JP2003042803A - Encoder and rolling bearing unit with encoder - Google Patents

Encoder and rolling bearing unit with encoder

Info

Publication number
JP2003042803A
JP2003042803A JP2001235311A JP2001235311A JP2003042803A JP 2003042803 A JP2003042803 A JP 2003042803A JP 2001235311 A JP2001235311 A JP 2001235311A JP 2001235311 A JP2001235311 A JP 2001235311A JP 2003042803 A JP2003042803 A JP 2003042803A
Authority
JP
Japan
Prior art keywords
encoder
permanent magnet
circular ring
ring portion
attached
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001235311A
Other languages
Japanese (ja)
Other versions
JP4622185B2 (en
Inventor
Toshiaki Maeda
俊秋 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001235311A priority Critical patent/JP4622185B2/en
Publication of JP2003042803A publication Critical patent/JP2003042803A/en
Application granted granted Critical
Publication of JP4622185B2 publication Critical patent/JP4622185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a structure improving the distribution of the magnetic flux density of the side surface of an encoder 15a and capable of ensuring the reliability of a rotational speed at a low cost. SOLUTION: The thickness in the axial direction of the permanent magnet 17a constituting the encoder 15a is gradually changed in a radial direction so as to be reduced on the outer diameter side of the encoder 15a, and increased in the inner diameter side thereof. By this constitution, the magnetic flux density on the inner diameter side of the encoder 15a can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明に係るエンコーダ及
びエンコーダ付転がり軸受ユニットは、例えば自動車の
車輪の回転速度、或は工作機械の主軸の回転速度や回転
角度を検出する為に利用する。
BACKGROUND OF THE INVENTION An encoder and a rolling bearing unit with an encoder according to the present invention are used, for example, to detect the rotation speed of a wheel of an automobile or the rotation speed and rotation angle of a spindle of a machine tool.

【0002】[0002]

【従来の技術】自動車の車輪を懸架装置に対して回転自
在に支持する為に、転がり軸受ユニットを使用する。
又、アンチロックブレーキシステム(ABS)やトラク
ションコントロールシステム(TCS)を制御する為に
は、上記車輪の回転速度を検出する必要がある。この様
な目的で車輪の回転速度を検出する為に従来から、各種
構造のエンコーダ付転がり軸受ユニットが知られてい
る。車輪の回転速度検出を磁気的に行なう場合、上記エ
ンコーダとして、円周方向に関して磁気特性が交互に変
化するものを使用する。この様に円周方向に関して磁気
特性が交互に変化するエンコーダとして、円周方向に関
してS極とN極とを交互に配置した永久磁石を使用する
エンコーダは、センサ側の構造を簡単に構成し、しかも
低速時の検出値の信頼性を確保する面から、近年使用さ
れる場合が増大している。
Rolling bearing units are used to rotatably support the wheels of an automobile relative to a suspension system.
Further, in order to control the antilock brake system (ABS) and the traction control system (TCS), it is necessary to detect the rotation speed of the wheels. In order to detect the rotation speed of a wheel for such a purpose, conventionally, rolling bearing units with an encoder having various structures are known. When magnetically detecting the rotational speed of the wheel, an encoder whose magnetic characteristics alternate in the circumferential direction is used as the encoder. An encoder using permanent magnets in which S poles and N poles are alternately arranged in the circumferential direction as an encoder whose magnetic characteristics alternate in the circumferential direction in this way has a simple structure on the sensor side. Moreover, from the viewpoint of ensuring the reliability of the detected value at low speed, the number of cases where it is used in recent years is increasing.

【0003】図4〜6は、上述の様な目的で使用される
エンコーダ及びエンコーダ付転がり軸受ユニットの従来
構造の1例を示している。回転輪であるハブ1は、ハブ
本体2と内輪3とを結合固定して成る。このハブ本体2
の外端(自動車への組み付け状態で幅方向外側となる端
を言い、図4の左端)部外周面には、車輪を取付固定す
る為のフランジ4を、中間部外周面には、上記ハブ1の
外周面に設ける複列の内輪軌道5a、5bのうちの外側
(図4の左側)の内輪軌道5aを、内端(自動車への組
み付け状態で幅方向中央側となる端を言い、図4の右
端)部には小径の段部6を、それぞれ形成している。
4 to 6 show an example of a conventional structure of an encoder and a rolling bearing unit with an encoder used for the above purpose. The hub 1, which is a rotating wheel, is formed by coupling and fixing a hub body 2 and an inner ring 3. This hub body 2
Of the outer end (the end that is the outer side in the width direction when assembled to an automobile, the left end in FIG. 4) has a flange 4 on the outer peripheral surface for attaching and fixing the wheel, and the hub has the outer peripheral surface on the intermediate portion. The inner ring raceway 5a on the outer side (the left side in FIG. 4) of the double-row inner ring raceways 5a, 5b provided on the outer peripheral surface of 1 is referred to as the inner end (the end that is the center side in the width direction in the state of being assembled to an automobile). A small-diameter step portion 6 is formed at each of the right end portions of the portions 4.

【0004】上記内輪3は、この段部6に外嵌し、更に
上記ハブ本体2の内端部に形成した雄ねじ部7に螺着し
たナット8により、このハブ本体2の内端部に固定して
いる。この様な内輪3の外周面には、上記ハブ1の外周
面に設ける複列の内輪軌道5a、5bのうちの内側(図
4の右側)の内輪軌道5bを設けている。そして、これ
ら両内輪軌道5a、5bと、静止輪である外輪9の内周
面に設けた複列の外輪軌道10、10との間に、それぞ
れ複数個ずつの転動体11、11を、保持器12、12
により保持した状態で設け、上記外輪9の径方向内側に
上記ハブ1を回転自在に支持している。この外輪9の外
周面には外向フランジ状の取付部13を設け、この外輪
9を、ナックル等の懸架装置に結合支持自在としてい
る。尚、図示の例では、転動体11、11として玉を使
用しているが、重量の嵩む自動車用の転がり軸受ユニッ
トの場合には、これら転動体としてテーパころを使用す
る場合もある。
The inner ring 3 is fitted onto the step portion 6 and fixed to the inner end portion of the hub body 2 by a nut 8 screwed to a male screw portion 7 formed on the inner end portion of the hub body 2. is doing. On the outer peripheral surface of the inner ring 3 as described above, the inner ring raceway 5b on the inner side (the right side in FIG. 4) of the double-row inner ring raceways 5a and 5b provided on the outer peripheral surface of the hub 1 is provided. A plurality of rolling elements 11, 11 are respectively held between the inner ring raceways 5a, 5b and the double-row outer ring raceways 10, 10 provided on the inner peripheral surface of the outer ring 9 which is a stationary wheel. Bowl 12, 12
And the hub 1 is rotatably supported inside the outer ring 9 in the radial direction. An outer flange 9 is provided with an outward flange-shaped mounting portion 13 so that the outer ring 9 can be coupled to and supported by a suspension device such as a knuckle. Although balls are used as the rolling elements 11 in the illustrated example, tapered rollers may be used as these rolling elements in the case of rolling bearing units for automobiles that are heavy.

【0005】又、上記内輪3の内端部で上記内輪軌道5
bよりも軸方向(図1、3〜6の左右方向)内方に位置
する肩部14には、円環状のエンコーダ15を固定して
いる。このエンコーダ15は、芯金16と永久磁石17
とから成る。このうちの芯金16は、SPCCの如き軟
鋼板等の強磁性金属板にプレス加工を施す事により、断
面L字形で全体を円環状に形成して成り、円筒部18
と、この円筒部18の軸方向一端(図1、3〜6の右
端)縁から径方向外方に折れ曲がった円輪部19とを有
する。又、上記永久磁石17は、ゴム等の高分子弾性材
中に、フェライト等の強磁性材の粉末を混入したもの
で、軸方向に着磁されている。着磁方向は、円周方向に
関して交互に且つ等間隔で変化させている。従って、上
記永久磁石17の軸方向側面には、S極とN極とが交互
に且つ等間隔で配置されている。この様なエンコーダ1
5は、上記円筒部18を上記肩部14に、締り嵌めで外
嵌する事により、上記内輪3に対し固定している。尚、
図示の例の場合、上記永久磁石17の外周縁部に形成し
た鈎部20を上記円輪部19の外周縁に係止する事によ
り、上記永久磁石17と上記芯金16との接合強度の向
上を図っている。
The inner ring raceway 5 is formed at the inner end of the inner ring 3.
An annular encoder 15 is fixed to the shoulder 14 located axially inward (the left-right direction in FIGS. 1, 3 to 6) with respect to b. The encoder 15 includes a core metal 16 and a permanent magnet 17
It consists of and. The core metal 16 is formed by pressing a ferromagnetic metal plate such as a mild steel plate such as SPCC into an annular shape with an L-shaped cross section.
And an annular portion 19 that is bent outward in the radial direction from the axial end (right end in FIGS. 1, 3 to 6) of the cylindrical portion 18. The permanent magnet 17 is made of a polymer elastic material such as rubber mixed with powder of a ferromagnetic material such as ferrite, and is magnetized in the axial direction. The magnetizing directions are alternately changed at equal intervals in the circumferential direction. Therefore, the S poles and the N poles are alternately arranged at equal intervals on the axial side surface of the permanent magnet 17. Encoder 1 like this
5 is fixed to the inner ring 3 by externally fitting the cylindrical portion 18 to the shoulder portion 14 by interference fitting. still,
In the case of the illustrated example, the hook portion 20 formed on the outer peripheral edge portion of the permanent magnet 17 is locked to the outer peripheral edge portion of the circular ring portion 19 to improve the bonding strength between the permanent magnet 17 and the core metal 16. We are trying to improve.

【0006】又、上記外輪9の外端(図4の左端)開口
部と上記ハブ1の中間部外周面との間の隙間は、シール
リング21により塞いでいる。一方、上記外輪9の内端
(図4の右端)開口部は、カバー22により塞いでい
る。このカバー22は、ステンレス鋼板、軟鋼板等の金
属板を、絞り加工等により塑性変形させて、或は合成樹
脂を成形加工して、全体を略有底円筒状に形成したもの
で、その外端開口部を上記外輪9の内端部に、締まり嵌
めで内嵌固定する事により、この外輪9の内端開口部を
塞いでいる。尚、上記カバー22に代えて、エンコーダ
を組み付けたスリンガとシールリングとを組み合わせた
周知の組み合わせシールリングを使用する場合もある。
この場合、上記シールリングを上記外輪9の内端部内周
面に内嵌し、上記スリンガを上記内輪3の内端部外周面
に外嵌する。そして、上記シールリングを構成するシー
ルリップを上記エンコーダを組み付けたスリンガ(芯
金)に摺接させる事により、上記外輪9の内端開口部を
塞ぐ。
A gap between the outer end (left end in FIG. 4) of the outer ring 9 and the outer peripheral surface of the intermediate portion of the hub 1 is closed by a seal ring 21. On the other hand, the inner end (right end in FIG. 4) opening of the outer ring 9 is closed by a cover 22. This cover 22 is formed by plastically deforming a metal plate such as a stainless steel plate or a mild steel plate by drawing or the like, or by molding a synthetic resin to form a cylindrical shape with a bottom. The inner end opening of the outer ring 9 is closed by fitting the end opening to the inner end of the outer ring 9 by interference fitting. Incidentally, in place of the cover 22, there is a case where a known combination seal ring in which a slinger in which an encoder is assembled and a seal ring are combined is used.
In this case, the seal ring is fitted on the inner peripheral surface of the inner end of the outer ring 9 and the slinger is fitted on the outer peripheral surface of the inner end of the inner ring 3. Then, the seal lip forming the seal ring is slidably contacted with the slinger (core metal) to which the encoder is assembled, thereby closing the inner end opening of the outer ring 9.

【0007】図示の例の場合には、上記カバー22を構
成する底板部23の一部で、上記エンコーダ15の被検
出面である上記永久磁石17の片側面(図4の右側面)
と対向する部分に形成した通孔24部分に、センサ25
を支持している。尚、上記カバー22に代えて上記組み
合わせシールリングを使用する場合には、上記センサ2
5は懸架装置を構成する図示しないナックル等に支持す
る。このセンサ25は、ホール素子、磁気抵抗素子等の
磁気検知素子と、この磁気検知素子の出力信号を整形す
る為の波形整形回路を組み込んだICとを備えた周知構
造を有するもので、その先端面(図4の左端面)を、検
出面としている。この様なセンサ25は、この検出面を
上記エンコーダ15の被検出面に、例えば0.5〜1mm
程度の微小隙間を介して対向させている。上述の様なセ
ンサ25は、上記検出面が、上記永久磁石の片側面に配
置されたS極に対向する瞬間とN極に対向する瞬間と
で、上記磁気検知素子の特性が変化する事を利用して、
出力信号を得る。
In the case of the illustrated example, one side surface of the permanent magnet 17 (a right side surface in FIG. 4) which is a surface to be detected of the encoder 15 is a part of the bottom plate portion 23 constituting the cover 22.
The sensor 25 is provided in the through hole 24 formed in the portion facing the sensor 25.
I support you. When the combination seal ring is used instead of the cover 22, the sensor 2
5 is supported by a knuckle or the like (not shown) that constitutes the suspension device. The sensor 25 has a well-known structure including a magnetic sensing element such as a Hall element or a magnetoresistive element, and an IC incorporating a waveform shaping circuit for shaping an output signal of the magnetic sensing element, and its tip is provided. The surface (the left end surface in FIG. 4) is the detection surface. In such a sensor 25, this detection surface is, for example, 0.5 to 1 mm on the detected surface of the encoder 15.
They are opposed to each other with a small gap. In the sensor 25 as described above, the characteristics of the magnetic sensing element are changed at the moment when the detection surface faces the S pole and the N pole arranged on one side surface of the permanent magnet. Use
Get the output signal.

【0008】上述の様に構成するエンコーダ及びエンコ
ーダ付転がり軸受ユニットは、次の様にして、車輪を懸
架装置に対して回転自在に支持すると共に、この車輪の
回転速度、回転量等の回転状態を検出する。即ち、自動
車への組み付け時には、上記外輪9を、この外輪9の外
周面に固設した取付部13により、懸架装置を構成する
図示しないナックルに対し取付固定する。又、前記ハブ
1の外端部外周面に設けたフランジ4に、車輪を固定す
る。
The encoder and the rolling bearing unit with an encoder configured as described above support the wheel rotatably with respect to the suspension device in the following manner, and the rotational state of the wheel such as the rotational speed and the rotational amount. To detect. That is, at the time of assembling to an automobile, the outer ring 9 is attached and fixed to a knuckle (not shown) constituting the suspension device by the attachment portion 13 fixed to the outer peripheral surface of the outer ring 9. Further, the wheel is fixed to the flange 4 provided on the outer peripheral surface of the outer end portion of the hub 1.

【0009】この状態でこの車輪と共に上記ハブ1が回
転し、このハブ1に支持された前記エンコーダ15が回
転すると、上記センサ25の検出面の近傍を、上記エン
コーダ15を構成する永久磁石17の片側面に配置した
S極とN極とが交互に通過する。この結果、上記磁気検
知素子の特性が変化する。即ち、この磁気検知素子を通
過する磁束の方向が変化する事により、この磁気検知素
子の特性が変化し、この磁気検出素子を組み込んだ上記
センサ25の出力信号も変化する。そして、この様なセ
ンサ25の出力信号が変化する周波数は、上記エンコー
ダ15の回転速度に比例する。そこで、この様なセンサ
25の出力信号を図示しない制御器に送れば、ABSや
TCSを適切に制御できる。
In this state, when the hub 1 rotates together with the wheels and the encoder 15 supported by the hub 1 rotates, the permanent magnet 17 constituting the encoder 15 is located near the detection surface of the sensor 25. The S poles and N poles arranged on one side pass alternately. As a result, the characteristics of the magnetic sensing element change. That is, when the direction of the magnetic flux passing through the magnetic detection element changes, the characteristics of the magnetic detection element change, and the output signal of the sensor 25 incorporating the magnetic detection element also changes. The frequency at which the output signal of the sensor 25 changes is proportional to the rotation speed of the encoder 15. Therefore, if such an output signal of the sensor 25 is sent to a controller (not shown), ABS and TCS can be controlled appropriately.

【0010】[0010]

【発明が解決しようとする課題】センサ25のコスト上
昇を抑えつつ回転速度検出の信頼性を確保する為には、
磁気検知素子の出力信号の変化の振幅を所定以上の大き
さとする必要がある。この為には、上記磁気検知素子の
出力を変化させる為のエンコーダ15の被検出部のう
ち、特に上記センサ25の検出部が対向する部分の磁束
の変化を大きくする必要がある。そして、この磁束の変
化を大きくする為には、上記センサ25の検出部が対向
する部分での、上記エンコーダ15の磁束密度を大きく
する必要がある。
In order to secure the reliability of the rotation speed detection while suppressing the cost increase of the sensor 25,
It is necessary to set the amplitude of the change in the output signal of the magnetic sensing element to a predetermined magnitude or more. For this purpose, it is necessary to increase the change in the magnetic flux in the detected portion of the encoder 15 for changing the output of the magnetic detection element, particularly in the portion facing the detection portion of the sensor 25. In order to increase the change in the magnetic flux, it is necessary to increase the magnetic flux density of the encoder 15 at the portion where the detecting portion of the sensor 25 faces.

【0011】これに対して、上記エンコーダ15の側面
から出る磁束の密度は、図7に示す様に、このエンコー
ダ15の径方向位置によって異なる。即ち、このエンコ
ーダ15の内径側では外径側に比べて磁束密度が低くな
る。この理由に就いて図8により説明する。上記エンコ
ーダ15を構成する永久磁石17は、同図に示す様に、
全体を円輪状に形成し、S極とN極とを円周方向に関し
て交互に配置している為、これらS極及びN極の形状
は、それぞれ扇形になる。従って、S極とN極との面積
は、それぞれ外径側に比べて内径側が小さくなる為、上
記永久磁石17を添着したエンコーダ15の内径側では
外径側に比べて磁束密度が低くなる。又、外周縁に近い
部分では、この外周縁に近づくに従って、磁束密度が低
下する。
On the other hand, the density of the magnetic flux emitted from the side surface of the encoder 15 varies depending on the radial position of the encoder 15, as shown in FIG. That is, the magnetic flux density on the inner diameter side of the encoder 15 is lower than that on the outer diameter side. The reason for this will be described with reference to FIG. The permanent magnet 17 constituting the encoder 15 is, as shown in FIG.
Since the whole is formed in a ring shape and the S poles and the N poles are alternately arranged in the circumferential direction, the shapes of the S poles and the N poles are fan-shaped. Therefore, since the areas of the S pole and the N pole are smaller on the inner diameter side than on the outer diameter side, the magnetic flux density on the inner diameter side of the encoder 15 to which the permanent magnet 17 is attached is lower than on the outer diameter side. Further, in the portion near the outer peripheral edge, the magnetic flux density decreases as it approaches the outer peripheral edge.

【0012】この結果、上記エンコーダ15の側面で磁
束密度が高い部分の、径方向に関する幅は小さくなる。
前記センサ25の検出部は、上記エンコーダ15の径方
向に関しても幅を有する。従って、図7に示す様に、エ
ンコーダ15の磁束密度の分布が径方向に関して不均一
である事は、回転速度検出を安定して行なう面からは好
ましくない。本発明は、この様な事情に鑑みて、エンコ
ーダの側面で磁束密度が高い部分の範囲を広くすべく発
明したものである。
As a result, the width of the portion of the side surface of the encoder 15 having a high magnetic flux density in the radial direction becomes small.
The detection portion of the sensor 25 has a width in the radial direction of the encoder 15. Therefore, as shown in FIG. 7, it is not preferable that the distribution of the magnetic flux density of the encoder 15 is non-uniform in the radial direction from the viewpoint of stably detecting the rotation speed. In view of such circumstances, the present invention has been made to widen the range of a portion where the magnetic flux density is high on the side surface of the encoder.

【0013】[0013]

【課題を解決するための手段】本発明のエンコーダ及び
エンコーダ付転がり軸受ユニットのうち、請求項1に記
載したエンコーダは、前述した従来構造と同様に、全体
を円輪状に形成し、円周方向に関してS極とN極とを交
互に配置した永久磁石を備える。特に、本発明のエンコ
ーダに於いては、上記永久磁石の軸方向の厚さを、外径
側で薄く、内径側で厚くなる様に、この厚さを径方向に
関して漸次変化させている。
Of the encoder and the rolling bearing unit with an encoder according to the present invention, the encoder according to claim 1 is formed into a circular ring shape as in the conventional structure described above, and has a circumferential direction. With respect to, a permanent magnet having S poles and N poles alternately arranged is provided. Particularly, in the encoder of the present invention, the thickness of the permanent magnet in the axial direction is gradually changed in the radial direction so that the thickness becomes thinner on the outer diameter side and thicker on the inner diameter side.

【0014】又、請求項4に記載したエンコーダ付転が
り軸受ユニットは、従来構造と同様に、静止側周面に静
止側軌道を有し、使用時にも回転しない静止輪と、この
静止側周面と対向する回転側周面に回転側軌道を有し、
使用時に回転する回転輪と、この回転側軌道と上記静止
側軌道との間に転動自在に設けられた複数個の転動体
と、上記回転輪に支持された芯金と、この芯金に永久磁
石を支持する事により構成されるエンコーダとを備え
る。特に、本発明のエンコーダ付転がり軸受ユニットに
於いては、上記エンコーダは、上述した様に、上記永久
磁石の厚さを、外径側で薄く、内径側で厚くなる様に、
この厚さを径方向に関し漸次変化させている。
Further, the rolling bearing unit with an encoder according to a fourth aspect of the present invention has a stationary side raceway on the stationary side circumferential surface, which does not rotate during use, and a stationary side circumferential surface, as in the conventional structure. Has a rotation-side orbit on the rotation-side peripheral surface facing
A rotating wheel that rotates during use, a plurality of rolling elements that are rotatably provided between the rotating side raceway and the stationary side raceway, a core metal supported by the rotary wheel, and the core metal. And an encoder configured by supporting a permanent magnet. Particularly, in the rolling bearing unit with an encoder of the present invention, as described above, the encoder has a thickness of the permanent magnet that is thin on the outer diameter side and thick on the inner diameter side.
This thickness is gradually changed in the radial direction.

【0015】[0015]

【作用】上述の様に構成される本発明のエンコーダ及び
エンコーダ付転がり軸受ユニットにより、回転速度を検
出する為の基本的な作用は、前述した従来構造と同様で
ある。特に、本発明のエンコーダ及びエンコーダ付転が
り軸受ユニットのうち、請求項1に記載したエンコーダ
は、このエンコーダを構成する永久磁石の軸方向の厚さ
を、外径側で薄く、内径側で厚くなる様に、この厚さを
径方向に関して漸次変化させている為、従来構造のエン
コーダと比べて磁束密度が高い部分の幅を広くできる。
即ち、磁束密度は、永久磁石の面積以外に、厚さにも影
響される為、面積の小さい内径側部分で永久磁石の厚さ
を厚くすればこの内径側の磁束密度を高くできる。この
結果、センサの検出部が対向する部分のほぼ全幅で磁束
密度を高くし、回転速度検出の信頼性確保を図れる。
The basic operation for detecting the rotational speed by the encoder and the rolling bearing unit with an encoder of the present invention configured as described above is the same as that of the conventional structure described above. In particular, of the encoder and the rolling bearing unit with an encoder of the present invention, the encoder described in claim 1 is such that the axial thickness of the permanent magnet constituting the encoder is thin on the outer diameter side and thick on the inner diameter side. As described above, since the thickness is gradually changed in the radial direction, the width of the portion having a high magnetic flux density can be widened as compared with the encoder having the conventional structure.
That is, since the magnetic flux density is affected by the thickness as well as the area of the permanent magnet, the magnetic flux density on the inner diameter side can be increased by increasing the thickness of the permanent magnet at the inner diameter side portion having a small area. As a result, it is possible to increase the magnetic flux density in almost the entire width of the portion where the detecting portion of the sensor faces, and to secure the reliability of the rotation speed detection.

【0016】[0016]

【発明の実施の形態】図1は、請求項1〜2に対応す
る、本発明の実施の形態の第1例を示している。本例の
エンコーダ15aは、前述した従来構造と同様に、芯金
16aと永久磁石17aとを組み合わせて成る。このう
ちの芯金16aは、SPCCの如き軟鋼板等の強磁性金
属板にプレス加工を施す事により、断面L字形で全体を
円環状に形成して成り、円筒部18と、この円筒部18
の軸方向(図1の左右方向)一端縁(図1の右端縁)か
ら径方向外方に直角に折れ曲がった円輪部19aとを有
する。又、上記永久磁石17aは、ゴム等の高分子弾性
材中に、フェライト等の強磁性材の粉末を混入したもの
で、軸方向に着磁されている。着磁方向は、円周方向に
関して交互に且つ等間隔で変化させている。従って、上
記永久磁石17aの軸方向側面には、S極とN極とが交
互に且つ等間隔で配置されている。この様なエンコーダ
15aは、上記円筒部18を肩部14に、締り嵌めで外
嵌する事により、内輪3(図4参照)に対し固定する。
尚、図示の例の場合、上記永久磁石17aの外周縁部に
形成した鈎部20を上記円輪部19aの外周縁に係止す
る事により、上記永久磁石17aと上記芯金16aとの
接合強度の向上を図っている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1 and 2. The encoder 15a of this example is formed by combining a core metal 16a and a permanent magnet 17a, as in the conventional structure described above. Of these, the core metal 16a is formed by pressing a ferromagnetic metal plate such as a mild steel plate such as SPCC into an annular shape with an L-shaped cross section.
And a circular ring portion 19a bent at a right angle outward in the radial direction from one end edge (right end edge in FIG. 1) in the axial direction (left and right direction in FIG. 1). The permanent magnet 17a is made by mixing powder of a ferromagnetic material such as ferrite in a polymeric elastic material such as rubber and is magnetized in the axial direction. The magnetizing directions are alternately changed at equal intervals in the circumferential direction. Therefore, the S poles and the N poles are alternately arranged at equal intervals on the axial side surface of the permanent magnet 17a. Such an encoder 15a is fixed to the inner ring 3 (see FIG. 4) by fitting the cylindrical portion 18 onto the shoulder portion 14 by interference fitting.
In the case of the illustrated example, the hook 20 formed on the outer peripheral edge of the permanent magnet 17a is locked to the outer peripheral edge of the annular portion 19a to join the permanent magnet 17a and the core metal 16a. We are trying to improve the strength.

【0017】特に、本例の場合には、上記永久磁石17
aの軸方向の厚さを、外径側で薄く、内径側で厚くなる
様に、この厚さを径方向に関して漸次変化させている。
即ち、上記永久磁石17aの軸方向両側面のうち、被検
出面となる、上記円輪部19aと反対側面(図1の右
面)を、中心軸に対し直角方向に存在する平面としてい
る。これに対して、上記円輪部19aに添着する面であ
る他側面(図1の左面)を、軸方向の厚さが外径側で薄
く、内径側で厚くなる方向に傾斜した、円すい凸面状の
傾斜面26としている。又、上記芯金16aを構成する
上記円輪部19aの軸方向の厚さも、径方向に関して漸
次変化させている。即ち、上記円輪部19aの永久磁石
17aを添着する面に、上記傾斜面26と同じ角度で傾
斜した円すい凹面状の傾斜面27を形成して、円輪部1
9aの軸方向の厚さを、外径側で厚く、内径側で薄くし
ている。
In particular, in the case of this example, the permanent magnet 17 is used.
The thickness of a is gradually changed in the radial direction so that the thickness in the axial direction is thin on the outer diameter side and thick on the inner diameter side.
That is, of the axially opposite side surfaces of the permanent magnet 17a, the side surface opposite to the circular ring portion 19a (the right surface in FIG. 1), which is the surface to be detected, is the plane that exists in the direction perpendicular to the central axis. On the other hand, the other side surface (the left surface in FIG. 1), which is the surface attached to the circular ring portion 19a, is a conical convex surface inclined in a direction in which the axial thickness is thin on the outer diameter side and thick on the inner diameter side. The slanted surface 26 has a shape. Further, the axial thickness of the circular ring portion 19a forming the core metal 16a is also gradually changed in the radial direction. That is, a conical concave inclined surface 27 that is inclined at the same angle as the inclined surface 26 is formed on the surface of the circular ring portion 19a to which the permanent magnet 17a is attached.
The axial thickness of 9a is thicker on the outer diameter side and thinner on the inner diameter side.

【0018】上述の様に構成する本例のエンコーダ15
aは、例えば前述した図4に示す様な転がり軸受ユニッ
トに組み込んで、エンコーダ付転がり軸受ユニットを構
成する。この様なエンコーダ付転がり軸受ユニットによ
り、懸架装置に対して車輪を回転自在に支持すると共
に、この車輪の回転速度を検出する為の作用は、前述し
た従来のエンコーダ付転がり軸受ユニットと同様であ
る。
The encoder 15 of the present example configured as described above
For example, a is incorporated into a rolling bearing unit as shown in FIG. 4 described above to form a rolling bearing unit with an encoder. With such a rolling bearing unit with an encoder, the action for supporting the wheel rotatably with respect to the suspension device and detecting the rotation speed of the wheel is similar to that of the conventional rolling bearing unit with an encoder. .

【0019】特に、本発明のエンコーダ15aは、この
エンコーダ15aを構成する永久磁石17aの軸方向の
厚さを、外径側で薄く、内径側で厚くなる様に、この厚
さを径方向に関して漸次変化させている為、従来構造の
エンコーダ15と比べて内径側の磁束密度を高くでき
る。図2は、上記エンコーダ15aの径方向に関する磁
束密度の分布を示す。この図2と前述した図7とを比べ
ると、本例のエンコーダ15aは従来構造のエンコーダ
15と比べて、内径側に於いて磁束密度が高く、磁束密
度が高い部分の幅が広くなっている事が分かる。即ち、
磁束密度の強さは、永久磁石17aの面積以外に、永久
磁石17aの厚さにも影響される為、面積の小さい内径
側部分で永久磁石17aの厚さを厚くすれば、この内径
側の磁束密度を高くできる。この結果、エンコーダ15
aの側面で、センサ25(図4)の検出部が対向する部
分の磁束密度を、この部分の大部分で高くして、回転速
度検出の信頼性を確保できる。
Particularly, in the encoder 15a of the present invention, the thickness of the permanent magnet 17a constituting the encoder 15a in the radial direction is set so that the thickness of the permanent magnet 17a in the axial direction is thin on the outer diameter side and thick on the inner diameter side. Since the magnetic flux density is gradually changed, the magnetic flux density on the inner diameter side can be increased as compared with the encoder 15 having the conventional structure. FIG. 2 shows the distribution of the magnetic flux density in the radial direction of the encoder 15a. Comparing FIG. 2 with FIG. 7 described above, the encoder 15a of the present example has a higher magnetic flux density on the inner diameter side and the width of the high magnetic flux density portion is wider than that of the encoder 15 of the conventional structure. I understand things. That is,
Since the strength of the magnetic flux density is influenced not only by the area of the permanent magnet 17a but also by the thickness of the permanent magnet 17a, if the thickness of the permanent magnet 17a is increased at the inner diameter side portion having a small area, The magnetic flux density can be increased. As a result, the encoder 15
On the side surface of a, the magnetic flux density of the portion where the detection portion of the sensor 25 (FIG. 4) faces is increased in most of this portion, and the reliability of rotation speed detection can be secured.

【0020】又、本例の場合、上記円輪部19aの永久
磁石17aを添着する面を凹ませる事により、前記傾斜
面27を形成している為、上記永久磁石17aの内径側
を厚くしても、上記エンコーダ15aの軸方向が大きく
なる事を防止できる。この為、上記センサ25(図4)
との距離が短くなる様な小型の転がり軸受ユニットに組
み込んだ場合でも、上記永久磁石17aとセンサ25と
が干渉する事はない。
Further, in the case of this example, since the inclined surface 27 is formed by recessing the surface of the circular ring portion 19a to which the permanent magnet 17a is attached, the inner diameter side of the permanent magnet 17a is thickened. However, it is possible to prevent the axial direction of the encoder 15a from increasing. Therefore, the sensor 25 (FIG. 4)
Even if the permanent magnet 17a and the sensor 25 are incorporated in a small rolling bearing unit such that the distance between the permanent magnet 17a and the sensor 25 is short, the interference does not occur.

【0021】次に、図3は、請求項1、3に対応する、
本発明の実施の形態の第2例を示している。本例のエン
コーダ15bの場合には、芯金16bに永久磁石17a
を添着した状態でこの永久磁石17aの片側面(図2の
右面)が軸方向に直交する平面となる様に、円輪部19
bをこの片側面に対し傾斜させている。即ち、上記芯金
16bは上記円輪部19bを円筒部18の一端縁から直
角にまでは折り曲げず、上記永久磁石17aの他側面を
構成する傾斜面26と平行になる角度まで折り曲げてい
る。そして、この円輪部19bの側面に上記永久磁石1
7aの傾斜面26を添着する事により、上記エンコーダ
15bを構成している。本例の場合、この様に構成する
為、前述した第1例の場合よりも芯金の構造を簡単にで
き、製造コストの上昇を抑える事ができる。但し、第1
例のエンコーダ15aと比べて軸方向の寸法が多少嵩む
為、センサ25(図4)との距離が短くなる様な小型の
転がり軸受ユニットには適さない場合もある。その他の
構成及び作用は、前述した第1例の場合と同様である。
Next, FIG. 3 corresponds to claims 1 and 3,
The 2nd example of embodiment of this invention is shown. In the case of the encoder 15b of this example, the permanent magnet 17a is attached to the core metal 16b.
The circular ring portion 19 is formed so that one side surface (the right side surface in FIG. 2) of the permanent magnet 17a becomes a flat surface orthogonal to the axial direction in the state where the permanent magnet 17a is attached.
b is inclined with respect to this one side surface. That is, in the core metal 16b, the circular ring portion 19b is not bent at a right angle from one end edge of the cylindrical portion 18, but is bent to an angle parallel to the inclined surface 26 constituting the other side surface of the permanent magnet 17a. The permanent magnet 1 is attached to the side surface of the circular ring portion 19b.
The encoder 15b is configured by attaching the inclined surface 26 of 7a. In the case of this example, since it is configured in this way, the structure of the core metal can be made simpler than in the case of the above-described first example, and an increase in manufacturing cost can be suppressed. However, the first
Since the dimension in the axial direction is slightly larger than that of the encoder 15a in the example, it may not be suitable for a small rolling bearing unit in which the distance from the sensor 25 (FIG. 4) becomes short. Other configurations and operations are similar to those in the case of the first example described above.

【0022】尚、上述した本発明の実施の形態の第1、
2例に示したエンコーダ15a、15bを構成する永久
磁石17aの径方向各部の軸方向の厚さを求める為に、
SNRの磁束密度計算プログラムを用いると、最適な厚
さを求める事ができる。即ち、このプログラムにより、
センサの検出部が対向する部分の磁束密度が均一となる
様な、上記永久磁石の断面形状を求めれば、無駄がな
く、且つ、信頼性の高い回転速度検出を行なえるエンコ
ーダを得られる。
The first embodiment of the present invention described above,
In order to obtain the axial thickness of each radial portion of the permanent magnet 17a that constitutes the encoders 15a and 15b shown in the two examples,
The optimum thickness can be obtained by using the SNR magnetic flux density calculation program. That is, this program
If the cross-sectional shape of the permanent magnet is obtained so that the magnetic flux density of the portions where the detecting portions of the sensor face each other becomes uniform, it is possible to obtain an encoder that can detect rotation speed without waste and with high reliability.

【0023】又、本発明のエンコーダは、回転輪が外輪
である外輪回転型の転がり軸受ユニットに就いても、適
用する事ができる。この場合、芯金の円輪部を、円筒部
の軸方向一端縁から径方向内方に折り曲げる。そして、
上述した内輪回転の転がり軸受ユニットと同様に、円輪
部の側面に全周に亙って永久磁石を添着し、上記円筒部
を上記外輪に内嵌する。その他の構成及び作用は、上述
した本発明の実施の形態の第1、2例の場合と同様であ
る。
Further, the encoder of the present invention can be applied to an outer ring rotating type rolling bearing unit in which a rotating wheel is an outer ring. In this case, the circular ring portion of the core metal is bent inward in the radial direction from one axial end of the cylindrical portion. And
Similar to the above-described inner ring rolling bearing unit, a permanent magnet is attached to the side surface of the circular ring portion over the entire circumference, and the cylindrical portion is fitted in the outer ring. Other configurations and operations are similar to those of the above-described first and second examples of the embodiment of the invention.

【0024】[0024]

【発明の効果】本発明のエンコーダ及びエンコーダ付転
がり軸受ユニットは、以上に述べた通り構成され作用す
る為、コストの上昇を抑えつつ、回転速度の検出精度の
信頼性向上を図れる。
Since the encoder and the rolling bearing unit with an encoder of the present invention are configured and operate as described above, it is possible to improve the reliability of the detection accuracy of the rotation speed while suppressing the cost increase.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態の第1例を示す、図5のA
部に相当する断面図。
FIG. 1A in FIG. 5 shows a first example of an embodiment of the present invention.
Sectional drawing corresponded to a part.

【図2】本発明のエンコーダの径方向に関する磁束密度
の分布を示す線図。
FIG. 2 is a diagram showing the distribution of magnetic flux density in the radial direction of the encoder of the present invention.

【図3】本発明の実施の形態の第2例を示す、図1と同
様の図。
FIG. 3 is a view similar to FIG. 1, showing a second example of the embodiment of the present invention.

【図4】従来構造のエンコーダ付転がり軸受ユニットの
1例を示す断面図。
FIG. 4 is a sectional view showing an example of a conventional rolling bearing unit with an encoder.

【図5】図4のエンコーダのみを取り出して示す部分断
面図。
5 is a partial cross-sectional view showing only the encoder shown in FIG.

【図6】図5のA部拡大図。FIG. 6 is an enlarged view of part A in FIG.

【図7】従来構造のエンコーダの径方向に関する磁束密
度の分布を示す線図。
FIG. 7 is a diagram showing a distribution of magnetic flux density in a radial direction of an encoder having a conventional structure.

【図8】図5のB矢視図。FIG. 8 is a view on arrow B of FIG.

【符号の説明】[Explanation of symbols]

1 ハブ 2 ハブ本体 3 内輪 4 フランジ 5、5a、5b 内輪軌道 6 段部 7 雄ねじ部 8 ナット 9 外輪 10 外輪軌道 11 転動体 12 保持器 13 取付部 14 肩部 15、15a、15b エンコーダ 16、16a、16b 芯金 17、17a 永久磁石 18 円筒部 19、19a、19b 円輪部 20 鈎部 21 シールリング 22 カバー 23 底板部 24 通孔 25 センサ 26 傾斜面 27 傾斜面 1 hub 2 hub body 3 inner ring 4 flange 5, 5a, 5b Inner ring raceway 6 steps 7 Male thread 8 nuts 9 outer ring 10 Outer ring track 11 rolling elements 12 cage 13 Mounting part 14 Shoulder 15, 15a, 15b encoder 16, 16a, 16b Core bar 17, 17a Permanent magnet 18 Cylindrical part 19, 19a, 19b Circle part 20 Hook 21 seal ring 22 cover 23 Bottom plate 24 through holes 25 sensors 26 Inclined surface 27 slope

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 全体を円輪状に形成し、円周方向に関し
てS極とN極とを交互に配置した永久磁石を備えたエン
コーダに於いて、この永久磁石の軸方向の厚さを、外径
側で薄く、内径側で厚くなる様に、この厚さを径方向に
関して漸次変化させている事を特徴とするエンコーダ。
1. An encoder provided with a permanent magnet, which is formed in a circular ring shape as a whole and in which S poles and N poles are alternately arranged in a circumferential direction, wherein the axial thickness of the permanent magnet is An encoder characterized in that the thickness is gradually changed in the radial direction so that it becomes thinner on the radial side and thicker on the inner diameter side.
【請求項2】 永久磁石と、全体を円環状に形成し、円
筒部と、この円筒部の一端縁から直角に折れ曲がった円
輪部とから構成される芯金とを備え、上記永久磁石を上
記円輪部の側面に全周に亙って添着支持して成るエンコ
ーダに於いて、上記永久磁石を添着した状態で永久磁石
の片側面が軸方向に直交する仮想平面と平行となる様
に、上記円輪部の軸方向の厚さを径方向に関して漸次変
化させた、請求項1に記載したエンコーダ。
2. A permanent magnet, and a cored bar which is formed into an annular shape as a whole and is composed of a cylindrical portion and a circular ring portion bent at a right angle from one end edge of the cylindrical portion. In an encoder which is attached and supported on the side surface of the circular ring portion over the entire circumference, one side surface of the permanent magnet is parallel to an imaginary plane orthogonal to the axial direction with the permanent magnet attached. The encoder according to claim 1, wherein the axial thickness of the circular ring portion is gradually changed in the radial direction.
【請求項3】 永久磁石と、全体を円環状に形成し、円
筒部と、この円筒部の一端縁から折れ曲がった円輪部と
から構成される芯金とを備え、上記永久磁石を上記円輪
部の側面に添着支持して成るエンコーダに於いて、上記
永久磁石を添着した状態で永久磁石の片側面が軸方向に
直交する仮想平面と平行となる様に、上記円輪部をこの
仮想平面に対して傾斜させた、請求項1に記載したエン
コーダ。
3. A permanent magnet, and a cored bar which is formed in an annular shape as a whole and has a cylindrical portion and a circular ring portion bent from one end edge of the cylindrical portion. In an encoder that is attached and supported on the side surface of the ring portion, the circular ring portion is attached to the virtual surface such that one side surface of the permanent magnet is parallel to a virtual plane orthogonal to the axial direction with the permanent magnet attached. The encoder of claim 1 tilted with respect to a plane.
【請求項4】 静止側周面に静止側軌道を有し、使用時
にも回転しない静止輪と、この静止側周面と対向する回
転側周面に回転側軌道を有し、使用時に回転する回転輪
と、この回転側軌道と上記静止側軌道との間に転動自在
に設けられた複数個の転動体と、上記回転輪に支持され
た芯金と、この芯金に永久磁石を支持する事により構成
されるエンコーダとを備えたエンコーダ付転がり軸受ユ
ニットに於いて、このエンコーダは請求項1〜3の何れ
かに記載したエンコーダである事を特徴とするエンコー
ダ付転がり軸受ユニット。
4. A stationary wheel having a stationary side track on the stationary side peripheral surface, which does not rotate even during use, and a rotating side track on the rotating side peripheral surface facing the stationary side peripheral surface, which rotates during use. A rotating wheel, a plurality of rolling elements rotatably provided between the rotating side raceway and the stationary side raceway, a core metal supported by the rotary wheel, and a permanent magnet supported on the core metal. A rolling bearing unit with an encoder, comprising: an encoder according to claim 1, wherein the encoder is the encoder according to any one of claims 1 to 3.
JP2001235311A 2001-08-02 2001-08-02 Encoder and rolling bearing unit with encoder Expired - Fee Related JP4622185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001235311A JP4622185B2 (en) 2001-08-02 2001-08-02 Encoder and rolling bearing unit with encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001235311A JP4622185B2 (en) 2001-08-02 2001-08-02 Encoder and rolling bearing unit with encoder

Publications (2)

Publication Number Publication Date
JP2003042803A true JP2003042803A (en) 2003-02-13
JP4622185B2 JP4622185B2 (en) 2011-02-02

Family

ID=19066778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001235311A Expired - Fee Related JP4622185B2 (en) 2001-08-02 2001-08-02 Encoder and rolling bearing unit with encoder

Country Status (1)

Country Link
JP (1) JP4622185B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071641A (en) * 2005-09-06 2007-03-22 Nsk Ltd State quantity measuring apparatus
JP2007256250A (en) * 2006-02-23 2007-10-04 Denso Corp Rotation angle detecting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281018A (en) * 1993-01-19 1994-10-07 Snr Roulements Coder built-in sealing structure
JPH1048230A (en) * 1996-08-07 1998-02-20 Koyo Seiko Co Ltd Bearing assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06281018A (en) * 1993-01-19 1994-10-07 Snr Roulements Coder built-in sealing structure
JPH1048230A (en) * 1996-08-07 1998-02-20 Koyo Seiko Co Ltd Bearing assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071641A (en) * 2005-09-06 2007-03-22 Nsk Ltd State quantity measuring apparatus
JP2007256250A (en) * 2006-02-23 2007-10-04 Denso Corp Rotation angle detecting device
JP4607049B2 (en) * 2006-02-23 2011-01-05 株式会社デンソー Rotation angle detector

Also Published As

Publication number Publication date
JP4622185B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP3968857B2 (en) Seal structure of rotation speed detector
JP2000289405A (en) Combined seal ring with encoder
JP4206550B2 (en) Rolling bearing unit with rotational speed detector
JP2002316508A (en) Rotation supporting device for wheel having encoder
US5938346A (en) Rolling bearing unit with rotating speed sensor
JPH09196946A (en) Rolling bearing unit with revolution speed detecting device
JP3656530B2 (en) Combination seal ring with encoder and rolling bearing unit for wheel support incorporating this
JP4311091B2 (en) Rolling bearing unit for wheel support with rotational speed detector
JPH11118816A (en) Rolling bearing unit with rotating speed detector
JP2004084848A (en) Roller bearing device
JP4604421B2 (en) Rotation support device for wheel with rotation speed detection device and assembly method thereof
JPH11174068A (en) Rolling bearing unit with encoder
JP2005016569A (en) Rolling bearing unit with encoder, and manufacturing method for the same
JP4622185B2 (en) Encoder and rolling bearing unit with encoder
JP3624494B2 (en) Rolling bearing unit with tone wheel
JP2004076752A (en) Rolling bearing device
JP2007198885A (en) Encoder, and rolling bearing device having sensor
JP4742796B2 (en) Rolling bearing unit with rotation detector
JPH1048230A (en) Bearing assembly
JP2004354102A (en) Encoder, and rolling bearing unit having the same
JP2003130075A (en) Rolling bearing unit with tone wheel
WO2004085972A1 (en) Rolling bearing unit with encoder and method of producing the same
JP2004176730A (en) Roller bearing unit for wheel with encoder
JP4144233B2 (en) Rolling bearing unit with encoder
JP3948053B2 (en) Rolling bearing unit with rotational speed detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees