JP2007070893A - Steel house - Google Patents

Steel house Download PDF

Info

Publication number
JP2007070893A
JP2007070893A JP2005259104A JP2005259104A JP2007070893A JP 2007070893 A JP2007070893 A JP 2007070893A JP 2005259104 A JP2005259104 A JP 2005259104A JP 2005259104 A JP2005259104 A JP 2005259104A JP 2007070893 A JP2007070893 A JP 2007070893A
Authority
JP
Japan
Prior art keywords
steel
steel house
air
house
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005259104A
Other languages
Japanese (ja)
Inventor
Toko Hashimoto
東光 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEO POWER SYSTEM KK
Original Assignee
GEO POWER SYSTEM KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEO POWER SYSTEM KK filed Critical GEO POWER SYSTEM KK
Priority to JP2005259104A priority Critical patent/JP2007070893A/en
Publication of JP2007070893A publication Critical patent/JP2007070893A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel house with excellent energy saving and dew condensation preventing properties. <P>SOLUTION: In this steel house, a main skeleton is formed by using a square steel pipe for a column and a lightweight H-steel for a horizontal beam. The outer surface of the main skeleton is surrounded by an insulation material, and the temperature and humidity controlled air is circulated on the inside of the insulating material. After the outside air is passed to a heat exchanger of double tube structure buried in the ground, the circulation air is passed through a cobble stone layer stacked under the floor of the steel house to control the temperature and the humidity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐震性・安全構造のスチールハウスに係わるもので、更に詳しくは、自然エネルギ−を利用した省エネ性と結露防止に優れたスチールハウスに関するものである。   The present invention relates to a steel house having an earthquake-resistant and safe structure, and more particularly to a steel house excellent in energy saving using natural energy and prevention of condensation.

近年、一般住宅やビル・建物などの建物に対して耐震性・免震性など安全な強度構造への要求が強くなり、スチ−ルハウスの需要が急速に高まっている。
スチールハウスの問題点は、結露である。
鋼構造体は結露によって腐食が起こり、建物の劣化が急速に進行するので、結露対策を最優先で解決しなければならない。
特許文献1には、建物を外部断熱工法で構築すると同時に、枠材に熱伝導性の高い薄型軽量形鋼を使用し、建物内の温度分布を均質化すると共に、室内を負圧にして室内の湿気を含んだ空気を外に排出することによって結露防止する方法が開示されているが、これら従来方法には冷暖房空調設備が不可欠であり、そのための設備コスト、エネルギ−コストは大きな経済的負担となっているのが実状である。
In recent years, the demand for steel houses has increased rapidly due to the demand for safe and strong structures such as earthquake resistance and seismic isolation for buildings such as ordinary houses and buildings.
The problem with steel houses is condensation.
Since steel structures corrode due to condensation and the building deteriorates rapidly, dew condensation countermeasures must be resolved with the highest priority.
In Patent Document 1, a building is constructed by an external heat insulation method, and at the same time, a thin and light shape steel with high thermal conductivity is used for the frame material, the temperature distribution in the building is homogenized, and the room is made to have a negative pressure. Although methods for preventing dew condensation by discharging air containing a large amount of moisture to the outside are disclosed, air conditioning and air conditioning equipment is indispensable for these conventional methods, and the equipment cost and energy cost for that are a great economic burden. This is the actual situation.

特開2003−301537号公報JP 2003-301537 A

本発明は、かかる問題点に鑑みてなされたもので、設備コスト、エネルギーコストが安価で、省エネ性と結露防止に優れたスチールハウスを提供せんとするものである。   The present invention has been made in view of such a problem, and an object of the present invention is to provide a steel house that is inexpensive in equipment cost and energy cost and excellent in energy saving and dew condensation prevention.

本発明は、下記の手段で解決することができる。
すなわち、
1.柱に角型鋼パイプを、水平梁に軽量H型鋼を使用して主骨格を形成してなると共に、該主骨格の外側を断熱材で包囲して、該断熱材の内側に温度と湿度を調節された空気を循環させてなる構造のスチールハウスであって、該循環空気が外気を地中に埋入した二重管構造の熱交換器に通した後に、該スチールハウスの床下に堆積したグリ石層を通過させて温度と湿度を調整した空気であることを特徴とするスチールハウス。
2.上記スチールハウスの対向するH型鋼の水平梁にC型鋼からなる平角柱の切欠開口部を該H型鋼の水平上翼面に当接させて掛渡し、該C型鋼切欠開口部内面と該H型鋼の水平上翼の下面を挟持、固定するクリップで該平角柱と該水平梁を固定して床下地を形成してなることを特徴とする請求項1に記載スチールハウス。
3.上記スチールハウスは鉄筋入り平板状のコンクリート基礎の上に立設したものであって、上記グリ石層は、該平板状のコンクリート基礎の上に堆積させて、上記柱をグリ石層に埋入してなることを特徴とする請求項1〜2に記載のスチールハウス。
4.上記平板上のコンクリート基礎と柱の間に免振装置を挿入、装着してなることを特徴とする請求項3に記載のスチールハウス。
5.上記断熱材を、上下に連通する隙間を持つ二層構造にして、該隙間に下から上方向に外気を自然通風せしめてなることを特徴とする請求項1〜4のいずれか1項に記載のスチールハウス。
The present invention can be solved by the following means.
That is,
1. The main frame is formed by using square steel pipes for the columns and light H-shaped steel for the horizontal beams, and the outside of the main frame is surrounded by a heat insulating material, and the temperature and humidity are adjusted inside the heat insulating material. A steel house having a structure in which the circulated air is circulated, and after the circulating air passes through a double-pipe heat exchanger in which the outside air is buried in the ground, A steel house characterized by air whose temperature and humidity are adjusted by passing through a stone layer.
2. A notched opening of a rectangular column made of C-shaped steel is passed over a horizontal beam of H-shaped steel facing the steel house so as to contact the horizontal upper blade surface of the H-shaped steel, and the inner surface of the C-shaped steel notched opening and the H-shaped steel 2. The steel house according to claim 1, wherein the flat base and the horizontal beam are fixed by a clip for holding and fixing the lower surface of the horizontal upper wing of the floor to form a floor base.
3. The steel house is erected on a flat concrete foundation with reinforcing bars, and the guristone layer is deposited on the flat concrete foundation and the columns are embedded in the grit stone layer. The steel house according to claim 1 or 2, wherein the steel house is formed.
4). The steel house according to claim 3, wherein a vibration isolator is inserted and mounted between the concrete foundation and the pillar on the flat plate.
5. The said heat insulating material is made into the two-layer structure with the clearance gap connected in the up-down direction, and external air is naturally ventilated from the bottom upwards to this clearance gap, The any one of Claims 1-4 characterized by the above-mentioned. Steel house.

本発明は下記の効果を有する。
1.地中熱や太陽熱などの自然エネルギーを利用する事によって極めて安価なランニングコストで除湿・冷却、あるいは加温・加湿できるので、冷房、暖房時の省エネ性と結露防止効果は極めて大である。
2.設備投資費が極めて安価である。
3.動力部分がないので故障が発生しない。
4.機械振動、騒音がない。
5.処理空気の除塵、無菌性に優れており、安心・健康的である。
The present invention has the following effects.
1. By using natural energy such as underground heat and solar heat, dehumidification / cooling, or heating / humidification can be performed at an extremely low running cost, so that energy saving and dew condensation prevention effects during cooling and heating are extremely large.
2. Capital investment is extremely low.
3. There is no power part, so no failure occurs.
4). There is no mechanical vibration and noise.
5. Excellent dust removal and sterility of the processing air, safe and healthy.

以下、本発明を実施するための詳細について図面で説明する。
本発明実施には軽量型鋼を使用した構造の住宅が必要不可欠である。
図1は、本発明のスチ−ルハウスの概略構造とハウス全体の空気の流れを示す図である。
高温多湿の外気は、屋外に設けた外気導入口1から吸い込まれ、地中熱交換器2を通って建物の床下に設置した送風機3に吸引される。
地中熱交換器2で徐湿、冷却された空気は、複数の穴のあいたパイプ(図示省略)を通してグリ石の蓄熱充填層4に吹き出される。
Hereinafter, details for carrying out the present invention will be described with reference to the drawings.
In order to implement the present invention, a house having a structure using lightweight steel is indispensable.
FIG. 1 is a diagram showing a schematic structure of a steel house according to the present invention and the air flow of the entire house.
The hot and humid outside air is sucked in from an outside air inlet 1 provided outdoors, and is sucked into the blower 3 installed under the floor of the building through the underground heat exchanger 2.
The air that has been gradually humidified and cooled in the underground heat exchanger 2 is blown out to the heat storage packed bed 4 of gulite through a pipe (not shown) having a plurality of holes.

地中熱交換器2は、図に示すように二重管構造であり、先端が封止された外管の中に内管が差し込まれた構造で、内管の先端は開放されており、外管と内管の間には適当な隙間が存在する状態で地中に垂直に埋め込まれている。
高温多湿の外気は外管の穴から外管と内管の隙間に入り、隙間を下降して下端の封止部に衝突して方向を変えて内管を上昇する構造になっている。内管の上部は吸気配管によって送風機3に接続されている。
パイプの外管は熱伝導の良い金属のパイプ(たとえばアルミ製)、内管は熱伝導の悪い、たとえば樹脂製(たとえばポリエチレンのような)パイプからなる。
The underground heat exchanger 2 has a double pipe structure as shown in the figure, and has a structure in which an inner pipe is inserted into an outer pipe whose tip is sealed, and the tip of the inner pipe is open, It is buried vertically in the ground with an appropriate gap between the outer tube and the inner tube.
High temperature and high humidity outside air enters the gap between the outer pipe and the inner pipe through the hole of the outer pipe, descends the gap, collides with the sealing portion at the lower end, changes direction, and rises the inner pipe. The upper part of the inner pipe is connected to the blower 3 by an intake pipe.
The outer pipe of the pipe is made of a metal pipe (for example, made of aluminum) having good heat conduction, and the inner pipe is made of, for example, a pipe made of resin (for example, polyethylene) having poor heat conduction.

グリ石の蓄熱堆積層4を通過した空気は、一部は一階の床下から室内に噴射され、残りは内装ボードと断熱ボートの隙間を通って上昇して、一部は一階の天井と二階の床下の間に回り、残りは二階の内装ボードと断熱ボートの隙間を通って上昇して、天井小屋裏に回る。
二階層においては、二階の内装ボードと断熱ボートの隙間を通って上昇する空気の一部が二階の室内に噴射される。
Part of the air that has passed through the heat storage layer 4 of gulite is injected into the room from below the floor on the first floor, the rest rises through the gap between the interior board and the insulated boat, and part of the air passes through the ceiling on the first floor. It turns between the floors on the second floor, and the rest rises through the gap between the interior board on the second floor and the insulated boat, and turns around the back of the ceiling hut.
In the second floor, a part of the air rising through the gap between the interior board on the second floor and the insulated boat is injected into the room on the second floor.

特に空気の流れは、断熱ボードと防水防湿シート、つまり断熱ボードと外壁材の間には隙間が存在し、この隙間は住宅のコンクリート基礎部分から、二階上部まで連通しており、煙突効果によって、熱交換された外気が下から上に吹き抜け、断熱ボードは常に空冷されることとなる。これによって断熱材、ひいては断熱材と内装ボードの間を流れる空気の昇温抑制にもなる。   In particular, there is a gap between the insulation board and the waterproof and moisture-proof sheet, that is, the insulation board and the outer wall material, and this gap communicates from the concrete foundation part of the house to the upper part of the second floor. The heat exchanged outside air blows from the bottom to the top, and the heat insulation board is always air-cooled. This also suppresses the temperature rise of the heat insulating material, and hence the air flowing between the heat insulating material and the interior board.

以上の様な空気の循環によって、一階、二階とも、室内は低湿度、温調された空気の循環流で包まれることとなる。
本発明においては、本建物の主骨格を形成する柱、梁は良好な熱伝導体及び熱放射体である軽量型鋼材料で構築されているので、同じ低湿度、温調された空気が全体的に均一に行き渡り、室内、室外共に温度ムラや湿度ムラの少ない住環境が生み出され、結露が発生し難くなる。
By the air circulation as described above, both the first floor and the second floor are encased in a circulating air flow that is controlled in low humidity and temperature.
In the present invention, the pillars and beams forming the main skeleton of the building are constructed of lightweight steel materials that are good heat conductors and heat radiators, so the same low humidity and temperature-controlled air is totally It spreads evenly and creates a living environment with little temperature and humidity variations both indoors and outdoors, making condensation less likely to occur.

本発明において循環使用する空気は、地中熱や太陽熱で熱交換された空気を使用することができる。
特に地中熱を利用する場合について説明すると、地中熱は四季を通じて一定しているので、地中パイプを埋設することによって概ね一定の地中温度(15℃)の地中熱を利用することが出来る。地中熱交換器外管表面は四季を通じて地中熱温度(15〜20℃)に保持されており、通過空気は地中熱によって熱交換される。
例えば、夏季の場合には、外気温度30〜35℃の空気が26〜28℃前後に冷却され、パイプ内面では空気中の水分が結露して第1段目の除湿が行われる。図示されていないが、パイプの底部に溜まった結露水はポンプで吸い上げて屋外に排出する。
また冬季の場合では、外気温度5〜10℃の空気が12〜16℃前後に加温、乾燥され、パイプ内面では空気中の水分が蒸発して加湿される。
In the present invention, air that is circulated and used can be air that has been heat-exchanged by underground heat or solar heat.
In particular, when using geothermal heat, since geothermal heat is constant throughout the seasons, use underground heat at a generally constant underground temperature (15 ° C) by burying underground pipes. I can do it. The surface of the outer pipe of the underground heat exchanger is maintained at the underground heat temperature (15 to 20 ° C.) throughout the four seasons, and the passing air is heat-exchanged by underground heat.
For example, in the summer, air having an outside air temperature of 30 to 35 ° C. is cooled to around 26 to 28 ° C., and moisture in the air is condensed on the inner surface of the pipe to perform the first dehumidification. Although not shown, the condensed water accumulated at the bottom of the pipe is sucked up by a pump and discharged outdoors.
In winter, air having an outside air temperature of 5 to 10 ° C. is heated and dried around 12 to 16 ° C., and moisture in the air is evaporated and humidified on the inner surface of the pipe.

地中の温度特性として地下5mまでの深さでは、太陽熱の伝熱の時間遅れから、夏は地下深度10m以上の地中の平均気温よりも更に低い温度になること、そして冬は同じく地下深度10m以上の地中の平均気温よりも更に高い温度になる。そこでこの特性を利用して、地中熱交換器のパイプは地下5mの深さまで埋入した時、熱交換効率的にも、掘削経費の点からも最も効果的である。したがって外管の埋入深さは、地中5mの深さが、熱効率的にも、掘削費用の点でも、最も好ましい。 As the temperature characteristics of the ground, at depths up to 5m underground, due to the time delay of solar heat transfer, the temperature in the summer is even lower than the average temperature of the ground at a depth of 10m or more, and in winter the depth of the ground is also the same. The temperature becomes higher than the average temperature in the ground of 10m or more. Therefore, using this characteristic, when the underground heat exchanger pipe is buried to a depth of 5 m underground, it is most effective in terms of heat exchange efficiency and excavation costs. Therefore, the depth of the outer pipe is most preferably 5 m from the viewpoint of thermal efficiency and excavation cost.

本発明に使用するスチ−ルハウスは柱、水平梁、垂直梁と無数の鉄骨が縦横に張り巡らされた構造からなるために、構造的には極めて堅固であり、耐震性に極めて優れている。また鉄鋼は木材に比べて熱伝導性が著しく優れているので、住宅の隅々まで熱が良好に伝達し、住宅内の温度差が無くなり温度分布が均一になる特徴がある。 The steel house used in the present invention has a structure in which pillars, horizontal beams, vertical beams and countless steel frames are stretched vertically and horizontally, so that the structure is extremely solid and extremely excellent in earthquake resistance. In addition, steel has significantly higher thermal conductivity than wood, so that heat is transferred well to every corner of the house, eliminating the temperature difference in the house and making the temperature distribution uniform.

またスチ−ルハウスは、一般的に柱、水平梁、垂直梁などの接合や加工が簡単であり、施工の省力化、施工期間の短縮化、自由設計が可能などの特徴がある。
図2(図1中のA部の拡大図)はその一例を示したもので、対向するH型鋼の水平梁にC型鋼からなるをH型鋼の水平上翼面に当接させて掛渡し、図2(b)に示すような固定が可能なクリップで床下地と水平梁を固定して簡単に接続させることが可能である。
Steel houses are generally easy to join and process columns, horizontal beams, vertical beams, etc., and have features such as saving labor, shortening the construction period, and free design.
FIG. 2 (enlarged view of part A in FIG. 1) shows an example of this, and is formed by contacting a horizontal beam of H-shaped steel opposed to C-shaped steel against the horizontal upper blade surface of H-shaped steel, It is possible to fix and easily connect the floor base and the horizontal beam with a clip that can be fixed as shown in FIG.

本発明のスチールハウスを立設するコンクリートの基礎は、図1の全体図に示すように鉄筋入り平板状のコンクリート基礎5がもっとも好ましい。柱を立てる部分を高くする従来構造はむしろ熱伝達に障害となる。すなわち床下から始まる温調空気の流れを、軽量型鋼の柱、梁にいち早く伝達させて均一な温度分布を達成させるためには、断熱材であるコンクリートの障壁はむしろ障害となるからである。柱はグリ石を堆積させたレベルで基礎のコンクリートに固定する時が最も好ましい熱伝達がえられる。又強度的にも平板構造が好ましい。 The concrete foundation on which the steel house of the present invention is erected is most preferably a flat concrete foundation 5 with reinforcing bars as shown in the overall view of FIG. The conventional structure which raises the part where the column is raised is rather an obstacle to heat transfer. In other words, in order to quickly transmit the temperature-controlled air flow starting from under the floor to the lightweight steel columns and beams to achieve a uniform temperature distribution, the concrete barrier as a heat insulating material is rather an obstacle. The most favorable heat transfer is obtained when the column is fixed to the concrete of the foundation at the level of piled stone. In terms of strength, a flat plate structure is preferable.

図3(図1中のB部の拡大図)は、床下のグリ石蓄熱層と軽量型鋼の角柱との熱伝熱・熱伝達を最も効率化するための方法を例示した図である。 FIG. 3 (enlarged view of portion B in FIG. 1) is a diagram illustrating a method for making the most efficient heat transfer and heat transfer between the grindstone heat storage layer under the floor and the prismatic column of the lightweight steel.

コンクリート基礎のうえにグリ石を充填して、この角柱を埋め込むように埋入する。
グリ石は、直径30〜100mmの石を、1階床下の地下数十cmの深さから地表面に概ね40〜50cmの堆積厚さに積んだものである。
このグリ石と軽量鉄骨の角柱が直接に接触することによって、建物全体の骨格を形成している鉄骨まで素早く熱伝達される
The concrete foundation is filled with grit stones, and the prisms are embedded.
Guristone is a stone with a diameter of 30 to 100 mm piled on the ground surface from a depth of several tens of centimeters below the first floor to a depth of approximately 40 to 50 cm.
Heat transfer is made quickly to the steel that forms the skeleton of the entire building through direct contact between the stone and the prism of lightweight steel.

地熱は四季を通じて13〜18℃の温度に保たれており、グリ石の堆積層はこの地熱の影響を受けて夏季には20〜24℃、冬季には15〜19℃の温度に保持されている。
堆積されたグリ石とグリ石の間には隙間が存在し、通過する空気はこのグリ石の隙間の中を通過するときにも冷却され、グリ石の表面には空気中の水分が結露して除湿、冷却も行われることとなる。
なお、本発明では地中熱交換器で徐湿、冷却された空気をグリ石堆積層に通すことは必須条件ではなく、必要に応じて適宜選択すればよい。また、グリ石の表面に結露した空気中の水分は適当な方法を利用して室外に排気すればよい。
Geothermal heat is maintained at a temperature of 13-18 ° C. throughout the four seasons, and the gritite deposits are affected by the geothermal heat and are maintained at a temperature of 20-24 ° C. in the summer and 15-19 ° C. in the winter. Yes.
There is a gap between the accumulated stones and stones, and the passing air is cooled when passing through these stones, and moisture in the air is condensed on the surface of the stones. Thus, dehumidification and cooling are also performed.
In the present invention, it is not an essential condition that air gradually humidified and cooled by the underground heat exchanger is passed through the gulite deposit layer, and may be appropriately selected as necessary. In addition, moisture in the air condensed on the surface of the grits may be exhausted outside using an appropriate method.

また堆積層の底面には地中からの湿分の上昇を防止するため、図示していないが、防湿シートが敷かれている。このシートはグリ石層に発生した水滴等はシートを通って地中に浸透することは出来るが地中からの湿分の上昇は防止する構造になっている。これは複数のシートを位置をずらして重なった部分が出来るように全体に敷設することで達成できる。すなわち地面からの湿分、水分の上昇は防止できるが、上方からの水分は重なった部分の隙間から外に染み出ることができるようになっている。 Moreover, although not shown in figure, the moisture-proof sheet | seat is spread | laid in the bottom face of the deposition layer in order to prevent the raise of moisture from underground. This sheet has a structure that prevents water droplets and the like generated in the guristone layer from penetrating into the ground through the sheet, but preventing moisture from rising from the ground. This can be achieved by laying a plurality of sheets on the whole so as to form overlapping portions by shifting the positions. That is, moisture and moisture can be prevented from rising from the ground, but moisture from above can permeate outside through the gap between the overlapping portions.

図4(図1中のC部の拡大図)は、柱を鉄筋コンクリート基礎との間に免振装置を装着する構造を説明した図である。
耐震構造住宅としては、壁や床など筋交いや合板などの骨組みに強固なものを使用して耐震性能を高める方法が一般的であるが、本発明ではコンクリート基礎の上に免振装置を装着して、その上に建物を設ける二重構造で地震の揺れを吸収する構造である。
FIG. 4 (enlarged view of part C in FIG. 1) is a diagram illustrating a structure in which a vibration isolator is mounted between a column and a reinforced concrete foundation.
For earthquake-resistant houses, it is common to increase the seismic performance by using strong structures such as braces such as walls and floors and plywood. In the present invention, a vibration isolator is mounted on the concrete foundation. In addition, it is a structure that absorbs the shaking of the earthquake with a double structure with a building on it.

免振装置としては、振動などの揺れに対して復元力のある減衰ゴム、樹脂、或いはこれらを複合させた物を使用するのが好適であるが、これらが変形することで振動を吸収するような材料であれば特に限定するものではない。 As the vibration isolator, it is preferable to use a damping rubber, a resin, or a combination of these, which has a restoring force against vibrations such as vibrations. The material is not particularly limited as long as it is a simple material.

建物全体の省エネ施工方法としては外張り断熱工法が最も多用されているが、断熱ボードの外側には、角木材をビス止めし、角木材の外側を防水防湿シートで覆って、貼り付けて外気と室内をシールする。
防水防湿シートと外壁材の間には隙間が形成されることとなるので、この隙間に太陽熱で熱交換させた空気で自然通風させることも可能である。
The most commonly used energy-saving construction method for the entire building is the external insulation method, but the outside of the insulation board is screwed with square timber and the outside of the square timber is covered with a waterproof and moisture-proof sheet. And seal the room.
Since a gap is formed between the waterproof and moisture-proof sheet and the outer wall material, it is possible to naturally ventilate the air by heat exchange with solar heat in the gap.

図1は、スチ−ルハウスの概略構造とハウス全体の空気の流れを示す図である。FIG. 1 is a diagram showing a schematic structure of a steel house and an air flow of the entire house. 図2は、床下地と水平梁を簡単に接続する繋ぎの構造の説明図である。FIG. 2 is an explanatory diagram of a connection structure for simply connecting the floor base and the horizontal beam. 図3は、角柱のグリ石蓄熱層へ埋入方法の説明図である。FIG. 3 is an explanatory view of a method of embedding in a prismatic heat storage layer of a prism. 図4は、鉄筋コンクリート基礎に免振装置を装着する構造を説明した図である。FIG. 4 is a diagram illustrating a structure in which a vibration isolator is mounted on a reinforced concrete foundation.

Claims (5)

柱に角型鋼パイプを、水平梁に軽量H型鋼を使用して主骨格を形成してなると共に、該主骨格の外側を断熱材で包囲して、該断熱材の内側に温度と湿度を調節された空気を循環させてなる構造のスチールハウスであって、該循環空気が外気を地中に埋入した二重管構造の熱交換器に通した後に、該スチールハウスの床下に堆積したグリ石層を通過させて温度と湿度を調整した空気であることを特徴とするスチールハウス。 The main frame is formed by using square steel pipes for the columns and light H-shaped steel for the horizontal beams, and the outside of the main frame is surrounded by a heat insulating material, and the temperature and humidity are adjusted inside the heat insulating material. A steel house having a structure in which the circulated air is circulated, and after the circulating air passes through a double-pipe heat exchanger in which the outside air is buried in the ground, A steel house characterized by being air whose temperature and humidity are adjusted by passing through a stone layer. 上記スチールハウスの対向するH型鋼の水平梁に、C型鋼からなる平角柱の切欠開口部を該H型鋼の水平上翼面に当接させて掛渡し、該C型鋼切欠開口部内面と該H型鋼の水平上翼の下面を挟持、固定するクリップで該平角柱と該水平梁を固定して床下地を形成してなることを特徴とする請求項1に記載スチールハウス。 A notched opening of a rectangular column made of C-shaped steel is placed in contact with the horizontal beam of the H-shaped steel facing the steel house so as to contact the horizontal upper blade surface of the H-shaped steel, and the inner surface of the C-shaped steel notched opening and the H 2. The steel house according to claim 1, wherein the flat base and the horizontal beam are fixed by a clip for holding and fixing the lower surface of the horizontal upper wing of the steel plate to form a floor base. 上記スチールハウスは鉄筋入り平板状のコンクリート基礎の上に立設したものであって、上記グリ石層は、該平板状のコンクリート基礎の上に堆積させて、上記柱をグリ石層に埋入してなることを特徴とする請求項1〜2に記載のスチールハウス。 The steel house is erected on a flat concrete foundation with reinforcing bars, and the guristone layer is deposited on the flat concrete foundation and the columns are embedded in the grit stone layer. The steel house according to claim 1 or 2, wherein the steel house is formed. 上記平板上のコンクリート基礎と柱の間に免振装置を挿入、装着してなることを特徴とする請求項3に記載のスチールハウス。 The steel house according to claim 3, wherein a vibration isolator is inserted and mounted between the concrete foundation and the pillar on the flat plate. 上記断熱材を、上下に連通する隙間を持つ二層構造にして、該隙間に、下から上方向に外気を自然通風せしめてなることを特徴とする請求項1〜4のいずれか1項に記載のスチールハウス。

5. The heat insulation material according to claim 1, wherein the heat insulating material has a two-layer structure having a gap communicating vertically, and the outside air is naturally ventilated from the bottom upward in the gap. The listed steel house.

JP2005259104A 2005-09-07 2005-09-07 Steel house Pending JP2007070893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259104A JP2007070893A (en) 2005-09-07 2005-09-07 Steel house

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005259104A JP2007070893A (en) 2005-09-07 2005-09-07 Steel house

Publications (1)

Publication Number Publication Date
JP2007070893A true JP2007070893A (en) 2007-03-22

Family

ID=37932590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259104A Pending JP2007070893A (en) 2005-09-07 2005-09-07 Steel house

Country Status (1)

Country Link
JP (1) JP2007070893A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973295A1 (en) 2007-03-19 2008-09-24 Nec Corporation Call session control server assignment method and call session control server assignment system
WO2009050795A1 (en) * 2007-10-17 2009-04-23 Geo Power System Co., Ltd. Air-conditioning system utilizing natural energy and building using the same
JP2014034848A (en) * 2012-08-10 2014-02-24 Toyota Home Kk Building
JP5898754B1 (en) * 2014-11-14 2016-04-06 株式会社ジオパワーシステム Floor support and building air conditioning system
CN109162376A (en) * 2018-10-19 2019-01-08 四川三阳钢结构有限公司 A kind of house with one-way ventilating layer
JP6914495B1 (en) * 2021-06-11 2021-08-04 フロンヴィルホームズ名古屋株式会社 Housing

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308030A (en) * 1989-05-23 1990-12-21 Koushiyou:Kk Partition variable type house construction
JPH04194149A (en) * 1990-11-27 1992-07-14 Misawa Homes Co Ltd Fixing structure for end part of floor material
JPH05112998A (en) * 1991-10-18 1993-05-07 Sekisui House Ltd Fitting device for floor frame
JPH05209434A (en) * 1992-11-25 1993-08-20 Asahi Chem Ind Co Ltd Device for firmly joining pillar and beam construction method thereof
JPH0744538U (en) * 1994-10-11 1995-11-21 鐘淵化学工業株式会社 Buildings with cold storage components
JPH1060999A (en) * 1996-08-27 1998-03-03 Ig Tech Res Inc Steel house
JPH116162A (en) * 1997-06-18 1999-01-12 Ohbayashi Corp Construction method for reinforced concrete underground external wall
JPH11303455A (en) * 1998-04-22 1999-11-02 Bando Chem Ind Ltd Mounting structure of base isolation device for light-weight steel frame structure
JP2000097586A (en) * 1998-04-10 2000-04-04 Toko Kogyo:Kk Air-conditioning system utilizing natural force of building
JP2003004336A (en) * 2001-06-21 2003-01-08 Toko Kogyo:Kk Air conditioning system utilizing ground heat and zeolite
JP2003105918A (en) * 2001-09-28 2003-04-09 Kawatetsu Civil Kawaken Kk Exterior wall panel, method of assembling exterior wall panel, and clip for joining panel
JP2003184106A (en) * 2001-12-17 2003-07-03 Yasuhiro Kawachi Vibration isolation foundation structure for lightweight building
JP2005069609A (en) * 2003-08-27 2005-03-17 Hitaka:Kk Air conditioning system using ground heat

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02308030A (en) * 1989-05-23 1990-12-21 Koushiyou:Kk Partition variable type house construction
JPH04194149A (en) * 1990-11-27 1992-07-14 Misawa Homes Co Ltd Fixing structure for end part of floor material
JPH05112998A (en) * 1991-10-18 1993-05-07 Sekisui House Ltd Fitting device for floor frame
JPH05209434A (en) * 1992-11-25 1993-08-20 Asahi Chem Ind Co Ltd Device for firmly joining pillar and beam construction method thereof
JPH0744538U (en) * 1994-10-11 1995-11-21 鐘淵化学工業株式会社 Buildings with cold storage components
JPH1060999A (en) * 1996-08-27 1998-03-03 Ig Tech Res Inc Steel house
JPH116162A (en) * 1997-06-18 1999-01-12 Ohbayashi Corp Construction method for reinforced concrete underground external wall
JP2000097586A (en) * 1998-04-10 2000-04-04 Toko Kogyo:Kk Air-conditioning system utilizing natural force of building
JPH11303455A (en) * 1998-04-22 1999-11-02 Bando Chem Ind Ltd Mounting structure of base isolation device for light-weight steel frame structure
JP2003004336A (en) * 2001-06-21 2003-01-08 Toko Kogyo:Kk Air conditioning system utilizing ground heat and zeolite
JP2003105918A (en) * 2001-09-28 2003-04-09 Kawatetsu Civil Kawaken Kk Exterior wall panel, method of assembling exterior wall panel, and clip for joining panel
JP2003184106A (en) * 2001-12-17 2003-07-03 Yasuhiro Kawachi Vibration isolation foundation structure for lightweight building
JP2005069609A (en) * 2003-08-27 2005-03-17 Hitaka:Kk Air conditioning system using ground heat

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973295A1 (en) 2007-03-19 2008-09-24 Nec Corporation Call session control server assignment method and call session control server assignment system
WO2009050795A1 (en) * 2007-10-17 2009-04-23 Geo Power System Co., Ltd. Air-conditioning system utilizing natural energy and building using the same
JP2014034848A (en) * 2012-08-10 2014-02-24 Toyota Home Kk Building
JP5898754B1 (en) * 2014-11-14 2016-04-06 株式会社ジオパワーシステム Floor support and building air conditioning system
JP2016095100A (en) * 2014-11-14 2016-05-26 株式会社ジオパワーシステム Floor support medium and building air conditioning system
CN109162376A (en) * 2018-10-19 2019-01-08 四川三阳钢结构有限公司 A kind of house with one-way ventilating layer
JP6914495B1 (en) * 2021-06-11 2021-08-04 フロンヴィルホームズ名古屋株式会社 Housing
JP2022189216A (en) * 2021-06-11 2022-12-22 フロンヴィルホームズ名古屋株式会社 House

Similar Documents

Publication Publication Date Title
US8291659B2 (en) Sustainable building model
US20100198414A1 (en) Systems and methods for controlling interior climates
AU2008269938A1 (en) Structural wall panels and methods and systems for controlling interior climates
JP2007070893A (en) Steel house
JP3946634B2 (en) Geothermal use structure
JP4785098B2 (en) Underground heat exchanger buried structure
JP4882021B1 (en) Heat exchange system
JP2010151351A (en) Underground heat exchanger burying structure
JP2015148434A (en) Underground water utilization system
JP2003336910A (en) Air conditioner for building
JP2008261535A (en) Energy-saving constant-temperature ventilation system utilizing underground heat
JP5074967B2 (en) Wooden house
KR100999405B1 (en) Dry floor type heating system
WO2012105134A1 (en) Air-conditioning system utilizing underground heat and solar heat
JP3825779B2 (en) Temperature control structure and temperature control method for buildings
JP2000054519A (en) Heat storage/cool storage structure for building
JP4756397B2 (en) Insulation method for husk wall of wooden house
JP2007139236A (en) Underfloor air-conditioning device and method
JP2011017207A (en) Foundation structure
KR20140046687A (en) A device to operate, heat and air-condition storehouses for farm products by utilizing basements.
CN219431057U (en) Steel structural column heat insulation structure
JPS63255464A (en) Floor structure
JP3148300U (en) Floor heating structure
JP2010024809A (en) Forced outer-wall air circulation type wood frame construction
JPS63201440A (en) House

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110726