JP2007065012A - Projection type display device - Google Patents

Projection type display device Download PDF

Info

Publication number
JP2007065012A
JP2007065012A JP2005247268A JP2005247268A JP2007065012A JP 2007065012 A JP2007065012 A JP 2007065012A JP 2005247268 A JP2005247268 A JP 2005247268A JP 2005247268 A JP2005247268 A JP 2005247268A JP 2007065012 A JP2007065012 A JP 2007065012A
Authority
JP
Japan
Prior art keywords
light
color
light source
display device
projection display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005247268A
Other languages
Japanese (ja)
Other versions
JP4903407B2 (en
Inventor
Kenji Miyazaki
健二 宮崎
Shuichi Nakanishi
秀一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp NEC Display Solutions Ltd
Original Assignee
NEC Viewtechnology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Viewtechnology Ltd filed Critical NEC Viewtechnology Ltd
Priority to JP2005247268A priority Critical patent/JP4903407B2/en
Publication of JP2007065012A publication Critical patent/JP2007065012A/en
Application granted granted Critical
Publication of JP4903407B2 publication Critical patent/JP4903407B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0242Compensation of deficiencies in the appearance of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0666Adjustment of display parameters for control of colour parameters, e.g. colour temperature
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/14Detecting light within display terminals, e.g. using a single or a plurality of photosensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a projection type display device that can keep optimum white balance of a display image and obtain high picture quality even if light beams of a plurality of colors of light emitting elements of the plurality of colors vary in quantity owing to deterioration or a fault of the light emitting elements. <P>SOLUTION: The projection type display device is equipped with a light source 10 comprising light emitting elements emitting the color light beams of red, green, and blue, an optical modulating element 14 which uses a liquid crystal device, a projection optical system 16, a detection unit 102 arranged between the optical modulating element 14 and the projection optical system 16 , and a control unit 100. The detection unit 102 detects the quantities of the light beams emitted by those light emitting elements and the control unit 100 keeps white balance of the respective colors by comparing and adjusting the quantities of light of the light emitting elements of respective red, green, and blue, so even if a light emitting is used for a long time to deteriorate and decrease in light quantity, a display image having optimum white balance can be maintained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、投写型表示装置に関し、特に発光素子を用いて光量が所望のホワイトバランスとなる光量比に調整される投写型表示装置に関する。   The present invention relates to a projection display device, and more particularly to a projection display device that uses a light emitting element to adjust the light amount ratio to a desired white balance.

映像や画像を大画面で楽しめる表示装置として、投写型表示装置が知られている。従来の投写型表示装置は、光源からの白色光をダイクロイックミラーなどの色分離手段にて赤色光、緑色光、青色光に分離し、分離した単色光を液晶デバイスやDMDなどの光変調素子にて変調し、クロスダイクロイックプリズムなどの色合成手段にて色合成を行ってカラー映像を作り、その映像を投写レンズなどの投写光学系を用いてスクリーン等に拡大表示を行うものが主流であった。   A projection display device is known as a display device for enjoying images and images on a large screen. A conventional projection display device separates white light from a light source into red light, green light, and blue light by a color separation means such as a dichroic mirror, and separates the monochromatic light into a light modulation element such as a liquid crystal device or DMD. The mainstream method is to create a color image by color synthesis using color synthesis means such as a cross dichroic prism, and to enlarge and display the image on a screen using a projection optical system such as a projection lens. .

従来、光源としては高圧水銀ランプやメタルハライドランプなどの放電ランプが用いられていたが、近年LEDや半導体レーザなどの半導体発光素子を光源として利用することが提案され実用化されつつある。   Conventionally, discharge lamps such as high-pressure mercury lamps and metal halide lamps have been used as light sources. However, in recent years, use of semiconductor light-emitting elements such as LEDs and semiconductor lasers as light sources has been proposed and put into practical use.

これらの発光素子は、放電ランプと比べて熱線や紫外線の成分を含まず、点灯制御が簡単で、応答速度が速く、破裂の不安がなく、長寿命であるといった利点を有する。また、発光素子は赤色、緑色、青色のカラー映像をつくる3原色の単色発光が可能であるので、色分離をする必要がないことも含めて投写型表示装置の光源としては好適な光源である。   These light-emitting elements do not contain components of heat rays or ultraviolet rays, have advantages such as simple lighting control, high response speed, no fear of rupture, and long life compared to discharge lamps. In addition, the light emitting element is capable of emitting light of three primary colors that produce red, green, and blue color images, and is therefore suitable as a light source for a projection display device, including that there is no need for color separation. .

発光素子は、銀ペーストやボンディングワイヤー、スタッドバンプなどによって基板やリードフレームに機械的、電気的に接続・実装され、エポキシ樹脂やシリコンジェルなどの封止材で封止保護される。また、この封止材は、屈折率を1.5前後有するので、封止材中に発光素子を入れることにより、発光素子界面にて発光層から発せられた光の全反射が低減され、光の取り出し効率を高める効果もある。   The light emitting element is mechanically and electrically connected and mounted on a substrate or a lead frame by silver paste, bonding wire, stud bump, or the like, and is sealed and protected with a sealing material such as epoxy resin or silicon gel. In addition, since this encapsulant has a refractive index of around 1.5, by inserting a light emitting element in the encapsulant, total reflection of light emitted from the light emitting layer at the light emitting element interface is reduced, There is also an effect of increasing the extraction efficiency.

しかし、発光素子は、経時変化による光量の低下度合いが発光色によって異なるという問題を有している。紫外領域や青色などの短波長を発する発光素子においては、赤色などの長波長を発する発光素子と比較すると封止材が黄変しやすく、黄変によって透過率が低下するので、封止材を通して出てくる光量が低下する。また、発光素子は発光色によって用いられている発光材料が異なり、一般に紫外〜緑色の波長領域ではGaN系の化合物半導体が多く用いられ、黄色〜赤色の波長領域では4元材料と呼ばれるAlGaInP系や、GaAs系の化合物半導体が多く用いられる。発光素子は光と共に多くの熱を発し、発光量を増やすためにより多くの電流を流すとより高温となってしまう。発光色により発光材料が異なるので、高温下での長期使用による劣化の進行が発光色によって異なる。従って、発光色によって長期使用による光量の低下度合いが異なるので、投写型表示装置に必要な白色をつくるための所望のホワイトバランスの投写映像を長期間維持することが困難であった。   However, the light emitting element has a problem that the degree of decrease in the amount of light due to a change with time varies depending on the emission color. In light emitting elements that emit short wavelengths such as the ultraviolet region and blue, the sealing material tends to yellow compared to light emitting elements that emit long wavelengths such as red, and the transmittance decreases due to yellowing. The amount of light coming out decreases. In addition, light emitting materials used for light emitting elements differ depending on the light emission color, and in general, GaN-based compound semiconductors are often used in the ultraviolet to green wavelength region, and AlGaInP based materials called quaternary materials in the yellow to red wavelength region. GaAs-based compound semiconductors are often used. The light emitting element emits a lot of heat together with the light, and when a larger amount of current is supplied to increase the amount of light emission, the temperature becomes higher. Since the luminescent material differs depending on the luminescent color, the progress of deterioration due to long-term use at high temperatures differs depending on the luminescent color. Accordingly, since the degree of decrease in the amount of light due to long-term use differs depending on the luminescent color, it has been difficult to maintain a projection image with a desired white balance for producing the white color necessary for the projection display device for a long period of time.

図14は従来の投写型表示装置の光学系の構成を示す模式的構成図である。図14では、本発明の実施の形態と同じ構成要素については実施の形態と同じ符号を用いて説明する。図14において投写型表示装置5の光学系55は、R(赤)色光源10R、G(緑)色光源10G、B(青)色光源10B、色合成手段11、偏光板13、光変調素子14、検光子40、投写光学系16を有する。各光源10と光変調素子14とは制御部100により制御される。発光素子を用いたR色光源10R、G色光源10G、B色光源10Bから出射した単色光は、色合成手段11によって同一の光路に合成され、偏光板13へ入射する。図示されていないが、偏光板13の手前に偏光ビームスプリッタアレイとλ/2位相差板による偏光統一手段が挿入されてもよい。偏光板13を一方向の直線偏光光のみが透過して光変調素子14へ入射する。この例では、単板の光変調素子を使用した光学系であるので、赤、緑、青の3原色を順次点灯し、光変調素子14にて変調された各色の光を時間的に合成することでフルカラー画像を得るFSC(Field Sequential Color)表示方式を採用している。光変調素子14において、入射した直線偏光光の偏光方向が表示する画像に対応して制御され、検光子40と投写光学系16とを通して図示していないスクリーンなどへ画像が投影される。検光子40は、偏光板と同じように一方向の直線偏光光のみを透過する機能を有するので、投影画像の光は、検光子40の偏光方向にあわせて光変調素子14にて偏光方向が回転される。   FIG. 14 is a schematic configuration diagram showing a configuration of an optical system of a conventional projection display apparatus. In FIG. 14, the same components as those of the embodiment of the present invention will be described using the same reference numerals as those of the embodiment. In FIG. 14, the optical system 55 of the projection display device 5 includes an R (red) color light source 10R, a G (green) color light source 10G, a B (blue) color light source 10B, a color composition unit 11, a polarizing plate 13, and a light modulation element. 14, an analyzer 40, and a projection optical system 16. Each light source 10 and the light modulation element 14 are controlled by the control unit 100. Monochromatic light emitted from the R color light source 10R, the G color light source 10G, and the B color light source 10B using the light emitting elements is synthesized in the same optical path by the color synthesizing unit 11 and enters the polarizing plate 13. Although not shown in the figure, a polarization unifying unit using a polarizing beam splitter array and a λ / 2 phase difference plate may be inserted before the polarizing plate 13. Only linearly polarized light in one direction passes through the polarizing plate 13 and enters the light modulation element 14. In this example, since the optical system uses a single-plate light modulation element, the three primary colors of red, green, and blue are sequentially turned on, and light of each color modulated by the light modulation element 14 is temporally synthesized. Thus, an FSC (Field Sequential Color) display method for obtaining a full color image is adopted. In the light modulation element 14, the polarization direction of the incident linearly polarized light is controlled corresponding to the image to be displayed, and the image is projected onto a screen (not shown) or the like through the analyzer 40 and the projection optical system 16. Since the analyzer 40 has a function of transmitting only one direction of linearly polarized light in the same manner as the polarizing plate, the light of the projection image is polarized by the light modulation element 14 in accordance with the polarization direction of the analyzer 40. It is rotated.

この時、従来の投写型表示装置においては、工場出荷時には投写映像のホワイトバランスが各色で最適なバランスに調整されていても、長期の使用によって各光源の光量が劣化してしまう。この時、発光光量が劣化する度合いは、発光色によって異なるので、所望のホワイトバランスを維持することが困難であるといった問題を有しており、この問題を解決するための方法が開示されている(特許文献1〜3参照)。   At this time, in the conventional projection display device, even when the white balance of the projected image is adjusted to the optimum balance for each color at the time of shipment from the factory, the light amount of each light source deteriorates due to long-term use. At this time, the degree of deterioration of the amount of emitted light varies depending on the emission color, and thus has a problem that it is difficult to maintain a desired white balance, and a method for solving this problem is disclosed. (See Patent Documents 1 to 3).

しかし、特許文献1の表示装置、光源装置、および照明装置では、発光素子直後または光学系の途中の光量を測定しているために、測定箇所以降の光学部品や光変調素子などの劣化による光量の低下を検出できず、また、実際の光学系の光路上における光量の検出が行なわれていないため、正確な光量変化の検出ができないといった問題を有している。   However, in the display device, the light source device, and the illumination device disclosed in Patent Document 1, since the light amount is measured immediately after the light emitting element or in the middle of the optical system, the light amount due to deterioration of the optical component or the light modulation element after the measurement location is measured. The decrease in the light amount cannot be detected, and the amount of light on the optical path of the actual optical system is not detected.

特許文献2には、偏光ビームスプリッタによりレーザ光よりS波を分波し、その光路中に受光素子を設けて光量を検出して電圧に変換し、基準電圧と比較して寿命を検出するレーザ測長機が開示されているが、レーザ光の出力制御は行なわれておらず、ホワイトバランスの制御には使用できない。   Patent Document 2 discloses a laser that demultiplexes an S wave from a laser beam by a polarizing beam splitter, detects a light amount by providing a light receiving element in the optical path, converts the light amount into a voltage, and detects a lifetime compared with a reference voltage. Although a length measuring device is disclosed, output control of laser light is not performed and cannot be used for white balance control.

特許文献3には、発光素子の複数配列からなる発光素子群を用いた表示装置において、運用時間を記憶して、記憶されている発光素子ごとの輝度劣化カーブと対照して補正係数を求め、発光素子群への電流値を加減して一定の色度や輝度で映像を表示する方法が開示されているが、実際の光量は測定されていない。
特開2004−184852号公報 特開平9−72719号公報 特開2003−202838号公報
In Patent Document 3, in a display device using a light emitting element group composed of a plurality of light emitting element arrays, the operation time is stored, and a correction coefficient is obtained in contrast to the stored luminance deterioration curve for each light emitting element. Although a method of displaying an image with constant chromaticity and luminance by adjusting the current value to the light emitting element group is disclosed, the actual light quantity is not measured.
JP 2004-184852 A JP-A-9-72719 JP 2003-202838 A

赤色、緑色、青色の3原色のLED(Light Emitting Diode、発光ダイオード)や半導体レーザを用いて色合成を行い、単一の光変調素子を用いた投写型表示装置の光源は、上述のように発光色によって長時間使用による光量の低下度合いが異なる。その理由は、発光素子を封止保護している封止材が、長期使用していると特に青や紫外領域の短波長の光によって変色して透過率が低下するので、封止材を通して出射する光量が低下するためである。また、発光波長に対応して異なる化合物半導体の発光材料が用いられているので、長期使用による、特に高温下での発光量の劣化度合いが発光色によって異なるためである。   As described above, the light source of the projection display device using a single light modulation element that performs color synthesis using a red, green, and blue primary color LED (Light Emitting Diode) or a semiconductor laser. The degree of decrease in light amount due to long-term use varies depending on the emission color. The reason is that the sealing material that seals and protects the light emitting element is discolored by light having a short wavelength in the blue or ultraviolet region, and the transmittance is lowered particularly when used for a long time. This is because the amount of light to be reduced decreases. In addition, since light emitting materials of different compound semiconductors corresponding to the emission wavelength are used, the degree of deterioration of the light emission amount due to long-term use, particularly at high temperatures, differs depending on the light emission color.

以上の理由によって、経時変化における発光素子の明るさの変化の割合が発光色によって異なるので、表示画像の3原色によるホワイトバランスが変わってしまい、最適なホワイトバランスの画像を維持することができないという課題があった。また、複数の発光素子を用いた光源では、同じ発光色でも発光素子の個体によって明るさの変化の割合が異なるので、前述の理由と同様に表示画像のホワイトバランスが変わってしまうという課題があった。これらによって時間の経過とともに高品位な画像が得られないという課題が生じたが、従来の技術では表示面に投射される実際の各色ごとの光量に基づいて個々の発光素子を制御する方法はなかった。   For the above reason, since the rate of change in brightness of the light emitting element over time varies depending on the light emission color, the white balance of the three primary colors of the display image changes, and an image with an optimal white balance cannot be maintained. There was a problem. In addition, a light source using a plurality of light emitting elements has a problem in that the white balance of a display image is changed as described above because the rate of change in brightness differs depending on the individual light emitting elements even in the same light emitting color. It was. These caused the problem that high-quality images could not be obtained over time, but there is no method for controlling individual light-emitting elements based on the actual amount of light for each color projected on the display surface in the prior art. It was.

本発明の目的は、複数色の発光素子における各色の光量が発光素子の劣化や故障によって変化しても、表示画像の最適なホワイトバランスを保つことができて、高品位な画質が得られる投写型表示装置を提供することにある。   It is an object of the present invention to maintain an optimum white balance of a display image even when the light amount of each color in a light emitting element of a plurality of colors changes due to deterioration or failure of the light emitting element, so that high quality image quality can be obtained. To provide a mold display device.

本発明の投写型表示装置は、
光源部と、その光源部からの光を直線偏光光に変換する直線偏光化手段と、その直線偏光化手段からの光を変調する光変調素子と、その光変調素子からの光を偏光方向が互いに直交する第1の直線偏光光と第2の直線偏光光とに分離してそれぞれを異なった光路に出射する偏光分離手段と、その偏光分離手段から出射した第1の直線偏光光を投写する投写光学系と、偏光分離手段から出射した第2の直線偏光光の受光量を検出する受光素子と、光源部および光変調素子を駆動し、受光素子における受光量検出状態に応じて光源部の発光状態を制御する制御手段とを有する。
The projection display device of the present invention is
A light source unit, a linear polarization unit that converts light from the light source unit into linearly polarized light, a light modulation element that modulates light from the linear polarization unit, and a polarization direction of light from the light modulation unit Polarization separating means for separating the first linearly polarized light and the second linearly polarized light orthogonal to each other and emitting them to different optical paths, and the first linearly polarized light emitted from the polarization separating means are projected. The projection optical system, a light receiving element that detects the amount of received light of the second linearly polarized light emitted from the polarization separation means, a light source unit and a light modulation element are driven, and the light source unit Control means for controlling the light emission state.

光源部は、赤色光を発する赤色光源と、緑色光を発する緑色光源と、青色光を発する青色光源と、各色光源からの光を合成する色合成手段とを有してもよく、各色光源は、それぞれ少なくとも一つの発光素子を有してもよく、発光素子は、発光ダイオードであっても半導体レーザであってもよい。   The light source unit may include a red light source that emits red light, a green light source that emits green light, a blue light source that emits blue light, and a color composition unit that synthesizes light from each color light source. Each may have at least one light emitting element, and the light emitting element may be a light emitting diode or a semiconductor laser.

光変調素子は、液晶デバイスであってもよい。偏光分離手段は、第1の直線偏光光を透過し、第2の直線偏光光を反射するダイクロイック膜からなる偏光分離面を有してもよい。受光素子は、フォトダイオードであっても、フォトトランジスタであってもよく、赤、緑、青各色のそれぞれに対応して設けられていてもよい。   The light modulation element may be a liquid crystal device. The polarization separation means may have a polarization separation surface made of a dichroic film that transmits the first linearly polarized light and reflects the second linearly polarized light. The light receiving element may be a photodiode or a phototransistor, and may be provided corresponding to each of red, green, and blue colors.

制御手段は、受光素子が検出した第2の直線偏光光の受光量から赤、緑、青各色の発光素子の光量を比較して、各色のホワイトバランスを保つように光源の駆動条件を制御してもよい。偏光分離手段と投写光学系との間に偏光板が配置されていてもよい。   The control means compares the light amounts of the light emitting elements of red, green, and blue colors from the amount of received light of the second linearly polarized light detected by the light receiving element, and controls the driving conditions of the light source so as to maintain the white balance of each color. May be. A polarizing plate may be disposed between the polarization separating means and the projection optical system.

赤色光、緑色光、青色光各色の光量を検出部にて測定し、制御部にて発光素子の駆動条件を変更して各色の光量が所望のホワイトバランスとなる光量比に調整されるので、発光素子が長期間使用によって劣化し光量が低下しても、最適なホワイトバランスの表示画像を維持することが可能となる。   Since the light quantity of each color of red light, green light, and blue light is measured by the detection unit, and the drive condition of the light emitting element is changed by the control unit, the light quantity of each color is adjusted to a light quantity ratio that achieves a desired white balance. Even when the light-emitting element deteriorates due to long-term use and the amount of light decreases, it is possible to maintain a display image with an optimal white balance.

本発明は、各色において、個々の発光素子の明るさが温度や経時変化によって変化しても、それらの発光素子から出射した光の強度をモニタすることが可能な構成としているので、制御部によって赤色光、緑色光、青色光の駆動条件を最適なホワイトバランスとなるように変更することができるため、次のような効果がある。即ち、
1)個体差や経時変化や駆動条件によって各色光源の明るさが変化しても、ホワイトバランスや色再現範囲を維持することができる。
2)白色の色度座標や三原色の色度座標を所定の映像規格に合わせることができる。
3)映像信号に応じて、白色の色度座標や三原色の色度座標を変えることができる。
4)白色を任意の色味に調整しても、白色の色度座標を知ることができる。
5)ホワイトバランスや色再現範囲を保ったまま、表示画像を明るくしたり、節電のために暗くしたりできる。
6)光変調素子を交換した場合、フィールドで液晶パネルの電圧(V)−透過率(T)の特性であるV−T特性を測定することができ、階調再現性を補正することができる。
7)発光素子の故障や寿命をモニタすることができる。
Since the present invention is configured so that the intensity of light emitted from each light emitting element can be monitored even if the brightness of each light emitting element changes with temperature or changes over time in each color, Since the driving conditions of red light, green light, and blue light can be changed so as to achieve an optimal white balance, the following effects can be obtained. That is,
1) Even if the brightness of each color light source changes due to individual differences, changes over time, and driving conditions, the white balance and color reproduction range can be maintained.
2) The chromaticity coordinates of white and the chromaticity coordinates of the three primary colors can be matched with a predetermined video standard.
3) The white chromaticity coordinates and the three primary color chromaticity coordinates can be changed according to the video signal.
4) Even if white is adjusted to an arbitrary color, the chromaticity coordinates of white can be known.
5) While maintaining the white balance and color reproduction range, the display image can be brightened or darkened to save power.
6) When the light modulation element is replaced, the VT characteristic which is the voltage (V) -transmittance (T) characteristic of the liquid crystal panel can be measured in the field, and the gradation reproducibility can be corrected. .
7) The failure and life of the light emitting element can be monitored.

本発明による投写型表示装置は、赤、緑または青の色光を発する発光素子からなる光源と、液晶デバイスを用いた光変調素子と、投写光学系と、光変調素子と投写光学系の間に配置された検出部と、制御部とを有し、検出部にてそれらの発光素子から発せられた光量を測定し、制御部によって赤、緑、青各色の発光素子の光量を比較して調整することにより各色のホワイトバランスを保つので、発光素子が長期間の使用によって劣化し光量が低下しても、最適なホワイトバランスの表示画像を維持することが可能となることを特徴とする。なおここでホワイトバランスとは、白色を表示するための赤、緑、青各色の発光素子の光量の比率(バランス)を意味する。   A projection display device according to the present invention includes a light source including a light emitting element that emits red, green, or blue light, a light modulation element using a liquid crystal device, a projection optical system, and a light modulation element between the light modulation element and the projection optical system. It has a detection unit and a control unit, and the detection unit measures the amount of light emitted from those light emitting elements, and the control unit compares and adjusts the amount of light emitted from each of the red, green, and blue light emitting elements. Thus, the white balance of each color is maintained, so that it is possible to maintain a display image with an optimal white balance even if the light emitting element deteriorates due to long-term use and the light quantity decreases. Here, the white balance means a ratio (balance) of light amounts of light emitting elements of red, green, and blue for displaying white.

次に、本発明の第1の実施の形態について図面を参照して説明する。図1は本発明の第1の実施の形態の投写型表示装置の模式的構成図である。ここでは本発明と直接関係のない投写型表示装置の構成の記載を省略している。本発明の投写型表示装置1は、光学系51と制御部100とを有し、光学系51はR色(赤色)光源10RとG色(緑色)光源10GとB色(青色)光源10Bと色合成手段11とからなる光源部101、照明光学系12、偏光板13、光変調素子14、検出部102、投写光学系16からなり、検出部102は偏光分離手段15と受光素子17とから構成される。また、投写画像のコントラスト向上のために偏光分離手段15の出射面21にP偏光光のみを透過させる偏光板が配置されてもよい。   Next, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a projection display apparatus according to a first embodiment of the present invention. Here, the description of the configuration of the projection display apparatus not directly related to the present invention is omitted. The projection display apparatus 1 of the present invention includes an optical system 51 and a control unit 100, and the optical system 51 includes an R color (red) light source 10R, a G color (green) light source 10G, and a B color (blue) light source 10B. The light combining unit 11 includes a light source unit 101, an illumination optical system 12, a polarizing plate 13, a light modulation element 14, a detection unit 102, and a projection optical system 16. The detection unit 102 includes a polarization separation unit 15 and a light receiving element 17. Composed. In addition, a polarizing plate that transmits only P-polarized light may be disposed on the exit surface 21 of the polarization separating unit 15 in order to improve the contrast of the projected image.

R色光源10R、G色光源10G、B色光源10Bには、単色光を発する発光素子が用いられ、図1においては、各色に発光素子1個のみ使用しているが、光学系の構成によっては何個用いてもよい。各色の光源10R、10G、10Bの後段には、R色、G色、B色の各光路を1つに合成する色合成手段11と照明光学系12とが配置される。光変調素子14の入射側には偏光板13、出射側には偏光分離手段15が配置され、光変調素子14には単一の液晶デバイスが用いられる。偏光分離手段15には偏光ビームスプリッタなどが用いられ、入射光に対して45°傾いたダイクロイック膜からなる偏光分離面30を有し、一方の偏光方向の直線偏光光を透過させ、偏光方向が直交する他方の直線偏光光を反射する機能を有する。図1においては、紙面に平行な偏光方向の直線偏光光(以下、P偏光光とする)を透過し、紙面に垂直な偏光方向の直線偏光光(以下、S偏光光とする)を反射する構成となっている。破線の矢印で示されるように、偏光分離手段15を透過した透過光20AであるP偏光光の光路上には投写光学系16が配置され、光変調素子14によって変調された光を図示していないスクリーン等へ投影する。また、実線の矢印で示されているように、偏光分離手段15の偏光分離面30で反射された反射光20BであるS偏光光は受光素子17へ入射する構成となっている。受光素子17には、光の強度を電気的な量に変換するフォトダイオードやフォトトランジスタなどを用いることができ、これらの偏光分離手段15と受光素子17とは検出部102としての機能を有する。制御部100は、R色光源10R、G色光源10G、B色光源10Bを駆動する機能と、光変調素子14と受光素子17とを制御する機能を有する。   As the R color light source 10R, the G color light source 10G, and the B color light source 10B, light emitting elements that emit monochromatic light are used. In FIG. 1, only one light emitting element is used for each color. Any number of can be used. In the subsequent stage of the light sources 10R, 10G, and 10B for each color, a color synthesizing unit 11 and an illumination optical system 12 that synthesize the R, G, and B light paths into one are arranged. A polarizing plate 13 is disposed on the incident side of the light modulation element 14, and a polarization separation unit 15 is disposed on the emission side. A single liquid crystal device is used for the light modulation element 14. A polarization beam splitter or the like is used as the polarization separation means 15, which has a polarization separation surface 30 made of a dichroic film inclined by 45 ° with respect to incident light, transmits linearly polarized light in one polarization direction, and the polarization direction is It has the function of reflecting the other orthogonally polarized light that is orthogonal. In FIG. 1, linearly polarized light having a polarization direction parallel to the paper surface (hereinafter referred to as P-polarized light) is transmitted, and linearly polarized light having a polarization direction perpendicular to the paper surface (hereinafter referred to as S-polarized light) is reflected. It has a configuration. As indicated by the broken arrow, the projection optical system 16 is disposed on the optical path of the P-polarized light that is the transmitted light 20A that has passed through the polarization separating means 15, and the light modulated by the light modulation element 14 is illustrated. Project to no screen etc. Further, as indicated by solid arrows, the S-polarized light that is the reflected light 20B reflected by the polarization separation surface 30 of the polarization separation means 15 is incident on the light receiving element 17. As the light receiving element 17, a photodiode, a phototransistor, or the like that converts light intensity into an electrical quantity can be used, and the polarization separating means 15 and the light receiving element 17 have a function as the detection unit 102. The control unit 100 has a function of driving the R color light source 10R, the G color light source 10G, and the B color light source 10B, and a function of controlling the light modulation element 14 and the light receiving element 17.

カラー表示方法として、FSC(Field Sequential Color)表示方式が用いられる。R色光源10R、G色光源10G、B色光源10Bを順次点灯し、光変調素子14はそれらの光をそれぞれR色映像信号、G色映像信号、B色映像信号に従って変調する。それによって、R色、G色、B色の画像が順次表示され、人間の眼にはそれらが合成されてカラー画像として認識される。   As the color display method, an FSC (Field Sequential Color) display method is used. The R color light source 10R, the G color light source 10G, and the B color light source 10B are sequentially turned on, and the light modulation element 14 modulates the light according to the R color video signal, the G color video signal, and the B color video signal, respectively. As a result, R, G, and B color images are sequentially displayed, and are synthesized by the human eye and recognized as a color image.

次に、本発明の第1実施の形態の投写型表示装置1の動作について、図1を参照して説明する。図1において、発光素子を用いた単色光を発するR色光源10R、G色光源10G、B色光源10Bから出射したそれぞれの光は、色合成手段11により1つの光路に合成される。各光源10と色合成手段11との間または色合成手段11と偏光板13との間に、照明光を制御する球面レンズやロッドレンズが配置されてもよい。発光素子にはLEDや半導体レーザなどが使用でき、色合成手段11にはクロスダイクロイックプリズムやクロスダイクロイックミラーなどが用いられる。   Next, the operation of the projection display apparatus 1 according to the first embodiment of the present invention will be described with reference to FIG. In FIG. 1, each light emitted from an R color light source 10 </ b> R, a G color light source 10 </ b> G, and a B color light source 10 </ b> B that emits monochromatic light using a light emitting element is combined into one optical path by a color combining unit 11. A spherical lens or a rod lens for controlling the illumination light may be arranged between each light source 10 and the color synthesizing unit 11 or between the color synthesizing unit 11 and the polarizing plate 13. An LED, a semiconductor laser, or the like can be used as the light emitting element, and a cross dichroic prism, a cross dichroic mirror, or the like is used as the color composition unit 11.

色合成手段11を通過した光は、照明光学系12と偏光板13を通過して光変調素子14を照明する。照明光学系12は偏光ビームスプリッタアレイとλ/2波長板とからなる偏光統一手段を有し、自然偏光光を偏光方向が直交する2つの偏光方向に分離し、λ/2波長板にて1方向の直線偏光光に統一する機能を持つ。この例では、自然偏光光をS偏光光とP偏光光に分離し、P偏光光のみλ/2波長板を通過させてS偏光光へ統一する。光変調素子14には透過型の液晶デバイスを用いており、偏光板13によってS偏光光のみを入射させる。   The light that has passed through the color synthesizing unit 11 passes through the illumination optical system 12 and the polarizing plate 13 to illuminate the light modulation element 14. The illumination optical system 12 has a polarization uniformizing unit composed of a polarization beam splitter array and a λ / 2 wavelength plate, and separates naturally polarized light into two polarization directions whose polarization directions are orthogonal to each other. It has a function to unify linearly polarized light in the direction. In this example, naturally polarized light is separated into S-polarized light and P-polarized light, and only P-polarized light is passed through a λ / 2 wavelength plate to be unified into S-polarized light. A transmissive liquid crystal device is used for the light modulation element 14, and only S-polarized light is incident on the polarizing plate 13.

光変調素子14の液晶デバイスがカラー映像を表示する場合、光変調素子14に入射したS偏光光が、光変調素子14によって偏光方向を90°回転させられP偏光光となって光変調素子14を出射する。この場合R色、G色、B色の光の光量の比率がホワイトバランスを保ち、かつ最大の光量である場合を白表示とする。また、光変調素子14に入射したS偏光光が、光変調素子14によって偏光方向が回転せずにS偏光光のまま光変調素子14を出射し、R色、G色、B色の光の光量の比率がホワイトバランスを保ち、かつ最大の光量である場合を黒表示と称する。白表示、黒表示においても出射するR色、G色、B色の光の光量は各色光源10、および光変調素子14により制御される。   When the liquid crystal device of the light modulation element 14 displays a color image, the S-polarized light incident on the light modulation element 14 is rotated by 90 ° in the polarization direction by the light modulation element 14 to become P-polarized light. Is emitted. In this case, white display is performed when the ratio of the light amounts of the R, G, and B colors maintains the white balance and is the maximum light amount. Further, the S-polarized light incident on the light modulation element 14 is emitted from the light modulation element 14 as the S-polarized light without being rotated in the polarization direction by the light modulation element 14, and the light of R color, G color, and B color is emitted. A case where the ratio of the amount of light maintains white balance and is the maximum amount of light is referred to as black display. In white display and black display, the amount of R, G, and B light emitted is controlled by each color light source 10 and the light modulation element 14.

白表示を行う場合には、図1に破線の矢印の透過光20Aとして示すように、光変調素子14に入射したS偏光光は、光変調素子14によって偏光方向を90°回転させられP偏光光となって光変調素子14を出射し、偏光分離手段15の偏光分離面30を透過して、投写光学系16により、図示していないスクリーン等へ投影される。また、黒表示を行う場合には、実線の矢印の反射光20Bとして示すように、光変調素子14に入射したS偏光光は、偏光方向を回転させられずにS偏光光のまま光変調素子14を出射し、偏光分離手段15の偏光分離面30で反射されて受光素子17へ入射する。   In the case of performing white display, the S-polarized light incident on the light modulation element 14 is rotated by 90 ° in the polarization direction by the light modulation element 14 as shown in FIG. The light is emitted from the light modulation element 14, is transmitted through the polarization separation surface 30 of the polarization separation means 15, and is projected onto a screen or the like (not shown) by the projection optical system 16. When black display is performed, the S-polarized light incident on the light modulation element 14 remains the S-polarized light without being rotated in the polarization direction, as indicated by the solid arrow reflected light 20B. 14, is reflected by the polarization separation surface 30 of the polarization separation means 15, and enters the light receiving element 17.

図2、図3は、図1における検出部102の動作を説明するための図であり、図2は白表示を行った場合のP偏光光の動作を、図3は黒表示を行った場合のS偏光光の動作を示す。図2および図3には、自然偏光光31、照明光学系12、偏光板13、S偏光光31S、光変調素子14を出射したP偏光光32PとS偏光光32S、偏光分離手段15を出射したP偏光光33Pと反射されたS偏光光33S、偏光分離面30が示されている。   2 and 3 are diagrams for explaining the operation of the detection unit 102 in FIG. 1. FIG. 2 shows the operation of the P-polarized light when white display is performed, and FIG. 3 shows the case when black display is performed. The operation of the S-polarized light will be described. 2 and 3, the naturally polarized light 31, the illumination optical system 12, the polarizing plate 13, the S polarized light 31 S, the P polarized light 32 P emitted from the light modulation element 14, the S polarized light 32 S, and the polarized light separating means 15 are emitted. The P-polarized light 33P, the reflected S-polarized light 33S, and the polarization separation surface 30 are shown.

図2は白表示を行った場合の動作説明図であるが、自然偏光光31は照明光学系12によってS偏光光31Sに統一され、S偏光光31Sのみを透過させる偏光板13を通過して、光変調素子14へ入射する。この時、光変調素子14においては白表示が選択されているために、S偏光光31Sは偏光方向を90°回転させられてP偏光光32Pとなって光変調素子14を出射し、偏光分離手段15へ入射する。偏光分離手段15の偏光分離面30は、偏光方向が紙面に平行な方向の偏光光を透過させ、偏光方向が紙面に垂直な方向の偏光光を反射させる機能を有するため、P偏光光32Pは偏光分離面30を透過してP偏光光33Pとして偏光分離手段15の出射面21から出射する。   FIG. 2 is an operation explanatory diagram when white display is performed. Naturally polarized light 31 is unified into S-polarized light 31S by the illumination optical system 12, and passes through the polarizing plate 13 that transmits only the S-polarized light 31S. , And enters the light modulation element 14. At this time, since the white display is selected in the light modulation element 14, the polarization direction of the S-polarized light 31S is rotated by 90 ° to become the P-polarized light 32P and is emitted from the light modulation element 14 to separate the polarization. The light enters the means 15. The polarization separation surface 30 of the polarization separation means 15 has a function of transmitting polarized light whose polarization direction is parallel to the paper surface and reflecting polarized light whose polarization direction is perpendicular to the paper surface. The light is transmitted through the polarization separation surface 30 and emitted from the emission surface 21 of the polarization separation means 15 as P-polarized light 33P.

図3は黒表示を行った場合の動作説明図であるが、図2と同様に、偏光板13を通過したS偏光光31Sは、光変調素子14へ入射する。この時、光変調素子においては黒表示が選択されているために、偏光方向は回転せずにS偏光のままS偏光光32Sとなって光変調素子14を出射し、偏光分離手段15へ入射する。偏光分離面30は、偏光方向が紙面に垂直な方向の偏光光を反射させる機能を有するため、S偏光光32Sは偏光分離面30で反射され光路を90°曲げられてS偏光光33Sとして受光素子17へ入射し、照度が検出される。このとき照度を検出したい発光素子のみを点灯させればその発光素子単独の照度が検出でき、点灯する発光素子が逐次交代する場合でも発光素子の駆動タイミングと同期をとれば各色の照度、即ち光量が検出できる。受光素子17で検出された照度のレベルによって、制御部100へ出力される電流量が変化するので、その変化量を制御部100にてモニタすることにより各色の光量と光量比が算出される。このように、各色ごとに光路上の光量を測定することが可能な構成となっているため、発光素子の劣化により各色の光量が変化しても、制御部100が光量比を算出して最適な駆動条件で光源を制御することができ、最適なホワイトバランスを維持することが可能である。   FIG. 3 is an operation explanatory diagram when black display is performed. As in FIG. 2, the S-polarized light 31 </ b> S that has passed through the polarizing plate 13 enters the light modulation element 14. At this time, since the black display is selected in the light modulation element, the polarization direction does not rotate, and the S-polarized light remains as S-polarized light 32S, which exits the light modulation element 14 and enters the polarization separation means 15. To do. Since the polarization separation surface 30 has a function of reflecting polarized light whose polarization direction is perpendicular to the paper surface, the S-polarized light 32S is reflected by the polarization separation surface 30 and the optical path is bent by 90 ° to receive it as S-polarized light 33S. It is incident on the element 17 and illuminance is detected. At this time, if only the light-emitting element whose illuminance is to be detected is turned on, the illuminance of that light-emitting element alone can be detected. Can be detected. Since the amount of current output to the control unit 100 changes depending on the level of illuminance detected by the light receiving element 17, the amount of light and the light amount ratio of each color are calculated by monitoring the amount of change with the control unit 100. As described above, since the light amount on the optical path can be measured for each color, even when the light amount of each color changes due to the deterioration of the light emitting element, the control unit 100 calculates the light amount ratio and optimizes it. The light source can be controlled under various driving conditions, and the optimum white balance can be maintained.

図4は、本発明の第1の実施の形態の投写型表示装置の変形例の模式的構成図である。図4において、投写型表示装置2は、複数の発光素子を有するR色光源200RとG色光源200GとB色光源200Bと色合成手段11とからなる光源部101、照明光学系12、偏光板13、光変調素子14、検出部102、投写光学系16を有する光学系52と、制御部100とからなり、検出部102は偏光分離手段15と受光素子17とから構成される。各光源からの光を制御するレンズが、それぞれの発光素子と対になるように配置されてもよい。   FIG. 4 is a schematic configuration diagram of a modification of the projection display device according to the first embodiment of the present invention. In FIG. 4, the projection display apparatus 2 includes a light source unit 101 including an R color light source 200R, a G color light source 200G, a B color light source 200B, and a color composition unit 11 having a plurality of light emitting elements, an illumination optical system 12, and a polarizing plate. 13, a light modulation element 14, a detection unit 102, an optical system 52 having a projection optical system 16, and a control unit 100, and the detection unit 102 includes a polarization separation means 15 and a light receiving element 17. A lens for controlling light from each light source may be arranged to be paired with each light emitting element.

図4に示す変形例では、図1に示した第1実施の形態の投写型表示装置1と、各色光源200R、200G、200Bを構成する発光素子の数が異なるだけであり、その他の構成は第1の実施の形態と同じなので同じ構成には同じ符号を付して説明を省略する。図4に示す投写型表示装置2の動作においても、第1の実施の形態の投写型表示装置1の動作と同様なので説明を省略する。本変形例においては、R色光源200R、G色光源200G、B色光源200Bにてそれぞれ複数の発光素子を使用しているが、この時、同色の光源で発光素子個体の劣化度合いが異なることにより各色の光量が変化しても、検出部102にて各色の光量を測定し、制御部100が光量比を算出して最適な駆動条件で光源を制御するので、最適なホワイトバランスを維持することが可能である。   4 differs from the projection display device 1 of the first embodiment shown in FIG. 1 only in the number of light emitting elements constituting each of the color light sources 200R, 200G, and 200B. Since it is the same as that of the first embodiment, the same components are denoted by the same reference numerals and description thereof is omitted. The operation of the projection display device 2 shown in FIG. 4 is also the same as the operation of the projection display device 1 of the first embodiment, and a description thereof will be omitted. In this modification, a plurality of light emitting elements are used for each of the R color light source 200R, the G color light source 200G, and the B color light source 200B. At this time, the degree of deterioration of the individual light emitting elements is different for the same color light source. Even if the amount of light of each color changes, the detection unit 102 measures the amount of light of each color, and the control unit 100 calculates the light amount ratio and controls the light source under optimal driving conditions, so that the optimal white balance is maintained. It is possible.

次に、各色の光量の調整方法について説明する。R、G、B各色光源の発光色の各色度座標が分かっている場合、混色光の色度座標を決めると、制御すべき各色光源の光量比が決まる。また、各色光源の光量比を測定すると、混色光の色度座標が算出できる。なお、R、G、B各色光源の発光色の色度座標は、光源の仕様によって固定としてもよい。光源個体差を考慮したければ、光源毎に色度座標を測定して計算に反映させればよい。温度や駆動電流などの光源駆動条件による発光色の色度座標のずれを考慮したければ、予めデータを記憶して駆動条件に応じて計算に反映させればよい。   Next, a method for adjusting the light amount of each color will be described. When the chromaticity coordinates of the light emission colors of the R, G, and B color light sources are known, determining the chromaticity coordinates of the mixed color light determines the light quantity ratio of each color light source to be controlled. Further, when the light quantity ratio of each color light source is measured, the chromaticity coordinates of the mixed color light can be calculated. Note that the chromaticity coordinates of the emission colors of the R, G, and B color light sources may be fixed depending on the specifications of the light source. In order to take into account individual light source differences, chromaticity coordinates may be measured for each light source and reflected in the calculation. If the deviation of the chromaticity coordinates of the emission color due to the light source driving conditions such as temperature and driving current is taken into consideration, data may be stored in advance and reflected in the calculation according to the driving conditions.

以降、説明を簡単にするために、R、G、B各色光源の発光色の色度座標は固定とする。光変調素子14からの白表示を形成する直線偏光光は偏光分離手段15から投写光学系16を通して図示していないスクリーンへ投影される。また光変調素子14からの黒表示を形成する直線偏光光は偏光分離手段15の偏光分離面30で反射されて受光素子17の方へ向かう。従って、光変調素子14の全面を黒表示にすると、光変調素子の全面を白表示にした場合に投写光学系16へ向かうはずの光が受光素子17へ向かう。   Hereinafter, in order to simplify the description, the chromaticity coordinates of the emission colors of the R, G, and B color light sources are fixed. The linearly polarized light forming the white display from the light modulation element 14 is projected from the polarization separation means 15 onto the screen (not shown) through the projection optical system 16. Further, the linearly polarized light forming the black display from the light modulation element 14 is reflected by the polarization separation surface 30 of the polarization separation means 15 and travels toward the light receiving element 17. Accordingly, when the entire surface of the light modulation element 14 is displayed in black, light that should be directed to the projection optical system 16 is directed to the light receiving element 17 when the entire surface of the light modulation element is displayed in white.

ホワイトバランスを調整する場合は、光変調素子14の全面を黒表示にし、その時の各色に対応した受光素子17の出力を制御部100にてモニタして、各色光源の光量を調整する。光源光量の調整としては、発光素子への供給電流を制御して発光光束を調整したり、発光時間のデューティ比を調整したり、発光素子の点灯個数を制御するなどの方法がある。   When adjusting the white balance, the entire surface of the light modulation element 14 is displayed in black, and the output of the light receiving element 17 corresponding to each color at that time is monitored by the control unit 100 to adjust the light amount of each color light source. As the adjustment of the amount of light source, there are methods such as adjusting the luminous flux by controlling the current supplied to the light emitting element, adjusting the duty ratio of the light emitting time, and controlling the number of lighting of the light emitting element.

本発明によると、各色光源を用いた白色色度座標の自動算出、ホワイトバランスの自動調整、色再現範囲の自動調整、ホワイトバランスを維持しながらの明るさ自動調整、光変調素子のV−T特性補正データ自動算出などを行うことができる。V−T特性は光変調素子14の液晶パネルの電圧Vと透過率Tとの関係を示す特性である。液晶パネルの駆動には電圧を印加して電圧のレベルに対応させて光を透過する量を制御するが、例えば、透過率と電圧との関係は必ずしもリニアではないので透過率をリニアにするためには電圧レベルを補正する必要がある。あるいは、透過率と電圧との関係を非線型にして、いわゆるガンマ補正を行うこともある。   According to the present invention, automatic calculation of white chromaticity coordinates using each color light source, automatic adjustment of white balance, automatic adjustment of color reproduction range, automatic adjustment of brightness while maintaining white balance, VT of the light modulation element Automatic calculation of characteristic correction data can be performed. The VT characteristic is a characteristic showing the relationship between the voltage V of the liquid crystal panel of the light modulation element 14 and the transmittance T. A voltage is applied to drive the liquid crystal panel and the amount of light transmitted is controlled according to the voltage level. For example, the relationship between the transmittance and the voltage is not necessarily linear, so the transmittance is linear. It is necessary to correct the voltage level. Alternatively, so-called gamma correction may be performed by making the relationship between transmittance and voltage non-linear.

上述の作業は、次のようなトリガを受けて実行させることができる。
1)操作ボタンや通信ポートなどのユーザインタフェースを介しての手動トリガ
2)電源起動時に発生させる自動トリガ
3)映像信号入力切り替え時に発生させる自動トリガ
4)使用時間モニタ機能や時計によって定期的に発生させる自動トリガ
5)映像信号に同期させて周期的に発生させる自動トリガ
次に、本発明の第1の実施の形態の光量の調整方法について説明をする。図5は本発明の第1の実施の形態の光量調整方法を説明するための制御部を中心とする模式的ブロック構成図である。制御部100は制御回路500を中心として、受光素子17の情報が入力されるサンプルホールド回路501、制御回路500により制御される光変調素子駆動回路502、V−T特性補正回路503、映像信号が入力する映像信号処理回路504、全体の処理を制御するCPU505、一時記憶メモリ506、不揮発性メモリ507、ユーザインタフェース508、R色光源10Rを駆動するR色光源駆動回路509R、G色光源10Gを駆動するG色光源駆動回路509G、B色光源10Bを駆動するB色光源駆動回路509Bを備え、各色光源10R、10G、10Bから出射された色光は光変換素子14を経由して受光素子17に入力する。
The above-described operation can be executed in response to the following trigger.
1) Manual trigger via user interface such as operation button or communication port 2) Automatic trigger generated when power is turned on 3) Automatic trigger generated when video signal input is switched 4) Periodically generated by usage time monitoring function or clock Automatic trigger to be generated 5) Automatic trigger to be generated periodically in synchronization with the video signal Next, a method of adjusting the light quantity according to the first embodiment of the present invention will be described. FIG. 5 is a schematic block configuration diagram centering on a control unit for explaining the light amount adjustment method according to the first embodiment of the present invention. The control unit 100 has a control circuit 500 as a center, a sample hold circuit 501 to which information of the light receiving element 17 is input, an optical modulation element driving circuit 502 controlled by the control circuit 500, a VT characteristic correction circuit 503, and a video signal. Input video signal processing circuit 504, CPU 505 for controlling the entire processing, temporary storage memory 506, nonvolatile memory 507, user interface 508, R color light source drive circuit 509R for driving R color light source 10R, and G color light source 10G are driven. The color light source drive circuit 509G for driving the B color light source drive circuit 509B for driving the B color light source 10B is provided, and the color light emitted from each color light source 10R, 10G, 10B is input to the light receiving element 17 via the light conversion element 14. To do.

制御回路500は制御タイミングを同期させながら、各ブロックを制御する。不揮発性メモリ507には、必要な各設定条件を記憶させる。例えば、色毎(波長帯域毎)の受光素子の感度特性(照度−出力レベル特性)、白色色度情報−RGB光量比特性、色再現範囲情報−R原色のRGB光量比特性、色再現範囲情報−G原色のRGB光量比特性、色再現範囲情報−B原色のRGB光量比特性、光変調素子の色毎(波長帯域毎)のV−T特性補正情報などである。   The control circuit 500 controls each block while synchronizing the control timing. The nonvolatile memory 507 stores necessary setting conditions. For example, the sensitivity characteristics (illuminance-output level characteristics) of the light receiving element for each color (each wavelength band), white chromaticity information-RGB light quantity ratio characteristics, color reproduction range information-RGB primary light RGB ratio characteristics, color reproduction range information -RGB light quantity ratio characteristic of G primary color, color reproduction range information-RGB light quantity ratio characteristic of B primary color, VT characteristic correction information for each color (for each wavelength band) of the light modulation element, and the like.

次に、制御の各モードについて個別に説明する。
[白色色度座標自動算出モード]
図6は白色色度座標自動算出モード動作時のフローチャートである。白色色度座標自動算出モードが開始されると(S101)、光変調素子駆動回路502により光変調素子14を黒表示に設定し(S102)、各色光源駆動回路509によりG色光源10Gを点灯し、R色光源10RとB色光源10Bとを消灯して(S103)、受光素子17の出力をサンプルホールド回路501に入力して予め記憶されているデータからG色の照度を求める(S104)。次に、R色光源10Rを点灯し、G色光源10GとB色光源10Bとを消灯して(S105)、受光素子17の出力をサンプルホールド回路501に入力してR色の照度を求める(S106)。次に、B色光源10Bを点灯し、R色光源10RとG色光源10Gとを消灯して(S107)、受光素子17の出力をサンプルホールド回路501に入力してB色の照度を求める(S108)。求めたR、G、B各色の照度比から白色の色度座標を算出して(S109)、算出した白色の色度座標を通知して(S110)、終了する(S111)。算出した白色の色度座標情報を通知する先は、ユーザインタフェース508を介して操作パネル(不図示)に表示するようにしてもよいし、通信ポート(不図示)へ出力するようにしてもよい。また、投写光学系16を介して投写画像に表示させるようにしてもよい。
[ホワイトバランス自動調整モード]
図7はホワイトバランス自動調整モード動作時のフローチャートである。ホワイトバランス自動調整モードは所定の白色色度情報に対応して実行される。ホワイトバランス自動調整モードを開始すると(S201)、不揮発性メモリ507に記憶された所定の白色色度情報から基準R/G光量比、基準B/G光量比を求め(S202)、光変調素子駆動回路502により光変調素子14を黒表示に設定し(S203)、各色光源駆動回路509によりG色光源10Gを点灯し、R色光源10RとB色光源10Bとを消灯して(S204)、受光素子17の出力をサンプルホールド回路501に入力してG色の照度を求める(S205)。次に、R色光源10Rを点灯し、G色光源10GとB色光源10Bとを消灯して(S206)、受光素子17の出力をサンプルホールド回路501に入力してR色の照度を求める(S207)。ここで、制御回路500はR色照度/G色照度と基準R/G光量比とを比較し(S208)、R色照度/G色照度が基準R/G光量比よりも少なければR色光源駆動回路509RによりR色光源10Rの光量を増加させてステップS207に戻ってR色の照度を求めてステップ208で再度比較を行い(S209)、R色照度/G色照度が基準R/G光量比よりも大きければR色光源駆動回路509RによりR色光源10Rの光量を減少させてステップS207に戻ってR色の照度を求めてステップ208で再度比較を行う(S210)。R色照度/G色照度が基準R/G光量比と同じとなれば、B色光源10Bを点灯し、R色光源10RとG色光源10Gとを消灯して(S211)、受光素子17の出力をサンプルホールド回路501に入力してB色の照度を求める(S212)。ここで、B色照度/G色照度と基準B/G光量比とを比較し(S213)、B色照度/G色照度が基準B/G光量比よりも少なければB色光源10Bの光量を増加させてステップS212に戻ってB色の照度を求めてステップ213で再度比較を行い(S214)、B色照度/G色照度が基準B/G光量比よりも大きければB色光源10Bの光量を減少させてステップS212に戻ってB色の照度を求めてステップ213で再度比較を行う(S215)。B色照度/G色照度が基準B/G光量比と同じとなれば、ホワイトバランスが調整されたのでホワイトバランス自動調整モードを終了する(S216)。
Next, each mode of control will be described individually.
[White chromaticity coordinate automatic calculation mode]
FIG. 6 is a flowchart at the time of the white chromaticity coordinate automatic calculation mode operation. When the white chromaticity coordinate automatic calculation mode is started (S101), the light modulation element drive circuit 502 sets the light modulation element 14 to black display (S102), and each color light source drive circuit 509 turns on the G color light source 10G. The R color light source 10R and the B color light source 10B are turned off (S103), the output of the light receiving element 17 is input to the sample hold circuit 501, and the G color illuminance is obtained from the prestored data (S104). Next, the R color light source 10R is turned on, the G color light source 10G and the B color light source 10B are turned off (S105), and the output of the light receiving element 17 is input to the sample hold circuit 501 to obtain the R color illuminance ( S106). Next, the B color light source 10B is turned on, the R color light source 10R and the G color light source 10G are turned off (S107), and the output of the light receiving element 17 is input to the sample hold circuit 501 to obtain the illuminance of B color ( S108). White chromaticity coordinates are calculated from the obtained illuminance ratios of R, G, and B colors (S109), the calculated white chromaticity coordinates are notified (S110), and the process ends (S111). The destination for notifying the calculated white chromaticity coordinate information may be displayed on an operation panel (not shown) via the user interface 508 or may be output to a communication port (not shown). . Further, it may be displayed on the projected image via the projection optical system 16.
[Automatic white balance adjustment mode]
FIG. 7 is a flowchart at the time of the white balance automatic adjustment mode operation. The white balance automatic adjustment mode is executed corresponding to predetermined white chromaticity information. When the white balance automatic adjustment mode is started (S201), the reference R / G light amount ratio and the reference B / G light amount ratio are obtained from predetermined white chromaticity information stored in the nonvolatile memory 507 (S202), and the light modulation element is driven. The light modulation element 14 is set to black display by the circuit 502 (S203), the G color light source 10G is turned on by each color light source driving circuit 509, the R color light source 10R and the B color light source 10B are turned off (S204), and light is received. The output of the element 17 is input to the sample hold circuit 501 to obtain the G color illuminance (S205). Next, the R color light source 10R is turned on, the G color light source 10G and the B color light source 10B are turned off (S206), and the output of the light receiving element 17 is input to the sample hold circuit 501 to obtain the R color illuminance ( S207). Here, the control circuit 500 compares the R color illuminance / G color illuminance with the reference R / G light intensity ratio (S208), and if the R color illuminance / G color illuminance is less than the reference R / G light intensity ratio, the R color light source. The drive circuit 509R increases the light amount of the R color light source 10R, returns to step S207, obtains the R color illuminance, and compares again in step 208 (S209), and the R color illuminance / G color illuminance is the reference R / G light amount. If larger than the ratio, the R color light source drive circuit 509R reduces the light amount of the R color light source 10R, returns to step S207, obtains the R color illuminance, and compares again in step 208 (S210). If the R color illuminance / G color illuminance is the same as the reference R / G light quantity ratio, the B color light source 10B is turned on, the R color light source 10R and the G color light source 10G are turned off (S211), The output is input to the sample and hold circuit 501 to obtain the B color illuminance (S212). Here, the B color illuminance / G color illuminance is compared with the reference B / G light amount ratio (S213). If the B color illuminance / G color illuminance is less than the reference B / G light amount ratio, the light amount of the B color light source 10B is calculated. In step S212, the illuminance of B color is obtained and compared again in step 213 (S214). If the B color illuminance / G color illuminance is greater than the reference B / G light amount ratio, the light amount of the B color light source 10B After returning to step S212, the illuminance of the B color is obtained, and the comparison is performed again in step 213 (S215). If the B color illuminance / G color illuminance is the same as the reference B / G light quantity ratio, the white balance is adjusted and the white balance automatic adjustment mode is terminated (S216).

白色色度情報を固定とし、経時変化や温度などによるホワイトバランスのずれを自動補正するようにしてもよい。補正した駆動条件を不揮発性メモリ507に保存するようにしてもよい。白色色度情報はユーザインタフェース508を介してユーザーが選択できるようにしてもよい。また、複数の映像入力端子を有する投写型表示装置の場合、どの映像入力端子が選択されているかによって選択できるようにしてもよい。例えば、ビデオ端子を選択する場合はNTSC規格に合わせ、RGB端子を選択する場合はsRGB規格に合わせるようにしてもよい。
[色再現範囲自動調整モード]
図8は色再現範囲自動調整モード動作時のフローチャートであり、図9-Aは図8におけるG原色調整サブルーチン動作時のフローチャートであり、図9-Bは図8におけるR原色調整サブルーチン動作時のフローチャートであり、図9-Cは図8におけるB原色調整サブルーチン動作時のフローチャートである。
White chromaticity information may be fixed, and white balance deviation due to changes over time or temperature may be automatically corrected. The corrected driving condition may be stored in the nonvolatile memory 507. The white chromaticity information may be selectable by the user via the user interface 508. Further, in the case of a projection display device having a plurality of video input terminals, the selection may be made depending on which video input terminal is selected. For example, when selecting a video terminal, it may be adapted to the NTSC standard, and when selecting an RGB terminal, it may be adapted to the sRGB standard.
[Automatic color reproduction range adjustment mode]
FIG. 8 is a flowchart when the color reproduction range automatic adjustment mode is operated, FIG. 9A is a flowchart when the G primary color adjustment subroutine in FIG. 8, and FIG. 9B is a flowchart when the R primary color adjustment subroutine in FIG. FIG. 9C is a flowchart when the B primary color adjustment subroutine in FIG. 8 is operated.

色再現範囲を決める三原色それぞれの色度座標を決めると、各原色の色度座標に応じてR、G、B各色光の光量比が決まる。例えば、三原色のG色の色度座標をG色光源の色度座標と異ならせたい場合は、所定の光量比で混色したR、G、B各光源からの光を改めて三原色のG色光とすればよい。   When the chromaticity coordinates of the three primary colors that determine the color reproduction range are determined, the light quantity ratios of the R, G, and B color lights are determined according to the chromaticity coordinates of the respective primary colors. For example, when it is desired to make the chromaticity coordinates of the three primary colors G different from the chromaticity coordinates of the G light source, the light from the R, G, and B light sources mixed at a predetermined light quantity ratio is changed to the three primary colors G light. That's fine.

色再現範囲自動調整モードを開始すると(S301)、不揮発性メモリ507に記憶された所定の色再現範囲情報から、G原色の基準R/G光量比および基準B/G光量比、R原色の基準G/R光量比および基準B/R光量比、B原色の基準G/B光量比および基準R/B光量比を求め(S302)、光変調素子駆動回路502により光変調素子14を黒表示に設定し(S303)、G原色調整サブルーチン(S304)、R原色調整サブルーチン(S305)、B原色調整サブルーチン(S306)に入り、各サブルーチンが終了したら各原色の調整が終了して色再現範囲が調整されたので色再現範囲自動調整モードを終了する(S307)。   When the color reproduction range automatic adjustment mode is started (S301), the reference R / G light quantity ratio, the reference B / G light quantity ratio, and the R primary color reference for the G primary color are obtained from the predetermined color reproduction range information stored in the nonvolatile memory 507. The G / R light quantity ratio and the reference B / R light quantity ratio, the reference G / B light quantity ratio and the reference R / B light quantity ratio of the primary color B are obtained (S302), and the light modulation element drive circuit 502 makes the light modulation element 14 display black. Set (S303), enter the G primary color adjustment subroutine (S304), the R primary color adjustment subroutine (S305), and the B primary color adjustment subroutine (S306). As a result, the color reproduction range automatic adjustment mode is terminated (S307).

G原色調整サブルーチン(S304)では、G原色調整サブルーチンを開始すると(S401)、各色光源駆動回路509によりG色光源10Gを点灯し、R色光源10RとB色光源10Bとを消灯して(S402)、受光素子17の出力をサンプルホールド回路501に入力してG色の照度を求める(S403)。次に、R色光源10Rを点灯し、G色光源10GとB色光源10Bとを消灯して(S404)、受光素子17の出力をサンプルホールド回路501に入力してR色の照度を求める(S405)。ここで、制御回路500はR色照度/G色照度と基準R/G光量比とを比較し(S406)、R色照度/G色照度が基準R/G光量比よりも少なければR色光源駆動回路509RによりR色光源10Rの光量を増加させてステップS405に戻ってR色の照度を求めてステップS406で再度比較を行い(407)、R色照度/G色照度が基準R/G光量比よりも大きければR色光源駆動回路509RによりR色光源10Rの光量を減少させてステップS405に戻ってR色の照度を求めてステップS406で再度比較を行う(S408)。R色照度/G色照度が基準R/G光量比と同じとなれば、B色光源10Bを点灯し、R色光源10RとG色光源10Gとを消灯して(S409)、受光素子17の出力をサンプルホールド回路501に入力してB色の照度を求める(S410)。ここで、B色照度/G色照度と基準B/G光量比とを比較し(S411)、B色照度/G色照度が基準B/G光量比よりも少なければB色光源10Bの光量を増加させてステップS410に戻ってB色の照度を求めてステップS411で再度比較を行い(S412)、B色照度/G色照度が基準B/G光量比よりも大きければB色光源10Bの光量を減少させてステップ410に戻ってB色の照度を求めてステップS411で再度比較を行う(S413)。B色照度/G色照度が基準B/G光量比と同じとなれば、G原色調整が終わったのでG原色調整サブルーチンを終了する(S414)。   In the G primary color adjustment subroutine (S304), when the G primary color adjustment subroutine is started (S401), the G color light source 10G is turned on by each color light source driving circuit 509, and the R color light source 10R and the B color light source 10B are turned off (S402). ), The output of the light receiving element 17 is input to the sample hold circuit 501, and the illuminance of G color is obtained (S403). Next, the R color light source 10R is turned on, the G color light source 10G and the B color light source 10B are turned off (S404), and the output of the light receiving element 17 is input to the sample hold circuit 501 to obtain the R color illuminance ( S405). Here, the control circuit 500 compares the R color illuminance / G color illuminance with the reference R / G light intensity ratio (S406), and if the R color illuminance / G color illuminance is less than the reference R / G light intensity ratio, the R color light source. The drive circuit 509R increases the light amount of the R color light source 10R, returns to step S405, obtains the R color illuminance, and compares again in step S406 (407), and the R color illuminance / G color illuminance is the reference R / G light amount. If larger than the ratio, the light amount of the R color light source 10R is decreased by the R color light source driving circuit 509R, the process returns to step S405, the R color illuminance is obtained, and the comparison is performed again in step S406 (S408). If the R color illuminance / G color illuminance is equal to the reference R / G light quantity ratio, the B color light source 10B is turned on, the R color light source 10R and the G color light source 10G are turned off (S409), and the light receiving element 17 The output is input to the sample and hold circuit 501 to obtain the illuminance of B color (S410). Here, the B color illuminance / G color illuminance is compared with the reference B / G light amount ratio (S411). If the B color illuminance / G color illuminance is less than the reference B / G light amount ratio, the light amount of the B color light source 10B is calculated. In step S410, the illuminance of B color is obtained and compared again in step S411 (S412). If the B color illuminance / G color illuminance is larger than the reference B / G light amount ratio, the light amount of the B color light source 10B And the process returns to step 410 to obtain the illuminance of the B color, and the comparison is performed again in step S411 (S413). If the B color illuminance / G color illuminance is the same as the reference B / G light amount ratio, the G primary color adjustment is completed and the G primary color adjustment subroutine is terminated (S414).

R原色調整サブルーチン(S305)、B原色調整サブルーチン(S306)は、各ステップで選択される色が異なるだけでフローはG原色調整サブルーチンと同じなので説明を省略する。   The R primary color adjustment subroutine (S305) and the B primary color adjustment subroutine (S306) are the same as the G primary color adjustment subroutine except that the colors selected in each step are different, so that the description thereof is omitted.

色再現範囲は固定とし、経時変化や温度などによるRGB光量バランスのずれを自動補正するようにしてもよい。補正した駆動条件を不揮発性メモリ507に保存するようにしてもよい。ユーザインタフェース508を介してユーザーが選択できるようにしてもよい。また、複数の映像入力端子を有する投写型表示装置の場合、どの映像入力端子が選択されているかによって選択できるようにしてもよい。例えば、ビデオ端子を選択する場合はNTSC規格に合わせ、RGB端子を選択する場合はsRGB規格に合わせるようにしてもよい。
[ホワイトバランスを維持しながらの明るさ自動調整モード]
R色光源10R、G色光源10G、B色光源10Bを用いている場合、G色光源10Gの光量を所定の明るさに調整し、G色光量の変化倍率と同じ倍率でR色光源光量、B色光源光量のそれぞれを変化させるようにすると、ホワイトバランスを維持しながら明るさを変更することができる。
The color reproduction range may be fixed, and the RGB light quantity balance shift due to changes over time or temperature may be automatically corrected. The corrected driving condition may be stored in the nonvolatile memory 507. The user may be able to select via the user interface 508. Further, in the case of a projection display device having a plurality of video input terminals, the selection may be made depending on which video input terminal is selected. For example, when selecting a video terminal, it may conform to the NTSC standard, and when selecting an RGB terminal, it may conform to the sRGB standard.
[Automatic brightness adjustment mode while maintaining white balance]
When the R color light source 10R, the G color light source 10G, and the B color light source 10B are used, the light amount of the G color light source 10G is adjusted to a predetermined brightness, and the R color light source light amount is adjusted at the same magnification as the change rate of the G color light amount. If each of the B light source amounts is changed, the brightness can be changed while maintaining the white balance.

また、ホワイトバランス自動調整モードを実行した後にこの明るさ自動調整モードを実行することによって、経時変化や温度などによる明るさのずれを自動補正するようにしてもよい。補正した駆動条件を不揮発性メモリに保存するようにしてもよい。なお、明るさ自動調整モードは白色光源を用いる場合にも適用できる。
[光変調素子のV−T特性補正データ自動算出モード]
図10はV−T特性補正データ自動算出モード動作時のフローチャートであり、図11-Aは図10におけるG色V−T特性測定サブルーチン動作時のフローチャートであり、図11-Bは図10におけるR色V−T特性測定サブルーチン動作時のフローチャートであり、図11-Cは図10におけるB色V−T特性測定サブルーチン動作時のフローチャートである。
In addition, by executing this automatic brightness adjustment mode after executing the automatic white balance adjustment mode, it is possible to automatically correct the brightness shift due to changes over time, temperature, or the like. The corrected driving condition may be stored in a nonvolatile memory. Note that the automatic brightness adjustment mode can also be applied when a white light source is used.
[V-T characteristic correction data automatic calculation mode of light modulation element]
FIG. 10 is a flowchart at the time of VT characteristic correction data automatic calculation mode operation, FIG. 11-A is a flowchart at the time of G color VT characteristic measurement subroutine operation in FIG. 10, and FIG. 11-B is in FIG. FIG. 11C is a flowchart at the time of the operation of the B color VT characteristic measurement subroutine in FIG. 10.

V−T特性補正データ自動算出モードを開始すると(S701)、制御回路500はV−T特性補正回路503における補正を行わないようにする(S702)。次に、G色V−T特性測定サブルーチン(S703)、R色V−T特性測定サブルーチン(S704)、B色V−T特性測定サブルーチン(S705)に入り、各サブルーチンが終了したら、制御回路500はV−T特性補正回路503における補正を実行するようにして(S706)、V−T特性補正データ自動算出モードを終了する(S707)。   When the VT characteristic correction data automatic calculation mode is started (S701), the control circuit 500 does not perform correction in the VT characteristic correction circuit 503 (S702). Next, the control circuit 500 enters the G color VT characteristic measurement subroutine (S703), the R color VT characteristic measurement subroutine (S704), and the B color VT characteristic measurement subroutine (S705). Executes correction in the VT characteristic correction circuit 503 (S706), and ends the VT characteristic correction data automatic calculation mode (S707).

G色V−T特性測定サブルーチン(S703)では、G色V−T特性測定サブルーチンを開始すると(S801)、各色光源駆動回路509によりG色光源10Gを点灯し、R色光源10RとB色光源10Bとを消灯して(S802)、映像信号処理回路504で映像信号を不揮発性メモリ507に記憶された所定のレベルにする(ループ回数に応じてレベルを変更)(S803)。受光素子17の出力をサンプルホールド回路501に入力してG色の照度を求めて、一時記憶メモリ506に記憶させる(S804)。所定の映像信号レベルについて全て測定したかを調べ(S805)、未測定の映像信号レベルがあれば(S805No)、ステップS803に戻ってレベルを変更して受光素子17の出力をサンプルホールド回路501に入力してG色の照度を求めて、一時記憶メモリ506に記憶させて(S804)。所定の映像信号レベルについて全て測定したかを調べる(S805)。   In the G color VT characteristic measurement subroutine (S703), when the G color VT characteristic measurement subroutine is started (S801), the G color light source 10G is turned on by each color light source drive circuit 509, and the R color light source 10R and the B color light source are turned on. 10B is turned off (S802), and the video signal processing circuit 504 sets the video signal to a predetermined level stored in the nonvolatile memory 507 (the level is changed according to the number of loops) (S803). The output of the light receiving element 17 is input to the sample and hold circuit 501 to obtain the G color illuminance and stored in the temporary storage memory 506 (S804). It is checked whether or not all predetermined video signal levels have been measured (S805). If there is an unmeasured video signal level (No in S805), the process returns to step S803 to change the level and output the light receiving element 17 to the sample hold circuit 501. The G color illuminance is input and obtained and stored in the temporary storage memory 506 (S804). It is checked whether all the predetermined video signal levels have been measured (S805).

ステップS805で、全ての測定が終了していれば(S805Yes)、一時記憶メモリ506に記憶させたG色照度情報を読み出してG色V−T特性補正データを算出し(S806)、算出したG色V−T特性補正データを不揮発性メモリ507に記憶させ(S807)、G色V−T特性測定サブルーチンを終了する(S808)。   If all measurements have been completed in step S805 (S805 Yes), G color illuminance information stored in temporary storage memory 506 is read to calculate G color VT characteristic correction data (S806). The color VT characteristic correction data is stored in the nonvolatile memory 507 (S807), and the G color VT characteristic measurement subroutine is terminated (S808).

R色V−T特性測定サブルーチン(S704)、B色V−T特性測定サブルーチン(S705)は、各ステップで選択される色が異なるだけでフローはG色V−T特性測定サブルーチンと同じなので説明を省略する。   The R color VT characteristic measurement subroutine (S704) and the B color VT characteristic measurement subroutine (S705) are the same as the G color VT characteristic measurement subroutine except that the color selected in each step is different. Is omitted.

次に、本発明の第2の実施の形態について図面を参照して説明する。図12は本発明の第2の実施の形態の投写型表示装置の模式的構成図であり、図13は、本発明の投写型表示装置の第2の実施の形態の投写型表示装置の変形例の模式的構成図である。第2の実施の形態では第1の実施の形態の検出部102の受光素子17の構成が異なっているだけでその他の構成や動作は同じなので、同じ構成については同じ符号を付して説明を省略する。   Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 12 is a schematic configuration diagram of the projection display apparatus according to the second embodiment of the present invention, and FIG. 13 is a modification of the projection display apparatus according to the second embodiment of the projection display apparatus of the present invention. It is a typical block diagram of an example. In the second embodiment, only the configuration of the light receiving element 17 of the detection unit 102 of the first embodiment is different, and the other configurations and operations are the same. Omitted.

第1の実施の形態の検出部102の受光素子17はR、G、B各色光に対して感度を有する素子を1つ使用していたが、第2の実施の形態の検出部103ではR色受光素子17R、G色受光素子17G、およびB色受光素子17Bの3個の受光素子から構成されており、偏光分離手段15からの反射光20Bは全ての受光素子に入光して選択され、第2の実施の形態の変形例では偏光分離手段15からの反射光20BをR、G、B各色毎に光路を分ける色分離光学系18が設けられ、分離されたR、G、B各色に対応するR色受光素子17R、G色受光素子17G、およびB色受光素子17Bの3個の受光素子がそれぞれの分離された色光の光路に設けられている。第1の実施の形態ではR、G、B各色光源を1個ずつ点灯させる必要があったが、第2の実施の形態ではR、G、B各色光源を同時点灯させても、各色光の光量比を検出することができる。   The light receiving element 17 of the detection unit 102 according to the first embodiment uses one element having sensitivity to each color light of R, G, and B. In the detection unit 103 according to the second embodiment, R is used. It is composed of three light receiving elements, a color light receiving element 17R, a G color light receiving element 17G, and a B color light receiving element 17B, and the reflected light 20B from the polarization separation means 15 enters all the light receiving elements and is selected. In the modification of the second embodiment, a color separation optical system 18 is provided to divide the reflected light 20B from the polarization separation means 15 for each color of R, G, B, and the separated R, G, B colors. The three light receiving elements of R color light receiving element 17R, G color light receiving element 17G, and B color light receiving element 17B are provided in the optical paths of the separated color lights. In the first embodiment, the R, G, and B color light sources need to be turned on one by one. However, in the second embodiment, the R, G, and B color light sources can be turned on at the same time. The light quantity ratio can be detected.

次に、本発明の第3の実施の形態について第1の実施の形態とその図面を参照して説明する。上述の第1及び第2の実施の形態では、映像を表示しないで各調整モードを実行する例について述べたが、第3の実施の形態では映像を表示しながら各調整モードを実行することが可能である。第3の実施の形態では、映像を表示中にフィールド周期毎に一瞬だけ光変調素子14に黒を表示させ、その一瞬における受光素子17の出力レベルを制御部100のサンプルホールド回路501に記憶させて解析を行う。   Next, a third embodiment of the present invention will be described with reference to the first embodiment and the drawings. In the first and second embodiments described above, the example in which each adjustment mode is executed without displaying an image has been described. However, in the third embodiment, each adjustment mode can be executed while displaying an image. Is possible. In the third embodiment, black is displayed on the light modulation element 14 for an instant for each field period during video display, and the output level of the light receiving element 17 at that moment is stored in the sample hold circuit 501 of the control unit 100. To analyze.

次に、本発明の第4の実施の形態について第1の実施の形態とその図面を参照して説明する。上述の第1及び第2の実施の形態では、各調整モード実行時には光変調素子に黒表示させるようにした例について述べた。第4の実施の形態では調整のために光変調素子に黒表示させるようなことはしないで、各調整モードを実行することが可能である。第4の実施の形態では、光変調素子14が表示している画像のネガ画像の明るさを動的に光センサーで検出し、入力映像信号をレベル反転した信号のAPL(Average Picture Level、映像入力信号の平均輝度レベル)と比較することによって各調整モードを実行する。   Next, a fourth embodiment of the present invention will be described with reference to the first embodiment and the drawings. In the first and second embodiments described above, an example has been described in which black display is performed on the light modulation element when each adjustment mode is executed. In the fourth embodiment, each adjustment mode can be executed without black display on the light modulation element for adjustment. In the fourth embodiment, the brightness of the negative image of the image displayed by the light modulation element 14 is dynamically detected by the optical sensor, and the APL (Average Picture Level) of the signal obtained by inverting the level of the input video signal. Each adjustment mode is executed by comparison with the average luminance level of the input signal.

これまでの実施の形態では、光変調素子が1個の投写型表示装置について述べたが、光変調素子を複数有する投写型表示装置についても本発明が適用可能であることは明らかである。   In the embodiments so far, the projection display apparatus having one light modulation element has been described. However, it is obvious that the present invention can be applied to a projection display apparatus having a plurality of light modulation elements.

本発明の第1の実施の形態の投写型表示装置の模式的構成図である。1 is a schematic configuration diagram of a projection display device according to a first embodiment of the present invention. 図1における検出部の動作を説明するための図であり、白表示を行った場合のP偏光光の動作を示す。It is a figure for demonstrating operation | movement of the detection part in FIG. 1, and shows operation | movement of the P polarized light at the time of performing a white display. 図1における検出部の動作を説明するための図であり、黒表示を行った場合のS偏光光の動作を示す。It is a figure for demonstrating operation | movement of the detection part in FIG. 1, and shows operation | movement of S polarized light at the time of performing black display. 本発明の第1実施の形態の投写型表示装置の変形例の模式的構成図である。It is a typical block diagram of the modification of the projection type display apparatus of 1st Embodiment of this invention. 本発明の第1の実施の形態の光量調整方法を説明するための制御部を中心とする模式的ブロック構成図である。It is a typical block block diagram centering on the control part for demonstrating the light quantity adjustment method of the 1st Embodiment of this invention. 白色色度座標自動算出モード動作時のフローチャートである。It is a flowchart at the time of white chromaticity coordinate automatic calculation mode operation | movement. ホワイトバランス自動調整モード動作時のフローチャートである。It is a flowchart at the time of white balance automatic adjustment mode operation. 色再現範囲自動調整モード動作時のフローチャートである。6 is a flowchart at the time of color reproduction range automatic adjustment mode operation. 図8におけるG原色調整サブルーチン動作時のフローチャートである。FIG. 9 is a flowchart at the time of a G primary color adjustment subroutine operation in FIG. 8. FIG. 図8におけるR原色調整サブルーチン動作時のフローチャートである。FIG. 9 is a flowchart at the time of an R primary color adjustment subroutine operation in FIG. 8. FIG. 図8におけるB原色調整サブルーチン動作時のフローチャートである。FIG. 9 is a flowchart at the time of a B primary color adjustment subroutine operation in FIG. 8. FIG. V−T特性補正データ自動算出モード動作時のフローチャートである。It is a flowchart at the time of VT characteristic correction data automatic calculation mode operation | movement. 図10におけるG色V−T特性測定サブルーチン動作時のフローチャートである。FIG. 11 is a flowchart at the time of a G color VT characteristic measurement subroutine operation in FIG. 10. FIG. 図10におけるR色V−T特性測定サブルーチン動作時のフローチャートである。11 is a flowchart at the time of an R color VT characteristic measurement subroutine operation in FIG. 10. 図10におけるB色V−T特性測定サブルーチン動作時のフローチャートを示す図である。It is a figure which shows the flowchart at the time of the B color VT characteristic measurement subroutine operation | movement in FIG. 本発明の第2の実施の形態の投写型表示装置の模式的構成図である。It is a typical block diagram of the projection type display apparatus of the 2nd Embodiment of this invention. 本発明の投写型表示装置の第2の実施の形態の投写型表示装置の変形例の模式的構成図である。It is a typical block diagram of the modification of the projection type display apparatus of 2nd Embodiment of the projection type display apparatus of this invention. 従来の投写型表示装置の光学系の構成を示す模式的構成図である。It is a typical block diagram which shows the structure of the optical system of the conventional projection display apparatus.

符号の説明Explanation of symbols

1、2、3、4、5 投写型表示装置
10R、200R R色光源
10G、200G G色光源
10B、200B B色光源
11 色合成手段
12 照明光学系
13 偏光板
14 光変調素子
15 偏光分離手段
16 投写光学系
17、17R、17G、17B 受光素子
18 色分離光学系
20A 偏光分離面30の透過光
20B 偏光分離面30の反射光
21 偏光分離手段15の出射面
30 偏光分離面
31 自然偏光光
31S 偏光板13を透過したS偏光光
32S 光変調素子14を透過したS偏光光
32P 光変調素子14を透過したP偏光光
33S 偏光分離面30を反射したS偏光光
33P 偏光分離面30を透過したP偏光光
40 検光子
51、52、53、54、55 光学系
100 制御部
101 光源部
102、103、104 検出部
500 制御回路
501 サンプルホールド回路
502 光変調素子駆動回路
503 V−T特性補正回路
504 映像信号処理回路
505 CPU
506 一時記憶メモリ
507 不揮発性メモリ
508 ユーザインタフェース
509R R色光源駆動回路
509G G色光源駆動回路
509B B色光源駆動回路
S101〜S111、S201〜S216、S301〜S307、S401〜S414、S501〜S514、S601〜S614、S701〜S707、S801〜S808、S901〜S908、S1001〜S1008 ステップ
1, 2, 3, 4, 5 Projection display device 10R, 200R R color light source 10G, 200G G color light source 10B, 200B B color light source 11 Color composition means 12 Illumination optical system 13 Polarizing plate 14 Light modulation element 15 Polarization separation means DESCRIPTION OF SYMBOLS 16 Projection optical system 17, 17R, 17G, 17B Light receiving element 18 Color separation optical system 20A Transmitted light of the polarization separation surface 30 20B Reflected light of the polarization separation surface 30 21 Output surface of the polarization separation means 15 30 Polarization separation surface 31 Naturally polarized light 31S S-polarized light transmitted through the polarizing plate 32S S-polarized light transmitted through the light modulator element 32P P-polarized light transmitted through the light modulator element 33S S-polarized light reflected from the polarization separation surface 30 33P transmitted through the polarization separation surface 30 P-polarized light 40 Analyzer 51, 52, 53, 54, 55 Optical system 100 Control unit 101 Light source unit 102, 103, 104 Detection 500 control circuit 501 sample-and-hold circuits 502 light modulation element driving circuit 503 V-T characteristic correction circuit 504 video signal processing circuit 505 CPU
506 Temporary storage memory 507 Non-volatile memory 508 User interface 509R R color light source drive circuit 509G G color light source drive circuit 509B B color light source drive circuit S101-S111, S201-S216, S301-S307, S401-S414, S501-S514, S601 -S614, S701-S707, S801-S808, S901-S908, S1001-S1008 Step

Claims (12)

光源部と、
該光源部からの光を直線偏光光に変換する直線偏光化手段と、
該直線偏光化手段からの光を変調する光変調素子と、
該光変調素子からの光を偏光方向が互いに直交する第1の直線偏光光と第2の直線偏光光とに分離してそれぞれを異なった光路に出射する偏光分離手段と、
該偏光分離手段から出射した前記第1の直線偏光光を投写する投写光学系と、
前記偏光分離手段から出射した前記第2の直線偏光光の受光量を検出する受光素子と、
前記光源部および前記光変調素子を駆動し、前記受光素子における受光量検出状態に応じて前記光源部の発光状態を制御する制御手段と、を有する投写型表示装置。
A light source unit;
Linear polarization means for converting light from the light source unit into linearly polarized light;
A light modulation element for modulating light from the linear polarization means;
Polarization separation means for separating the light from the light modulation element into first linearly polarized light and second linearly polarized light whose polarization directions are orthogonal to each other and emitting each of the light to different optical paths;
A projection optical system for projecting the first linearly polarized light emitted from the polarization separating means;
A light receiving element for detecting a received light amount of the second linearly polarized light emitted from the polarization separating means;
And a control unit configured to drive the light source unit and the light modulation element and control a light emission state of the light source unit according to a light reception amount detection state in the light receiving element.
前記光源部は、赤色光を発する赤色光源と、緑色光を発する緑色光源と、青色光を発する青色光源と、前記各色光源からの光を合成する色合成手段とを有する、請求項1に記載の投写型表示装置。   2. The light source unit according to claim 1, comprising: a red light source that emits red light; a green light source that emits green light; a blue light source that emits blue light; and a color synthesis unit that synthesizes light from each of the color light sources. Projection display device. 前記各色光源は、それぞれ少なくとも一つの発光素子を有する、請求項2に記載の投写型表示装置。   The projection display device according to claim 2, wherein each of the color light sources has at least one light emitting element. 前記発光素子は、発光ダイオードである、請求項3に記載の投写型表示装置。   The projection display device according to claim 3, wherein the light emitting element is a light emitting diode. 前記発光素子は、半導体レーザである、請求項3に記載の投写型表示装置。   The projection display device according to claim 3, wherein the light emitting element is a semiconductor laser. 前記光変調素子は、液晶デバイスである、請求項1に記載の投写型表示装置。   The projection display apparatus according to claim 1, wherein the light modulation element is a liquid crystal device. 前記偏光分離手段は、前記第1の直線偏光光を透過し、前記第2の直線偏光光を反射するダイクロイック膜からなる偏光分離面を有する、請求項1に記載の投写型表示装置。   2. The projection display device according to claim 1, wherein the polarization separation unit has a polarization separation surface made of a dichroic film that transmits the first linearly polarized light and reflects the second linearly polarized light. 前記受光素子は、フォトダイオードである、請求項1に記載の投写型表示装置。   The projection display device according to claim 1, wherein the light receiving element is a photodiode. 前記受光素子は、フォトトランジスタである、請求項1に記載の投写型表示装置。   The projection display device according to claim 1, wherein the light receiving element is a phototransistor. 前記受光素子は、赤、緑、青各色のそれぞれに対応して設けられている、請求項1に記載の投写型表示装置。   The projection display device according to claim 1, wherein the light receiving element is provided corresponding to each of red, green, and blue colors. 前記制御手段は、前記受光素子が検出した前記第2の直線偏光光の受光量から赤、緑、青各色の前記発光素子の光量を比較して、各色のホワイトバランスを保つように前記光源の駆動条件を制御する、請求項1に記載の投写型表示装置。   The control means compares the light amounts of the light emitting elements of red, green, and blue colors based on the received light amount of the second linearly polarized light detected by the light receiving element, and maintains the white balance of each color of the light source. The projection display device according to claim 1, wherein the driving condition is controlled. 前記偏光分離手段と前記投写光学系との間に偏光板が配置されている、請求項1から請求項11のいずれか1項に記載の投写型表示装置。   The projection display device according to any one of claims 1 to 11, wherein a polarizing plate is disposed between the polarization separation means and the projection optical system.
JP2005247268A 2005-08-29 2005-08-29 Light adjustment method for projection display device Expired - Fee Related JP4903407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005247268A JP4903407B2 (en) 2005-08-29 2005-08-29 Light adjustment method for projection display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005247268A JP4903407B2 (en) 2005-08-29 2005-08-29 Light adjustment method for projection display device

Publications (2)

Publication Number Publication Date
JP2007065012A true JP2007065012A (en) 2007-03-15
JP4903407B2 JP4903407B2 (en) 2012-03-28

Family

ID=37927340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005247268A Expired - Fee Related JP4903407B2 (en) 2005-08-29 2005-08-29 Light adjustment method for projection display device

Country Status (1)

Country Link
JP (1) JP4903407B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257119A (en) * 2007-04-09 2008-10-23 Sanyo Electric Co Ltd Projection display apparatus
JP2008292725A (en) * 2007-05-24 2008-12-04 Sanyo Electric Co Ltd Illumination apparatus and projection type image display apparatus
WO2009028675A1 (en) * 2007-08-31 2009-03-05 Kyocera Corporation Image display and image display control method
JP2009086182A (en) * 2007-09-28 2009-04-23 Necディスプレイソリューションズ株式会社 Projector
EP2144447A1 (en) 2008-07-10 2010-01-13 Funai Electric Co., Ltd. Device and method for displaying image
JP2010078751A (en) * 2008-09-25 2010-04-08 Casio Computer Co Ltd Projector
JP2010152326A (en) * 2008-11-27 2010-07-08 Casio Computer Co Ltd Projection apparatus, projection method, and program
JP2011070088A (en) * 2009-09-28 2011-04-07 Casio Computer Co Ltd Light source device, and projector with the same
EP2141684A3 (en) * 2008-07-02 2011-07-06 Funai Electric Co., Ltd. Image display apparatus and image display method using tri-colour laser projection system
WO2011148507A1 (en) 2010-05-28 2011-12-01 Necディスプレイソリューションズ株式会社 Projection display device
US8125426B2 (en) 2007-04-05 2012-02-28 Mitsubishi Electric Corporation Image displaying apparatus and image displaying method
JP2012215755A (en) * 2011-04-01 2012-11-08 Seiko Epson Corp Light source device and projector
JP2012531626A (en) * 2009-06-25 2012-12-10 イーストマン コダック カンパニー Hierarchical light intensity control in light projectors
JP2013015738A (en) * 2011-07-06 2013-01-24 Nippon Seiki Co Ltd Head-up display device
JP2013029691A (en) * 2011-07-28 2013-02-07 Toshiba Corp Image output device and backlight control method
JP2013222064A (en) * 2012-04-17 2013-10-28 Mitsubishi Electric Corp Laser light source projector
JP2014052472A (en) * 2012-09-06 2014-03-20 Seiko Epson Corp Projector
JP2014074802A (en) * 2012-10-04 2014-04-24 Nippon Seiki Co Ltd Display device
JP2014115310A (en) * 2012-12-06 2014-06-26 Mitsubishi Electric Corp Laser light source projector
US8794765B2 (en) 2011-03-28 2014-08-05 Casio Computer Co., Ltd. Projection apparatus, projection method, and medium storing program
JP2015050225A (en) * 2013-08-30 2015-03-16 ウシオ電機株式会社 Light source device
EP2437104A4 (en) * 2009-05-29 2016-03-02 Nippon Seiki Co Ltd Liquid crystal display device
JP2016170436A (en) * 2016-06-02 2016-09-23 セイコーエプソン株式会社 Projector and control method for projector
WO2016189582A1 (en) * 2015-05-22 2016-12-01 Necディスプレイソリューションズ株式会社 Lighting device, projector, display system and light source adjustment method
WO2017072954A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 Refrigerator
WO2019012806A1 (en) * 2017-07-12 2019-01-17 ソニー株式会社 Image display device
US10554941B2 (en) 2015-07-27 2020-02-04 Nec Display Solutions, Ltd. Projector device and method for correcting color in projector device
JP2020021552A (en) * 2018-07-30 2020-02-06 セイコーエプソン株式会社 Light source device and projector
US11397326B2 (en) 2019-11-28 2022-07-26 Seiko Epson Corporation Head-mounted display

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7039909B2 (en) * 2017-09-27 2022-03-23 セイコーエプソン株式会社 Lighting equipment and projectors

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122631A (en) * 1989-10-05 1991-05-24 Seiko Epson Corp Projection type liquid crystal display device
JPH03287224A (en) * 1990-04-03 1991-12-17 Sony Corp Liquid crystal type projector
JPH04180051A (en) * 1990-11-15 1992-06-26 Sharp Corp Liquid crystal projector
JPH07306405A (en) * 1994-05-13 1995-11-21 Victor Co Of Japan Ltd Liquid crystal display device
JPH09282097A (en) * 1996-04-11 1997-10-31 Toshiba Corp Projection-type liquid crystal display device
JP2003029211A (en) * 2001-07-19 2003-01-29 Canon Inc Projection type image display device
JP2004184852A (en) * 2002-12-05 2004-07-02 Olympus Corp Display device, light source device and illuminator
JP2004226631A (en) * 2003-01-22 2004-08-12 Seiko Epson Corp Projector and optical device
JP2006189653A (en) * 2005-01-06 2006-07-20 Victor Co Of Japan Ltd Image display device
JP2006330177A (en) * 2005-05-24 2006-12-07 Olympus Corp Display device and projector

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122631A (en) * 1989-10-05 1991-05-24 Seiko Epson Corp Projection type liquid crystal display device
JPH03287224A (en) * 1990-04-03 1991-12-17 Sony Corp Liquid crystal type projector
JPH04180051A (en) * 1990-11-15 1992-06-26 Sharp Corp Liquid crystal projector
JPH07306405A (en) * 1994-05-13 1995-11-21 Victor Co Of Japan Ltd Liquid crystal display device
JPH09282097A (en) * 1996-04-11 1997-10-31 Toshiba Corp Projection-type liquid crystal display device
JP2003029211A (en) * 2001-07-19 2003-01-29 Canon Inc Projection type image display device
JP2004184852A (en) * 2002-12-05 2004-07-02 Olympus Corp Display device, light source device and illuminator
JP2004226631A (en) * 2003-01-22 2004-08-12 Seiko Epson Corp Projector and optical device
JP2006189653A (en) * 2005-01-06 2006-07-20 Victor Co Of Japan Ltd Image display device
JP2006330177A (en) * 2005-05-24 2006-12-07 Olympus Corp Display device and projector

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125426B2 (en) 2007-04-05 2012-02-28 Mitsubishi Electric Corporation Image displaying apparatus and image displaying method
JP2008257119A (en) * 2007-04-09 2008-10-23 Sanyo Electric Co Ltd Projection display apparatus
US8598503B2 (en) 2007-04-09 2013-12-03 Sanyo Electric Co., Ltd. Projection display apparatus with a device to measure deterioration in an array light source
JP2008292725A (en) * 2007-05-24 2008-12-04 Sanyo Electric Co Ltd Illumination apparatus and projection type image display apparatus
WO2009028675A1 (en) * 2007-08-31 2009-03-05 Kyocera Corporation Image display and image display control method
JP2009086182A (en) * 2007-09-28 2009-04-23 Necディスプレイソリューションズ株式会社 Projector
EP2141684A3 (en) * 2008-07-02 2011-07-06 Funai Electric Co., Ltd. Image display apparatus and image display method using tri-colour laser projection system
US8259237B2 (en) 2008-07-02 2012-09-04 Funai Electric Co., Ltd. Image display apparatus and image display method
US8067725B2 (en) 2008-07-10 2011-11-29 Funai Electric Co., Ltd. Device and method for displaying image
EP2144447A1 (en) 2008-07-10 2010-01-13 Funai Electric Co., Ltd. Device and method for displaying image
US8485671B2 (en) 2008-09-25 2013-07-16 Casio Computer Co., Ltd. Projector apparatus which controls pulse widths of light beams emitted from pulse-driven light sources of different colors based on measured illumination values of the light sources
KR101095800B1 (en) * 2008-09-25 2011-12-21 가시오게산키 가부시키가이샤 Projector apparatus using pulse-driven light sources of different colors
US8210691B2 (en) 2008-09-25 2012-07-03 Casio Computer Co., Ltd. Projector apparatus which controls pulse widths of light beams emitted from pulse-driven light sources of different colors based on deterioration levels thereof
JP4743246B2 (en) * 2008-09-25 2011-08-10 カシオ計算機株式会社 Projection device, projection device control program, and light source control method
JP2010078751A (en) * 2008-09-25 2010-04-08 Casio Computer Co Ltd Projector
JP2010152326A (en) * 2008-11-27 2010-07-08 Casio Computer Co Ltd Projection apparatus, projection method, and program
US8342694B2 (en) 2008-11-27 2013-01-01 Casio Computer Co., Ltd. Projection apparatus, method, and program for adjusting a brightness of a light source so that a calculated chromaticity indicating brightness becomes a target chromaticity
EP2437104A4 (en) * 2009-05-29 2016-03-02 Nippon Seiki Co Ltd Liquid crystal display device
JP2012531626A (en) * 2009-06-25 2012-12-10 イーストマン コダック カンパニー Hierarchical light intensity control in light projectors
JP2011070088A (en) * 2009-09-28 2011-04-07 Casio Computer Co Ltd Light source device, and projector with the same
CN102918578A (en) * 2010-05-28 2013-02-06 Nec显示器解决方案株式会社 Projection display device
US9022578B2 (en) 2010-05-28 2015-05-05 Nec Display Solutions, Ltd. Projection display device
WO2011148507A1 (en) 2010-05-28 2011-12-01 Necディスプレイソリューションズ株式会社 Projection display device
US9274408B2 (en) 2010-05-28 2016-03-01 Nec Display Solutions, Ltd. Projection display device
CN102918578B (en) * 2010-05-28 2015-10-14 Nec显示器解决方案株式会社 Projection display apparatus
US8794765B2 (en) 2011-03-28 2014-08-05 Casio Computer Co., Ltd. Projection apparatus, projection method, and medium storing program
JP2012215755A (en) * 2011-04-01 2012-11-08 Seiko Epson Corp Light source device and projector
JP2013015738A (en) * 2011-07-06 2013-01-24 Nippon Seiki Co Ltd Head-up display device
US9134536B2 (en) 2011-07-06 2015-09-15 Nippon Seiki Co., Ltd. Head-up display device
JP2013029691A (en) * 2011-07-28 2013-02-07 Toshiba Corp Image output device and backlight control method
JP2013222064A (en) * 2012-04-17 2013-10-28 Mitsubishi Electric Corp Laser light source projector
JP2014052472A (en) * 2012-09-06 2014-03-20 Seiko Epson Corp Projector
JP2014074802A (en) * 2012-10-04 2014-04-24 Nippon Seiki Co Ltd Display device
JP2014115310A (en) * 2012-12-06 2014-06-26 Mitsubishi Electric Corp Laser light source projector
JP2015050225A (en) * 2013-08-30 2015-03-16 ウシオ電機株式会社 Light source device
JPWO2016189582A1 (en) * 2015-05-22 2018-03-15 Necディスプレイソリューションズ株式会社 LIGHTING DEVICE, PROJECTOR, DISPLAY SYSTEM, AND LIGHT SOURCE ADJUSTING METHOD
WO2016189582A1 (en) * 2015-05-22 2016-12-01 Necディスプレイソリューションズ株式会社 Lighting device, projector, display system and light source adjustment method
US10197898B2 (en) 2015-05-22 2019-02-05 Nec Display Solutions, Ltd. Lighting device, projector, display system, and light source adjustment method
US10554941B2 (en) 2015-07-27 2020-02-04 Nec Display Solutions, Ltd. Projector device and method for correcting color in projector device
JPWO2017072954A1 (en) * 2015-10-30 2018-05-24 三菱電機株式会社 refrigerator
CN108351151A (en) * 2015-10-30 2018-07-31 三菱电机株式会社 Refrigerator
CN108351151B (en) * 2015-10-30 2020-05-15 三菱电机株式会社 Refrigerator with a door
WO2017072954A1 (en) * 2015-10-30 2017-05-04 三菱電機株式会社 Refrigerator
JP2016170436A (en) * 2016-06-02 2016-09-23 セイコーエプソン株式会社 Projector and control method for projector
JPWO2019012806A1 (en) * 2017-07-12 2020-05-07 ソニー株式会社 Image display
WO2019012806A1 (en) * 2017-07-12 2019-01-17 ソニー株式会社 Image display device
US11209725B2 (en) 2017-07-12 2021-12-28 Sony Corporation Image display apparatus
JP7302472B2 (en) 2017-07-12 2023-07-04 ソニーグループ株式会社 image display device
US11693305B2 (en) 2017-07-12 2023-07-04 Sony Corporation Image display apparatus
JP2020021552A (en) * 2018-07-30 2020-02-06 セイコーエプソン株式会社 Light source device and projector
CN110780524A (en) * 2018-07-30 2020-02-11 精工爱普生株式会社 Light source device and projector
JP7040345B2 (en) 2018-07-30 2022-03-23 セイコーエプソン株式会社 Light source device and projector
US11287729B2 (en) 2018-07-30 2022-03-29 Seiko Epson Corporation Light source device and projector
CN110780524B (en) * 2018-07-30 2022-06-28 精工爱普生株式会社 Light source device and projector
US11397326B2 (en) 2019-11-28 2022-07-26 Seiko Epson Corporation Head-mounted display

Also Published As

Publication number Publication date
JP4903407B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
JP4903407B2 (en) Light adjustment method for projection display device
JP5676595B2 (en) Projection display apparatus and projection display method
US9429761B2 (en) Color synthesis optical element, projection-type display device using same, and method for controlling display thereof
US8979278B2 (en) Light source device and projection apparatus which adjusts a light emission state of first and second light sources based on one of detected light intensity values and an accumulated light emission time, and projection method and non-transitory storage medium
JP5995292B2 (en) Projection display apparatus and projection display method
JP6519970B2 (en) Image display apparatus, projector and control method thereof
JP2006171722A (en) Color display, multi-display system, adjustment device, and method for setting and/or adjusting the color display
CN103543582A (en) Projector and light emission control method in projector
JP2014016381A (en) Light source device and image projection device
JP2011145368A (en) Projector and method for adjusting color balance of projected image in projector
JP2007079402A (en) Projector
US7931378B2 (en) Control system, projector, program, and information storage medium
JP2007328074A (en) Light source controller
JP3771546B2 (en) Image display device
JP2012053279A (en) Color image forming apparatus, color image forming method, and projector including the color image forming apparatus
CN110888293B (en) Projection device, white balance presetting method and implementation method
JP2008089836A (en) Projector
US10798348B2 (en) Light source apparatus, projection type display device and light source control method
JP2005286605A (en) Color luminance correction apparatus, projector provided with color luminance correction apparatus, and color luminance correction method
WO2024134936A1 (en) Light amount measurement device, chromaticity adjustment device, projection device, light amount measurement method, chromaticity adjustment method, and control program
JP2015052788A (en) Rotating body and projection device
JP2024089055A (en) Chromaticity adjustment device, projection device, chromaticity adjustment method, and control program
JP2024089054A (en) Light quantity measuring device, projection device, light quantity measuring method, and control program
JP2024089053A (en) Light quantity measuring device, projection device, light quantity measuring method, and control program
JP2013168376A (en) Light source device, projection device, projection method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120105

R150 Certificate of patent or registration of utility model

Ref document number: 4903407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees