JP2007071024A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine Download PDF

Info

Publication number
JP2007071024A
JP2007071024A JP2005255336A JP2005255336A JP2007071024A JP 2007071024 A JP2007071024 A JP 2007071024A JP 2005255336 A JP2005255336 A JP 2005255336A JP 2005255336 A JP2005255336 A JP 2005255336A JP 2007071024 A JP2007071024 A JP 2007071024A
Authority
JP
Japan
Prior art keywords
lean
region
nox
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005255336A
Other languages
Japanese (ja)
Other versions
JP4569769B2 (en
Inventor
Takayuki Onodera
孝之 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2005255336A priority Critical patent/JP4569769B2/en
Publication of JP2007071024A publication Critical patent/JP2007071024A/en
Application granted granted Critical
Publication of JP4569769B2 publication Critical patent/JP4569769B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device for an internal combustion engine capable of preventing the increase of an NOx exhaust quantity by reducing a lean region in response to deterioration in occluding capacity of an NOx catalyst caused by the sulfur poisoning, and of suppressing bad effect of deterioration in fuel efficiency due to the increase in execution frequency of the stoichiometric operation in accompany with the reduction of the lean region. <P>SOLUTION: At sulfur poisoning of an NOx catalyst, the execution frequency of the stoichiometric operation is increased by reducing a lean region so as to suppress the increase in an NOx exhaust amount into the atmosphere. By setting a timer region between the lean region and stoichiometric region, the lean operation is continued for the prescribed delay time at the time of transition from the lean region to the timer region, thereby extending the lean operation time in total. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は吸蔵型NOx触媒を備えた内燃機関(以下、エンジンと称する)の排気浄化装置に関するものである。   The present invention relates to an exhaust purification device for an internal combustion engine (hereinafter referred to as an engine) provided with a storage type NOx catalyst.

筒内に直接燃料を噴射する筒内噴射型エンジンなどでは空燃比を理論空燃比(ストイキオ)よりリーン側に制御するリーン運転を行うことから、酸素過剰雰囲気においても排ガス中のNOxを浄化可能な吸蔵型NOx触媒を排気通路に設置している。吸蔵型NOx触媒は、還元成分濃度が低い酸素過剰雰囲気において排ガス中のNOxを硝酸塩X−NO3として吸蔵し、該吸蔵したNOxをCO(一酸化炭素)が多い酸素濃度低下雰囲気で一旦放出した後にN2(窒素)などに還元する特性(同時に炭酸塩X−CO3が生成される)を有した触媒として構成されている。筒内噴射型エンジンに関しては、例えば吸蔵型NOx触媒のNOx吸蔵量が飽和する前に空燃比を理論空燃比またはリッチ空燃比に制御するNOxパージを定期的に実行し、これにより触媒に流入する排ガスのCO濃度を増加させてNOx触媒からNOxを放出還元して再生を図っている。 In-cylinder injection engines that inject fuel directly into the cylinder perform lean operation to control the air-fuel ratio to the lean side from the stoichiometric air-fuel ratio (stoichio), so it is possible to purify NOx in exhaust gas even in an oxygen-rich atmosphere An occlusion type NOx catalyst is installed in the exhaust passage. The occlusion type NOx catalyst occludes NOx in exhaust gas as nitrate X-NO 3 in an oxygen-excess atmosphere with a low reducing component concentration, and once releases the occluded NOx in an oxygen concentration-reduced atmosphere with a large amount of CO (carbon monoxide). It is configured as a catalyst having the property of being reduced to N 2 (nitrogen) or the like (at the same time, carbonate X-CO 3 is generated). With respect to the cylinder injection type engine, for example, the NOx purge for controlling the air-fuel ratio to the stoichiometric air-fuel ratio or the rich air-fuel ratio is periodically executed before the NOx occlusion amount of the storage-type NOx catalyst is saturated, thereby flowing into the catalyst. Regeneration is achieved by increasing the CO concentration of the exhaust gas to release and reduce NOx from the NOx catalyst.

また、一方で燃料及びエンジンオイル中にはS(サルファ)成分(硫黄成分)が含まれており、このS成分は酸素と反応してSOx(硫黄酸化物)となり、該SOxはNOxの代わりに硫酸塩として吸蔵型NOx触媒に吸蔵されてしまい、触媒担体がSOxにより被毒してNOx触媒の吸蔵能力が低下するという問題がある。このように吸蔵されたSOxは、触媒に還元成分(CO)を供給し、且つ、NOx触媒を高温状態にすることで除去されることが判っており、例えばSOx吸蔵量の推定値が所定量に達したときに、点火時期のリタード或いは膨張行程での燃料噴射を実施して排気昇温によりNOx触媒を高温状態とした上で、エンジンの空燃比をリッチ化してCOの多い酸素濃度低下雰囲気を生成することによりSOxを除去するSパージ技術が知られている。   On the other hand, fuel and engine oil contain an S (sulfur) component (sulfur component), which reacts with oxygen to form SOx (sulfur oxide), which is replaced by NOx. There is a problem that the NOx catalyst is occluded as a sulfate and the catalyst carrier is poisoned by SOx, and the NOx catalyst occlusion ability is lowered. It is known that the SOx occluded in this way is removed by supplying a reducing component (CO) to the catalyst and bringing the NOx catalyst into a high temperature state. For example, the estimated value of the SOx occlusion amount is a predetermined amount. After reaching the ignition timing, the fuel is injected during the ignition timing retard or expansion stroke, and the NOx catalyst is brought to a high temperature state by raising the exhaust gas temperature. S purge technology is known that removes SOx by producing.

しかしながら、アイドル運転や低速走行が連続した場合のようにエンジンの排気温度が元々低い低負荷低回転域では、たとえ排気昇温を行ってもSOxを除去可能な温度域までNOx触媒を昇温できない。よって、このような場合には、ある程度高いエンジンの排気温度が得られる車両の走行状況となるまでSパージの実行を待つ必要があるが、その間にもSOxの吸蔵によりNOx触媒の吸蔵能力は低下し続けて、NOx触媒がNOxを吸蔵しきれずに排出してしまうため、この不具合に着目した対策が提案されている(例えば、特許文献1参照)。   However, the NOx catalyst cannot be heated up to a temperature range where SOx can be removed even if the exhaust gas temperature is raised in a low load low rotation range where the engine exhaust temperature is originally low, such as when idling or low speed running continues. . Therefore, in such a case, it is necessary to wait for execution of the S purge until the vehicle is in a driving state where a somewhat high engine exhaust temperature is obtained. However, during this time, the storage capacity of the NOx catalyst decreases due to storage of SOx. Then, since the NOx catalyst does not completely store NOx, the NOx catalyst discharges the NOx catalyst. Therefore, a countermeasure focusing on this problem has been proposed (for example, see Patent Document 1).

特許文献1に記載の技術では、NOx触媒のNOx吸蔵能力の低下に応じてリーン運転を実行する領域を縮小することにより、リーン運転に代えて理論空燃比(ストイキオ)運転を実行し、これによりSパージを実行可能となるまでNOx排出量の増加を抑制している。
特許第3525708号明細書
In the technique described in Patent Document 1, the stoichiometric operation is performed instead of the lean operation by reducing the region in which the lean operation is performed in accordance with the decrease in the NOx storage capacity of the NOx catalyst. The increase in the NOx emission amount is suppressed until the S purge can be executed.
Japanese Patent No. 3525708

上記特許文献1に記載されたリーン領域の縮小は、例えばエンジン負荷および回転速度に応じて低負荷低回転側からリーン領域、ストイキオ領域、リッチ領域の順に区画設定された運転領域マップに対して、リーン領域を低負荷低回転側に縮小し、縮小分だけストイキオ領域を低負荷低回転側に拡大するものであるが、単に運転領域を変更しているに過ぎないため、ストイキオ領域の拡大分だけストイキオ運転の実行頻度が増加して燃費が悪化し、燃費に関して改良の余地があった。   The reduction of the lean region described in Patent Document 1 is, for example, an operation region map that is set in order of a lean region, a stoichiometric region, and a rich region from the low load low rotation side according to the engine load and the rotational speed, for example. The lean area is reduced to the low load and low rotation side, and the stoichiometric area is expanded to the low load and low rotation side by the reduced amount, but only the operation area is changed, so only the expansion of the stoichiometric area. The execution frequency of stoichio driving increased, fuel consumption deteriorated, and there was room for improvement in fuel consumption.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、硫黄被毒に起因するNOx触媒の吸蔵能力の低下に応じてリーン領域を縮小することでNOx排出量の増加を抑制できると共に、このリーン領域の縮小に伴ってストイキオ運転の実行頻度が増加したことによる燃費悪化の弊害を抑制することができる内燃機関の排気浄化装置を提供することにある。   The present invention has been made to solve such problems, and the object of the present invention is to reduce NOx emission by reducing the lean region in accordance with the decrease in storage capacity of the NOx catalyst due to sulfur poisoning. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can suppress an increase in the amount of fuel, and can suppress the adverse effects of fuel consumption deterioration due to an increase in the execution frequency of stoichiometric operation as the lean region is reduced.

上記目的を達成するため、請求項1の発明は、内燃機関の排気通路に設けられ、酸素過剰雰囲気で排ガス中のNOxを吸蔵し、酸素濃度低下雰囲気で吸蔵したNOxを放出して還元する吸蔵型NOx触媒と、内燃機関の排気空燃比を吸気行程噴射モードで空燃比を理論空燃比またはリッチ空燃比に制御して、NOx触媒に吸蔵されたNOxを放出還元するNOxパージ制御手段と、内燃機関の運転領域が所定のリーン領域にあるときに内燃機関をリーン空燃比で運転する一方、内燃機関の運転領域がリーン領域より高負荷高回転側の非リーン領域にあるときに内燃機関を非リーン空燃比で運転する空燃比制御手段と、NOx触媒の硫黄被毒状態を判定する被毒判定手段と、被毒判定手段によりNOx触媒の硫黄被毒が判定されたときに、リーン領域を低負荷低回転側に縮小すると共に、リーン領域とストイキオ領域との境界にタイマ領域を設定し、内燃機関の運転領域がリーン領域からタイマ領域に移行したときに、リーン領域でのリーン空燃比を所定のディレイ時間継続した後に理論空燃比に切換える被毒時制御手段とを備えたものである。   In order to achieve the above object, an invention according to claim 1 is provided in an exhaust passage of an internal combustion engine, occludes NOx in exhaust gas in an oxygen-excess atmosphere, and occludes NOx occluded in an oxygen concentration-reduced atmosphere and reduces it. NOx catalyst, NOx purge control means for controlling the air-fuel ratio of the internal combustion engine to the stoichiometric air-fuel ratio or rich air-fuel ratio in the intake stroke injection mode, and releasing and reducing NOx stored in the NOx catalyst; The internal combustion engine is operated at a lean air-fuel ratio when the engine operating region is in a predetermined lean region, while the internal combustion engine is not operated when the operating region of the internal combustion engine is in a non-lean region on the high load high rotation side from the lean region. When the air-fuel ratio control means that operates at a lean air-fuel ratio, the poisoning determination means that determines the sulfur poisoning state of the NOx catalyst, and the sulfur determination of the NOx catalyst is determined by the poisoning determination means, the lean region is reduced. In addition to reducing to the low load rotation side, a timer region is set at the boundary between the lean region and the stoichiometric region, and when the operating region of the internal combustion engine shifts from the lean region to the timer region, the lean air-fuel ratio in the lean region is predetermined. And a poisoning time control means for switching to the stoichiometric air-fuel ratio after continuing the delay time.

従って、内燃機関はリーン領域では空燃比制御手段によりリーン空燃比で運転され、非リーン領域では非リーン空燃比で運転され、例えばリーン領域での運転中に内燃機関から排出されるNOxがNOx触媒に吸蔵され、吸蔵されたNOxはNOxパージ制御手段により内燃機関の排気空燃比が非リーン空燃比、即ち、理論空燃比やリッチ空燃比に制御されたときに放出還元される。   Therefore, the internal combustion engine is operated at the lean air-fuel ratio by the air-fuel ratio control means in the lean region, and is operated at the non-lean air-fuel ratio in the non-lean region. For example, NOx discharged from the internal combustion engine during operation in the lean region is the NOx catalyst. The stored NOx is released and reduced when the exhaust air-fuel ratio of the internal combustion engine is controlled to a non-lean air-fuel ratio, that is, the stoichiometric air-fuel ratio or rich air-fuel ratio by the NOx purge control means.

被毒判定手段によりNOx触媒の硫黄被毒が判定されたときには、被毒時制御手段によりリーン領域が低負荷低回転側に縮小されると共に、リーン領域とストイキオ領域との境界にタイマ領域が設定され、内燃機関の運転領域がリーン領域からタイマ領域に移行したときには、リーン空燃比をディレイ時間継続した後に理論空燃比に切換えられる。
従って、硫黄被毒によりNOx触媒のNOx吸蔵能力が低下している場合であっても、リーン領域の縮小により理論空燃比での運転の頻度が増加することから、結果として大気中へのNOx排出量の増加を抑制可能となる。
When the NOx catalyst sulfur poisoning is judged by the poisoning judgment means, the lean area is reduced to the low load low rotation side by the poisoning control means, and a timer area is set at the boundary between the lean area and the stoichiometric area. When the operating region of the internal combustion engine shifts from the lean region to the timer region, the lean air-fuel ratio is switched to the stoichiometric air-fuel ratio after continuing the delay time.
Therefore, even if the NOx storage capacity of the NOx catalyst is reduced due to sulfur poisoning, the frequency of operation at the stoichiometric air-fuel ratio increases due to the reduction of the lean region, resulting in NOx emissions into the atmosphere as a result. An increase in the amount can be suppressed.

そして、リーン領域からタイマ領域に移行したときにはディレイ時間相当分だけ理論空燃比への切換が遅延されるが、リーン運転の継続はディレイ時間だけのため、大気中へのNOx排出量が問題となるほど増加せず、一方、理論空燃比への切換遅延によりトータルでのリーン運転時間が延長化されると共に、ディレイ時間が経過する以前にリーン領域に戻った場合にはリーン運転が継続されることでストイキオ運転とリーン運転との間の頻繁な切換が未然に防止され、運転切換時のトルク段差の抑制を目的としたテーリングの回数を減少させてテーリング時の燃料消費が節減される。   Then, when shifting from the lean region to the timer region, switching to the stoichiometric air-fuel ratio is delayed by an amount corresponding to the delay time, but since the lean operation is continued only for the delay time, the amount of NOx emission to the atmosphere becomes a problem. On the other hand, the total lean operation time is extended due to the delay in switching to the stoichiometric air-fuel ratio, and when returning to the lean region before the delay time elapses, the lean operation is continued. Frequent switching between stoichiometric operation and lean operation is prevented in advance, and the number of tailings for the purpose of suppressing torque steps at the time of operation switching is reduced to reduce fuel consumption during tailing.

請求項2の発明は、請求項1において、被毒時制御手段が、NOx触媒の硫黄被毒の進行に応じてリーン領域を段階的に低負荷低回転側に縮小すると共に、リーン領域の縮小に追従してタイマ領域を設定するものである。
従って、NOx触媒の硫黄被毒の進行に応じてリーン領域を段階的に低負荷低回転側に縮小すると共に、リーン領域の縮小に追従してタイマ領域を設定しているため、その時々のNOx触媒が有するNOx吸蔵能力に対して、過不足なくリーン領域の縮小によりストイキオ運転の実行頻度が増加されてNOx排出量の増加が抑制されると共に、適切なタイマ領域でリーン運転が実行されて、これによる燃費低減効果が確実に得られる。
According to a second aspect of the present invention, in the first aspect, the poisoning time control means gradually reduces the lean region to the low load and low rotation side in accordance with the progress of sulfur poisoning of the NOx catalyst, and reduces the lean region. The timer area is set following the above.
Accordingly, the lean region is gradually reduced to the low load and low rotation side in accordance with the progress of sulfur poisoning of the NOx catalyst, and the timer region is set following the reduction of the lean region. With respect to the NOx storage capacity of the catalyst, the execution frequency of the stoichiometric operation is increased by reducing the lean region without excess or deficiency, and the increase in NOx emission is suppressed, and the lean operation is executed in an appropriate timer region, The fuel consumption reduction effect by this is acquired reliably.

請求項3の発明は、請求項2において、被毒時制御手段が、リーン領域の縮小分をタイマ領域として設定するものである。
従って、リーン領域を高負荷高回転側に著しく越えた領域でリーン運転が継続されるとエンジンアウトのNOx排出量が急増するが、リーン領域の縮小分がタイマ領域として設定されることでタイマ領域の高負荷高回転側の上限が制限されるため、このような不具合が未然に防止される。
According to a third aspect of the present invention, in the second aspect, the poisoning time control means sets the reduced amount of the lean region as the timer region.
Therefore, if the lean operation is continued in a region that greatly exceeds the lean region on the high load high rotation side, the NOx emission amount of the engine out increases rapidly, but the reduced amount of the lean region is set as the timer region. Since the upper limit on the high-load high-rotation side is limited, such a problem is prevented in advance.

請求項4の発明は、請求項1乃至3において、NOxパージ制御手段が、リーン領域において予め設定された第1のリーン継続時間毎にNOxの放出還元処理を実行すると共に、リーン領域からタイマ領域に移行したときには第1のリーン継続時間より短い第2のリーン継続時間毎にNOxの放出還元処理を実行するものである。
従って、リーン領域に比較してタイマ領域では機関負荷および機関回転速度の増加に伴ってエンジンアウトのNOx排出量が増加傾向となるため、NOx触媒の硫黄被毒状況が同一であったとしてもNOx触媒のNOx吸蔵量はより早期に飽和するが、タイマ領域でより短い第2のリーン継続時間に基づいてNOxパージがより早期に実行されることから、NOx吸蔵量の飽和による大気中へのNOx排出が防止される。
According to a fourth aspect of the present invention, in the first to third aspects, the NOx purge control means executes the NOx release / reduction process for each first lean continuation time preset in the lean region, and the timer region from the lean region. When the shift is made to, the NOx emission reduction process is executed every second lean duration shorter than the first lean duration.
Therefore, in the timer region, as compared with the lean region, the NOx emission amount of the engine out tends to increase as the engine load and the engine speed increase. Even if the sulfur poisoning situation of the NOx catalyst is the same, NOx Although the NOx occlusion amount of the catalyst saturates earlier, the NOx purge is executed earlier based on the shorter second lean duration in the timer region, so NOx into the atmosphere due to the saturation of the NOx occlusion amount Emission is prevented.

以上説明したように請求項1の発明の内燃機関の排気浄化装置によれば、硫黄被毒に起因するNOx触媒の吸蔵能力の低下に応じてリーン領域を縮小することでNOx排出量の増加を抑制できると共に、リーン領域とストイキオ領域との境界に設定したタイマ領域でディレイ時間に限ってリーン空燃比を継続するようにしたため、トータルでのリーン運転時間を延長化できると共に、ストイキオ運転とリーン運転との間の頻繁な切換による燃料消費を節減でき、もって、リーン領域の縮小に伴ってストイキオ運転の実行頻度が増加したことによる燃費悪化の弊害を最小限に抑制することができる。   As described above, according to the exhaust gas purification apparatus for an internal combustion engine of the first aspect of the present invention, the NOx emission amount can be increased by reducing the lean region in accordance with the decrease in the storage capacity of the NOx catalyst due to sulfur poisoning. The lean air-fuel ratio is maintained only for the delay time in the timer region set at the boundary between the lean region and the stoichiometric region, so that the total lean operation time can be extended and the stoichiometric and lean operations can be extended. The fuel consumption due to frequent switching between the two can be reduced, and the adverse effect of fuel consumption deterioration due to the increased frequency of stoichiometric operation accompanying the reduction of the lean region can be minimized.

請求項2の発明の内燃機関の排気浄化装置によれば、請求項1に加えて、NOx触媒の硫黄被毒の進行に応じてリーン領域およびタイマ領域を最適設定し、これにより過不足なくストイキオ運転の実行頻度を増加してNOx排出量の増加を抑制できると共に、タイマ領域でのリーン運転の継続による燃費低減効果を確実に得ることができる。
請求項3の発明の内燃機関の排気浄化装置によれば、請求項2に加えて、リーン領域の縮小分としてタイマ領域を一層適切に設定して大気中へのNOx排出量の増加をより確実に抑制することができる。
According to the exhaust gas purification apparatus for an internal combustion engine of the invention of claim 2, in addition to claim 1, the lean region and the timer region are optimally set according to the progress of sulfur poisoning of the NOx catalyst. It is possible to suppress the increase in the NOx emission amount by increasing the execution frequency of the operation, and to surely obtain the fuel consumption reduction effect by continuing the lean operation in the timer region.
According to the exhaust emission control device for an internal combustion engine of the invention of claim 3, in addition to claim 2, the timer region is set more appropriately as a reduction of the lean region, and the increase in NOx emission into the atmosphere is more reliably ensured. Can be suppressed.

請求項4の発明の内燃機関の排気浄化装置によれば、請求項1乃至3に加えて、エンジンアウトのNOx排出量が増加傾向となるタイマ領域ではリーン継続時間を短縮化してより早期のNOxパージを実行するようにしたため、タイマ領域でのNOx吸蔵量の飽和による大気中へのNOx排出をより確実に防止することができる。   According to the exhaust gas purification apparatus for an internal combustion engine of a fourth aspect of the present invention, in addition to the first to third aspects, in the timer region where the NOx emission amount of the engine out tends to increase, the lean continuation time is shortened and the earlier NOx. Since purging is performed, NOx emission into the atmosphere due to saturation of the NOx occlusion amount in the timer region can be more reliably prevented.

以下、本発明を具体化した内燃機関の排気浄化装置の一実施形態を説明する。
図1は本実施形態のエンジンの排気浄化装置を示す全体構成図であり、本実施形態の排気浄化装置は筒内噴射型直列4気筒ガソリンエンジン1を対象として構成されている。エンジン1にはDOHC4弁式の動弁機構が採用されており、図示しないクランク軸によりシリンダヘッド2上に設けられた吸気カムシャフト3及び排気カムシャフト4が回転駆動され、これらのカムシャフト3,4により吸気弁5及び排気弁6が所定のタイミングで開閉される。
Hereinafter, an embodiment of an exhaust emission control device for an internal combustion engine embodying the present invention will be described.
FIG. 1 is an overall configuration diagram showing an exhaust emission control device for an engine according to the present embodiment. The exhaust emission control device according to the present embodiment is configured for an in-cylinder injection type in-line four-cylinder gasoline engine 1. The engine 1 employs a DOHC 4-valve type valve operating mechanism, and an intake camshaft 3 and an exhaust camshaft 4 provided on the cylinder head 2 are rotationally driven by a crankshaft (not shown). 4, the intake valve 5 and the exhaust valve 6 are opened and closed at a predetermined timing.

シリンダヘッド2には各気筒毎に点火プラグ7と共に電磁式の燃料噴射弁8(燃料噴射手段)が取り付けられ、図示しない燃料ポンプから供給された高圧燃料が燃料噴射弁8の開閉に応じて燃焼室9内に直接噴射される。シリンダヘッド2の各気筒には両カムシャフト3,4間を抜けるようにして略直立方向に吸気ポート10が形成され、吸気弁5の開弁に伴って吸入空気がエアクリーナ11からスロットル弁12、サージタンク13、吸気マニホールド14、吸気ポート10を経て燃焼室9内に導入される。   The cylinder head 2 is provided with an electromagnetic fuel injection valve 8 (fuel injection means) together with an ignition plug 7 for each cylinder, and high-pressure fuel supplied from a fuel pump (not shown) is combusted in response to opening and closing of the fuel injection valve 8. It is injected directly into the chamber 9. An intake port 10 is formed in each cylinder of the cylinder head 2 so as to pass between the camshafts 3 and 4 in a substantially upright direction. As the intake valve 5 is opened, intake air is supplied from the air cleaner 11 to the throttle valve 12. It is introduced into the combustion chamber 9 through the surge tank 13, the intake manifold 14, and the intake port 10.

シリンダヘッド2の各気筒には略水平方向に排気ポート15が形成され、排気ポート15には排気マニホールド16を介して排気通路17が接続されている。排気通路17の車両の床下に相当する位置には触媒コンバータ18が設けられ、触媒コンバータ18は排気上流側の吸蔵型NOx触媒19と排気下流側の三元触媒20とから構成されている。そして、燃焼室9内で燃焼後の排ガスは排気マニホールド16および排気通路17を介して触媒コンバータ18に流入し、NOx触媒19および三元触媒20を流通した後に排気絞り弁21を経て外部に排出される。   An exhaust port 15 is formed in each cylinder of the cylinder head 2 in a substantially horizontal direction, and an exhaust passage 17 is connected to the exhaust port 15 via an exhaust manifold 16. A catalytic converter 18 is provided at a position corresponding to the floor of the vehicle in the exhaust passage 17, and the catalytic converter 18 includes an occlusion-type NOx catalyst 19 on the exhaust upstream side and a three-way catalyst 20 on the exhaust downstream side. The exhaust gas after combustion in the combustion chamber 9 flows into the catalytic converter 18 via the exhaust manifold 16 and the exhaust passage 17, and after passing through the NOx catalyst 19 and the three-way catalyst 20, is discharged to the outside through the exhaust throttle valve 21. Is done.

上記触媒コンバータ18のNOx触媒19は例えば、白金(Pt)、ロジウム(Rh)等の貴金属と、バリウム(Ba)、カリウム(K)、ナトリウム(Na)等のアルカリ金属、アルカリ土類金属のNOxトラップ剤とを含み、、酸素過剰雰囲気においてNOxを吸蔵し、主としてCOの存在する酸素濃度低下雰囲気においてNOxを一旦放出した後にN2(窒素)などに還元する機能を持つものである。また、三元触媒20は、白金、ロジウム等の貴金属を含み、、理論空燃比において排ガス中のHC,COおよびNOxを浄化する機能を持つものである。 The NOx catalyst 19 of the catalytic converter 18 includes, for example, noble metals such as platinum (Pt) and rhodium (Rh), alkali metals such as barium (Ba), potassium (K), and sodium (Na), and NOx of alkaline earth metals. It contains a trapping agent, has a function of occluding NOx in an oxygen-excess atmosphere, and once releasing NOx in an oxygen concentration-reduced atmosphere mainly containing CO and then reducing it to N 2 (nitrogen) or the like. The three-way catalyst 20 contains a noble metal such as platinum or rhodium, and has a function of purifying HC, CO and NOx in the exhaust gas at the stoichiometric air-fuel ratio.

車内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(エンジン制御ユニット)31が設置されており、エンジン1の総合的な制御を行う。ECU31の入力側にはエンジン1の回転速度Neを検出する回転速度センサ32、NOx触媒19の下流側に設けられたNOxセンサ34などの各種センサ類が接続され、ECU31の出力側には上記燃料噴射弁8、点火プラグ7を駆動するイグナイタ33などの各種デバイス類が接続されている。   In the vehicle, an input / output device (not shown), a storage device (ROM, RAM, etc.) for storing control programs and control maps, an ECU (engine control unit) equipped with a central processing unit (CPU), a timer counter, etc. 31 is installed, and comprehensive control of the engine 1 is performed. Various sensors such as a rotational speed sensor 32 for detecting the rotational speed Ne of the engine 1 and a NOx sensor 34 provided on the downstream side of the NOx catalyst 19 are connected to the input side of the ECU 31, and the fuel is connected to the output side of the ECU 31. Various devices such as an igniter 33 for driving the injection valve 8 and the spark plug 7 are connected.

ECU31は各センサからの検出情報に基づいてマップから点火時期や燃料噴射量などを決定し、決定した制御量に基づいて燃料噴射弁8やイグナイタ33を駆動制御してエンジン1を運転する。
燃料噴射制御については、噴射時期を吸気行程に設定した吸気行程噴射モードと噴射時期を圧縮行程に設定した圧縮行程噴射モードとをエンジン1の運転領域に応じて切換えており、具体的にはスロットル開度θthとエンジン回転速度Neとに基づいて機関負荷と相関する目標平均有効圧Peを求め、この目標平均有効圧Peとエンジン回転速度Neとから図2に示す運転領域マップに従って実行すべき燃料噴射モードを決定すると共に、決定した燃料噴射モードにおいて目標平均有効圧Pe及びエンジン回転速度Neから求めた目標空燃比に基づいて燃料噴射量を決定して燃料噴射制御を実行する。
The ECU 31 determines the ignition timing, the fuel injection amount, and the like from the map based on the detection information from each sensor, and operates the engine 1 by drivingly controlling the fuel injection valve 8 and the igniter 33 based on the determined control amount.
Regarding the fuel injection control, the intake stroke injection mode in which the injection timing is set to the intake stroke and the compression stroke injection mode in which the injection timing is set to the compression stroke are switched according to the operating region of the engine 1, specifically, the throttle. Based on the opening degree θth and the engine speed Ne, a target average effective pressure Pe that correlates with the engine load is obtained, and the fuel to be executed according to the operation region map shown in FIG. 2 from the target average effective pressure Pe and the engine speed Ne. In addition to determining the injection mode, the fuel injection control is executed by determining the fuel injection amount based on the target air-fuel ratio obtained from the target average effective pressure Pe and the engine speed Ne in the determined fuel injection mode.

圧縮行程噴射モードでは圧縮行程で燃料噴射を実行して、吸気ポート10から流入した吸入空気により生起されたタンブル流を利用して点火プラグ7の周囲に理論空燃比近傍の混合気を確保した上で、全体として極めてリーンな空燃比(例えば、40前後)で着火する層状燃焼を行う。一方、吸気行程噴射モードでは吸気行程で燃料噴射を実行して燃料噴霧を吸入空気と十分に混合して燃焼させる均一燃焼を行うものであり、当該吸気行程噴射モードは、図示しないOセンサの出力に基づいて空燃比を理論空燃比にフィードバックするストイキオF/B制御モードとオープンループでリッチ側の空燃比に制御するO/L制御モードとに分かれている(空燃比制御手段)。 In the compression stroke injection mode, fuel injection is performed in the compression stroke, and a mixture near the stoichiometric air-fuel ratio is secured around the spark plug 7 using the tumble flow generated by the intake air flowing in from the intake port 10. Thus, stratified combustion is performed that ignites at an extremely lean air-fuel ratio (for example, around 40) as a whole. On the other hand, in the intake stroke injection mode, the fuel injection is performed in the intake stroke, and the fuel spray is sufficiently mixed with the intake air to be burned, and the intake stroke injection mode is performed by an O 2 sensor (not shown). It is divided into a stoichiometric F / B control mode in which the air-fuel ratio is fed back to the stoichiometric air-fuel ratio based on the output and an O / L control mode in which the air-fuel ratio on the rich side is controlled in an open loop (air-fuel ratio control means).

図2に示すように目標平均有効圧Pe及びエンジン回転速度Neが低い領域は圧縮行程噴射モードによりリーン運転を実行するリーン領域が設定され、リーン領域より目標平均有効圧Peおよびエンジン回転速度Neが高くなるに従って、ストイキオF/B制御モードによりストイキオ運転を実行するストイキオ領域(非リーン領域)、O/L制御モードによりリッチ運転を実行するリッチ領域(非リーン領域)が設定されている。   As shown in FIG. 2, in the region where the target average effective pressure Pe and the engine rotational speed Ne are low, a lean region in which the lean operation is executed is set by the compression stroke injection mode, and the target average effective pressure Pe and the engine rotational speed Ne are set from the lean region. As it becomes higher, a stoichiometric region (non-lean region) in which stoichiometric operation is executed in the stoichiometric F / B control mode and a rich region (non-lean region) in which rich operation is executed in the O / L control mode are set.

ここで、図2の運転領域マップは初期設定のものであり(以下、当該運転領域マップを初期設定マップと称する)、本実施形態では、この初期設定マップの他に特性が異なる図3〜5の3種の運転領域マップ(以下、第1〜第3NOx低減マップと称する)が設定されており、NOx触媒19のNOx吸蔵能力に応じてECU31の燃料噴射制御に適用する運転領域マップを切換えている。そこで、まず、各運転領域マップの特性について述べる。   2 is an initial setting map (hereinafter, the driving area map will be referred to as an initial setting map). In the present embodiment, the characteristics differ in addition to the initial setting map. These three operation region maps (hereinafter referred to as first to third NOx reduction maps) are set, and the operation region map applied to the fuel injection control of the ECU 31 is switched according to the NOx occlusion capacity of the NOx catalyst 19. Yes. First, the characteristics of each operation region map will be described.

端的に表現すると、各運転領域マップは初期設定マップに対して順次リーン領域を縮小すると共に、必要に応じてリーン領域とストイキオ領域との境界にタイマ領域を設定したものであり、各運転領域マップでのリーン領域の縮小は、初期設定マップのリーン領域の外郭(リーン領域とストイキオ領域との境界)より低負荷低回転側に設定された内外2本の境界線L1,L2(図3,4に示す)を基準として行われている。   In short, each driving area map is obtained by sequentially reducing the lean area with respect to the initial setting map, and setting a timer area at the boundary between the lean area and the stoichiometric area as necessary. The lean region is reduced at the inner and outer two boundary lines L1 and L2 (see FIGS. 3 and 4) set on the low load and low rotation side from the outline of the lean region of the initial setting map (the boundary between the lean region and the stoichiometric region). As shown in the following).

まず、図3に示す第1NOx低減マップでは、初期設定マップに対してリーン領域を外側の境界線L1まで縮小すると共に、リーン領域の縮小分(即ち、初期設定マップのリーン領域の外郭と外側の境界線L1との間の領域)をタイマ領域として設定している。なお、後に詳述するようにタイマ領域では基本的にストイキオ領域と同様にストイキオ運転が実行されるが、リーン領域側からタイマ領域に移行したときには所定のディレイ時間Tdelayに限ってリーン運転を継続するように設定されている。   First, in the first NOx reduction map shown in FIG. 3, the lean region is reduced to the outer boundary line L1 with respect to the initial setting map, and the lean region is reduced (that is, the outer and outer contours of the lean region of the initial setting map). The area between the boundary line L1) is set as the timer area. As will be described in detail later, the stoichiometric operation is basically executed in the timer area in the same manner as in the stoichiometric area. However, when shifting from the lean area to the timer area, the lean operation is continued only for a predetermined delay time Tdelay. Is set to

また、図4に示す第2NOx低減マップでは、第1NOx低減マップに対してリーン領域を内側の境界線L2まで縮小すると共に、リーン領域の縮小分(即ち、内外の境界線L1,L2の間の領域)をタイマ領域として設定している。
また、図5に示す第3NOx低減マップでは、初期設定マップに対してリーン領域を廃止したものであり(第2および第3NOx低減マップのタイマ領域も廃止)、結果としてリッチ領域より低負荷低回転側は全てストイキオ領域として設定されている。
In the second NOx reduction map shown in FIG. 4, the lean region is reduced to the inner boundary line L2 with respect to the first NOx reduction map, and the lean region is reduced (that is, between the inner and outer boundary lines L1 and L2). Area) is set as the timer area.
Further, in the third NOx reduction map shown in FIG. 5, the lean region is abolished with respect to the initial setting map (the timer region of the second and third NOx reduction maps is also abolished), and as a result, lower load and lower rotation than the rich region. All sides are set as stoichiometric areas.

一方、リーン領域でのリーン運転中においてエンジン1から排出されるNOxはNOx触媒19に吸蔵され、NOx触媒19のNOx吸蔵量が飽和する前に吸気行程噴射モードで理論空燃比またはリッチ空燃比(非リーン空燃比)に制御するNOxパージが定期的に実行され、これにより排ガスのCO濃度の増加によりNOx触媒19からNOxが放出還元される(NOxパージ制御手段)。このようなNOxパージは、例えば図6に示すように所定の第1のリーン継続時間T1lean毎に実行され、図示しないマップに従って目標平均有効圧Peおよびエンジン回転速度Neから求めた第1のリーン継続時間T1leanが経過した時点でNOxパージが実行されてNOxが放出還元され、このNOx吸蔵・放出還元が繰返される。   On the other hand, NOx discharged from the engine 1 during lean operation in the lean region is stored in the NOx catalyst 19, and the theoretical air-fuel ratio or rich air-fuel ratio (rich air-fuel ratio (in the intake stroke injection mode) before the NOx storage amount of the NOx catalyst 19 is saturated. A NOx purge that is controlled to a non-lean air-fuel ratio) is periodically executed, whereby NOx is released and reduced from the NOx catalyst 19 due to an increase in the CO concentration of the exhaust gas (NOx purge control means). For example, as shown in FIG. 6, the NOx purge is executed every predetermined first lean continuation time T1lean, and the first lean continuation obtained from the target average effective pressure Pe and the engine speed Ne according to a map (not shown). When the time T1lean elapses, NOx purge is executed to release and reduce NOx, and this NOx occlusion / release reduction is repeated.

リーン領域での第1のリーン継続時間T1leanは以上のように設定されるが、タイマ領域でもディレイ時間Tdelayに限ってリーン運転が継続されることから、設定されたディレイ時間Tdelayが長くてリーン運転の継続中にNOx吸蔵量が飽和する場合にはNOxパージを実行する必要が生じる。そこで、タイマ領域に対してもリーン継続時間が設定されているが、タイマ領域では目標平均有効圧Peおよびエンジン回転速度Neの増加に伴ってリーン領域に比較してエンジンアウトのNOx排出量が増加傾向となることを鑑みて、図7に示すように当該タイマ領域で適用される第2のリーン継続時間T2leanは、リーン領域の第1のリーン継続時間T1leanとは別のマップに基づいてより短時間に設定される。   The first lean duration T1lean in the lean region is set as described above, but since the lean operation is continued only in the timer region for the delay time Tdelay, the set delay time Tdelay is long and the lean operation is performed. When the NOx occlusion amount saturates during the continuation of NOx, it is necessary to perform NOx purge. Therefore, although the lean duration is set for the timer region, the engine-out NOx emission increases in the timer region as the target average effective pressure Pe and the engine rotational speed Ne increase as compared with the lean region. In view of this tendency, as shown in FIG. 7, the second lean duration T2lean applied in the timer area is shorter based on a map different from the first lean duration T1lean in the lean area. Set to time.

また、NOx触媒19にはNOxと共に燃料及びエンジンオイル中のS成分から生成されたSOxが吸蔵され、当該SOxはCO濃度を増加させた酸素濃度低下雰囲気のみでは除去不能なため、SOx吸蔵量の推定値が所定量に達したときに、点火時期のリタードおよび膨張行程での燃料噴射を実施して排気昇温によりNOx触媒19を高温状態とした上で、リッチ運転によるCO濃度の増加で酸素濃度低下雰囲気を生成するSパージを実行し、これによりNOx触媒19からSOxを除去している。   The NOx catalyst 19 also stores SOx generated from the S component in the fuel and engine oil together with NOx. Since the SOx cannot be removed only in an oxygen concentration-decreasing atmosphere in which the CO concentration is increased, the SOx occlusion amount is reduced. When the estimated value reaches a predetermined amount, fuel is injected during the ignition timing retard and expansion stroke, and the NOx catalyst 19 is brought to a high temperature state by raising the exhaust gas temperature. S purge that generates a concentration-reduced atmosphere is executed, thereby removing SOx from the NOx catalyst 19.

そして、アイドル運転や低速走行が連続した場合のようにエンジン1の排気温度が元々低い低負荷域では、たとえ排気昇温を行ってもSOxを除去可能な温度域までNOx触媒19を昇温できないことから、Sパージを実行可能なエンジン運転状態に移行するまでは特許文献1の技術と同様に、リーン領域の縮小によりストイキオ運転の実行頻度を増加させてエンジンアウトのNOx排出量を低減する対策を講じている。これに加えて本実施形態では上記タイマ領域でリーン運転を継続することにより、上記ストイキオ運転の実行頻度の増加に伴う燃費悪化を抑制しており、以下、当該Sパージの実行状況について詳述する。   In a low load range where the exhaust temperature of the engine 1 is originally low, such as when idling or low speed running continues, the NOx catalyst 19 cannot be raised to a temperature range where SOx can be removed even if the exhaust temperature is raised. Therefore, until shifting to an engine operating state where S purge can be executed, a measure for reducing the NOx emission amount of the engine out by increasing the execution frequency of the stoichiometric operation by reducing the lean region, as in the technique of Patent Document 1. Have taken. In addition to this, in the present embodiment, the lean operation is continued in the timer region, thereby suppressing the deterioration of fuel consumption due to the increase in the execution frequency of the stoichiometric operation. Hereinafter, the execution state of the S purge will be described in detail. .

ECU31はエンジン1の運転中に図8に示すSパージ制御・マップ切換ルーチンを所定の制御インターバルで実行しており、今、説明の便宜上、運転領域マップとして図2の初期設定マップが設定されて、当該初期設定マップから決定された燃料噴射モードに基づきECU31により燃料噴射制御が実行されているものとする。
まず、ECU31はステップS2でSOx吸蔵量を推定するインターバル時間が経過したか否かを判定し、判定がNo(否定)のときにはルーチンを終了する。インターバル時間の経過によりステップS2の判定がYes(肯定)になると、続くステップS4でNOx触媒19に吸蔵されたSOx量を推定する(被毒判定手段)。当該推定処理は、例えばエンジン1の運転状態に基づいてその時々の排ガス中に含まれるSOx量を推定し、推定したSOx量を前回のSパージの実行時から逐次積算することにより行われ、このSOx量の積算値が現在のNOx触媒19に吸蔵されたSOx量と見なされる。
The ECU 31 executes the S purge control / map switching routine shown in FIG. 8 at predetermined control intervals while the engine 1 is in operation. Now, for convenience of explanation, the initial setting map of FIG. 2 is set as the operation region map. It is assumed that the fuel injection control is executed by the ECU 31 based on the fuel injection mode determined from the initial setting map.
First, the ECU 31 determines in step S2 whether or not the interval time for estimating the SOx occlusion amount has elapsed. When the determination is No (negative), the routine is terminated. If the determination in step S2 becomes Yes (positive) due to the elapse of the interval time, the amount of SOx stored in the NOx catalyst 19 is estimated in the subsequent step S4 (poisoning determination means). The estimation process is performed, for example, by estimating the SOx amount contained in the exhaust gas at that time based on the operating state of the engine 1 and sequentially integrating the estimated SOx amount from the previous execution of the S purge. The integrated value of the SOx amount is regarded as the SOx amount occluded in the current NOx catalyst 19.

その後、ステップS6でSOx量が所定のSOx判定値以上であるか否かを判定し、判定がNoのときにはSパージの実行が不要であるとしてルーチンを終了する。また、ステップS6の判定がYesのときにはSパージの実行を要するとして続くステップS8に移行する。ステップS8では現在のエンジン1の運転状態に基づきSパージを実行可能であるか否か、即ち、点火時期のリタードや膨張行程での燃料噴射などの排気昇温によりSOxを除去可能な温度域までNOx触媒19を昇温可能であるか否かを判定する。   Thereafter, in step S6, it is determined whether or not the SOx amount is equal to or greater than a predetermined SOx determination value. When the determination is No, the routine is terminated because it is not necessary to perform the S purge. Further, when the determination in step S6 is Yes, it is determined that execution of S purge is required, and the process proceeds to subsequent step S8. In step S8, whether or not S purge can be executed based on the current operating state of the engine 1, that is, to a temperature range in which SOx can be removed by exhaust temperature rise such as ignition timing retard or fuel injection in the expansion stroke. It is determined whether or not the temperature of the NOx catalyst 19 can be raised.

例えば高速走行時のように目標平均有効圧Peおよびエンジン回転速度Neが比較的高い運転領域では、Sパージを実行可能としてステップS8でYesの判定を下し、ステップS10に移行してSパージを実行し、続くステップS12で運転領域マップとして初期設定マップを設定した後にルーチンを終了する。上記のように既に初期設定マップが設定されているため、このときにはこのマップ設定状態が維持されることになる。   For example, in an operation region where the target average effective pressure Pe and the engine rotational speed Ne are relatively high, such as during high-speed driving, S purge can be executed, a Yes determination is made in step S8, and the flow proceeds to step S10 to perform S purge. The routine is terminated after the initial setting map is set as the operation region map in the subsequent step S12. Since the initial setting map has already been set as described above, this map setting state is maintained at this time.

一方、アイドル運転や低速走行が連続した場合のように目標平均有効圧Peおよびエンジン回転速度Neが比較的低い運転状態では、Sパージを実行不能としてステップS8でNoの判定を下し、ステップS14で運転領域マップとして第1NOx低減マップを設定する。続くステップS16ではNOxセンサ34の出力が第1NOx判定値以上であるか否かを判定し、判定がNoのとき、即ち、NOx触媒19に吸蔵されずに下流側に漏れるNOxが許容できる程度であり、NOx触媒19の硫黄被毒がそれほど進行していないと推測されるときにはそのまま上記ステップS8に戻る。従って、この場合には、初期設定マップに代えてリーン領域を縮小した第1NOx低減マップが燃料噴射制御に適用され、後述のようにリーン領域の縮小に伴ってエンジンアウトのNOx排出量が少ないストイキオ運転の実行頻度が増加することによりNOx低減が図られる(被毒時制御手段)。   On the other hand, in an operation state where the target average effective pressure Pe and the engine rotational speed Ne are relatively low as in the case where idle operation or low-speed traveling continues, S purge cannot be executed, and No is determined in step S8. Then, the first NOx reduction map is set as the operation region map. In the subsequent step S16, it is determined whether or not the output of the NOx sensor 34 is equal to or greater than the first NOx determination value. When the determination is No, that is, NOx leaking downstream without being stored in the NOx catalyst 19 is acceptable. If it is estimated that the sulfur poisoning of the NOx catalyst 19 is not progressing so much, the process directly returns to step S8. Therefore, in this case, the first NOx reduction map in which the lean region is reduced instead of the initial setting map is applied to the fuel injection control, and the stoichiometric engine exhaust amount of NOx that decreases as the lean region decreases as will be described later. NOx reduction is achieved by increasing the frequency of operation (poisoning control means).

また、このような第1NOx低減マップの適用によるNOx低減にも拘わらずステップS16の判定がYesになったときには、NOx触媒19の硫黄被毒により第1NOx低減マップでは大気中へのNOx排出量の増加を抑制不可能と見なし、ステップS18で運転領域マップとして第2NOx低減マップを設定する。続くステップS20ではNOxセンサ34の出力が第2NOx判定値以上であるか否かを判定し、判定がNoのときには上記ステップS8に戻る。従って、この場合には、第1NOx低減マップに代えてよりリーン領域を縮小した第2NOx低減マップが燃料噴射制御に適用され、エンジンアウトのNOx排出量はより低減される。なお、第2NOx判定値は第1NOx判定値と同一値にしてもよいし、別設定としてもよい。   In addition, when the determination in step S16 becomes Yes despite the NOx reduction due to the application of the first NOx reduction map, the NOx emission amount of the NOx into the atmosphere is reduced in the first NOx reduction map due to sulfur poisoning of the NOx catalyst 19. It is considered that the increase cannot be suppressed, and the second NOx reduction map is set as the operation region map in step S18. In subsequent step S20, it is determined whether or not the output of the NOx sensor 34 is equal to or greater than the second NOx determination value. If the determination is no, the process returns to step S8. Therefore, in this case, the second NOx reduction map in which the lean region is further reduced instead of the first NOx reduction map is applied to the fuel injection control, and the NOx emission amount of the engine out is further reduced. The second NOx determination value may be the same value as the first NOx determination value or may be set separately.

また、このような第2NOx低減マップの適用によるNOx低減にも拘わらずステップS20の判定がYesになったときには、第2NOx低減マップではNOx排出量の増加を抑制不可能と見なし、ステップS22で運転領域マップとして第3NOx低減マップを設定した後に上記ステップS8に戻る。従って、この場合には、リーン領域を廃止した第3NOx低減マップが燃料噴射制御に適用され、エンジンアウトのNOx排出量はより低減される。   In addition, when the determination in step S20 becomes Yes despite the NOx reduction due to the application of the second NOx reduction map, the second NOx reduction map considers that the increase in the NOx emission amount cannot be suppressed, and the operation is performed in step S22. After setting the third NOx reduction map as the region map, the process returns to step S8. Therefore, in this case, the third NOx reduction map that eliminates the lean region is applied to the fuel injection control, and the NOx emission amount of the engine out is further reduced.

一方、このような運転領域マップが順次切換えられている間に、NOx触媒19を昇温可能なエンジン運転状態に移行してステップS8の判定がYesになったときには、直ちにステップS10でSパージが実行され、続くステップS12で運転領域マップが初期設定マップに戻される。これによりNOx触媒19の硫黄被毒が解消されると共に、運転領域マップは当初に設定されていた初期設定マップに復帰する。   On the other hand, when such an operation region map is sequentially switched, when the NOx catalyst 19 is shifted to an engine operation state in which the temperature can be raised and the determination in step S8 becomes Yes, the S purge is immediately performed in step S10. In step S12, the operation region map is returned to the initial setting map. As a result, sulfur poisoning of the NOx catalyst 19 is eliminated, and the operation region map returns to the initially set initial map.

次に、以上のECU31による運転領域マップの切換に伴う燃料噴射制御の実行状況について説明する。
上記のようにSパージを実行不能時に図2の初期設定マップから切換えられる図3の第1NOx低減マップでは、初期設定マップに対するリーン領域の縮小分がタイマ領域として設定されている。当該タイマ領域では基本的にストイキオ領域と同様にストイキオ運転が実行されるため、結果としてストイキオ運転の実行頻度が増加してリーン運転に比較してエンジンアウトのNOx排出量が低下し、硫黄被毒によりNOx吸蔵能力が低下したNOx触媒19であっても大気中へのNOx排出量の増加を抑制可能となる。
Next, the execution state of the fuel injection control accompanying the switching of the operation region map by the ECU 31 will be described.
In the first NOx reduction map of FIG. 3 that is switched from the initial setting map of FIG. 2 when the S purge cannot be executed as described above, the reduced amount of the lean area with respect to the initial setting map is set as the timer area. Since the stoichiometric operation is basically performed in the timer area in the same manner as the stoichiometric area, the frequency of the stoichiometric operation is increased, resulting in a decrease in engine-out NOx emissions compared to lean operation, and sulfur poisoning. As a result, even if the NOx storage capacity of the NOx catalyst 19 is reduced, an increase in the amount of NOx discharged into the atmosphere can be suppressed.

また、当該第1NOx低減マップの適用時においてエンジン1の運転状態の変化に伴ってリーン領域側からタイマ領域に移行したときには、予め設定されたディレイ時間Tdelayに亘ってリーン運転が継続された後にストイキオ運転に切換えられ、一方、タイマ領域に移行したもののディレイ時間Tdelayが経過する以前にリーン領域に戻った場合には、ストイキオ運転に切換えられることなくリーン運転が継続され、結果としてストイキオ運転とリーン運転との間の頻繁な切換が未然に防止される。   Further, when the first NOx reduction map is applied, when the engine 1 shifts from the lean region side to the timer region with a change in the operation state, the lean operation is continued for a preset delay time Tdelay and then the stoichiometric operation is continued. On the other hand, if the operation is switched to the timer region but returns to the lean region before the delay time Tdelay elapses, the lean operation is continued without being switched to the stoichiometric operation. As a result, the stoichiometric operation and the lean operation are performed. Frequent switching between and is prevented.

ディレイ時間Tdelayは現在のNOx触媒19が有するNOx吸蔵能力、より具体的にはタイマ領域への移行によりエンジンアウトのNOx排出量が増加してNOx触媒19がNOxを吸蔵しきれずに排出し始めるまでの遅れを考慮して設定されているため、リーン運転のままタイマ領域に移行しても当該ディレイ時間Tdelayが経過するまでは大気中へのNOx排出量が問題となるほど増加することはない。   The delay time Tdelay is the NOx occlusion capacity of the current NOx catalyst 19, more specifically, until the NOx emission amount of the engine out increases due to the shift to the timer region, and the NOx catalyst 19 begins to exhaust the NOx without being occluded. Therefore, even if the operation shifts to the timer region while the lean operation is being performed, the NOx emission amount to the atmosphere does not increase so as to cause a problem until the delay time Tdelay elapses.

そして、このようにディレイ時間Tdelay相当分だけストイキオ運転への切換を遅延させることで、トータルでのリーン運転時間を延長化できると共に、ディレイ時間Tdelayが経過する以前にリーン領域に戻った場合にはリーン運転が継続されることでストイキオ運転とリーン運転との間の頻繁な切換が防止され、運転切換時のトルク段差の抑制を目的としたテーリングの回数を減少させて、当該テーリングを実行するための燃料消費を節減できる。また、タイマ領域での短時間のストイキオ運転では、NOx触媒19から放出され始めたNOxを還元する時間的余裕がなく排出してしまうため、この観点からも短時間のストイキオ運転を防止することが好ましい。   In addition, by delaying the switching to the stoichiometric operation by an amount corresponding to the delay time Tdelay in this way, the total lean operation time can be extended, and when returning to the lean region before the delay time Tdelay elapses To prevent frequent switching between stoichiometric operation and lean operation by continuing lean operation, and to reduce the number of tailings for the purpose of suppressing torque steps during operation switching and to execute tailing Can save fuel consumption. In addition, in a short-time stoichiometric operation in the timer region, NOx that has started to be released from the NOx catalyst 19 is discharged without sufficient time to reduce, so from this point of view, a short-time stoichiometric operation can be prevented. preferable.

よって、本実施形態のエンジン1の排気浄化装置によれば、特許文献1の技術と同様にリーン領域の縮小によりストイキオ運転の実行頻度を増加させて、硫黄被毒によりNOx触媒19のNOx吸蔵能力が低下している場合であっても大気中へのNOx排出量の増加を抑制できる上に、タイマ領域においてディレイ時間Tdelayに限ってリーン運転を継続することによりトータルでのリーン運転時間を延長化できると共に、ストイキオ運転とリーン運転との間の頻繁な切換による燃料消費を節減でき、もって、リーン領域の縮小に伴ってストイキオ運転の実行頻度が増加したことによる燃費悪化の弊害を最小限に抑制することができる。   Therefore, according to the exhaust gas purification apparatus for the engine 1 of the present embodiment, the NOx storage capability of the NOx catalyst 19 is increased by sulfur poisoning by increasing the execution frequency of the stoichiometric operation by reducing the lean region as in the technique of Patent Document 1. In addition to being able to suppress an increase in NOx emissions into the atmosphere even when there is a decrease, the total lean operation time is extended by continuing lean operation only in the timer region for the delay time Tdelay. In addition, fuel consumption due to frequent switching between stoichiometric operation and lean operation can be reduced, thereby minimizing the adverse effects of fuel consumption deterioration due to the increase in the frequency of stoichiometric operation as the lean region is reduced. can do.

また、第1NOx低減マップを適用してもNOx排出量の増加を抑制不能なときには、よりリーン領域を縮小した第2NOx低減マップが適用され、当該第2NOx低減マップでも上記第1NOx低減マップと同じくタイマ領域においてディレイ時間Tdelayに限ったリーン運転の継続が行われ、全く同様の燃費低減効果が得られる。
そして、このように硫黄被毒によるNOx触媒19のNOx吸蔵能力の低下に応じて初期設定マップから第1NOx低減マップ、第2NOx低減マップへとリーン領域を段階的に縮小する一方、リーン領域の縮小に追従してタイマ領域を常にリーン領域の高負荷高回転側に位置させている。
Further, when the increase in the NOx emission amount cannot be suppressed even when the first NOx reduction map is applied, the second NOx reduction map in which the lean region is further reduced is applied, and the second NOx reduction map also has the same timer as the first NOx reduction map. In the region, the lean operation is continued only for the delay time Tdelay, and the same fuel consumption reduction effect is obtained.
Then, the lean region is gradually reduced from the initial setting map to the first NOx reduction map and the second NOx reduction map in accordance with the decrease in the NOx storage capacity of the NOx catalyst 19 due to sulfur poisoning, while the lean region is reduced. The timer area is always positioned on the high load high rotation side of the lean area.

従って、その時々のNOx触媒19が有するNOx吸蔵能力に対して、過不足なくリーン領域の縮小によりストイキオ運転の実行頻度を増加してNOx排出量の増加を抑制でき、例えば過度のリーン領域の縮小によりストイキオ運転の実行頻度が増加したときの燃費悪化、或いはリーン領域の縮小不足によりストイキオ運転が実行されないときのNOx排出量の増加などを未然に防止できる。   Therefore, with respect to the NOx storage capacity of the NOx catalyst 19 at that time, it is possible to suppress the increase in NOx emission by increasing the execution frequency of stoichiometric operation by reducing the lean region without excessive or insufficient, for example, reducing the excessive lean region. Thus, it is possible to prevent deterioration of fuel consumption when the frequency of execution of stoichiometric operation increases or increase in NOx emission when stoichiometric operation is not executed due to insufficient reduction of the lean region.

また、リーン領域の縮小に追従してタイマ領域を常にリーン領域の高負荷高回転側、即ち、エンジンアウトのNOx排出量は増加するものの短時間ならリーン運転可能な領域に設定しているため、適切なタイマ領域でディレイ時間Tdelayに基づいてリーン運転を継続でき、これによる燃費低減効果を確実に得ることができる。
ここで、ディレイ時間Tdelayに限ったリーン運転の継続はリーン領域を高負荷高回転側に多少越えた領域では実行できるが、リーン領域を著しく越えた領域ではリーン運転によりエンジンアウトのNOx排出量が急増するため、却って大気中へのNOx排出量を増加させる可能性がある。本実施形態では第1および第2NOx低減マップにおいてリーン領域の縮小分をタイマ領域として設定しているため、必然的にリーン領域の縮小と共にタイマ領域も縮小されて高負荷高回転側の上限が制限され、結果として上記不具合の虞がない一層適切なタイマ領域を設定することができる。
Also, following the reduction of the lean region, the timer region is always set to the high load high rotation side of the lean region, i.e., the NOx emission amount of the engine out increases, but it is set to a region where lean operation can be performed for a short time. The lean operation can be continued based on the delay time Tdelay in an appropriate timer region, and the fuel consumption reduction effect can be reliably obtained.
Here, the continuation of the lean operation limited to the delay time Tdelay can be executed in a region slightly exceeding the lean region toward the high load and high rotation side, but in the region significantly exceeding the lean region, the NOx emission amount of the engine out is reduced due to the lean operation. Since it increases rapidly, there is a possibility of increasing NOx emissions into the atmosphere. In this embodiment, since the reduced amount of the lean region is set as the timer region in the first and second NOx reduction maps, the timer region is necessarily reduced together with the reduction of the lean region, and the upper limit on the high load high rotation side is limited. As a result, it is possible to set a more appropriate timer area that does not cause the above-described problem.

なお、このようにリーン領域と共にタイマ領域を縮小することなく、例えばタイマ領域の外郭を外側の境界線L1のままとしてもよい。
一方、第1および第2NOx低減マップのリーン領域では、リーン運転中のエンジン1から排出されるNOxがNOx触媒19に吸蔵されると共に、第1のリーン継続時間T1lean毎に実行されるNOxパージにより吸蔵されているNOxが放出還元される。そして、このようなNOx吸蔵・放出還元は、リーン領域からタイマ領域への移行後にもリーン運転が継続されている限り続けられ、当該タイマ領域では図7に示すようにより短い第2のリーン継続時間T2lean毎にNOxパージが実行される。
For example, the outer area of the timer area may be left as the outer boundary line L1 without reducing the timer area together with the lean area.
On the other hand, in the lean region of the first and second NOx reduction maps, NOx discharged from the engine 1 during lean operation is occluded in the NOx catalyst 19, and NOx purging is performed for each first lean duration T1lean. The stored NOx is released and reduced. Such NOx occlusion / release reduction is continued as long as the lean operation is continued even after the transition from the lean region to the timer region. In the timer region, the second lean continuation time shorter as shown in FIG. A NOx purge is executed every T2lean.

ここで、リーン領域に比較してタイマ領域では目標平均有効圧Peおよびエンジン回転速度Neの増加に伴ってエンジンアウトのNOx排出量が増加傾向となるため、NOx触媒19の硫黄被毒状況が同一であったとしてもNOx触媒19のNOx吸蔵量はより早期に飽和するが、上記のようにタイマ領域ではより短い第2のリーン継続時間T2leanに基づいてNOxパージもより早期に実行されることから、結果としてタイマ領域でのNOx吸蔵量の飽和による大気中へのNOx排出をより確実に防止することができる。   Here, in the timer region, as compared with the lean region, the NOx emission amount of the engine-out increases with the increase of the target average effective pressure Pe and the engine rotational speed Ne, so the sulfur poisoning situation of the NOx catalyst 19 is the same. Even if the NOx occlusion amount of the NOx catalyst 19 is saturated earlier, the NOx purge is also performed earlier in the timer region based on the shorter second lean duration T2lean as described above. As a result, NOx emission into the atmosphere due to saturation of the NOx occlusion amount in the timer region can be more reliably prevented.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば、上記実施形態では筒内噴射型直列4気筒ガソリンエンジン1の排気浄化装置として具体化したが、これに限ることはなく、例えばディーゼルエンジンを対象とした排気浄化装置に具体化してもよい。
また、上記実施形態では、初期設定マップに加えてリーン領域を段階的に縮小した第1〜第3NOx低減マップを適用したが、NOx低減マップの数はこれに限ることはなく、例えば第3NOx低減マップを省略したり、或いはより細分化した多数のNOx低減マップを適用したりしてもよい。
This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the exhaust purification device of the in-cylinder in-line four-cylinder gasoline engine 1 is embodied. However, the present invention is not limited to this, and the exhaust purification device may be embodied, for example, for a diesel engine.
In the above embodiment, the first to third NOx reduction maps in which the lean region is reduced stepwise in addition to the initial setting map are applied. However, the number of NOx reduction maps is not limited to this, for example, the third NOx reduction The map may be omitted, or a number of more detailed NOx reduction maps may be applied.

実施形態のエンジンの排気浄化装置を示す全体構成図である。1 is an overall configuration diagram illustrating an engine exhaust gas purification apparatus according to an embodiment. 初期設定マップを示す図である。It is a figure which shows an initial setting map. 第1NOx低減マップを示す図である。It is a figure which shows a 1st NOx reduction map. 第2NOx低減マップを示す図である。It is a figure which shows a 2nd NOx reduction map. 第3NOx低減マップを示す図である。It is a figure which shows a 3rd NOx reduction map. リーン領域でのNOxパージの実行状況を示すタイムチャートである。It is a time chart which shows the execution situation of NOx purge in the lean region. タイマ領域でのNOxパージの実行状況を示すタイムチャートである。It is a time chart which shows the execution condition of NOx purge in the timer area. ECUが実行するSOxパージ制御・マップ切換ルーチンを示すフローチャートである。4 is a flowchart showing a SOx purge control / map switching routine executed by an ECU.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
17 排気通路
19 NOx触媒
31 ECU(NOxパージ制御手段、空燃比制御手段、被毒判定手段、
被毒時制御手段)
1 engine (internal combustion engine)
17 Exhaust passage 19 NOx catalyst 31 ECU (NOx purge control means, air-fuel ratio control means, poisoning determination means,
Control means during poisoning)

Claims (4)

内燃機関の排気通路に設けられ、酸素過剰雰囲気で排ガス中のNOxを吸蔵し、酸素濃度低下雰囲気で吸蔵したNOxを放出して還元する吸蔵型NOx触媒と、
上記内燃機関の排気空燃比を理論空燃比またはリッチ空燃比に制御して、上記NOx触媒に吸蔵されたNOxを放出還元するNOxパージ制御手段と、
上記内燃機関の運転領域が所定のリーン領域にあるときに該内燃機関をリーン空燃比で運転する一方、上記内燃機関の運転領域が上記リーン領域より高負荷高回転側の非リーン領域にあるときに該内燃機関を非リーン空燃比で運転する空燃比制御手段と、
上記NOx触媒の硫黄被毒状態を判定する被毒判定手段と、
上記被毒判定手段により上記NOx触媒の硫黄被毒が判定されたときに、上記リーン領域を低負荷低回転側に縮小すると共に、該リーン領域と上記非リーン領域との境界にタイマ領域を設定し、上記内燃機関の運転領域が上記リーン領域からタイマ領域に移行したときに、該リーン領域でのリーン空燃比を所定のディレイ時間継続した後に上記非リーン空燃比に切換える被毒時制御手段と
を備えたことを特徴とする内燃機関の排気浄化装置。
An occlusion type NOx catalyst that is provided in an exhaust passage of an internal combustion engine, occludes NOx in exhaust gas in an oxygen-excess atmosphere, and releases and reduces NOx occluded in an oxygen-concentrated atmosphere;
NOx purge control means for controlling the exhaust air-fuel ratio of the internal combustion engine to a theoretical air-fuel ratio or a rich air-fuel ratio, and releasing and reducing NOx stored in the NOx catalyst;
When the internal combustion engine is operated at a lean air-fuel ratio when the operation region of the internal combustion engine is in a predetermined lean region, while the operation region of the internal combustion engine is in a non-lean region on the high-load high-rotation side from the lean region Air-fuel ratio control means for operating the internal combustion engine at a non-lean air-fuel ratio;
Poisoning judging means for judging the sulfur poisoning state of the NOx catalyst;
When the poisoning determination means determines that the NOx catalyst is poisoned by sulfur, the lean region is reduced to a low load and low rotation side, and a timer region is set at the boundary between the lean region and the non-lean region. And a poisoning time control means for switching the lean air-fuel ratio in the lean region to the non-lean air-fuel ratio after continuing the predetermined delay time when the operating region of the internal combustion engine shifts from the lean region to the timer region. An exhaust emission control device for an internal combustion engine, comprising:
上記被毒時制御手段は、上記NOx触媒の硫黄被毒の進行に応じて上記リーン領域を段階的に低負荷低回転側に縮小すると共に、該リーン領域の縮小に追従して上記タイマ領域を設定することを特徴とする請求項1記載の内燃機関の排気浄化装置。   The poisoning time control means gradually reduces the lean area to the low load and low rotation side in accordance with the progress of sulfur poisoning of the NOx catalyst, and follows the reduction of the lean area to reduce the timer area. The exhaust emission control device for an internal combustion engine according to claim 1, wherein the exhaust gas purification device is set. 上記被毒時制御手段は、上記リーン領域の縮小分を上記タイマ領域として設定することを特徴とする請求項2記載の内燃機関の排気浄化装置。   3. The exhaust gas purification apparatus for an internal combustion engine according to claim 2, wherein the poisoning time control means sets the reduced amount of the lean region as the timer region. 上記NOxパージ制御手段は、上記リーン領域において予め設定された第1のリーン継続時間毎に上記NOxの放出還元処理を実行すると共に、上記リーン領域から上記タイマ領域に移行したときには上記第1のリーン継続時間より短い第2のリーン継続時間毎に上記NOxの放出還元処理を実行することを特徴とする請求項1乃至3の何れかに記載の内燃機関の排気浄化装置。   The NOx purge control means executes the NOx release reduction process for each first lean continuation time set in advance in the lean region, and when the transition from the lean region to the timer region is performed, the first lean The exhaust gas purification apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein the NOx emission reduction process is executed every second lean continuation time shorter than the continuation time.
JP2005255336A 2005-09-02 2005-09-02 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4569769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255336A JP4569769B2 (en) 2005-09-02 2005-09-02 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255336A JP4569769B2 (en) 2005-09-02 2005-09-02 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007071024A true JP2007071024A (en) 2007-03-22
JP4569769B2 JP4569769B2 (en) 2010-10-27

Family

ID=37932716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255336A Expired - Fee Related JP4569769B2 (en) 2005-09-02 2005-09-02 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4569769B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114789A1 (en) 2007-03-19 2008-09-25 Fujifilm Corporation Measuring apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003269148A (en) * 2002-03-15 2003-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP3525708B2 (en) * 1997-11-10 2004-05-10 三菱自動車工業株式会社 Lean-burn internal combustion engine
JP2004169709A (en) * 2004-03-19 2004-06-17 Nissan Motor Co Ltd Engine air-fuel ratio control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3525708B2 (en) * 1997-11-10 2004-05-10 三菱自動車工業株式会社 Lean-burn internal combustion engine
JP2003269148A (en) * 2002-03-15 2003-09-25 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2004169709A (en) * 2004-03-19 2004-06-17 Nissan Motor Co Ltd Engine air-fuel ratio control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114789A1 (en) 2007-03-19 2008-09-25 Fujifilm Corporation Measuring apparatus

Also Published As

Publication number Publication date
JP4569769B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP3684934B2 (en) Exhaust gas purification device for internal combustion engine
CN108457758B (en) Control device for internal combustion engine
JP2009036117A (en) Air-fuel ratio controller of internal combustion engine
JP2008111351A (en) Exhaust control device of internal combustion engine
JP6230005B1 (en) Engine exhaust purification system
JP2008111352A (en) Exhaust control device of internal combustion engine
JP2001159363A (en) Exhaust emission control device for internal combustion engine
JP7163585B2 (en) engine controller
JP6270247B1 (en) Engine exhaust purification system
JP4569769B2 (en) Exhaust gas purification device for internal combustion engine
JP3646571B2 (en) Exhaust gas purification device for internal combustion engine
JP2007056719A (en) Exhaust emission control device of internal combustion engine
JP4161429B2 (en) Lean combustion internal combustion engine
JP5392021B2 (en) Fuel injection control device for internal combustion engine
JP2007002734A (en) Exhaust emission control device for internal combustion engine
JP3952109B2 (en) Exhaust gas purification device for internal combustion engine
JP4345202B2 (en) Exhaust gas purification device for internal combustion engine
JP6270246B1 (en) Engine exhaust purification system
JP3642194B2 (en) In-cylinder internal combustion engine
JP2004346844A (en) Exhaust emission control system
JPH11229864A (en) Exhaust emission control device of internal combustion engine
JP4457442B2 (en) Exhaust gas purification device for internal combustion engine
JP3840859B2 (en) Air-fuel ratio control device for lean combustion internal combustion engine
JP6270245B1 (en) Engine exhaust purification system
JP2004360569A (en) Exhaust gas purification control system of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4569769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140820

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees