JP2008111352A - Exhaust control device of internal combustion engine - Google Patents

Exhaust control device of internal combustion engine Download PDF

Info

Publication number
JP2008111352A
JP2008111352A JP2006294076A JP2006294076A JP2008111352A JP 2008111352 A JP2008111352 A JP 2008111352A JP 2006294076 A JP2006294076 A JP 2006294076A JP 2006294076 A JP2006294076 A JP 2006294076A JP 2008111352 A JP2008111352 A JP 2008111352A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
catalyst
temperature
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006294076A
Other languages
Japanese (ja)
Other versions
JP4840590B2 (en
Inventor
Kinichi Iwachido
均一 岩知道
Hiroaki Ohara
弘明 大原
Tetsuya Watanabe
哲也 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2006294076A priority Critical patent/JP4840590B2/en
Publication of JP2008111352A publication Critical patent/JP2008111352A/en
Application granted granted Critical
Publication of JP4840590B2 publication Critical patent/JP4840590B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust control device of an internal combustion engine capable of improving purification performance, by realizing early activation by promoting a temperature rise in a catalyst, without increasing a noble metal carrying quantity of the catalyst, by supplying CO and O<SB>2</SB>of a proper quantity on the catalyst, by optimally controlling a variation state of the exhaust air-fuel ratio at this time, by performing forced modulation, after starting the engine. <P>SOLUTION: When a forced modulation starting condition is realized after starting the engine, the forced modulation is performed in response to a waveform pattern of the average air-fuel ratio 15.0 when the inlet temperature Tex of a three-way catalyst is less than 350°C (S14, and 16), and the forced modulation is performed in response to the waveform pattern of the average air-fuel ratio 14.0 when the inlet temperature Tex becomes 350 °C or more (S18, and 20), and control is switched to O<SB>2</SB>F/B control in response to the realization of a finishing condition of the forced modulation (S22). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は内燃機関(以下、エンジンと称する)の排気制御装置に係り、詳しくは機関始動直後における触媒反応を促進して早期活性化により排気浄化性能を向上させる排気制御装置に関するものである。   The present invention relates to an exhaust control device for an internal combustion engine (hereinafter referred to as an engine), and more particularly to an exhaust control device that promotes a catalytic reaction immediately after engine startup and improves exhaust purification performance by early activation.

未だ触媒が活性化していない冷態始動時にエンジンから排出される有害成分、例えばTHC(Total HC)等はエンジンの各モード運転により生じるTHC総排出量に対してかなりの割合を占めており、排ガス浄化性能の改善のためには冷態始動時の対策が重要であることが知られている。このための対策の一つとして、機関始動直後には、まず、エンジンアウトの排ガス濃度(特にHC)が低く、且つ燃焼変動が許容可能な特性を有するオープンループ(以下、O/Lと略する)制御により排気空燃比をリッチ側の略一定値に制御し、その後にOセンサが活性化すると、Oセンサ出力に基づく理論空燃比へのフィードバック(以下、OF/Bと略する)制御に切換える手法が採られている。 Hazardous components emitted from the engine at the time of cold start where the catalyst has not yet been activated, such as THC (Total HC), etc., account for a considerable proportion of the total THC emission generated by each mode operation of the engine, It is known that measures at the cold start are important for improving the purification performance. As one of countermeasures for this, immediately after the engine is started, first, an open loop (hereinafter abbreviated as O / L) having characteristics that the exhaust gas concentration (especially HC) of the engine-out is low and combustion fluctuation is acceptable. ) When the exhaust air-fuel ratio is controlled to a substantially constant value on the rich side by control and the O 2 sensor is activated thereafter, feedback to the theoretical air-fuel ratio based on the O 2 sensor output (hereinafter abbreviated as O 2 F / B) ) A method of switching to control is adopted.

しかしながら、この手法では排ガス浄化性能が三元触媒の貴金属担持量に大きく依存してしまうという欠点がある。特にO/L制御からOF/B制御に移行する過程ではこの傾向が顕著に現れ、貴金属担持量が減少するに従って浄化性能が大幅に低下してしまう。よって、この従来手法では、貴金属担持量が不足すれば十分な浄化性能を実現できず、逆に十分な浄化性能の確保のために貴金属担持量を増加すると、コスト高騰や触媒容量の増大に伴う圧損増加等を引き起こすという別の問題が生じた。 However, this method has a drawback that the exhaust gas purification performance greatly depends on the amount of the noble metal supported by the three-way catalyst. In particular, in the process of shifting from O / L control to O 2 F / B control, this tendency appears prominently, and the purification performance decreases significantly as the amount of noble metal supported decreases. Therefore, with this conventional method, if the amount of noble metal supported is insufficient, sufficient purification performance cannot be realized. Conversely, if the amount of noble metal supported is increased in order to ensure sufficient purification performance, the cost increases and the catalyst capacity increases. Another problem that caused an increase in pressure loss occurred.

一方、機関始動直後の有害成分の排出を抑制すべく、空燃比の強制変調を実行する技術も提案されている(例えば、特許文献1参照)。強制変調とは、エンジンの排気空燃比を強制的にリッチ方向及びリーン方向に交互に所定の振幅で変動させる制御であり、特許文献1の技術では冷態始動時に強制変調を実行して、リッチ方向への変調時に触媒上で還元反応を生起させると共に、リーン方向への変調時に触媒上で酸化反応を生起させ、これにより触媒昇温を促進することで浄化性能の向上を図っている。   On the other hand, a technique for executing forced modulation of the air-fuel ratio has been proposed in order to suppress emission of harmful components immediately after engine startup (see, for example, Patent Document 1). The forced modulation is control for forcibly varying the engine exhaust air-fuel ratio alternately in a rich direction and a lean direction with a predetermined amplitude. In the technique of Patent Document 1, forced modulation is performed at the time of cold start, The reduction reaction is caused on the catalyst during the modulation in the direction, and the oxidation reaction is caused on the catalyst during the modulation in the lean direction, thereby promoting the temperature rise of the catalyst, thereby improving the purification performance.

そして、特許文献1の技術では、Oセンサの活性化後は強制変調から通常のOF/B制御へと切換えるが、切換後にも空燃比変動が暫く継続されて排気空燃比を理論空燃比(即ち、触媒ウインドウ内)に速やかに収束できない実情を鑑みて、触媒の活性状態と相関するエンジン水温が高くなるほど強制変調時の排気空燃比の振幅を縮小し、これによりOF/B制御への切換時の理論空燃比への収束性を向上させている。
特許第3392197号公報
In the technique of Patent Document 1, after the activation of the O 2 sensor, switching from forced modulation to normal O 2 F / B control is performed, but even after switching, the air-fuel ratio fluctuation is continued for a while, and the exhaust air-fuel ratio is reduced to the theoretical sky. In view of the fact that the fuel ratio cannot be quickly converged to the fuel ratio (that is, within the catalyst window), the higher the engine water temperature correlated with the catalyst active state, the smaller the amplitude of the exhaust air / fuel ratio at the time of forced modulation, thereby O 2 F / B Convergence to the stoichiometric air-fuel ratio at the time of switching to control is improved.
Japanese Patent No. 3392197

上記のように特許文献1の技術では強制変調からOF/B制御への切換性を重要視して排気空燃比の振幅を設定しているため、触媒の昇温促進、ひいては早期活性化による浄化性能向上に関して適切な設定とは言い難かった。
即ち、強制変調によって得られる触媒上での還元反応や酸化反応には、排ガスと共に触媒上に供給されるCO量やO量が密接に関係するため、これらの供給量を最適制御しなければ適切な還元反応及び酸化反応、ひいては十分な昇温促進は望めない。特許文献1の技術では、OF/B制御への切換時を想定して排気空燃比の振幅を制御しているだけであるため、結果として強制変調時において触媒上に適切な量のCOやOを供給できず、触媒の昇温促進による浄化性能の向上を達成できなかった。
As described above, the technology of Patent Document 1 sets the amplitude of the exhaust air / fuel ratio with an emphasis on the switchability from forced modulation to O 2 F / B control. It was difficult to say that it was an appropriate setting for improving purification performance.
That is, the reduction reaction and oxidation reaction on the catalyst obtained by forced modulation are closely related to the amount of CO and O 2 supplied to the catalyst together with the exhaust gas, so these supply amounts must be optimally controlled. Appropriate reduction reaction and oxidation reaction, and hence sufficient temperature increase promotion cannot be expected. In the technique of Patent Document 1, since the amplitude of the exhaust air / fuel ratio is only controlled assuming switching to O 2 F / B control, as a result, an appropriate amount of CO on the catalyst during forced modulation is obtained. And O 2 could not be supplied, and the purification performance could not be improved by promoting the temperature rise of the catalyst.

本発明はこのような問題点を解決するためになされたもので、その目的とするところは、機関始動後に強制変調を実行すると共に、このときの排気空燃比の変動状況を最適制御して触媒上に適切な量のCOやOを供給し、触媒の貴金属担持量を増大することなく触媒の昇温促進により早期活性化を実現して浄化性能を向上することができる内燃機関の排気制御装置を提供することにある。 The present invention has been made to solve such problems. The object of the present invention is to perform forced modulation after the engine is started and to optimally control the fluctuation state of the exhaust air-fuel ratio at this time to provide a catalyst. Exhaust control for internal combustion engines that can supply the appropriate amount of CO and O 2 and improve the purification performance by realizing early activation by increasing the temperature of the catalyst without increasing the amount of noble metal supported on the catalyst To provide an apparatus.

上記目的を達成するため、請求項1の発明は、内燃機関の排気通路に設けられた触媒と、触媒の温度に相関するパラメータ値を検出する触媒温度相関値検出手段と、内燃機関の始動直後に作動し、触媒に流入する排気の空燃比をリーン空燃比とリッチ空燃比との間で強制的に変動させる空燃比変動制御手段とを備え、空燃比変動制御手段が、その作動初期において空燃比変動の中心空燃比をストイキよりもリーン空燃比側に設定し、その後触媒温度相関値検出手段で検出された検出値の温度上昇方向への変化に伴い中心空燃比をストイキよりもリッチ側にシフトするように構成されているものである。   In order to achieve the above object, the invention of claim 1 is directed to a catalyst provided in an exhaust passage of an internal combustion engine, a catalyst temperature correlation value detecting means for detecting a parameter value correlated with the temperature of the catalyst, and immediately after starting the internal combustion engine. Air-fuel ratio fluctuation control means for forcibly changing the air-fuel ratio of the exhaust gas flowing into the catalyst between a lean air-fuel ratio and a rich air-fuel ratio. The central air-fuel ratio of the fluctuation in fuel ratio is set to a leaner air-fuel ratio side than stoichiometric, and then the central air-fuel ratio is made richer than stoichiometric as the detected value detected by the catalyst temperature correlation value detecting means changes in the temperature rising direction. It is configured to shift.

従って、内燃機関の始動直後には、ストイキよりもリーン空燃比側に設定した中心空燃比を中心として空燃比変動制御手段により排気空燃比が強制的に変動され、触媒温度相関値検出手段による検出値の温度上昇方向への変化に伴って中心空燃比がストイキよりもリッチ空燃比側にシフトされ、シフト後の中心空燃比を中心として排気空燃比が強制的に変動される。   Therefore, immediately after the internal combustion engine is started, the exhaust air-fuel ratio is forcibly changed by the air-fuel ratio fluctuation control means around the center air-fuel ratio set to the lean air-fuel ratio side from the stoichiometry, and detected by the catalyst temperature correlation value detection means. As the value changes in the temperature rising direction, the central air-fuel ratio is shifted to the rich air-fuel ratio side with respect to the stoichiometry, and the exhaust air-fuel ratio is forcibly changed around the shifted center air-fuel ratio.

図10は平均空燃比14.0(リッチ空燃比側)と15.0(リーン空燃比側)で排気空燃比を変動させたときの触媒上での温度上昇量ΔT(=触媒ベッド温度−入口温度)を触媒入口温度毎に計測した試験結果である。この試験結果によれば、入口温度が約350℃のときを境界として、低温側では平均空燃比15.0の方が大きな温度上昇量ΔTが得られ、高温側では平均空燃比14.0の方が大きな温度上昇量ΔTが得られている。この試験結果から、中心空燃比の切換により何れの温度領域でも適切なCO量やO量が触媒上に供給されて触媒昇温に貢献していると推測される。 FIG. 10 shows the amount of temperature increase ΔT (= catalyst bed temperature−inlet temperature) on the catalyst when the exhaust air / fuel ratio is varied between the average air / fuel ratio 14.0 (rich air / fuel ratio side) and 15.0 (lean air / fuel ratio side). It is the test result measured for every inlet temperature. According to this test result, when the inlet temperature is about 350 ° C., the average air-fuel ratio 15.0 has a larger temperature increase ΔT on the low temperature side, and the average air-fuel ratio 14.0 has a larger temperature on the high temperature side. A rise amount ΔT is obtained. From this test result, it is presumed that an appropriate amount of CO or O 2 is supplied onto the catalyst in any temperature range by switching the central air-fuel ratio, thereby contributing to the temperature rise of the catalyst.

図10に示した特性は一例であり、触媒の貴金属配合量などの要因により変化する可能性はあるものの、基本的な特性として、空燃比変動の中心空燃比をリーン空燃比側に設定した場合には触媒温度が低い領域で良好な触媒昇温作用が得られ、空燃比変動の中心空燃比をリッチ空燃比側に設定した場合には触媒温度が高い領域で良好な触媒昇温作用が得られることに相違ない。よって、本発明のこの態様のように、内燃機関の始動直後にリーン空燃比側の中心空燃比に基づき排気空燃比を変動させ、触媒温度の上昇に伴って中心空燃比をリッチ空燃比側にシフトすることにより、温度領域に関わらず良好な触媒昇温作用が得られる。   The characteristics shown in FIG. 10 are only examples, and may change depending on factors such as the amount of precious metal in the catalyst, but as a basic characteristic, the central air-fuel ratio of the air-fuel ratio fluctuation is set to the lean air-fuel ratio side. In this case, a good catalyst temperature rising action can be obtained in a region where the catalyst temperature is low. There is no doubt that Therefore, as in this aspect of the present invention, the exhaust air-fuel ratio is changed based on the center air-fuel ratio on the lean air-fuel ratio side immediately after the start of the internal combustion engine, and the center air-fuel ratio is brought to the rich air-fuel ratio side as the catalyst temperature rises. By shifting, a good catalyst temperature rising action can be obtained regardless of the temperature range.

請求項2の発明は、請求項1において、内燃機関の実空燃比を目標空燃比に近づけるようにフィードバック制御するフィードバック制御手段をさらに備え、空燃比変動制御手段が中心空燃比をストイキよりもリッチ空燃比側にシフトした後、フィードバック制御手段が作動を開始するものである。
従って、空燃比変動制御手段が中心空燃比をリッチ空燃比側にシフトした後に、フィードバック制御手段のフィードバック制御が開始される。
The invention of claim 2 further comprises feedback control means for performing feedback control so that the actual air-fuel ratio of the internal combustion engine approaches the target air-fuel ratio in claim 1, wherein the air-fuel ratio fluctuation control means makes the center air-fuel ratio richer than the stoichiometric ratio. After shifting to the air-fuel ratio side, the feedback control means starts operating.
Therefore, after the air-fuel ratio fluctuation control means shifts the central air-fuel ratio to the rich air-fuel ratio side, the feedback control of the feedback control means is started.

請求項3の発明は、請求項1又は2において、触媒の温度が約300℃〜約400℃の範囲で、空燃比変動制御手段が中心空燃比をストイキよりもリッチ空燃比側にシフトするように構成されているものである。
従って、触媒の温度が約300℃〜約400℃の範囲で中心空燃比がリッチ空燃比側にシフトされる。
According to a third aspect of the present invention, in the first or second aspect, the air-fuel ratio fluctuation control means shifts the central air-fuel ratio to the rich air-fuel ratio side from the stoichiometric range when the catalyst temperature is in the range of about 300 ° C to about 400 ° C. It is composed of.
Therefore, the central air-fuel ratio is shifted to the rich air-fuel ratio side when the temperature of the catalyst is in the range of about 300 ° C to about 400 ° C.

以上説明したように請求項1〜3の発明の内燃機関の排気制御装置によれば、機関始動後に強制変調を実行すると共に、このときの排気空燃比の中心空燃比を触媒温度の上昇に伴ってリーン空燃比側からリッチ空燃比側にシフトするため、触媒上に適切な量のCOやOを供給し、触媒の貴金属担持量を増大することなく触媒の昇温促進により早期活性化を実現して浄化性能を向上することができる。 As described above, according to the exhaust control device for an internal combustion engine of the first to third aspects of the invention, forced modulation is executed after the engine is started, and the central air-fuel ratio of the exhaust air-fuel ratio at this time is increased as the catalyst temperature increases. As a result, the appropriate amount of CO or O 2 is supplied onto the catalyst to accelerate the temperature rise of the catalyst without increasing the amount of noble metal supported on the catalyst. Realization can improve purification performance.

[第1実施形態]
以下、本発明を具体化したエンジンの排気制御装置の第1実施形態を説明する。
図1は本実施形態のエンジン及びその排気制御装置を模式的に示す全体構成図であり、筒内噴射型直列4気筒ガソリンエンジン1を対象として構成されている。エンジン1にはDOHC4弁式の動弁機構が採用されており、図示しないクランク軸によりシリンダヘッド2上に設けられた吸気カムシャフト3及び排気カムシャフト4が回転駆動され、これらのカムシャフト3,4により吸気弁5及び排気弁6が所定のタイミングで開閉される。
[First Embodiment]
Hereinafter, a first embodiment of an engine exhaust control system embodying the present invention will be described.
FIG. 1 is an overall configuration diagram schematically showing an engine and an exhaust control device thereof according to the present embodiment, which is configured for an in-cylinder injection type in-line four-cylinder gasoline engine 1. The engine 1 employs a DOHC 4-valve type valve operating mechanism, and an intake camshaft 3 and an exhaust camshaft 4 provided on the cylinder head 2 are rotationally driven by a crankshaft (not shown). 4, the intake valve 5 and the exhaust valve 6 are opened and closed at a predetermined timing.

シリンダヘッド2には各気筒毎に点火プラグ7と共に電磁式の燃料噴射弁8が取り付けられ、図示しない燃料ポンプから供給された高圧燃料が燃料噴射弁8の開閉に応じて燃焼室9内に直接噴射される。シリンダヘッド2には両カムシャフト3,4間を抜けるようにして略直立方向に吸気ポート10が形成され、吸気弁5の開弁に伴って吸入空気がエアクリーナ11からスロットル弁12、サージタンク13、吸気マニホールド14、吸気ポート10を経て燃焼室9内に導入される。燃焼後の排ガスは排気弁6の開弁に伴って燃焼室9から排気ポート15に排出され、更に排気通路16及び三元触媒17を経て大気中に排出される。   The cylinder head 2 is provided with an electromagnetic fuel injection valve 8 together with an ignition plug 7 for each cylinder, and high-pressure fuel supplied from a fuel pump (not shown) is directly fed into the combustion chamber 9 according to the opening and closing of the fuel injection valve 8. Be injected. An intake port 10 is formed in the cylinder head 2 so as to pass between the camshafts 3 and 4 in a substantially upright direction. As the intake valve 5 is opened, intake air flows from the air cleaner 11 to the throttle valve 12 and the surge tank 13. Then, it is introduced into the combustion chamber 9 through the intake manifold 14 and the intake port 10. The exhaust gas after combustion is discharged from the combustion chamber 9 to the exhaust port 15 as the exhaust valve 6 is opened, and further discharged to the atmosphere through the exhaust passage 16 and the three-way catalyst 17.

車室内には、図示しない入出力装置、制御プログラムや制御マップ等の記憶に供される記憶装置(ROM,RAM等)、中央処理装置(CPU)、タイマカウンタ等を備えたECU(エンジン制御ユニット)21が設置されており、エンジン1の総合的な制御を行う。ECU21の入力側には、エンジン1の冷却水温Twを検出する水温センサ22、スロットル開度θthを検出するスロットルセンサ23、三元触媒17に流入する排ガス温度(以下、入口温度と称する)Texを検出する温度センサ24(触媒温度相関値検出手段)、排ガスのO2濃度に応じて出力を変化させるO2センサ25等の各種センサ類が接続され、ECU21の出力側には、上記燃料噴射弁8、上記点火プラグ7を駆動するイグナイタ26等の各種デバイス類が接続されている。 In the vehicle compartment, an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storing control programs and control maps, a central processing unit (CPU), an ECU (engine control unit) equipped with a timer counter, etc. ) 21 is installed and performs overall control of the engine 1. On the input side of the ECU 21, there are a water temperature sensor 22 for detecting the coolant temperature Tw of the engine 1, a throttle sensor 23 for detecting the throttle opening θth, and an exhaust gas temperature (hereinafter referred to as inlet temperature) Tex flowing into the three-way catalyst 17. Various sensors such as a temperature sensor 24 (catalyst temperature correlation value detecting means) to detect and an O 2 sensor 25 for changing the output according to the O 2 concentration of the exhaust gas are connected, and the fuel injection valve is connected to the output side of the ECU 21. 8. Various devices such as an igniter 26 for driving the spark plug 7 are connected.

ECU21は各センサからの検出情報に基づいて点火時期や燃料噴射量等を決定し、これらの制御量に基づいてイグナイタ26や燃料噴射弁8を駆動制御してエンジン1の運転を制御する。
また、エンジン1の冷態始動時において、ECU21はOセンサ25の出力に基づく目標空燃比(例えば、理論空燃比)へのOF/B制御を実行すると共に(フィードバック制御手段)、OF/B制御に先立ってO/L制御による強制変調を実行するが(空燃比変動制御手段)、強制変調では、空燃比変動の中心空燃比を入口温度Texに応じて切換えることにより、三元触媒17に供給されるCO量やO量の最適化を図っている。以下、この冷態始動時の排気制御について詳述する。
The ECU 21 determines the ignition timing, the fuel injection amount, and the like based on the detection information from each sensor, and controls the operation of the engine 1 by drivingly controlling the igniter 26 and the fuel injection valve 8 based on these control amounts.
When the engine 1 is cold-started, the ECU 21 performs O 2 F / B control to a target air-fuel ratio (for example, theoretical air-fuel ratio) based on the output of the O 2 sensor 25 (feedback control means), and O 2 2 Forced modulation by O / L control is executed prior to F / B control (air-fuel ratio fluctuation control means). In forced modulation, the central air-fuel ratio of air-fuel ratio fluctuation is switched according to the inlet temperature Tex. The amount of CO and the amount of O 2 supplied to the original catalyst 17 are optimized. Hereinafter, the exhaust control at the time of cold start will be described in detail.

図2はECU21が実行する始動時排気制御ルーチンを示すフローチャートであり、ECU21はエンジン始動時にルーチンを所定の制御インターバルで実行する。
まず、ステップS2でエンジン始動モードを実行する。始動モードとしては、クランキング開始から完爆判定までの始動時増量補正、及び完爆判定後の始動後増量補正等が適宜O/L制御で実行されて、円滑なエンジン始動が図られる。エンジン始動モードの内容は一般的なものであり、このときの始動後増量補正による燃料制御が[背景技術]で述べたOセンサの活性化前に実行されるリッチ空燃比によるO/L制御に相当する。
FIG. 2 is a flowchart showing a start-up exhaust control routine executed by the ECU 21. The ECU 21 executes the routine at predetermined control intervals when the engine is started.
First, an engine start mode is executed in step S2. As the start mode, the start-up increase correction from the cranking start to the complete explosion determination, the post-start-up increase correction after the complete explosion determination, and the like are appropriately executed by O / L control, and a smooth engine start is achieved. The contents of the engine start mode are general, and the fuel control by the increase correction after the start at this time is executed before the activation of the O 2 sensor described in [Background Art], and the O / L control by the rich air-fuel ratio is executed. It corresponds to.

その後、ステップS4で冷却水温Tw、スロットル開度θth、入口温度Tex等の各種センサ情報を取り込み、続くステップS6で始動完了(完爆判定)からの経過時間を算出し、ステップS8でOセンサ25の活性化条件を判定し、ステップS10で入口温度Texに基づき触媒温度Tcatを推定する。なお、触媒温度Tcatは、予め設定された入口温度Texと触媒温度Tcatとの関係を規定したマップから算出するが、触媒温度Tcatの算出手法はこれに限ることはなく、例えば入口温度Texからの推定に代えて三元触媒17のベッド温度を直接的に検出したり、或いは冷却水温Twと始動完了からの経過時間に基づき簡易的に触媒温度Tcatを求めたりしてもよい。 Thereafter, the cooling water temperature Tw at step S4, the throttle opening [theta] th, captures various sensor information such as the inlet temperature Tex, it calculates the elapsed time from start completion (complete explosion judgment) in the subsequent step S6, O 2 sensor in step S8 25 activation conditions are determined, and the catalyst temperature Tcat is estimated based on the inlet temperature Tex in step S10. The catalyst temperature Tcat is calculated from a map that defines a relationship between a preset inlet temperature Tex and the catalyst temperature Tcat. However, the method for calculating the catalyst temperature Tcat is not limited to this, and for example, the catalyst temperature Tcat is calculated from the inlet temperature Tex. Instead of the estimation, the bed temperature of the three-way catalyst 17 may be directly detected, or the catalyst temperature Tcat may be simply obtained based on the cooling water temperature Tw and the elapsed time from the completion of starting.

続くステップS12では強制変調開始条件が成立したか否かを判定する。強制変調開始条件は、エンジン1の排気空燃比を強制的に変動させる強制変調を実行しても支障ないエンジン運転状態として設定されたものであり、例えば以下の1)〜5)に示す各要件に基づいて判定される。
1)エンジン負荷、具体的にはスロットル開度θthや体積効率等
2)エンジン始動完了後の経過時間
3)冷却水温Tw
4)Oセンサの活性化後の経過時間
5)触媒温度Tcat
これらの要件に基づき強制変調開始条件が成立していないとしてステップS14でNo(否定)の判定を下したときには、そのままルーチンを終了する。従って、この場合にはステップS2のエンジン始動モードで、従来制御と同様に略一定のリッチ空燃比によるO/L制御が継続して実行される。
In a succeeding step S12, it is determined whether or not a forced modulation start condition is satisfied. The forced modulation start condition is set as an engine operating state that does not hinder the execution of forced modulation for forcibly changing the exhaust air-fuel ratio of the engine 1. For example, the requirements shown in the following 1) to 5) It is determined based on.
1) Engine load, specifically throttle opening θth, volumetric efficiency, etc. 2) Elapsed time after completion of engine start 3) Cooling water temperature Tw
4) Elapsed time after activation of the O 2 sensor 5) Catalyst temperature Tcat
If it is determined in step S14 that the forced modulation start condition is not satisfied based on these requirements, the routine is terminated as it is. Therefore, in this case, in the engine start mode in step S2, the O / L control with the substantially constant rich air-fuel ratio is continuously executed as in the conventional control.

また、強制変調開始条件が成立したとしてステップS12でYes(肯定)の判定を下したときには、ステップS14以降の処理により2段階に分けて低温域用及び高温域用の排気空燃比の強制変調を実行する。これらの強制変調の実行条件は予め設定されているが、その設定過程については後述するものとし、実際の強制変調の実行状況を引き続き説明する。   Also, if the determination of Yes (Yes) is made in step S12 because the forced modulation start condition is satisfied, the forced modulation of the exhaust air-fuel ratio for the low temperature region and the high temperature region is divided into two stages by the processing after step S14. Execute. Although the execution conditions of these forced modulations are set in advance, the setting process will be described later, and the actual execution status of forced modulation will be described continuously.

本実施形態では低温域用及び高温域用の強制変調として、波形パターン自体を共通とし、平均空燃比の設定を異にした条件で実行する。図3は低温域用の強制変調に適用される波形パターンを示すタイムチャート、図4は高温域用の強制変調に適用される波形パターンを示すタイムチャートであり、何れの場合も中心空燃比に対するリッチ方向及びリーン方向への排気空燃比の変動量、及び1周期中のリッチ方向及びリーン方向への変動期間を共に等しく設定した波形パターンが適用され、振幅は1.0に設定され、周期は1.0secに設定されている。そして、図3の低温域用の波形パターンでは中心空燃比(上記波形特性から平均空燃比と一致)がストイキよりもリーン空燃比側の15.0に設定され、図4の高温域用の波形パターンでは中心空燃比(同じく平均空燃比と一致)がストイキよりもリッチ空燃比側の14.0に設定されている。   In this embodiment, the forced modulation for the low temperature region and the high temperature region is executed under the condition that the waveform pattern itself is common and the setting of the average air-fuel ratio is different. FIG. 3 is a time chart showing a waveform pattern applied to the forced modulation for the low temperature range, and FIG. 4 is a time chart showing a waveform pattern applied to the forced modulation for the high temperature range. A waveform pattern in which both the amount of fluctuation of the exhaust air-fuel ratio in the rich direction and the lean direction and the fluctuation period in the rich direction and the lean direction in one cycle are set equal is applied, the amplitude is set to 1.0, and the cycle is 1.0 sec. Is set to In the waveform pattern for the low temperature region in FIG. 3, the center air-fuel ratio (which matches the average air-fuel ratio from the above waveform characteristics) is set to 15.0 on the lean air-fuel ratio side of the stoichiometric, and in the waveform pattern for the high temperature region in FIG. The central air-fuel ratio (same as the average air-fuel ratio) is set to 14.0 on the rich air-fuel ratio side of the stoichiometric ratio.

なお、波形パターンの別例として、図5,6に示すものを適用してもよい。これらの波形パターンは振幅が1.5に設定され、周期が1.0secに設定されているが、中心空燃比に対するリッチ方向及びリーン方向への排気空燃比の変動量、及び1周期中のリッチ方向及びリーン方向への変動期間を共に相違させており、中心空燃比に対する変動量が+0.5(リーン側),−1.0(リッチ側)に設定され、変動期間がリーン:リッチ=2:1に設定されている。そして、中心空燃比の設定に関しては図3,4と同様であり、図5の低温域用の波形パターンでは15.0(平均空燃比と一致)に、図6の高温域用の波形パターンでは14.0(平均空燃比と一致)に設定されており、図3に代えて図5の波形パターンを適用し、図4に代えて図6の波形パターンを適用してもよい。このように、図3に代えて図5の波形パターンを適用し、図4に代えて図6の波形パターンを適用した場合は、触媒反応が向上し,排ガス浄化性能が向上するという利点がある。   In addition, you may apply what is shown to FIG.5, 6 as another example of a waveform pattern. In these waveform patterns, the amplitude is set to 1.5 and the cycle is set to 1.0 sec. However, the fluctuation amount of the exhaust air-fuel ratio in the rich direction and the lean direction with respect to the central air-fuel ratio, and the rich direction and the lean in one cycle The fluctuation period in the direction is different, the fluctuation amount with respect to the central air-fuel ratio is set to +0.5 (lean side), -1.0 (rich side), and the fluctuation period is set to lean: rich = 2: 1 ing. The setting of the central air-fuel ratio is the same as that in FIGS. 3 and 4. The low-temperature waveform pattern in FIG. 5 is 15.0 (matches the average air-fuel ratio), and the high-temperature waveform pattern in FIG. The waveform pattern of FIG. 5 may be applied instead of FIG. 3, and the waveform pattern of FIG. 6 may be applied instead of FIG. Thus, when the waveform pattern of FIG. 5 is applied instead of FIG. 3 and the waveform pattern of FIG. 6 is applied instead of FIG. 4, the catalytic reaction is improved and the exhaust gas purification performance is improved. .

一方、ECU21の処理に戻ると、ECU21は図2のステップS14で図3又は図5の波形パターンに従って低温域用の強制変調を実行し、続くステップS16で入口温度Texが350℃以上であるか否かを判定し、Noのときには三元触媒17がライトオフ温度に到達していないと見なしてステップS14に戻る。また、判定がYesのときにはステップS18に移行して図4又は図6の波形パターンに従って高温域用の強制変調を実行し、その後にステップS20で強制変調終了条件が成立したか否かを判定し、NoのときにはステップS18に戻る。強制変調終了条件は、強制変調を終了して通常の02F/B制御に移行しても排ガス浄化性能が悪化しない(換言すれば、三元触媒17が既に活性化している)エンジン運転条件として設定されたものであり、例えば触媒温度Tcat等に基づき判定される。 On the other hand, when returning to the processing of the ECU 21, the ECU 21 executes the forced modulation for the low temperature region in step S14 of FIG. 2 according to the waveform pattern of FIG. 3 or 5 and whether the inlet temperature Tex is 350 ° C. or higher in the subsequent step S16. If it is No, it is considered that the three-way catalyst 17 has not reached the light-off temperature, and the process returns to Step S14. When the determination is Yes, the process proceeds to step S18 to execute high temperature forced modulation in accordance with the waveform pattern of FIG. 4 or FIG. 6, and then, in step S20, it is determined whether the forced modulation termination condition is satisfied. If No, the process returns to step S18. The forced modulation end condition is that the exhaust gas purification performance does not deteriorate even when the forced modulation is finished and the normal 0 2 F / B control is shifted (in other words, the three-way catalyst 17 is already activated). For example, it is determined based on the catalyst temperature Tcat or the like.

従って、エンジン冷態始動時には、三元触媒17がライトオフ温度に達するまではステップS14の低温域用の強制変調が実行され、三元触媒17がライトオフ温度に達した時点でステップS18の高温域用の強制変調に切換えられる。なお、入口温度Texに対する閾値は350℃に限ることはなく、例えば触媒タイプ、酸素ストレージ能、劣化度合などに応じて300℃〜400℃の範囲で任意に変更してもよい。また、ステップS16では、入口温度Texに代えてステップS10で推定した触媒温度Tcatに基づいて判定を行ってもよい。   Therefore, at the time of engine cold start, forced modulation for the low temperature region in step S14 is executed until the three-way catalyst 17 reaches the light-off temperature, and when the three-way catalyst 17 reaches the light-off temperature, the high temperature in step S18. It is switched to the forced modulation for the area. Note that the threshold for the inlet temperature Tex is not limited to 350 ° C., and may be arbitrarily changed within a range of 300 ° C. to 400 ° C., for example, depending on the catalyst type, oxygen storage capacity, deterioration degree, and the like. In step S16, the determination may be made based on the catalyst temperature Tcat estimated in step S10 instead of the inlet temperature Tex.

強制変調終了条件の成立によりステップS20の判定がYesになると、ステップS22に移行してOセンサ出力に基づく理論空燃比への02F/B制御に切換えた後にルーチンを終了する。なお、強制変調から02F/B制御への切換時には運転状態の急変を防止すべく、移行期間(図7に示す)を設定して、移行期間中に振幅及び周期を次第に減少させて緩やかに02F/B制御に移行するように配慮している。 If the determination in step S20 becomes Yes due to the establishment of the forced modulation termination condition, the routine proceeds to step S22 and the routine is terminated after switching to the 0 2 F / B control to the theoretical air-fuel ratio based on the O 2 sensor output. When switching from forced modulation to 0 2 F / B control, a transition period (shown in FIG. 7) is set to prevent sudden changes in the operating state, and the amplitude and period are gradually reduced during the transition period. Consideration to shift to 0 2 F / B control.

次に、上記低温域用及び高温用の強制変調の実行条件の設定過程について述べる。
図3,4或いは図5,6に示した各強制変調の波形パターンは、三元触媒17の活性度合に対して最適な排ガス特性として求められた要求O濃度及び要求CO濃度に基づいて決定されたものである。即ち、ライトオフ温度を境界とした三元触媒17の温度域に応じて昇温のために触媒17上に供給すべき最適なO量及びCO量、換言すれば最適な排ガスのO濃度及びCO濃度も相違し、それらのO濃度及びCO濃度を達成可能な強制変調の実行条件も相違するとの観点から各実行条件が決定されている。
Next, the setting process of the execution conditions for the low temperature region and high temperature forced modulation will be described.
The waveform pattern of each forced modulation shown in FIGS. 3, 4 or 5, 6 is determined based on the required O 2 concentration and the required CO concentration obtained as the optimum exhaust gas characteristics for the degree of activity of the three-way catalyst 17. It has been done. That is, the optimum amount of O 2 and CO to be supplied onto the catalyst 17 for raising the temperature in accordance with the temperature range of the three-way catalyst 17 with the light-off temperature as a boundary, in other words, the optimum O 2 concentration of the exhaust gas. The execution conditions are determined from the viewpoints that the execution conditions of the forced modulation that can achieve the O 2 concentration and the CO concentration are also different.

図7はエンジン冷態始動時の入口温度Texに対する排気制御の切換状況と要求O濃度及び要求CO濃度の推移を示すタイムチャート例である。上記したECU21の処理により、エンジン始動時及び始動直後にはエンジン始動モードとしてO/L制御による始動時増量補正や始動後増量補正が行われ、続いて低温域用の強制変調、高温域用の強制変調が実行され、その後に上記移行期間を経て02F/B制御に切換えられる。 FIG. 7 is an example of a time chart showing the switching state of the exhaust control with respect to the inlet temperature Tex at the time of engine cold start and the transition of the required O 2 concentration and the required CO concentration. As a result of the above-described processing of the ECU 21, at the time of engine start and immediately after start-up, the engine start mode is subjected to start-up increase correction and post-start-up increase correction by O / L control, followed by forced modulation for the low temperature range, Forcible modulation is performed, and then the control is switched to 0 2 F / B control through the transition period.

ライトオフ温度未満の温度域で実行される低温域用の強制変調に対しては、要求O濃度として1.1%が設定され、要求CO濃度として0.3%が設定され、一方、ライトオフ温度以上の温度域で実行される高温域用の強制変調に対しては、要求O濃度として0.6%が設定され、要求CO濃度として0.9%が設定されている。そして、これらの要求O濃度及び要求CO濃度に基づき、低温域と高温域で共に図3,4に示す共通の波形パターンが設定された上で、相対的に要求CO濃度が低い低温域では中心空燃比が15.0に設定され、相対的に要求CO濃度が高い高温域では中心空燃比が14.0に設定されている。 For forced modulation for the low temperature range that is executed in the temperature range below the light-off temperature, 1.1% is set as the required O 2 concentration and 0.3% is set as the required CO concentration. For forced modulation for the high temperature range executed in the temperature range, 0.6% is set as the required O 2 concentration, and 0.9% is set as the required CO concentration. Based on these required O 2 concentration and required CO concentration, the common waveform pattern shown in FIGS. 3 and 4 is set in both the low temperature range and the high temperature range, and in the low temperature range where the required CO concentration is relatively low. The center air-fuel ratio is set to 15.0, and the center air-fuel ratio is set to 14.0 in the high temperature range where the required CO concentration is relatively high.

このように,低温域と高温域の強制変調の波形パターンおよび中心A/Fは,要求O濃度と要求CO濃度を目安に予め試験によって決定しておき,実際のECU21の制御では要求O濃度及び要求CO濃度を考慮することなく温度域に応じて中心空燃比を選択し、選択した中心空燃比を波形パターンに適用して強制変調を実行する。
図8は排気空燃比の制御に応じた触媒昇温状況を示し、平均空燃比15.0を前提として、上記図3に示した低温域用の波形パターン(図中に1Hz±0.5と表示)、上記図5に示した低温域用の波形パターン(図中に1Hz+0.5/-1.0と表示)、エンジン始動モードのO/L制御(図中にO/Lと表示)、02F/B制御(図中に02F/Bと表示)による昇温状況を比較している。このように平均空燃比をリーン側の15.0に設定すると、何れの排気制御でもエンジン始動後の早期段階で入口温度に対してベッド温度が迅速に上昇しており、触媒昇温状況は平均空燃比に依存する可能性が高いと推測できる。
Thus, the waveform pattern and the center A / F of the forcible modulation of the low temperature region and high temperature region is required O 2 concentration and the required CO concentration previously determined by tests in advance a guide, the actual control of the ECU21 request O 2 The center air-fuel ratio is selected according to the temperature range without considering the concentration and the required CO concentration, and the selected center air-fuel ratio is applied to the waveform pattern to execute forced modulation.
FIG. 8 shows the temperature rise of the catalyst according to the control of the exhaust air / fuel ratio, assuming the average air / fuel ratio of 15.0, the waveform pattern for the low temperature range shown in FIG. 3 (shown as 1 Hz ± 0.5 in the figure), the above Waveform pattern for low temperature range shown in Fig. 5 (displayed as 1Hz + 0.5 / -1.0 in the diagram), O / L control in engine start mode (displayed as O / L in the diagram), 0 2 F / B control This compares the temperature rise status (shown as 0 2 F / B in the figure). In this way, when the average air-fuel ratio is set to 15.0 on the lean side, the bed temperature rapidly rises with respect to the inlet temperature at an early stage after engine startup in any exhaust control, and the catalyst temperature rise state is the average air-fuel ratio. It can be assumed that there is a high possibility of depending on

この点を鑑みて、平均空燃比を相違させたときの触媒昇温状況を測定し、その試験結果を図9に示す。この図では図3,5に示した平均空燃比15.0の波形パターンの適用時、及び図4,6の平均空燃比14.0の波形パターンの適用時を比較しているが、入口温度に対するベッド温度の上昇は、始動直後(三元触媒17の低温域)では平均空燃比15.0の図5に示した波形パターンが良好であり、始動からある程度経過後(三元触媒17の高温域)では平均空燃比14.0の図6で示した波形パターンが良好であることが判る。   In view of this point, the temperature rise of the catalyst when the average air-fuel ratio is made different is measured, and the test result is shown in FIG. This figure compares the application of the average air-fuel ratio 15.0 waveform pattern shown in FIGS. 3 and 5 and the application of the average air-fuel ratio 14.0 waveform pattern shown in FIGS. As for the increase, the waveform pattern shown in FIG. 5 of the average air-fuel ratio 15.0 is good immediately after the start (low temperature range of the three-way catalyst 17), and after a certain amount of time has passed since the start (high temperature range of the three-way catalyst 17). It can be seen that the waveform pattern shown in FIG. 6 of 14.0 is good.

そこで、平均空燃比14.0と15.0で強制変調を実行したときの触媒上での温度上昇量ΔT(=触媒ベッド温度−入口温度)を測定し、その試験結果を図10に示す。図10の試験結果によれば、入口温度が約350℃のときを境界として、低温側では平均空燃比15.0の方が大きな温度上昇量ΔTが得られ、高温側では平均空燃比14.0の方が大きな温度上昇量ΔTが得られている。この試験結果から、中心空燃比の切換により何れの温度領域でも適切なCO量やO量が触媒上に供給されて触媒昇温に貢献していると推測される。 Therefore, the temperature rise ΔT (= catalyst bed temperature−inlet temperature) on the catalyst when forced modulation is executed at the average air-fuel ratios 14.0 and 15.0 is measured, and the test results are shown in FIG. According to the test results of FIG. 10, with the boundary when the inlet temperature is about 350 ° C., the average air-fuel ratio 15.0 has a larger temperature increase ΔT on the low temperature side, and the average air-fuel ratio 14.0 on the high temperature side. A large temperature increase ΔT is obtained. From this test result, it is presumed that an appropriate amount of CO or O 2 is supplied onto the catalyst in any temperature range by switching the central air-fuel ratio, thereby contributing to the temperature rise of the catalyst.

以上の試験結果を踏まえて低温域用及び高温用の強制変調の実行条件が設定されており、これらの実行条件に基づき、入口温度Texが350℃未満では図3,5に示す平均空燃比15.0の波形パターンが強制変調に適用され、入口温度Texが350℃以上になると図4,6に示す平均空燃比14.0の波形パターンが強制変調に適用される。よって、温度領域に関わらず三元触媒17上に適切な量のCOやOを供給し、もって触媒の貴金属担持量に依存することなく三元触媒17の昇温促進により早期活性化して浄化性能を向上することができる。 Based on the above test results, execution conditions of forced modulation for low temperature range and high temperature range are set. Based on these execution conditions, the average air-fuel ratio of 15.0 shown in FIGS. When the inlet temperature Tex becomes 350 ° C. or higher, the waveform pattern of the average air-fuel ratio 14.0 shown in FIGS. 4 and 6 is applied to the forced modulation. Therefore, regardless of the temperature range, an appropriate amount of CO or O 2 is supplied onto the three-way catalyst 17, so that the three-way catalyst 17 can be activated and purified early by promoting the temperature rise without depending on the amount of noble metal supported on the catalyst. The performance can be improved.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では、波形パターン自体を共通とし、平均空燃比の設定を異にした条件で低温域用及び高温域用の強制変調の実行条件を設定したが、低温域用と高温域用とで波形パターンを変更してもよい。具体的には、低温域用には図3に示す波形パターンを適用し、高温域用には図6に示す波形パターンを適用したり、或いは低温域用には図5に示す波形パターンを適用し、高温域用には図4に示す波形パターンを適用したりしてもよい。   This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above embodiment, the execution conditions of the forced modulation for the low temperature region and the high temperature region are set under the condition that the waveform pattern itself is common and the setting of the average air-fuel ratio is different, but for the low temperature region and the high temperature region. The waveform pattern may be changed with. Specifically, the waveform pattern shown in FIG. 3 is applied for the low temperature region, the waveform pattern shown in FIG. 6 is applied for the high temperature region, or the waveform pattern shown in FIG. 5 is applied for the low temperature region. However, the waveform pattern shown in FIG. 4 may be applied to the high temperature region.

また、上記各実施形態では、エンジン1の排気通路16に三元触媒17のみを備えたが、近接触媒やNOx触媒等を任意に追加してもよい。
また,直接噴射型のエンジンに限ることなく,吸気管噴射型のエンジンにも適用可能である。さらに,触媒下流にOセンサを装着して,A/Fの目標値を制御してもよい。
In each of the above embodiments, only the three-way catalyst 17 is provided in the exhaust passage 16 of the engine 1, but a proximity catalyst, a NOx catalyst, or the like may be arbitrarily added.
Further, the present invention is not limited to a direct injection type engine, but can be applied to an intake pipe injection type engine. Furthermore, an A / F target value may be controlled by mounting an O 2 sensor downstream of the catalyst.

実施形態のエンジン及びその排気制御装置を模式的に示す全体構成図である。1 is an overall configuration diagram schematically showing an engine and an exhaust control device thereof in an embodiment. ECUが実行する始動時排気制御ルーチンを示すフローチャートである。It is a flowchart which shows the start time exhaust control routine which ECU performs. 低温域用の強制変調に適用される波形パターンを示すタイムチャートである。It is a time chart which shows the waveform pattern applied to the forced modulation for low temperature regions. 高温域用の強制変調に適用される波形パターンを示すタイムチャートである。It is a time chart which shows the waveform pattern applied to the forced modulation for high temperature regions. 低温域用の強制変調に適用される波形パターンの別例を示すタイムチャートである。It is a time chart which shows another example of the waveform pattern applied to the forced modulation for low temperature regions. 高温域用の強制変調に適用される波形パターンの別例を示すタイムチャートである。It is a time chart which shows another example of the waveform pattern applied to the forced modulation for high temperature regions. エンジン冷態始動時の入口温度に対する排気制御の切換状況と要求O濃度及び要求CO濃度の推移を示すタイムチャートである。Is a time chart showing changes in the switching status and request O 2 concentration and requests CO concentration of the exhaust control for the inlet temperature at the time of engine cold start. 排気空燃比の制御に応じた触媒昇温状況を示す図である。It is a figure which shows the catalyst temperature rising condition according to control of an exhaust air fuel ratio. 平均空燃比を相違させたときの触媒昇温状況を示す図である。It is a figure which shows the catalyst temperature rising condition when making an average air fuel ratio differ. 平均空燃比14.0と15.0で強制変調を実行したときの触媒上での温度上昇量を比較した図である。FIG. 6 is a diagram comparing temperature rise amounts on a catalyst when forced modulation is executed at average air-fuel ratios of 14.0 and 15.0.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
16 排気通路
17 三元触媒
21 ECU(フィードバック制御手段、空燃比変動制御手段)
24 温度センサ(触媒温度相関値検出手段)
1 engine (internal combustion engine)
16 Exhaust passage 17 Three-way catalyst 21 ECU (feedback control means, air-fuel ratio fluctuation control means)
24 Temperature sensor (catalyst temperature correlation value detection means)

Claims (3)

内燃機関の排気通路に設けられた触媒と、
上記触媒の温度に相関するパラメータ値を検出する触媒温度相関値検出手段と、
上記内燃機関の始動直後に作動し、上記触媒に流入する排気の空燃比をリーン空燃比とリッチ空燃比との間で強制的に変動させる空燃比変動制御手段と
を備え、
上記空燃比変動制御手段は、その作動初期において空燃比変動の中心空燃比をストイキよりもリーン空燃比側に設定し、その後上記触媒温度相関値検出手段で検出された検出値の温度上昇方向への変化に伴い上記中心空燃比をストイキよりもリッチ側にシフトするように構成されていることを特徴とする内燃機関の排気制御装置。
A catalyst provided in the exhaust passage of the internal combustion engine;
A catalyst temperature correlation value detecting means for detecting a parameter value correlated with the temperature of the catalyst;
Air-fuel ratio fluctuation control means that operates immediately after starting the internal combustion engine and forcibly varies the air-fuel ratio of the exhaust gas flowing into the catalyst between a lean air-fuel ratio and a rich air-fuel ratio,
The air-fuel ratio fluctuation control means sets the central air-fuel ratio of the air-fuel ratio fluctuation to a lean air-fuel ratio side with respect to stoichiometry at the initial stage of its operation, and then in the direction of temperature rise of the detection value detected by the catalyst temperature correlation value detection means An exhaust control device for an internal combustion engine, characterized in that the central air-fuel ratio is shifted to a richer side than the stoichiometric with the change of the engine.
上記内燃機関の実空燃比を上記目標空燃比に近づけるようにフィードバック制御するフィードバック制御手段をさらに備え、
上記空燃比変動制御手段が上記中心空燃比をストイキよりもリッチ空燃比側にシフトした後、上記フィードバック制御手段が作動を開始することを特徴とする請求項1記載の内燃機関の排気制御装置。
Feedback control means for performing feedback control so that the actual air-fuel ratio of the internal combustion engine approaches the target air-fuel ratio,
2. An exhaust control apparatus for an internal combustion engine according to claim 1, wherein said feedback control means starts operating after said air-fuel ratio fluctuation control means shifts said central air-fuel ratio to a rich air-fuel ratio side from stoichiometry.
上記触媒の温度が約300℃〜約400℃の範囲で、上記空燃比変動制御手段が上記中心空燃比をストイキよりもリッチ空燃比側にシフトするように構成されていることを特徴とする請求項1又は2記載の内燃機関の排気制御装置。   The temperature of the catalyst is in the range of about 300 ° C to about 400 ° C, and the air-fuel ratio fluctuation control means is configured to shift the central air-fuel ratio to a rich air-fuel ratio side from stoichiometry. Item 3. An exhaust control device for an internal combustion engine according to Item 1 or 2.
JP2006294076A 2006-10-30 2006-10-30 Exhaust control device for internal combustion engine Expired - Fee Related JP4840590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006294076A JP4840590B2 (en) 2006-10-30 2006-10-30 Exhaust control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006294076A JP4840590B2 (en) 2006-10-30 2006-10-30 Exhaust control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2008111352A true JP2008111352A (en) 2008-05-15
JP4840590B2 JP4840590B2 (en) 2011-12-21

Family

ID=39444009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006294076A Expired - Fee Related JP4840590B2 (en) 2006-10-30 2006-10-30 Exhaust control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4840590B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090791A (en) * 2008-10-07 2010-04-22 Mitsubishi Motors Corp Control device for engine
JP2012097636A (en) * 2010-11-01 2012-05-24 Toyota Motor Corp Control device of multi-cylinder internal combustion engine
JP2012241528A (en) * 2011-05-16 2012-12-10 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2012241527A (en) * 2011-05-16 2012-12-10 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2016169665A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2017057733A (en) * 2015-09-14 2017-03-23 マツダ株式会社 Control device for engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135492A (en) * 1994-11-04 1996-05-28 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JPH09126014A (en) * 1995-10-30 1997-05-13 Nissan Motor Co Ltd Air fuel ratio control device of internal combustion engine
JP2000045844A (en) * 1998-08-03 2000-02-15 Mazda Motor Corp Control device for cylinder injection type engine
JP2003206788A (en) * 2002-01-11 2003-07-25 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08135492A (en) * 1994-11-04 1996-05-28 Honda Motor Co Ltd Air-fuel ratio control device for internal combustion engine
JPH09126014A (en) * 1995-10-30 1997-05-13 Nissan Motor Co Ltd Air fuel ratio control device of internal combustion engine
JP2000045844A (en) * 1998-08-03 2000-02-15 Mazda Motor Corp Control device for cylinder injection type engine
JP2003206788A (en) * 2002-01-11 2003-07-25 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090791A (en) * 2008-10-07 2010-04-22 Mitsubishi Motors Corp Control device for engine
JP2012097636A (en) * 2010-11-01 2012-05-24 Toyota Motor Corp Control device of multi-cylinder internal combustion engine
JP2012241528A (en) * 2011-05-16 2012-12-10 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2012241527A (en) * 2011-05-16 2012-12-10 Mitsubishi Motors Corp Exhaust emission control device of internal combustion engine
JP2016169665A (en) * 2015-03-12 2016-09-23 トヨタ自動車株式会社 Exhaust emission control device for internal combustion engine
JP2017057733A (en) * 2015-09-14 2017-03-23 マツダ株式会社 Control device for engine

Also Published As

Publication number Publication date
JP4840590B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
US6438943B1 (en) In-cylinder injection type internal combustion engine
JP4023115B2 (en) Control device for direct-injection spark ignition engine
US9133811B2 (en) Method and apparatus for controlling start-up of internal combustion engine
JP4840590B2 (en) Exhaust control device for internal combustion engine
JP4175385B2 (en) Internal combustion engine exhaust purification catalyst warm-up system
JP2004353552A (en) Catalyst early warming-up control device of internal combustion engine
JP2008111351A (en) Exhaust control device of internal combustion engine
KR100443778B1 (en) Control apparatus for cylinder injection type internal combustion engine
JP2001050040A (en) Exhaust emission control system for internal combustion engine
JP4475117B2 (en) Engine air-fuel ratio control device
JP4378829B2 (en) Control device for internal combustion engine
JP3820770B2 (en) In-cylinder direct injection spark ignition engine
JP4883319B2 (en) Exhaust gas purification device for in-cylinder internal combustion engine
JP3446812B2 (en) Internal combustion engine
JP2007056719A (en) Exhaust emission control device of internal combustion engine
JP2009047094A (en) Controller of gasoline engine
JP3931244B2 (en) Internal combustion engine
JP2006242076A (en) Control device for internal combustion engine using hydrogen
JP2007002734A (en) Exhaust emission control device for internal combustion engine
JP2000054837A (en) Catalyst temperature raising device for internal combustion engine
JP3642194B2 (en) In-cylinder internal combustion engine
JP3952109B2 (en) Exhaust gas purification device for internal combustion engine
JP4123093B2 (en) Fuel injection control device for internal combustion engine
JP2010163930A (en) Control device of direct-injection spark ignition internal combustion engine
JP4569769B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R151 Written notification of patent or utility model registration

Ref document number: 4840590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees