JP2007071641A - State quantity measuring apparatus - Google Patents

State quantity measuring apparatus Download PDF

Info

Publication number
JP2007071641A
JP2007071641A JP2005257820A JP2005257820A JP2007071641A JP 2007071641 A JP2007071641 A JP 2007071641A JP 2005257820 A JP2005257820 A JP 2005257820A JP 2005257820 A JP2005257820 A JP 2005257820A JP 2007071641 A JP2007071641 A JP 2007071641A
Authority
JP
Japan
Prior art keywords
permanent magnet
encoder
width direction
detected
support plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005257820A
Other languages
Japanese (ja)
Other versions
JP4956940B2 (en
Inventor
Hiroo Ishikawa
寛朗 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005257820A priority Critical patent/JP4956940B2/en
Publication of JP2007071641A publication Critical patent/JP2007071641A/en
Application granted granted Critical
Publication of JP4956940B2 publication Critical patent/JP4956940B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve an inexpensive structure allowing the behavior of an encoder 14 to be measured by a sensor with high reliability by increasing the density of magnetic flux passing through a surface to be detected of the encoder 14 containing a permanent magnet 15 sufficiently across the width direction of the surface to be detected and at low cost. <P>SOLUTION: The thickness of the permanent magnet 15 at the end part in the width direction of the surface to be detected is set to be larger than the thickness of the permanent magnet 15 at the central part in the width direction of the surface to be detected. For that purpose, the cross-sectional shape of the surface to be detected of the permanent magnet 15 is formed in a straight line, and a part connecting the end part in the width direction of the permanent magnet 15 out of a support tubular part 18 constituting a support plate 16 supporting the permanent magnet 15 is depressed in a direction away from the surface to be detected as compared to a part connecting the central part in the width direction. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明に係る状態量測定装置は、例えば車両(自動車)の車輪を懸架装置に対して回転自在に支持する車輪支持用転がり軸受ユニットに組み込んで、この車輪に加わる荷重の大きさを測定し、車両の安定運行の確保に利用する。   The state quantity measuring device according to the present invention is incorporated in a wheel bearing rolling bearing unit that supports a vehicle (automobile) wheel rotatably with respect to a suspension device, for example, and measures the magnitude of a load applied to the wheel, Used to ensure stable operation of vehicles.

例えば、車両の車輪を懸架装置に対して回転自在に支持する為に、転がり軸受ユニットを使用する。又、車両の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)等の車両の走行状態安定化装置が広く使用されている。これらABSやTCS等の走行状態安定化装置によれば、制動時や加速時に於ける車両の走行状態を安定させる事はできるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。   For example, a rolling bearing unit is used to rotatably support a vehicle wheel with respect to a suspension device. In order to ensure the running stability of the vehicle, a running state stabilizing device for the vehicle such as an antilock brake system (ABS) or a traction control system (TCS) is widely used. According to these running state stabilizing devices such as ABS and TCS, the running state of the vehicle at the time of braking or acceleration can be stabilized, but in order to ensure this stability even under more severe conditions, the vehicle It is necessary to control the brakes and the engine by incorporating more information that affects the running stability of the vehicle.

即ち、上記ABSやTCS等の従来の走行状態安定化装置の場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている為、これらブレーキやエンジンの制御が一瞬とは言え遅れる。言い換えれば、厳しい条件下での性能向上を図るべく、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。   That is, in the case of the conventional running state stabilizing device such as ABS or TCS, since so-called feedback control is performed to detect the slip between the tire and the road surface and control the brake and the engine, the brake and engine Control is delayed for a moment. In other words, in order to improve performance under severe conditions, the so-called feed-forward control prevents slippage between the tire and the road surface, or the so-called brake one-side effect where the braking forces of the left and right wheels are extremely different. Cannot be prevented.

この様な問題に対応すべく、上記フィードフォワード制御等を行なう為には、懸架装置に対して車輪を支持する為の転がり軸受ユニットに、この車輪に加わるラジアル荷重とアキシアル荷重とのうちの一方又は双方を測定する為の荷重測定装置を組み込む事が考えられる。この様な場合に使用可能な荷重測定装置付車輪支持用転がり軸受ユニットとして従来から、特許文献1〜5に記載されたものが知られている。   In order to cope with such a problem, in order to perform the feedforward control or the like, one of a radial load and an axial load applied to the wheel is applied to the rolling bearing unit for supporting the wheel with respect to the suspension device. Or it is possible to incorporate a load measuring device for measuring both. Conventionally, what was described in patent documents 1-5 is known as a wheel bearing rolling bearing unit with a load measuring device which can be used in such a case.

このうちの特許文献1には、ラジアル荷重を測定自在な、荷重測定装置付転がり軸受ユニットが記載されている。この従来構造の第1例の場合には、非接触式の変位センサにより、回転しない外輪と、この外輪の内径側で回転するハブとの径方向に関する変位を測定する事により、これら外輪とハブとの間に加わるラジアル荷重を求める様にしている。求めたラジアル荷重は、ABSを適正に制御する他、積載状態の不良を運転者に知らせる為に利用する。   Of these, Patent Document 1 describes a rolling bearing unit with a load measuring device capable of measuring a radial load. In the case of the first example of the conventional structure, the outer ring and the hub are measured by measuring the radial displacement between the outer ring that does not rotate and the hub that rotates on the inner diameter side of the outer ring by a non-contact displacement sensor. The radial load applied between and is calculated. The obtained radial load is used not only to properly control the ABS but also to inform the driver of a bad loading condition.

又、特許文献2には、転がり軸受ユニットに加わるアキシアル荷重を測定する構造が記載されている。この特許文献2に記載された従来構造の第2例の場合、外輪の外周面に設けた固定側フランジの内側面複数個所で、この固定側フランジをナックルに結合する為のボルトを螺合する為のねじ孔を囲む部分に、それぞれ荷重センサを添設している。上記外輪を上記ナックルに支持固定した状態でこれら各荷重センサは、このナックルの外側面と上記固定側フランジの内側面との間で挟持される。この様な従来構造の第2例の転がり軸受ユニットの荷重測定装置の場合、車輪と上記ナックルとの間に加わるアキシアル荷重は、上記各荷重センサにより測定される。   Patent document 2 describes a structure for measuring an axial load applied to a rolling bearing unit. In the case of the second example of the conventional structure described in Patent Document 2, bolts for connecting the fixed side flange to the knuckle are screwed at a plurality of positions on the inner side surface of the fixed side flange provided on the outer peripheral surface of the outer ring. Each load sensor is attached to a portion surrounding the screw hole. Each load sensor is clamped between the outer surface of the knuckle and the inner surface of the fixed flange in a state where the outer ring is supported and fixed to the knuckle. In the case of the load measuring device for the rolling bearing unit of the second example having such a conventional structure, the axial load applied between the wheel and the knuckle is measured by the load sensors.

又、特許文献3には、外輪の円周方向4個所位置に支持した変位センサユニットとハブに外嵌固定した断面L字形の被検出リングとにより、上記4個所位置での、上記外輪に対する上記ハブの、ラジアル方向及びアキシアル方向の変位を検出し、各部の検出値に基づいて、このハブに加わる荷重の方向及びその大きさを求める構造が記載されている。   Further, in Patent Document 3, the displacement sensor unit supported at four positions in the circumferential direction of the outer ring and the L-shaped detection ring that is externally fitted and fixed to the hub are used to detect the above-described outer ring at the four positions. A structure is described in which the displacement of the hub in the radial direction and the axial direction is detected, and the direction of the load applied to the hub and the magnitude thereof are determined based on the detection values of the respective parts.

又、特許文献4には、一部の剛性を低くした外輪相当部材に動的歪みを検出する為のストレンゲージを設け、このストレンゲージが検出する転動体の通過周波数から転動体の公転速度を求め、この公転速度から、転がり軸受に加わるアキシアル荷重を測定する方法が記載されている。   Further, in Patent Document 4, a strain gauge for detecting dynamic strain is provided in a member corresponding to an outer ring whose rigidity is partially reduced, and the revolution speed of the rolling element is determined from the passing frequency of the rolling element detected by the strain gauge. A method for determining the axial load applied to the rolling bearing from the revolution speed is described.

更に、特許文献5には、互いに逆方向の接触角を付与された転動体の公転速度が荷重の作用方向及び大きさにより変化する事を利用して、静止側軌道輪である外輪と、回転側軌道輪であるハブとの間に作用するラジアル荷重とアキシアル荷重との一方又は双方を求める構造が記載されている。   Further, in Patent Document 5, the revolution speed of the rolling elements provided with contact angles in opposite directions is changed depending on the direction and magnitude of the load, and the outer ring that is a stationary side race ring is rotated. The structure which calculates | requires one or both of the radial load and axial load which act between the hubs which are a side track ring is described.

又、未公開ではあるが例えば特願2005−147642号には、回転側軌道輪に支持したエンコーダと静止側軌道輪に支持したセンサとにより、これら両軌道輪同士の間の変位を測定し、この変位から、これら両軌道輪同士の間に加わる荷重を求める構造が開示されている。この先発明に係る荷重測定装置は、上記回転側軌道輪の一部に、被検出面の特性を円周方向に関して交互に変化させたエンコーダを、この回転側軌道輪と同心に支持している。又、上記センサは、検出部を上記被検出面に対向させた状態で、上記静止側軌道輪等の回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させる。そして、演算器が、上記センサの出力信号に基づいて上記両軌道輪同士の間に作用する荷重を算出する様にしている。この為に、上記被検出面の特性が円周方向に関して変化するピッチ若しくは位相を、検出すべき荷重の作用方向に応じて連続的に変化させており、上記演算器は、上記センサの出力信号が変化するパターンに基づいて上記荷重を算出する機能を有する。   In addition, although not disclosed, for example, in Japanese Patent Application No. 2005-147642, the displacement between the two race rings is measured by an encoder supported on the rotation side race ring and a sensor supported on the stationary side race ring. From this displacement, a structure for obtaining a load applied between these two races is disclosed. In the load measuring apparatus according to the prior invention, an encoder in which the characteristics of the detected surface are alternately changed in the circumferential direction is supported concentrically with the rotation-side raceway on a part of the rotation-side raceway. The sensor is supported by a non-rotating portion such as the stationary-side track ring with the detection unit facing the detection surface, and changes its output signal in response to a change in the characteristics of the detection surface. Let A computing unit calculates a load acting between the two race rings based on the output signal of the sensor. For this purpose, the pitch or phase at which the characteristics of the surface to be detected change in the circumferential direction is continuously changed according to the acting direction of the load to be detected, and the computing unit outputs the output signal of the sensor. It has a function of calculating the load based on a pattern in which changes.

図11は、上記特願2005−147642号に開示された発明に即した構造の1例を示している。この先発明に係る構造は、懸架装置に支持された状態で回転しない静止側軌道輪である外輪1の内径側に、車輪を支持固定(結合固定)した状態でこの車輪と共に回転する、回転側軌道輪であるハブ2を、複数個の転動体3、3を介して回転自在に支持している。そして、このハブ2の中間部にエンコーダ4を外嵌固定すると共に、上記外輪1の軸方向中間部で複列に配置された上記各転動体3、3の間部分にセンサユニット5を、上記外輪1に形成した取付孔6を、この外輪1の径方向外方から内方に挿通する状態で設けている。上記センサユニット5の先端部でこの外輪1の内周面から突出した部分には1対のセンサ7a、7bを、この外輪1の軸方向(図11の左右方向)に離隔した状態で設けている。そして、これら両センサ7a、7bの検出部を、被検出面である上記エンコーダ4の外周面に近接対向させている。尚、これら両センサ7a、7bの検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込む事が適切である。   FIG. 11 shows an example of a structure according to the invention disclosed in Japanese Patent Application No. 2005-147642. The structure according to the prior invention is a rotating side track that rotates together with the wheel while supporting and fixing (bonding and fixing) the wheel to the inner diameter side of the outer ring 1 that is a stationary side ring that does not rotate while being supported by the suspension device. A hub 2 that is a ring is rotatably supported via a plurality of rolling elements 3 and 3. The encoder 4 is externally fitted and fixed to the intermediate portion of the hub 2, and the sensor unit 5 is provided between the rolling elements 3 and 3 arranged in a double row at the axial intermediate portion of the outer ring 1. A mounting hole 6 formed in the outer ring 1 is provided so as to be inserted from the radially outer side of the outer ring 1 to the inner side. A pair of sensors 7a and 7b are provided at the tip of the sensor unit 5 protruding from the inner peripheral surface of the outer ring 1 in a state of being separated in the axial direction of the outer ring 1 (left and right direction in FIG. 11). Yes. And the detection part of both these sensors 7a and 7b is made to adjoin and oppose the outer peripheral surface of the said encoder 4 which is a to-be-detected surface. In addition, it is appropriate to incorporate a magnetic detection element such as a Hall IC, a Hall element, an MR element, or a GMR element in the detection unit of both the sensors 7a and 7b.

上記エンコーダ4は、支持板8と永久磁石9とを、この永久磁石9の厚さ方向(図11の上下方向)に積層して成る。即ち、上記支持板8は、軟鋼板等の磁性金属板を曲げ形成したもので、互いに同心である内径側の嵌合筒部10と外径側の支持筒部11との軸方向端縁同士を連続部12により連結し、断面クランク形で全体を円環状に形成して成る。上記永久磁石9は、この様な支持板8のうちの支持筒部11の外周面に、焼き付け、接着等により、全周に亙って支持固定している。又、上記嵌合筒部10を上記ハブ2の中間部に、締り嵌めで外嵌する事により、上記エンコーダ4をこのハブ2の中間部外周面に支持固定している。   The encoder 4 is formed by laminating a support plate 8 and a permanent magnet 9 in the thickness direction of the permanent magnet 9 (vertical direction in FIG. 11). That is, the support plate 8 is formed by bending a magnetic metal plate such as a mild steel plate, and the axial end edges of the fitting tube portion 10 on the inner diameter side and the support tube portion 11 on the outer diameter side that are concentric with each other. Are connected by a continuous portion 12, and the whole is formed in an annular shape with a crank-shaped cross section. The permanent magnet 9 is supported and fixed over the entire circumference by baking, bonding or the like on the outer peripheral surface of the support cylinder portion 11 of the support plate 8. Further, the encoder 4 is supported and fixed to the outer peripheral surface of the intermediate portion of the hub 2 by fitting the fitting cylinder portion 10 to the intermediate portion of the hub 2 by interference fitting.

又、上記エンコーダ4の被検出面である、上記永久磁石9の外周面には、N極に着磁した部分とS極に着磁した部分とを、円周方向に関して交互に且つ等間隔で配置している。これらN極に着磁された部分とS極に着磁された部分との境界は、上記エンコーダ4の軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、このエンコーダ4の軸方向中間部を境に互いに逆方向としている。従って、上記N極に着磁された部分とS極に着磁された部分とは、軸方向中間部が円周方向に関して最も突出した(又は凹んだ)、「く」字形となっている。   Further, on the outer peripheral surface of the permanent magnet 9, which is the detection surface of the encoder 4, a portion magnetized in the N pole and a portion magnetized in the S pole are alternately arranged at equal intervals in the circumferential direction. It is arranged. The boundary between the part magnetized in the N pole and the part magnetized in the S pole is inclined by the same angle with respect to the axial direction of the encoder 4, and the inclination direction with respect to the axial direction of the encoder 4 is The axial directions are opposite to each other at the intermediate portion. Therefore, the portion magnetized in the N pole and the portion magnetized in the S pole have a “<” shape with the axially middle portion protruding (or recessed) most in the circumferential direction.

又、上記両センサ7a、7bの検出部が上記永久磁石9の外周面に対向する位置は、上記エンコーダ4の円周方向に関して同じ位置としている。言い換えれば、上記両センサ7a、7bの検出部は、上記外輪1の中心軸を含む同一仮想平面上に配置されている。又、この外輪1と上記ハブ2との間にアキシアル荷重が作用しない状態で、上記N極に着磁された部分とS極に着磁された部分との軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ7a、7bの検出部同士の間の丁度中央位置に存在する様に、各部材4、7a、7bの設置位置を規制している。この様に、上記境界の傾斜方向が変化する部分を上記中央位置に存在させる事で、内外輪の温度差や熱膨張等の変形による誤差(変位が生じていなくても内外輪の温度差によって位相差が生じる、所謂オフセット)を小さく抑えられる様にしている。   Further, the positions where the detection portions of both the sensors 7 a and 7 b face the outer peripheral surface of the permanent magnet 9 are the same with respect to the circumferential direction of the encoder 4. In other words, the detection parts of both the sensors 7 a and 7 b are arranged on the same virtual plane including the central axis of the outer ring 1. Further, in the state where the axial load is not applied between the outer ring 1 and the hub 2, the axial direction intermediate portion between the portion magnetized in the N pole and the portion magnetized in the S pole is related to the circumferential direction. The installation position of each member 4, 7 a, 7 b is regulated so that the most protruding part (the part where the tilt direction of the boundary changes) is exactly at the center position between the detection parts of the sensors 7 a, 7 b. is doing. In this way, by making the portion where the inclination direction of the boundary changes in the center position, errors due to temperature difference between the inner and outer rings and deformation due to thermal expansion (even if no displacement occurs, the temperature difference between the inner and outer rings The so-called offset, which causes a phase difference, can be kept small.

上述の図11に示した構造の場合には、エンコーダ4をハブ2の外周面中間部に外嵌すると共に、センサユニット5を外輪1の中間部に形成した取付孔6に挿入しているが、前記特願2005−147642号に開示された発明は、図12に示した構造で実施する事もできる。即ち、エンコーダ4aを構成する支持板8aの基端部に形成した嵌合筒部10aを、ハブ2の内端部に締り嵌めで外嵌固定すると共に、外輪1の開口端部に被着したカバー13に、センサユニット5aを保持固定する。そして、このセンサユニット5aを構成する1対のセンサ7a、7bの検出部を、上記エンコーダ4aを構成する永久磁石9の外周面に近接対向させる。   In the case of the structure shown in FIG. 11 described above, the encoder 4 is externally fitted to the intermediate portion of the outer peripheral surface of the hub 2 and the sensor unit 5 is inserted into the mounting hole 6 formed in the intermediate portion of the outer ring 1. The invention disclosed in Japanese Patent Application No. 2005-147642 can also be implemented with the structure shown in FIG. That is, the fitting cylinder portion 10a formed at the base end portion of the support plate 8a constituting the encoder 4a is fitted and fixed to the inner end portion of the hub 2 by an interference fit, and is attached to the opening end portion of the outer ring 1. The sensor unit 5a is held and fixed to the cover 13. Then, the detection portions of the pair of sensors 7a and 7b constituting the sensor unit 5a are brought close to and opposed to the outer peripheral surface of the permanent magnet 9 constituting the encoder 4a.

何れの構造でも、先発明の荷重測定装置の場合には、上記外輪1とハブ2との間にアキシアル荷重が作用すると、上記両センサ7a、7bの出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用しておらず、これら外輪1とハブ2とが相対変位していない、中立状態では、上記両センサ7a、7bの検出部は、図13の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ7a、7bの出力信号の位相は、同図の(C)に示す様に一致する。   In any structure, in the case of the load measuring device of the prior invention, when an axial load is applied between the outer ring 1 and the hub 2, the phase in which the output signals of the sensors 7a and 7b change is shifted. That is, in the neutral state in which an axial load is not acting between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are not relatively displaced, the detection parts of the sensors 7a and 7b are It is opposed to the solid lines a and b in FIG. Therefore, the phases of the output signals of the two sensors 7a and 7b coincide as shown in FIG.

これに対して、上記エンコーダ4(4a)を固定したハブ2に、図13の(A)で下向きのアキシアル荷重が作用し(外輪1とハブ2とがアキシアル方向に相対変位し)た場合には、上記両センサ7a、7bの検出部は、図13の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ7a、7bの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4(4a)を固定したハブ2に、図13の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ7a、7bの検出部は、図13の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ7a、7bの出力信号の位相は、同図の(D)に示す様にずれる。   On the other hand, when the downward axial load acts on the hub 2 to which the encoder 4 (4a) is fixed in FIG. 13A (the outer ring 1 and the hub 2 are relatively displaced in the axial direction). The detectors of both the sensors 7a and 7b are opposed to the broken lines B and B in FIG. 13A, that is, the portions that are different from each other in the axial direction from the most protruding portion. In this state, the phases of the output signals of the sensors 7a and 7b are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 (4a) is fixed as shown in FIG. 13A, the detecting portions of the sensors 7a and 7b are shown in FIG. The shifts in the axial direction from the chain lines c, i.e., from the most projecting portion, are opposed to different portions in the opposite direction. In this state, the phases of the output signals of the sensors 7a and 7b are shifted as shown in FIG.

上述の様に先発明の荷重測定装置の場合には、上記両センサ7a、7bの出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ7a、7bの出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。従って、上記先発明に係る荷重測定装置の場合には、上記両センサ7a、7bの出力信号の位相ずれの有無、ずれが存在する場合にはその方向及び大きさに基づいて、上記外輪1とハブ2との間に作用しているアキシアル荷重の方向及び大きさを求められる。   As described above, in the case of the load measuring device of the previous invention, the phases of the output signals of the sensors 7a and 7b are shifted in a direction corresponding to the direction of the axial load applied between the outer ring 1 and the hub 2. In addition, the degree to which the phase of the output signals of both the sensors 7a and 7b is shifted by this axial load (displacement amount) increases as the axial load increases. Therefore, in the case of the load measuring device according to the above invention, the outer ring 1 and the outer ring 1 are determined based on the presence / absence of the phase shift of the output signals of the sensors 7a and 7b, and the direction and magnitude of the shift, if any. The direction and magnitude of the axial load acting between the hub 2 can be obtained.

尚、図11〜12は、エンコーダ4(4a)を構成する永久磁石9を、外周面を被検出面とした円筒状とし、車輪支持用転がり軸受ユニットを構成する外輪1とハブ2との間のアキシアル方向の相対変位、更には、これら外輪1とハブ2との間に加わるアキシアル荷重を求める構造に就いて示している。これに対して、エンコーダを構成する永久磁石を円輪状とすると共に、この永久磁石の軸方向側面を被検出面とし、1対のセンサを、この被検出面のうちで径方向に離隔した2個所位置に近接対向させる構造を採用する事もできる。この様な構造を採用した場合には、上記両センサの検出信号同士の間に存在する位相のずれに基づいて、ラジアル方向の相対変位、更には、ラジアル荷重を求められる。   11 to 12, the permanent magnet 9 constituting the encoder 4 (4 a) has a cylindrical shape with the outer peripheral surface as a detected surface, and between the outer ring 1 and the hub 2 constituting the wheel bearing rolling bearing unit. FIG. 2 shows a structure for obtaining the relative displacement in the axial direction and the axial load applied between the outer ring 1 and the hub 2. On the other hand, the permanent magnet constituting the encoder has a ring shape, and the side surface in the axial direction of the permanent magnet is a detected surface, and a pair of sensors are separated from each other in the radial direction among the detected surfaces. It is also possible to adopt a structure that is close to and opposed to the location. When such a structure is adopted, the relative displacement in the radial direction and further the radial load can be obtained based on the phase shift existing between the detection signals of the two sensors.

先発明に係る荷重測定装置を何れの構造で実施するにしても、各センサに達する磁束の密度が十分に高い事が、回転部材と静止部材との間に作用する荷重測定に関する信頼性を確保する為には重要である。一方、車輪支持用転がり軸受ユニットに加わる荷重を測定する為の装置を実施する場合、永久磁石を含むエンコーダの設置スペースは限られており、この永久磁石の被検出面の幅寸法をあまり大きくはできない。そして、この幅寸法が限られた条件で実施し、しかも、上記信頼性を確保する為には、上記各センサが永久磁石の被検出面の幅方向端部に対向した場合でも、これら各センサに達する磁束の密度が十分に高くなる様にする必要がある。この点に就いて、図14を参照しつつ説明する。   Regardless of the structure of the load measuring device according to the previous invention, the sufficiently high density of magnetic flux reaching each sensor ensures the reliability of the load measurement acting between the rotating member and the stationary member. It is important to do. On the other hand, when implementing a device for measuring the load applied to the wheel-supporting rolling bearing unit, the installation space for the encoder including the permanent magnet is limited, and the width of the detected surface of the permanent magnet is too large. Can not. In order to ensure the reliability, the width dimension is limited, and even if each sensor faces the width direction end of the detection surface of the permanent magnet, It is necessary to make the density of the magnetic flux reaching to sufficiently high. This point will be described with reference to FIG.

前述の特願2005−147642号に開示された先発明の構造を含め、従来から知られている、永久磁石を含んで構成するエンコーダの場合、図14の下部に示す様に、永久磁石9の厚さ寸法が、被検出面の幅方向に関して均一であった。一方、この永久磁石9の被検出面に存在するN極から出てS極に入る磁束の密度は、図14の上部に示す様に、この被検出面の幅方向中間部に存在する安定領域ではほぼ均一であるが、幅方向両端部では、端縁に向かうに従って急激に低下する。そして、上記永久磁石9の被検出面の幅寸法W9 を小さくし、上記安定領域の幅wがそれに伴って小さくなると、検出すべき変位が大きくなった場合に、何れかのセンサの検出部が上記安定領域からはみ出し、当該センサの検出部に達する磁束の密度が極端に低下する可能性がある。この様な場合には、当該センサが十分に大きな信号を出力せず、この信号による変位、更には荷重の測定を行なえなくなる可能性がある。 In the case of an encoder including a permanent magnet, which has been conventionally known, including the structure of the prior invention disclosed in the aforementioned Japanese Patent Application No. 2005-147642, as shown in the lower part of FIG. The thickness dimension was uniform in the width direction of the detection surface. On the other hand, as shown in the upper part of FIG. 14, the density of the magnetic flux that exits from the N pole existing on the detected surface of the permanent magnet 9 and enters the S pole is a stable region that exists in the intermediate portion in the width direction of the detected surface. However, at both ends in the width direction, it decreases rapidly toward the edge. When the width W 9 of the surface to be detected of the permanent magnet 9 is reduced and the width w of the stable region is reduced accordingly, when the displacement to be detected increases, the detection unit of any sensor However, the density of the magnetic flux that protrudes from the stable region and reaches the detection part of the sensor may be extremely reduced. In such a case, there is a possibility that the sensor does not output a sufficiently large signal, and the displacement due to this signal and further the measurement of the load cannot be performed.

この様な原因での測定の信頼性低下を防止する為には、上記エンコーダを構成する永久磁石として、希土類磁石等の磁気強度が強いものを使用したり、この永久磁石の厚さ寸法を大きくしたりして、この永久磁石の被検出面部分で出入りする磁束の密度を全体的に高くする事が考えられる。但し、この様な対策の場合、コストが嵩むだけでなく、被検出面の幅方向中間部の安定領域部分の磁束密度が過度に高くなって、センサの検出信号処理の為の閾値の設定が難しくなる等の問題を生じる可能性がある。   In order to prevent a decrease in measurement reliability due to such a cause, a permanent magnet having a high magnetic strength such as a rare earth magnet is used as the permanent magnet constituting the encoder, or the thickness dimension of the permanent magnet is increased. Thus, it is conceivable to increase the overall density of the magnetic flux entering and exiting the surface of the permanent magnet to be detected. However, in the case of such countermeasures, not only the cost is increased, but the magnetic flux density in the stable region portion in the intermediate portion in the width direction of the detection surface becomes excessively high, so that the threshold value for detection signal processing of the sensor is set. It may cause problems such as difficulty.

特開2001−21577号公報JP 2001-21577 A 特開平3−209016号公報Japanese Patent Laid-Open No. 3-209016 特開2004−3918号公報Japanese Patent Laid-Open No. 2004-3918 特公昭62−3365号公報Japanese Patent Publication No.62-3365 特開2005−31063号公報JP 2005-31063 A

本発明は、上述の様な事情に鑑みて、永久磁石を含むエンコーダの被検出面部分で出入りする磁束の密度を、この被検出面の幅方向全体で十分に、しかも低コストで高くでき、センサによる上記エンコーダの挙動の測定を高い信頼性で行なえる、安価な構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can sufficiently increase the density of magnetic flux entering and exiting the detected surface portion of the encoder including the permanent magnet in the entire width direction of the detected surface, and at a low cost. The present invention was invented to realize an inexpensive structure capable of measuring the behavior of the encoder with a sensor with high reliability.

本発明の状態量測定装置は、エンコーダと、センサと、演算器とを備える。
このうちのエンコーダは、回転部材の一部に支持されて、この回転部材と共に回転するもので、この回転部材の回転中心と同心でこの回転部材の回転方向に対し直角方向をその幅方向とする被検出面を備える。そして、この被検出面にS極とN極とを交互に配置した永久磁石を含んで構成している。
又、上記センサは、検出部を上記エンコーダの被検出面に、このエンコーダの厚さ方向に対向させた状態で、静止部材に支持されている。
又、上記演算器は、上記センサの出力信号に基づいて、上記静止部材と上記回転部材との間で相対的に変化する状態量を求める機能を有する。
更に、本発明の状態量測定装置に於いては、上記被検出面の幅方向端部での上記永久磁石の厚さ寸法を、この被検出面の幅方向中央部でのこの永久磁石の厚さ寸法よりも大きくしている。
The state quantity measuring device of the present invention includes an encoder, a sensor, and a calculator.
Of these, the encoder is supported by a part of the rotating member and rotates together with the rotating member. The encoder is concentric with the rotation center of the rotating member and has a direction perpendicular to the rotating direction of the rotating member as its width direction. A surface to be detected is provided. The detected surface includes a permanent magnet in which S poles and N poles are alternately arranged.
The sensor is supported by a stationary member in a state where the detection portion is opposed to the detection surface of the encoder in the thickness direction of the encoder.
The computing unit has a function of obtaining a state quantity relatively changing between the stationary member and the rotating member based on an output signal of the sensor.
Furthermore, in the state quantity measuring apparatus of the present invention, the thickness dimension of the permanent magnet at the widthwise end of the detected surface is set to the thickness of the permanent magnet at the widthwise central portion of the detected surface. It is larger than the size.

上述の様に構成する本発明の状態量測定装置の場合には、上記永久磁石の厚さ寸法が、被検出面の幅方向端部で厚くなっている。この被検出面の幅方向端部は、それ以上先には永久磁石が存在しない事で、磁束密度が低くなる傾向になる。これに対して、この永久磁石の厚さ寸法を大きくした場合には、当該部分の磁束密度が高くなる傾向になる。この様に上記被検出面の幅方向端部は、面方向の広がりとの関係で磁束密度が低くなる代わりに、厚さ寸法が大きい事で磁束密度が高くなる傾向になる。そして、これら2通りの原因での磁束密度の変化が互いに打ち消しあって、上記被検出面の幅方向端部の磁束密度が、幅方向中間部の磁束密度よりも低くなる事を抑えられる。この結果、本発明によれば、永久磁石を含むエンコーダの被検出面部分で出入りする磁束の密度を、この被検出面の幅方向全体で十分に、しかも低コストで高くでき、センサによる上記エンコーダを支持した回転部材の挙動測定を高い信頼性で行なえる、安価な構造を実現できる。   In the case of the state quantity measuring device of the present invention configured as described above, the thickness dimension of the permanent magnet is thick at the end in the width direction of the detection surface. The end of the detected surface in the width direction tends to have a lower magnetic flux density because there is no permanent magnet beyond it. On the other hand, when the thickness dimension of the permanent magnet is increased, the magnetic flux density of the portion tends to increase. As described above, the width direction end of the surface to be detected tends to increase the magnetic flux density due to the large thickness dimension, instead of decreasing the magnetic flux density in relation to the spread in the surface direction. The change in magnetic flux density due to these two causes cancels each other, and the magnetic flux density at the end portion in the width direction of the detected surface can be suppressed from being lower than the magnetic flux density at the intermediate portion in the width direction. As a result, according to the present invention, the density of the magnetic flux entering and exiting the detected surface portion of the encoder including the permanent magnet can be increased sufficiently and at low cost over the entire width direction of the detected surface. It is possible to realize an inexpensive structure that can measure the behavior of the rotating member that supports the plate with high reliability.

本発明を実施する場合に好ましくは、請求項2に記載した様に、円周方向に隣り合うS極とN極との境界の方向を幅方向に対し傾斜させる。そして、演算器に、回転部材と静止部材との相対的変位を求める機能を持たせる。
この様な構造の場合、センサの検出部とエンコーダを構成する永久磁石の被検出面とが、この被検出面の幅方向に変位する事を前提として構成している。従って、この被検出面の幅寸法を徒に大きくする事なく、上記相対的変位の検出可能範囲を確保する為には、この被検出面の幅方向端部での磁束密度を確保する事の重要性が大きい。言い換えれば、本発明を適用する事により得られる効果が大きい。
When implementing this invention, Preferably, as described in claim 2, the direction of the boundary between the south pole and the north pole adjacent in the circumferential direction is inclined with respect to the width direction. Then, the calculator is provided with a function for obtaining the relative displacement between the rotating member and the stationary member.
In the case of such a structure, it is configured on the assumption that the detection portion of the sensor and the detection surface of the permanent magnet constituting the encoder are displaced in the width direction of the detection surface. Therefore, in order to ensure the detectable range of the relative displacement without increasing the width dimension of the detected surface, it is necessary to ensure the magnetic flux density at the end in the width direction of the detected surface. Great importance. In other words, the effect obtained by applying the present invention is great.

本発明を実施する場合に、被検出面の幅方向端部で永久磁石の厚さ寸法を大きくする為の構造は、特に問わないが、例えば、請求項3〜4に記載した様に、エンコーダとして、磁性金属板製の支持板と永久磁石とを、この永久磁石の厚さ方向に積層して成るものを採用する事が、被検出面から出入りする磁束の密度を高くする面からは好ましい。
そして、請求項3に記載した構造の場合には、上記永久磁石の被検出面の断面形状を直線とする。これに対して、上記支持板のうちでこの永久磁石の幅方向端部を接合すべき部分を、幅方向中央部を接合すべき部分に比べて、上記被検出面からの距離が大きくなる方向に凹ませる。
一方、請求項4に記載した構造の場合には、上記支持板のうちで上記永久磁石を接合すべき部分の断面形状を直線とする。これに対して、この永久磁石の被検出面のうちの幅方向端部を幅方向中央部に比べて、上記支持板のうちでこの永久磁石を接合すべき部分からの距離が大きくなる方向に突出させる。
When implementing the present invention, the structure for increasing the thickness of the permanent magnet at the end in the width direction of the surface to be detected is not particularly limited. For example, as described in claims 3 to 4, an encoder From the viewpoint of increasing the density of the magnetic flux entering and exiting from the detection surface, it is preferable to employ a structure in which a support plate made of a magnetic metal plate and a permanent magnet are laminated in the thickness direction of the permanent magnet. .
And in the case of the structure described in Claim 3, let the cross-sectional shape of the to-be-detected surface of the said permanent magnet be a straight line. On the other hand, the direction in which the distance from the detected surface is greater in the portion of the support plate where the end portion in the width direction of the permanent magnet is to be joined than in the portion where the center portion in the width direction is to be joined. Indent.
On the other hand, in the case of the structure described in claim 4, the cross-sectional shape of the portion of the support plate to which the permanent magnet is to be joined is a straight line. On the other hand, compared with the width direction end of the detected surface of the permanent magnet in the width direction center, the distance from the portion of the support plate to which the permanent magnet should be joined increases. Make it protrude.

又、本発明を実施する場合に好ましくは、請求項5に記載した様に、回転部材を、転がり軸受ユニットを構成して使用時に回転する回転側軌道輪とし、静止部材を、この転がり軸受ユニットを構成して使用時にも回転しない静止側軌道輪又はこの静止側軌道輪を支持固定する部材とする。そして、演算器に、この静止側軌道輪と上記回転側軌道輪との相対変位に基づいて、これら両軌道輪同士の間に作用する荷重を求める機能を持たせる。
この様な構成を採用すれば、各種回転部材を支持した転がり軸受ユニット部分に加わる荷重を測定して、例えば自動車の走行安定性確保の為の制御、或いは各種工作機械や各種産業機械装置の適正な運転状態確保の為の制御を行なう為に必要な信号を得られる。
Preferably, when carrying out the present invention, preferably, as described in claim 5, the rotating member is a rotating bearing ring that constitutes a rolling bearing unit and rotates during use, and the stationary member is the rolling bearing unit. The stationary side bearing ring that does not rotate even during use or a member that supports and fixes the stationary side bearing ring. Then, based on the relative displacement between the stationary-side raceway and the rotation-side raceway, the arithmetic unit is provided with a function for obtaining a load acting between the two raceways.
If such a configuration is adopted, the load applied to the rolling bearing unit portion supporting various rotating members is measured, for example, control for ensuring the running stability of an automobile, or appropriateness of various machine tools and various industrial machine devices. A signal necessary for performing control for ensuring a proper operation state can be obtained.

図1は、請求項1〜3に対応する、本発明の実施例1を示している。尚、本実施例の特徴は、エンコーダ14を構成する永久磁石15の被検出面である、この永久磁石15の外周面から出入りする磁束の密度を、この外周面の全幅に亙って均一にする為の構造にある。上記エンコーダ14を組み込んで、転がり軸受ユニットを構成する1対の軌道輪同士の間の相対的変位、更にはこれら両軌道輪同士の間に作用する荷重を求める為の構造及び作用に就いては、前述の図11に示した先発明に係る構造の場合と同様である。就いては、この先発明に係る構造と同様の部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本実施例の特徴部分を中心に説明する。   FIG. 1 shows a first embodiment of the present invention corresponding to claims 1 to 3. The feature of this embodiment is that the density of magnetic flux entering and exiting from the outer peripheral surface of the permanent magnet 15 which is the detected surface of the permanent magnet 15 constituting the encoder 14 is made uniform over the entire width of the outer peripheral surface. It is in the structure to do. Regarding the structure and operation for determining the relative displacement between a pair of bearing rings constituting the rolling bearing unit by incorporating the encoder 14, and further, the load acting between the two bearing rings. This is the same as the case of the structure according to the prior invention shown in FIG. Therefore, the illustration and description relating to the same parts as those of the structure according to the present invention will be omitted or simplified, and the following description will focus on the characteristic parts of the present embodiment.

本実施例の、上記エンコーダ14は、支持板16と、上記永久磁石15とを、この永久磁石15の厚さ方向に積層して成る。この支持板16は、軟鋼板等の磁性金属板を曲げ形成したもので、互いに同心である内径側の嵌合筒部17と外径側の支持筒部18との軸方向端縁同士を連続部19により連結し、断面クランク形で全体を円環状に形成して成る。上記支持筒部18は、軸方向中間部に断面形状が直線状である円筒面部20を、軸方向両端部に、この円筒面部20から離れる程外径寸法が小さくなる方向に、角度θだけ傾斜した、部分円すい筒面状の傾斜面部21、21を、それぞれ形成した、断面略台形状である。上記永久磁石15は、この様な支持板16のうちの支持筒部18の外周面に、焼き付け、接着等により、全周に亙って支持固定している。   In this embodiment, the encoder 14 is formed by laminating a support plate 16 and the permanent magnet 15 in the thickness direction of the permanent magnet 15. The support plate 16 is formed by bending a magnetic metal plate such as a mild steel plate, and the end edges in the axial direction of the fitting cylinder portion 17 on the inner diameter side and the support cylinder portion 18 on the outer diameter side that are concentric with each other are continuous. They are connected by a portion 19 and are formed in an annular shape with a crank-shaped cross section. The support cylinder 18 is inclined by an angle θ in a direction in which a cylindrical surface portion 20 having a linear cross-sectional shape is formed at an axially intermediate portion, and an outer diameter dimension is reduced toward the both axial end portions as the distance from the cylindrical surface portion 20 decreases. The partial conical cylindrical surface-like inclined surface portions 21 and 21 each have a substantially trapezoidal cross section. The permanent magnet 15 is supported and fixed over the entire circumference by baking, bonding, or the like on the outer peripheral surface of the support cylinder portion 18 of the support plate 16.

この様にして、上記支持筒部18の外周面に支持固定した、上記永久磁石15の内周面形状は、この支持筒部18の外周面形状に見合う(凹凸が反転した)形状である。これに対して上記永久磁石15の外周面形状は、断面形状が直線状である、円筒面である。従って、上記永久磁石15の厚さ寸法は、上記円筒面部20の周囲部分では一定値T20であるのに対して、上記両傾斜面部21、21の周囲部分では、幅方向両端縁に向かうに従って漸次大きくなり、この幅方向両端縁で最大値TMAX (>T20)となっている。上記永久磁石15には、前述の図11〜14に示した先発明の構造の場合と同じパターンで着磁して、外周面にS極とN極とを交互に且つ等間隔で存在させると共に、円周方向に隣り合うS極とN極との境界を、それぞれ幅方向中央部が最も円周方向に突出した、「く」字形としている。 In this way, the shape of the inner peripheral surface of the permanent magnet 15 supported and fixed on the outer peripheral surface of the support cylinder portion 18 is a shape commensurate with the outer peripheral surface shape of the support cylinder portion 18 (inverted irregularities). On the other hand, the outer peripheral surface shape of the permanent magnet 15 is a cylindrical surface whose cross-sectional shape is linear. Therefore, the thickness of the permanent magnet 15, whereas a constant value T 20 at the periphery portion of the cylindrical surface portion 20, the peripheral portion of the both inclined surface portions 21 and 21, toward the both widthwise end edges The width gradually increases and reaches a maximum value T MAX (> T 20 ) at both edges in the width direction. The permanent magnet 15 is magnetized in the same pattern as that of the structure of the prior invention shown in FIGS. 11 to 14 and the S and N poles are alternately and equally spaced on the outer peripheral surface. The boundary between the S pole and the N pole adjacent in the circumferential direction has a “<” shape with the center portion in the width direction protruding most circumferentially.

この様な構成を有する本実施例のエンコーダ14を含んだ状態量測定装置を構成する場合には、上記嵌合筒部17をハブ2(図11参照)の中間部に、締り嵌めで外嵌する事により、このハブ2の中間部外周面に支持固定する。そして、外輪1側に支持したセンサユニット5に組み込んだ1対のセンサ7a、7b(図11参照)の検出部を、上記永久磁石15の外周面のうちで、軸方向に離隔した2個所位置に近接対向させる。   When the state quantity measuring apparatus including the encoder 14 of the present embodiment having such a configuration is configured, the fitting cylinder portion 17 is externally fitted to the intermediate portion of the hub 2 (see FIG. 11) by an interference fit. By doing so, it is supported and fixed to the outer peripheral surface of the intermediate part of the hub 2. Then, the detection portions of the pair of sensors 7a and 7b (see FIG. 11) incorporated in the sensor unit 5 supported on the outer ring 1 side are positioned at two positions on the outer peripheral surface of the permanent magnet 15 that are separated in the axial direction. Proximity to face.

上記エンコーダ14を構成する上記永久磁石15の厚さ寸法は、被検出面の幅方向端部である、このエンコーダ14の軸方向両端部で厚くなっている。この被検出面の幅方向端部は、それ以上先には永久磁石15が存在しない事で、磁束密度が低くなる傾向になる。これに対して、この永久磁石15の厚さ寸法を大きくした場合には、当該部分の磁束密度が高くなる傾向になる。この様に上記被検出面の幅方向端部は、面方向の広がりとの関係(幅方向に関してそれ以上外方に永久磁石が存在しない事)で磁束密度が低くなる代わりに、厚さ寸法が大きい事で磁束密度が高くなる傾向になる。そして、これら2通りの原因での磁束密度の変化が互いに打ち消しあって、上記永久磁石15の軸方向両端部の磁束密度が、軸方向中間部の磁束密度よりも低くなる事を抑えられる。   The thickness dimension of the permanent magnet 15 constituting the encoder 14 is thicker at both end portions in the axial direction of the encoder 14 which are width direction end portions of the detected surface. At the end in the width direction of the surface to be detected, the permanent magnet 15 does not exist any further, so the magnetic flux density tends to be low. On the other hand, when the thickness dimension of the permanent magnet 15 is increased, the magnetic flux density of the portion tends to increase. In this way, the width direction end of the detected surface has a thickness dimension instead of a decrease in magnetic flux density due to the relationship with the spread in the surface direction (there is no permanent magnet further outward in the width direction). Larger magnetic flux density tends to increase. The change in magnetic flux density due to these two causes cancels each other, and the magnetic flux density at both axial ends of the permanent magnet 15 can be suppressed from being lower than the magnetic flux density at the axial intermediate portion.

即ち、本実施例のエンコーダ14の場合には、図1の上部に記載した線図の様に、上記永久磁石15の外周面から出入りする磁束の密度が、この永久磁石15の全幅に亙ってほぼ均一になる。この永久磁石15の外周面から出入りする磁束の密度が低下し始めるのは、この永久磁石15の軸方向端縁から外方に外れた位置からである。従って、上記両センサ7a、7bがこの永久磁石15の外周面に実際に対向している限り、これら両センサ7a、7bの検出部に達する磁束の密度を十分に高くできる。本実施例で、前記支持筒部18の断面形状を台形とする事はプレス加工或いはローリング加工等の塑性加工により、この支持筒部18の外周面に上記永久磁石15を添着する事はモールド成形により、それぞれ容易に行なえる。この結果、本実施例の構造によれば、上記永久磁石15を含む上記エンコーダ14の被検出面部分で出入りする磁束の密度を、この被検出面の幅方向全体で十分に、しかも低コストで高くできる。そして、上記両センサ7a、7bによる上記エンコーダ14を支持したハブ2の挙動の測定を高い信頼性で行なえる、安価な構造を実現できる。   That is, in the case of the encoder 14 of the present embodiment, the density of magnetic flux entering and exiting from the outer peripheral surface of the permanent magnet 15 is equal to the entire width of the permanent magnet 15 as shown in the diagram in the upper part of FIG. Almost uniform. The density of the magnetic flux entering and exiting from the outer peripheral surface of the permanent magnet 15 starts to decrease from a position outside the axial end edge of the permanent magnet 15. Therefore, as long as the two sensors 7a and 7b are actually opposed to the outer peripheral surface of the permanent magnet 15, the density of the magnetic flux reaching the detection portions of both the sensors 7a and 7b can be sufficiently increased. In this embodiment, the support cylinder 18 has a trapezoidal cross section, and the permanent magnet 15 is attached to the outer peripheral surface of the support cylinder 18 by plastic working such as pressing or rolling. Each can be easily done. As a result, according to the structure of the present embodiment, the density of the magnetic flux entering and exiting the detected surface portion of the encoder 14 including the permanent magnet 15 can be sufficiently reduced at a low cost over the entire width direction of the detected surface. Can be high. An inexpensive structure that can measure the behavior of the hub 2 supporting the encoder 14 by the sensors 7a and 7b with high reliability can be realized.

図2も、請求項1〜3に対応する、本発明の実施例2を示している。本実施例の場合には、永久磁石15aと共にエンコーダ14aを構成する支持板16aの支持筒部18aの断面形状を山形としている。即ち、上述した実施例1の場合に軸方向中間部に設けていた円筒面部20(図1参照)を省略し、上記支持筒部18aを、互いに逆方向に傾斜した傾斜面部21a、21aのみで構成している。そして、この支持筒部18aの外径を、軸方向中央部で最も大きく、軸方向両端縁に向かう程次第に小さくしている。上記永久磁石15aの内周面形状は上記支持筒部18aの外周面形状に見合う形状とし、外周面形状は、単なる円筒面としている。従って、上記永久磁石15aの厚さ寸法は、軸方向中央部で最も小さく、軸方向両端縁に向かうに従って漸次大きくなっている。この様な永久磁石15aの外周面にも、外輪1側に支持したセンサユニット5に組み込んだ1対のセンサ7a、7bの検出部を近接対向させて、状態量測定装置を構成する。上記永久磁石15a及び上記支持筒部18aの断面形状が異なる点以外の構成及び作用は、上述した実施例1の場合と同様である。   FIG. 2 also shows a second embodiment of the present invention corresponding to claims 1 to 3. In the case of the present embodiment, the cross-sectional shape of the support cylinder portion 18a of the support plate 16a that constitutes the encoder 14a together with the permanent magnet 15a is a mountain shape. That is, the cylindrical surface portion 20 (see FIG. 1) provided at the intermediate portion in the axial direction in the case of the first embodiment is omitted, and the support cylinder portion 18a is formed only by the inclined surface portions 21a and 21a inclined in opposite directions. It is composed. And the outer diameter of this support cylinder part 18a is the largest in the axial direction center part, and it is made small gradually as it goes to an axial direction both ends edge. The shape of the inner peripheral surface of the permanent magnet 15a is a shape commensurate with the shape of the outer peripheral surface of the support cylinder portion 18a, and the outer peripheral surface shape is a simple cylindrical surface. Therefore, the thickness dimension of the permanent magnet 15a is the smallest at the central portion in the axial direction and gradually increases toward the both end edges in the axial direction. The state quantity measuring device is configured by causing the detection portions of the pair of sensors 7a and 7b incorporated in the sensor unit 5 supported on the outer ring 1 side to face each other on the outer peripheral surface of the permanent magnet 15a. The configuration and operation other than the differences in the cross-sectional shapes of the permanent magnet 15a and the support cylinder portion 18a are the same as in the case of the first embodiment described above.

図3も、請求項1〜3に対応する、本発明の実施例3を示している。本実施例の場合には、永久磁石15bと共にエンコーダ14bを構成する支持板16bの支持筒部18bの幅方向両端部に形成した傾斜面部21b、21bを、凸円弧面としている。この支持筒部18bの幅方向中間部の円筒面部20aは、これら両傾斜面部21b、21bの接線方向に存在する。これら両傾斜面部21b、21bの断面形状が直線状から円弧状に変わった点以外の構成及び作用は、前述した実施例1の場合と同様である。   FIG. 3 also shows a third embodiment of the present invention corresponding to claims 1 to 3. In the case of the present embodiment, the inclined surface portions 21b and 21b formed at both ends in the width direction of the support cylinder portion 18b of the support plate 16b constituting the encoder 14b together with the permanent magnet 15b are convex arc surfaces. The cylindrical surface portion 20a at the intermediate portion in the width direction of the support cylinder portion 18b exists in the tangential direction of both the inclined surface portions 21b and 21b. Except for the fact that the cross-sectional shapes of both the inclined surface portions 21b and 21b are changed from a linear shape to an arc shape, the configuration and operation are the same as those in the first embodiment.

図4も、請求項1〜3に対応する、本発明の実施例4を示している。本実施例の場合には、永久磁石15cと共にエンコーダ14cを構成する支持板16cの支持筒部18cの外周面全体を、凸円弧面としている。この支持筒部18cの幅方向中間部にも円筒面部は存在しない。この支持板部18cの外周面全体を凸円弧面状とした点以外の構成及び作用は、前述した実施例1の場合と同様である。   FIG. 4 also shows a fourth embodiment of the present invention corresponding to claims 1 to 3. In the case of the present embodiment, the entire outer peripheral surface of the support cylinder portion 18c of the support plate 16c constituting the encoder 14c together with the permanent magnet 15c is a convex arc surface. There is no cylindrical surface portion in the intermediate portion in the width direction of the support cylinder portion 18c. The configuration and operation other than the point that the entire outer peripheral surface of the support plate portion 18c is a convex arcuate surface are the same as those in the first embodiment.

図5は、請求項1、2、4に対応する、本発明の実施例5を示している。本実施例の場合には、永久磁石15dと共にエンコーダ14dを構成する支持板16dの支持筒部18dを、単なる円筒状に形成している。言い換えれば、この支持筒部18dの外周面を、軸方向に関して外径が変化しない、単なる円筒面としている。そして、上記永久磁石15dの被検出面のうちの幅方向両端部に、幅方向中央部に比べて径方向外方に突出する、傾斜凸部22、22を形成している。具体的には、この幅方向両端部を角度θだけ傾斜させてこれら両傾斜凸部22、22としている。これら両傾斜凸部22、22の外周面は、部分円すい状凹面である。本実施例の場合には、この構成により、上記永久磁石15dの厚さ寸法を、上記被検出面の幅方向中央部で均一にし、幅方向両端縁で、端縁に向かう程漸次大きくなる様にしている。上記永久磁石15d及び上記支持筒部18dの断面形状が異なる点以外の構成及び作用は、前述した実施例1の場合と同様である。   FIG. 5 shows a fifth embodiment of the present invention corresponding to claims 1, 2, and 4. In the case of the present embodiment, the support cylinder portion 18d of the support plate 16d constituting the encoder 14d together with the permanent magnet 15d is formed in a simple cylindrical shape. In other words, the outer peripheral surface of the support cylinder portion 18d is a simple cylindrical surface whose outer diameter does not change in the axial direction. And the inclined convex parts 22 and 22 which protrude in a diameter direction outer side are formed in the width direction both ends of the to-be-detected surface of the said permanent magnet 15d compared with the width direction center part. Specifically, the both end portions in the width direction are inclined by an angle θ to form both inclined convex portions 22 and 22. The outer peripheral surfaces of the both inclined convex portions 22 and 22 are partially conical concave surfaces. In the case of the present embodiment, with this configuration, the thickness dimension of the permanent magnet 15d is made uniform at the center in the width direction of the detected surface, and gradually increases at both edges in the width direction toward the edge. I have to. The configuration and operation other than the differences in the cross-sectional shapes of the permanent magnet 15d and the support cylinder portion 18d are the same as those in the first embodiment.

図6も、請求項1、2、4に対応する、本発明の実施例6を示している。本実施例の場合には、支持板16dと共にエンコーダ14eを構成する永久磁石15eの外周面を、V溝状に形成している。即ち、上述した実施例5の場合に軸方向中間部に設けていた、外径が変化しない円筒面部を省略し、上記永久磁石15eの外周面を、互いに逆方向に傾斜した傾斜面部のみで構成している。そして、この永久磁石15eの外径を、軸方向中央部で最も小さく、軸方向両端縁に向かう程次第に大きくしている。上記永久磁石15eの断面形状が異なる点以外の構成及び作用は、上述した実施例5の場合と同様である。   FIG. 6 also shows a sixth embodiment of the present invention corresponding to claims 1, 2, and 4. In the case of the present embodiment, the outer peripheral surface of the permanent magnet 15e constituting the encoder 14e together with the support plate 16d is formed in a V-groove shape. That is, the cylindrical surface portion whose outer diameter does not change provided in the intermediate portion in the axial direction in the case of the above-described fifth embodiment is omitted, and the outer peripheral surface of the permanent magnet 15e is composed only of inclined surface portions inclined in opposite directions. is doing. The outer diameter of the permanent magnet 15e is the smallest at the central portion in the axial direction and gradually increases toward the both end edges in the axial direction. The configuration and operation other than the difference in the cross-sectional shape of the permanent magnet 15e are the same as in the case of the fifth embodiment described above.

図7も、請求項1、2、4に対応する、本発明の実施例7を示している。本実施例の場合には、支持板16dと共にエンコーダ14fを構成する永久磁石15fの外周面の幅方向両端部に形成した傾斜凸部22a、22aの外周面を、凹円弧面状曲面としている。上記永久磁石15fの外周面の幅方向中間部の円筒面部は、上記両傾斜凸部22a、22aの外周面の接線方向に存在する。これら両傾斜凸部22a、22aの外周面の断面形状が直線状から円弧状に変わった点以外の構成及び作用は、前述した実施例5の場合と同様である。   FIG. 7 also shows a seventh embodiment of the present invention corresponding to claims 1, 2, and 4. In the case of the present embodiment, the outer peripheral surfaces of the inclined convex portions 22a and 22a formed at both ends in the width direction of the outer peripheral surface of the permanent magnet 15f that constitutes the encoder 14f together with the support plate 16d are concave arcuate curved surfaces. The cylindrical surface portion of the intermediate portion in the width direction of the outer peripheral surface of the permanent magnet 15f exists in the tangential direction of the outer peripheral surfaces of the both inclined convex portions 22a and 22a. The configuration and operation other than the fact that the cross-sectional shape of the outer peripheral surfaces of both inclined convex portions 22a and 22a has changed from a linear shape to an arc shape are the same as in the case of the above-described fifth embodiment.

図8も、請求項1、2、4に対応する、本発明の実施例8を示している。本実施例の場合には、支持板16dと共にエンコーダ14gを構成する永久磁石15gの外周面全体を、凹円弧面としている。この永久磁石15gの外周面の幅方向中間部にも円筒面部は存在しない。この永久磁石15gの外周面全体を凹円弧面状とした点以外の構成及び作用は、前述した実施例5の場合と同様である。   FIG. 8 also shows an eighth embodiment of the present invention corresponding to claims 1, 2, and 4. In the case of the present embodiment, the entire outer peripheral surface of the permanent magnet 15g that constitutes the encoder 14g together with the support plate 16d is a concave arc surface. There is no cylindrical surface portion in the intermediate portion in the width direction of the outer peripheral surface of the permanent magnet 15g. Except for the fact that the entire outer peripheral surface of the permanent magnet 15g has a concave arc surface, the configuration and operation are the same as in the case of the fifth embodiment described above.

図9は、請求項1、2、3、5に対応する、本発明の実施例9を示している。本実施例の場合には、回転側軌道輪であるハブ2の中間部外周面に第一のエンコーダ23を、同じく内端部{車両への組み付け状態で幅方向中央部になる端部で、図9の(A)の右端部}外周面に第二のエンコーダ24を、それぞれ締り嵌めにより、上記ハブ2と同心に外嵌固定している。このうちの第一のエンコーダ23が、本発明の特徴となる構成、即ち、永久磁石25の厚さ寸法を、この永久磁石25の被検出面である外周面の幅方向端部で幅方向中央部よりも大きくする構成を有している。   FIG. 9 shows Embodiment 9 of the present invention corresponding to claims 1, 2, 3, and 5. In the case of the present embodiment, the first encoder 23 is provided on the outer peripheral surface of the intermediate portion of the hub 2 that is the rotation side raceway, and the inner end {the end that becomes the central portion in the width direction when assembled to the vehicle, The right encoder of FIG. 9 (A)} is fitted on the outer peripheral surface of the second encoder 24 concentrically with the hub 2 by an interference fit. Of these, the first encoder 23 is the characteristic feature of the present invention, that is, the thickness dimension of the permanent magnet 25 is set to the center in the width direction at the width direction end of the outer peripheral surface which is the detected surface of the permanent magnet 25. It has a configuration that is larger than the portion.

この為に本実施例の場合には、上記永久磁石25と共に上記第一のエンコーダ23を構成する支持板16として、前述の図1に示した実施例1のエンコーダ14を構成する支持板16と同様のものを使用すると共に、上記永久磁石25の外周面を、軸方向に亙り直径が変化しない、単なる円筒面としている。これら支持板16と永久磁石25との組み合わせにより、この永久磁石25の厚さ寸法を調節している点に関しては、上記第一のエンコーダ23と上記実施例1のエンコーダ14とは同じである。但し、本実施例に組み込む第一のエンコーダ23の場合には、上記永久磁石25の外周面に、円周方向に亙り交互に且つ等間隔で配置したS極とN極との境界の傾斜方向を、この外周面の全幅に亙り一定方向としている。この様な第一のエンコーダ23の外周面には、静止側軌道輪である外輪1に支持したセンサユニット5bの先端部に設けた1個のセンサ7cの検出部を、近接対向させている。   Therefore, in the case of the present embodiment, as the support plate 16 constituting the first encoder 23 together with the permanent magnet 25, the support plate 16 constituting the encoder 14 of the first embodiment shown in FIG. While using the same thing, let the outer peripheral surface of the said permanent magnet 25 be a mere cylindrical surface which does not change a diameter over the axial direction. The first encoder 23 and the encoder 14 of the first embodiment are the same in that the thickness dimension of the permanent magnet 25 is adjusted by the combination of the support plate 16 and the permanent magnet 25. However, in the case of the first encoder 23 incorporated in the present embodiment, the inclination direction of the boundary between the S pole and the N pole arranged alternately at equal intervals on the outer peripheral surface of the permanent magnet 25 in the circumferential direction. Is in a constant direction over the entire width of the outer peripheral surface. On such an outer peripheral surface of the first encoder 23, a detection unit of one sensor 7c provided at the tip of the sensor unit 5b supported on the outer ring 1 which is a stationary side raceway is opposed to and close to the first encoder 23.

一方、上記第二のエンコーダ24は、上記外輪1の内端部内周面と上記ハブ2の内端部外周面との間を塞ぐ組み合わせシールリング26のスリンガ27の内側面に添着固定されている。上記第二のエンコーダ24は、全体を円輪状に形成されたもので、被検出面である内側面にS極とN極とを、円周方向に亙り、交互に、且つ、等間隔で配置している。円周方向に隣り合うS極とN極との境界は、上記第二のエンコーダ24の径方向に存在する。上記第一のエンコーダ23の外周面に存在するS極及びN極の数と、上記第二のエンコーダ24の内側面に存在するS極及びN極の数とは、互いに等しい。この様な第二のエンコーダ24の内側面には、上記外輪1を支持固定したナックル等の静止部材の一部に支持したセンサユニット5cの先端部に設けた、1個のセンサ7dの検出部を、近接対向させている。   On the other hand, the second encoder 24 is fixedly attached to the inner side surface of the slinger 27 of the combination seal ring 26 that closes the inner peripheral surface of the inner end portion of the outer ring 1 and the outer peripheral surface of the inner end portion of the hub 2. . The second encoder 24 is formed in an annular shape as a whole, and the S pole and the N pole are arranged in the circumferential direction on the inner side which is the detection surface, alternately and at equal intervals. is doing. The boundary between the S pole and the N pole adjacent in the circumferential direction exists in the radial direction of the second encoder 24. The number of S poles and N poles present on the outer peripheral surface of the first encoder 23 is equal to the number of S poles and N poles present on the inner surface of the second encoder 24. On the inner side surface of the second encoder 24 as described above, the detection unit of one sensor 7d provided at the tip of a sensor unit 5c supported by a part of a stationary member such as a knuckle that supports and fixes the outer ring 1 is provided. Are close to each other.

本実施例の場合には、上記外輪1と上記ハブ2との間にアキシアル荷重が作用せず、これら外輪1とハブ2とがアキシアル方向に相対変位していない、中立状態では、上記両センサ7c、7dの検出信号が同時に(或いは所定の時間差で)変化する様にしている。同時に変化させる為には、上記中立状態で、上記センサ7dが上記第二のエンコーダ24の内側面に存在するS極とN極との境界に対向すると同時に、上記センサ7cが上記第一のエンコーダ23の外周面に存在するS極とN極との境界に対向する様に、各部材7c、7d、23、24の設置位置を規制する。   In the case of this embodiment, an axial load does not act between the outer ring 1 and the hub 2, and both the sensors are used in a neutral state where the outer ring 1 and the hub 2 are not relatively displaced in the axial direction. The detection signals 7c and 7d are changed simultaneously (or with a predetermined time difference). In order to change simultaneously, in the neutral state, the sensor 7d faces the boundary between the S pole and the N pole existing on the inner surface of the second encoder 24, and at the same time, the sensor 7c is moved to the first encoder. The installation positions of the members 7c, 7d, 23, and 24 are regulated so as to face the boundary between the S pole and the N pole existing on the outer peripheral surface of the head 23.

この様な本実施例の場合には、上記両センサ7c、7dの検出信号の位相のずれの有無、ずれがある場合にはその方向及び大きさにより、上記外輪1とハブ2とがアキシアル方向にずれていないか否か、ずれている場合にはその方向及び大きさを求められる。即ち、上記第二のエンコーダ24の内側面に対向している上記センサ7dの検出信号の位相は、上記アキシアル方向のずれの有無に関係なく、一定である(進んだり遅れたりする事はない)。これに対して、上記第一のエンコーダ23の外周面に対向している上記センサ7cの検出信号の位相は、上記アキシアル方向のずれの伴って、進んだり遅れたりする。従って、上記第二のエンコーダ24の内側面に対向している上記センサ7dの検出信号が変化するタイミングに合わせて、上記第一のエンコーダ23の外周面に対向している上記センサ7cの検出信号の位相を見れば、上記外輪1とハブ2とがアキシアル方向にずれていないか否か、ずれている場合にはその方向及び大きさを求められる。   In the case of this embodiment, the outer ring 1 and the hub 2 are in the axial direction depending on the presence / absence of the phase shift of the detection signals of the sensors 7c and 7d and the direction and magnitude of the shift, if any. Whether or not there is a deviation, the direction and size can be obtained. That is, the phase of the detection signal of the sensor 7d facing the inner surface of the second encoder 24 is constant (no advance or delay) regardless of whether or not there is a deviation in the axial direction. . On the other hand, the phase of the detection signal of the sensor 7c facing the outer peripheral surface of the first encoder 23 is advanced or delayed with the deviation in the axial direction. Accordingly, the detection signal of the sensor 7c facing the outer peripheral surface of the first encoder 23 is synchronized with the timing at which the detection signal of the sensor 7d facing the inner surface of the second encoder 24 changes. The phase and the size of the outer ring 1 and the hub 2 are determined whether or not they are displaced in the axial direction.

図10も、請求項1、2、3、5に対応する、本発明の実施例10を示している。本実施例の場合には、回転側軌道輪であるハブ2の内端部外周面にエンコーダ28を、締り嵌めにより、このハブ2と同心に外嵌固定している。このエンコーダ28が、本発明の特徴となる構成、即ち、永久磁石25の厚さ寸法を、この永久磁石25の被検出面である外周面の幅方向端部で幅方向中央部よりも大きくする構成を有している。この為に本実施例の場合には、上記永久磁石25と共に上記エンコーダ28を構成する支持板16eとして、この永久磁石25を支持する為の先端部の形状が、前述の図1に示した実施例1のエンコーダ14を構成する支持板16と同様のものを使用すると共に、上記永久磁石25の外周面を、軸方向に亙り直径が変化しない、単なる円筒面としている。   FIG. 10 also shows a tenth embodiment of the present invention corresponding to claims 1, 2, 3, and 5. In the case of the present embodiment, an encoder 28 is externally fitted and fixed concentrically with the hub 2 by an interference fit on the outer peripheral surface of the inner end portion of the hub 2 which is a rotating side race. The encoder 28 is configured to be a feature of the present invention, that is, the thickness dimension of the permanent magnet 25 is made larger at the widthwise end portion of the outer peripheral surface that is the detected surface of the permanent magnet 25 than the widthwise central portion. It has a configuration. For this reason, in the case of the present embodiment, the shape of the tip portion for supporting the permanent magnet 25 as the support plate 16e constituting the encoder 28 together with the permanent magnet 25 is the same as that shown in FIG. The same support plate 16 that constitutes the encoder 14 of Example 1 is used, and the outer peripheral surface of the permanent magnet 25 is a simple cylindrical surface that does not change in diameter in the axial direction.

本実施例の場合には、上記エンコーダ28を上記ハブ2の内端部に、このハブ2よりも軸方向内方に突出する状態で外嵌固定する都合上、上記支持板16eの軸方向寸法を、上記実施例1のエンコーダ14を構成する支持板16よりも長くしている。上記支持板16eと永久磁石25との組み合わせにより、この永久磁石25の厚さ寸法を調節している点に関しては、上記エンコーダ28と上記実施例1のエンコーダ14とは同じである。但し、本実施例に組み込むエンコーダ28の場合には、上述した実施例9の第一のエンコーダ23と同様に、上記永久磁石25の外周面に、円周方向に亙り交互に且つ等間隔で配置したS極とN極との境界の傾斜方向を、この外周面の全幅に亙り一定方向としている。   In the case of the present embodiment, the axial dimension of the support plate 16e is provided for the purpose of externally fixing the encoder 28 to the inner end portion of the hub 2 so as to protrude inward in the axial direction from the hub 2. Is longer than the support plate 16 constituting the encoder 14 of the first embodiment. The encoder 28 and the encoder 14 of the first embodiment are the same in that the thickness dimension of the permanent magnet 25 is adjusted by the combination of the support plate 16e and the permanent magnet 25. However, in the case of the encoder 28 incorporated in the present embodiment, like the first encoder 23 of the ninth embodiment described above, it is arranged on the outer peripheral surface of the permanent magnet 25 alternately and at equal intervals over the circumferential direction. The inclined direction of the boundary between the S pole and the N pole is made constant over the entire width of the outer peripheral surface.

特に、本実施例の場合には、上述の様なエンコーダ28の外周面の上下両端部に、1対のセンサ7e、7fの検出部を近接対向させている。即ち、静止側軌道輪である外輪1の内端開口部に被着したカバー29の内周面の上下両端部に上記両センサ7e、7fを支持固定し、これら両センサ7e、7fの検出部を、上記エンコーダ28の外周面の上下両端部に近接対向させている。自動車の車輪支持用転がり軸受ユニットの場合、上記外輪1と上記ハブ2との間に加わるアキシアル荷重は、このハブ2に結合固定した車輪(タイヤ)の外周面と路面との接地面から入力される。この接地面は、上記外輪1及び上記ハブ2の回転中心よりも径方向外方に存在する為、上記アキシアル荷重はこれら外輪1とハブ2との間に、純アキシアル荷重としてではなく、これら外輪1及びハブ2の中心軸と上記接地面の中心とを含む(鉛直方向の)仮想平面内での、モーメントを伴って加わる。そして、このモーメントの大きさは、上記接地面から入力されるアキシアル荷重の大きさに比例する。そこで、このモーメントを求めれば、このアキシアル荷重を求められる事になる。   In particular, in the case of the present embodiment, the detection portions of the pair of sensors 7e and 7f are placed close to and opposed to the upper and lower ends of the outer peripheral surface of the encoder 28 as described above. That is, the two sensors 7e and 7f are supported and fixed at both upper and lower end portions of the inner peripheral surface of the cover 29 attached to the inner end opening of the outer ring 1 which is a stationary side race ring, and the detecting portions of both the sensors 7e and 7f are supported. Are opposed to both upper and lower end portions of the outer peripheral surface of the encoder 28. In the case of a rolling bearing unit for supporting a wheel of an automobile, the axial load applied between the outer ring 1 and the hub 2 is input from the ground contact surface between the outer peripheral surface of the wheel (tire) coupled to the hub 2 and the road surface. The Since this ground contact surface exists radially outward from the rotation center of the outer ring 1 and the hub 2, the axial load is not between the outer ring 1 and the hub 2 but as a pure axial load. 1 and the center axis of the hub 2 and the center of the grounding surface are applied with a moment in a virtual plane (in the vertical direction). The magnitude of this moment is proportional to the magnitude of the axial load input from the ground plane. Therefore, if this moment is obtained, this axial load can be obtained.

一方、上記ハブ2にモーメントが加わると、上記エンコーダ28の上端部が、軸方向に関して何れかの方向に、同じく下端部がこれと逆方向に、それぞれ変位する。この結果、上記エンコーダ28の外周面の上下両端部にそれぞれの検出部を近接対向させた、上記両センサ7e、7fの検出信号の位相が、それぞれ中立位置に対して、逆方向にずれる。そこで、これら両センサ7e、7fの検出信号の位相のずれの方向及び大きさに基づいて、上記アキシアル荷重の方向及び大きさを求められる。   On the other hand, when a moment is applied to the hub 2, the upper end of the encoder 28 is displaced in any direction with respect to the axial direction, and the lower end is similarly displaced in the opposite direction. As a result, the phases of the detection signals of the sensors 7e and 7f, in which the detection units are close to and opposed to the upper and lower ends of the outer peripheral surface of the encoder 28, are shifted in the opposite directions with respect to the neutral positions. Therefore, the direction and magnitude of the axial load can be obtained based on the direction and magnitude of the phase shift of the detection signals of both the sensors 7e and 7f.

本発明は、先に説明した様な、車輪支持用転がり軸受ユニットに加わる荷重を測定する場合に限らず、例えば、各種工作機械や各種産業機械装置の回転支持部の変位を測定し、この回転支持部に加わる荷重を測定する場合にも利用できる。又、変位や荷重を測定する場合に限らず、回転速度を検出する為の構造に本発明を適用する事もできる。即ち、永久磁石製のエンコーダを備えた回転速度検出装置に本発明を適用する事により、このエンコーダとして、被検出面の幅寸法が小さなものを使用しても、このエンコーダとセンサとの変位に拘らず、このセンサに達する磁束の密度を十分に確保し、信頼性の高い回転速度検出を行なえる様にできる。   The present invention is not limited to the case of measuring the load applied to the wheel support rolling bearing unit as described above. For example, the displacement of the rotation support portion of various machine tools and various industrial machine devices is measured and this rotation is performed. It can also be used when measuring the load applied to the support. In addition, the present invention can be applied not only to measuring displacement and load but also to a structure for detecting the rotational speed. In other words, by applying the present invention to a rotational speed detection device having an encoder made of a permanent magnet, even if an encoder having a small detected surface width is used, the displacement between the encoder and the sensor can be reduced. Regardless, it is possible to ensure a sufficient density of magnetic flux reaching the sensor and to detect the rotational speed with high reliability.

本発明の実施例1の構造で、エンコーダの断面形状と、被検出面の特性変化の状態と、磁束密度の分布状態とを示す図。The figure which shows the cross-sectional shape of an encoder, the state of the characteristic change of a to-be-detected surface, and the distribution state of magnetic flux density in the structure of Example 1 of this invention. 本発明の実施例2を示す、図11のA部に相当する拡大断面図。The expanded sectional view equivalent to the A section of Drawing 11 showing Example 2 of the present invention. 同実施例3を示す、図2と同様の図。The figure similar to FIG. 2 which shows the same Example 3. FIG. 同実施例4を示す、図2と同様の図。The figure similar to FIG. 2 which shows the same Example 4. FIG. 同実施例5を示す、図2と同様の図。The figure similar to FIG. 2 which shows the same Example 5. FIG. 同実施例6を示す、図2と同様の図。The figure similar to FIG. 2 which shows the same Example 6. FIG. 同実施例7を示す、図2と同様の図。The figure similar to FIG. 2 which shows the same Example 7. FIG. 同実施例8を示す、図2と同様の図。The figure similar to FIG. 2 which shows the same Example 8. FIG. 同実施例9を示しており、(A)は全体構成を示す断面図、(B)は(A)の右側のエンコーダの被検出面の一部を(A)の右方から見た図。The same Example 9 is shown, (A) is sectional drawing which shows the whole structure, (B) is the figure which looked at a part of the to-be-detected surface of the encoder of the right side of (A) from the right side of (A). 同実施例10を示す断面図。Sectional drawing which shows the same Example 10. FIG. 先発明に係る構造の第1例を示す断面図。Sectional drawing which shows the 1st example of the structure which concerns on a prior invention. 同第2例を示す断面図。Sectional drawing which shows the 2nd example. 先発明によりアキシアル方向の変位及びアキシアル荷重を求められる理由を説明する為の模式図。The schematic diagram for demonstrating the reason for which the displacement and axial load of an axial direction are calculated | required by prior invention. 本発明の必要性を説明する為の、図1と同様の図。The same figure as FIG. 1 for demonstrating the necessity of this invention.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a エンコーダ
5、5a、5b、5c センサユニット
6 取付孔
7a、7b、7c、7d、7e、7f センサ
8、8a 支持板
9 永久磁石
10、10a 嵌合筒部
11 支持筒部
12 連続部
13 カバー
14、14a、14b、14c、14d、14e、14f、14g エンコーダ
15、15a、15b、15c、15d、15e、15f、15g 永久磁石
16、16a、16b、16c、16d、16e 支持板
17 嵌合筒部
18、18a、18b、18c 支持筒部
19 連続部
20、20a 円筒面部
21、21a、21b 傾斜面部
22、22a 傾斜凸部
23 第一のエンコーダ
24 第二のエンコーダ
25 永久磁石
26 組み合わせシールリング
27 スリンガ
28 エンコーダ
29 カバー
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a Encoder 5, 5a, 5b, 5c Sensor unit 6 Mounting hole 7a, 7b, 7c, 7d, 7e, 7f Sensor 8, 8a Support plate 9 Permanent magnet 10, 10a Fitting cylinder part 11 Support cylinder part 12 Continuous part 13 Cover 14, 14a, 14b, 14c, 14d, 14e, 14f, 14g Encoder 15, 15a, 15b, 15c, 15d, 15e, 15f, 15g Permanent magnet 16, 16a, 16b, 16c, 16d, 16e Support plate 17 Fitting cylinder part 18, 18a, 18b, 18c Support cylinder part 19 Continuous part 20, 20a Cylindrical surface part 21, 21a, 21b Inclined surface part 22, 22a Inclined convex part 23 First encoder 24 Second Encoder 25 Permanent magnet 26 Combination seal ring 27 Slinger 28 Encoder 29 Cover

Claims (5)

回転部材の一部に支持されてこの回転部材と共に回転する、この回転部材の回転中心と同心でこの回転部材の回転方向に対し直角方向をその幅方向とする被検出面を備え、この被検出面にS極とN極とを交互に配置した永久磁石を含んで構成したエンコーダと、検出部をこのエンコーダの被検出面に、このエンコーダの厚さ方向に対向させた状態で、静止部材に支持されたセンサと、このセンサの出力信号に基づいてこの静止部材と上記回転部材との間で相対的に変化する状態量を求める演算器とを備えた状態量測定装置に於いて、上記被検出面の幅方向端部での上記永久磁石の厚さ寸法を、この被検出面の幅方向中央部でのこの永久磁石の厚さ寸法よりも大きくした事を特徴とする状態量測定装置。   A detected surface that is supported by a part of the rotating member and rotates with the rotating member, is concentric with the rotation center of the rotating member and has a direction perpendicular to the rotating direction of the rotating member as its width direction. An encoder comprising a permanent magnet with S poles and N poles alternately arranged on the surface, and a stationary member on the stationary member in a state where the detector is opposed to the detected surface of the encoder in the thickness direction of the encoder. In a state quantity measuring device comprising: a supported sensor; and a computing unit that obtains a state quantity that relatively changes between the stationary member and the rotating member based on an output signal of the sensor. A state quantity measuring device characterized in that the thickness dimension of the permanent magnet at the widthwise end of the detection surface is larger than the thickness dimension of the permanent magnet at the widthwise center of the detection surface. 円周方向に隣り合うS極とN極との境界の方向が幅方向に対し傾斜しており、演算器は、回転部材と静止部材との相対的変位を求める機能を有する、請求項1に記載した状態量測定装置。   The boundary direction between the S pole and the N pole adjacent in the circumferential direction is inclined with respect to the width direction, and the computing unit has a function of obtaining a relative displacement between the rotating member and the stationary member. The state quantity measuring device described. エンコーダが、磁性金属板製の支持板と永久磁石とを、この永久磁石の厚さ方向に積層して成るものであり、この永久磁石の被検出面の断面形状が直線であり、上記支持板のうちでこの永久磁石の幅方向端部を接合すべき部分が幅方向中央部を接合すべき部分に比べて、上記被検出面からの距離が大きくなる方向に凹んでいる、請求項1〜2のうちの何れか1項に記載した状態量測定装置。   The encoder is formed by laminating a support plate made of a magnetic metal plate and a permanent magnet in the thickness direction of the permanent magnet, and the cross-sectional shape of the detected surface of the permanent magnet is a straight line, and the support plate Among these, the part which should join the width direction edge part of this permanent magnet is dented in the direction where the distance from the said to-be-detected surface becomes large compared with the part which should join the width direction center part. 2. The state quantity measuring device described in any one of the items 2. エンコーダが、磁性金属板製の支持板と永久磁石とを、この永久磁石の厚さ方向に積層して成るものであり、この支持板のうちでこの永久磁石を接合すべき部分の断面形状が直線であり、この永久磁石の被検出面のうちの幅方向端部が幅方向中央部に比べて、上記支持板のうちでこの永久磁石を接合すべき部分からの距離が大きくなる方向に突出している、請求項1〜2のうちの何れか1項に記載した状態量測定装置。   The encoder is formed by laminating a support plate made of a magnetic metal plate and a permanent magnet in the thickness direction of the permanent magnet, and the cross-sectional shape of the portion of the support plate to which the permanent magnet is to be joined is It is a straight line, and the end in the width direction of the surface to be detected of the permanent magnet protrudes in a direction in which the distance from the portion to which the permanent magnet is to be joined in the support plate is larger than the center in the width direction. The state quantity measuring device according to any one of claims 1 and 2. 回転部材が転がり軸受ユニットを構成して使用時に回転する回転側軌道輪であり、静止部材が、この転がり軸受ユニットを構成して使用時にも回転しない静止側軌道輪又はこの静止側軌道輪を支持固定する部材であり、演算器は、この静止側軌道輪と上記回転側軌道輪との相対変位に基づいて、これら両軌道輪同士の間に作用する荷重を求める機能を有する、請求項1〜4のうちの何れか1項に記載した状態量測定装置。
The rotating member constitutes a rolling bearing unit and is a rotating bearing ring that rotates during use, and the stationary member constitutes this rolling bearing unit and supports the stationary bearing ring that does not rotate during use or the stationary bearing ring. It is a member to be fixed, and the computing unit has a function of obtaining a load acting between the two race rings based on the relative displacement between the stationary race ring and the rotation side race ring. The state quantity measuring device described in any one of 4.
JP2005257820A 2005-09-06 2005-09-06 State quantity measuring device Expired - Fee Related JP4956940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005257820A JP4956940B2 (en) 2005-09-06 2005-09-06 State quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005257820A JP4956940B2 (en) 2005-09-06 2005-09-06 State quantity measuring device

Publications (2)

Publication Number Publication Date
JP2007071641A true JP2007071641A (en) 2007-03-22
JP4956940B2 JP4956940B2 (en) 2012-06-20

Family

ID=37933207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257820A Expired - Fee Related JP4956940B2 (en) 2005-09-06 2005-09-06 State quantity measuring device

Country Status (1)

Country Link
JP (1) JP4956940B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291879A (en) * 2007-05-23 2008-12-04 Nsk Ltd Quantity-of-state measuring device of rolling bearing unit
JP2013127390A (en) * 2011-12-19 2013-06-27 Nsk Ltd Rotary machine having physical quantity measurement function

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629217A (en) * 1985-07-08 1987-01-17 Hitachi Metals Ltd Magnetic rotation detector
JPH04278415A (en) * 1991-03-07 1992-10-05 Fujitsu Ltd Potentiometer
JPH10132506A (en) * 1996-10-30 1998-05-22 Denso Corp Rotation angle sensor
JP2002022485A (en) * 2000-07-12 2002-01-23 Kayaba Ind Co Ltd Rotation angle sensor
JP2003042803A (en) * 2001-08-02 2003-02-13 Nsk Ltd Encoder and rolling bearing unit with encoder
JP2003084007A (en) * 2001-09-14 2003-03-19 Takechi Kogyo Gomu Co Ltd Rotation direction detecting device
JP2004077159A (en) * 2002-08-12 2004-03-11 Koyo Seiko Co Ltd Pulser ring and bearing unit having sensor
JP2004317486A (en) * 2003-03-31 2004-11-11 Denso Corp Device for detecting rotation angle
JP2004325134A (en) * 2003-04-22 2004-11-18 Nsk Ltd Rotation support device with state detection device
JP2005164253A (en) * 2003-11-28 2005-06-23 Nsk Ltd Load measuring instrument for rolling bearing unit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS629217A (en) * 1985-07-08 1987-01-17 Hitachi Metals Ltd Magnetic rotation detector
JPH04278415A (en) * 1991-03-07 1992-10-05 Fujitsu Ltd Potentiometer
JPH10132506A (en) * 1996-10-30 1998-05-22 Denso Corp Rotation angle sensor
JP2002022485A (en) * 2000-07-12 2002-01-23 Kayaba Ind Co Ltd Rotation angle sensor
JP2003042803A (en) * 2001-08-02 2003-02-13 Nsk Ltd Encoder and rolling bearing unit with encoder
JP2003084007A (en) * 2001-09-14 2003-03-19 Takechi Kogyo Gomu Co Ltd Rotation direction detecting device
JP2004077159A (en) * 2002-08-12 2004-03-11 Koyo Seiko Co Ltd Pulser ring and bearing unit having sensor
JP2004317486A (en) * 2003-03-31 2004-11-11 Denso Corp Device for detecting rotation angle
JP2004325134A (en) * 2003-04-22 2004-11-18 Nsk Ltd Rotation support device with state detection device
JP2005164253A (en) * 2003-11-28 2005-06-23 Nsk Ltd Load measuring instrument for rolling bearing unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291879A (en) * 2007-05-23 2008-12-04 Nsk Ltd Quantity-of-state measuring device of rolling bearing unit
JP2013127390A (en) * 2011-12-19 2013-06-27 Nsk Ltd Rotary machine having physical quantity measurement function

Also Published As

Publication number Publication date
JP4956940B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4844010B2 (en) Rolling bearing unit with load measuring device
JP2006300086A (en) Rolling bearing unit with load measuring device
JP5019988B2 (en) Wheel bearing with sensor
JP2006322928A (en) Displacement measuring device and load measuring device for rolling bearing unit
JP2007093580A (en) Rolling bearing unit with displacement measuring device, and the rolling bearing unit with load measuring device
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2006113017A (en) Encoder, rolling bearing unit with the encoder, and rolling bearing unit with load-measuring instrument
JP5094457B2 (en) Wheel bearing with sensor
JP4956940B2 (en) State quantity measuring device
JP4862318B2 (en) Load measuring device
JP2009069104A (en) Bearing with sensor for wheel
JP5142683B2 (en) Wheel bearing with sensor
JP2006317361A (en) Load measuring apparatus for rolling bearing unit
JP2007171104A (en) Roller bearing unit with load-measuring device
JP2008128812A (en) Roller bearing device equipped with sensor
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2004198210A (en) Load measuring apparatus for rolling bearing unit
JP5098379B2 (en) Bearing load measuring device
JP2010127376A (en) Sensor equipped bearing for wheel
JP2007051983A (en) Encoder for rotation detection
JP2007091144A (en) Air pressure abnormality determination device
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2006201157A (en) Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device
JP4843958B2 (en) Load measuring device for rolling bearing units

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070521

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees