024-03-12 | 2024-04-12 | 西南交通大学 | Consolidation apparatus and implementation method for non-confined condition |
-
2005
- 2005-09-07 JP JP2005292941A patent/JP2007071853A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101963556A (en) * | 2010-08-24 | 2011-02-02 | 清华大学 | Isostrain increment ratio test system |
CN105467098A (en) * | 2015-11-16 | 2016-04-06 | 天津城建大学 | Correction method for unsaturated soil soil-water characteristic curve based on axis translation technique test |
CN109900915A (en) * | 2019-03-18 | 2019-06-18 | 山西大学 | A kind of full-automatic chemical Polluted Soil modulus of resilience tester |
CN113176391A (en) * | 2021-03-29 | 2021-07-27 | 中国电建集团西北勘测设计研究院有限公司 | Soil testing device |
CN117871267A (en) * | 2024-03-12 | 2024-04-12 | 西南交通大学 | Consolidation apparatus and implementation method for non-confined condition |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106018740B (en) | Hole pressure touching methods demarcate can system | |
CN201716254U (en) | Concrete permeability testing device | |
Ferrari et al. | Advances in the testing of the hydro-mechanical behaviour of shales | |
CN102183622B (en) | Novel unsaturated soil high-pressure consolidation test device | |
Dong et al. | Measurement of suction-stress characteristic curve under drying and wetting conditions | |
CN201716256U (en) | Soil mass permeability testing device | |
CN111650082B (en) | Unsaturated soil water characteristic curve measuring device | |
JP2007147315A (en) | Triaxial consolidation permeability test device and test method | |
JP2007071853A (en) | Apparatus for measuring water retention curve capable of loading perpendicular stress thereon | |
Choi et al. | Development of a true triaxial apparatus for sands and gravels | |
JP2007286021A (en) | Cellulose film mounting type moisture characteristic testing device | |
CN110426337B (en) | Rock-soil body osmotic deformation testing device under low stress condition and testing method thereof | |
WO2022206145A1 (en) | Soil testing device | |
CN104020092A (en) | Consolidation pore water pressure combined test device and method | |
Alowaisy et al. | Continuous pressurization method for a rapid determination of the soil water characteristics curve for remolded and undisturbed cohesionless soils | |
CN106066298B (en) | Volume measurement device and measurement method based on flat small sample unsaturated soil triaxial test | |
Milatz et al. | A new simple shear apparatus and testing method for unsaturated sands | |
CN110044809A (en) | A kind of concrete durability test device and its test method | |
Zhang et al. | Investigation of suction effects due to stress release with compacted MX80 bentonite | |
Li et al. | Development of a new high-suction tensiometer | |
US2811038A (en) | Apparatus for the consolidation of materials | |
CN107179393B (en) | A kind of pore water pressure force test method of low water content densification rock soil medium | |
JP2001091381A (en) | Method for testing consolidation of ground material and its device | |
CN205786231U (en) | Volume measuring device based on flat sample unsaturated soil triaxial test | |
Franzini et al. | A mercury-displacement method for stone bulk-density determinations |