JP2007064896A - Noncontact type deformation state detector - Google Patents

Noncontact type deformation state detector Download PDF

Info

Publication number
JP2007064896A
JP2007064896A JP2005254176A JP2005254176A JP2007064896A JP 2007064896 A JP2007064896 A JP 2007064896A JP 2005254176 A JP2005254176 A JP 2005254176A JP 2005254176 A JP2005254176 A JP 2005254176A JP 2007064896 A JP2007064896 A JP 2007064896A
Authority
JP
Japan
Prior art keywords
deformation
deformation state
elastic body
air
detection sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005254176A
Other languages
Japanese (ja)
Other versions
JP4882062B2 (en
Inventor
Wakashi Toya
稚詞 戸舎
Tomohiro Kawahara
知洋 川原
Makoto Kaneko
真 金子
Toshimasa Asahara
利正 浅原
Masazumi Okajima
正純 岡島
Yoshihiro Miyata
義浩 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2005254176A priority Critical patent/JP4882062B2/en
Publication of JP2007064896A publication Critical patent/JP2007064896A/en
Application granted granted Critical
Publication of JP4882062B2 publication Critical patent/JP4882062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a noncontact type compact deformation state detector of simple constitution capable of detecting precisely a portion different in its hardness in an inner part of an elastomer. <P>SOLUTION: This noncontact type deformation state detector of the present invention comprises a deformation detecting sensor for detecting a deformation state of an elastomer surface blown with air through a nozzle, an air source for supplying compressed air to the nozzle via an opening and closing valve, and a data processor for receiving a signal from the deformation detecting sensor and for processing it, the deformation detecting sensor has output characteristics depending on a distance from a tip thereof to a measured part and an inclination angle of a surface in the measured part, and gradients of output curves in the both have the same code. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、弾性体の表面に空気を吹き付けてその変形状態を非接触で検知する非接触型変形状態検出装置に関する。   The present invention relates to a non-contact type deformation state detecting device that blows air onto the surface of an elastic body and detects the deformation state in a non-contact manner.

診断や手術を行う際に内視鏡を体内に挿入して所用部位を観察し、また、観察しながら診断や手術を行うことが広く行われている。このような内視鏡による観察において、内臓の内壁等の弾性や体腔内異物の硬さを知ることができれば診断や手術の精度は非常に高くなる。この様な要請に応えるものとして、特許文献1に、小型で静粛かつ吐出圧力を任意に調整することができる内視鏡用送気装置が提案されている。   It is widely practiced to insert an endoscope into a body when diagnosing or performing surgery and observing a desired site, and performing diagnosis or surgery while observing. In such an observation with an endoscope, if the elasticity of the internal wall of the internal organs and the hardness of the foreign substance in the body cavity can be known, the accuracy of diagnosis and surgery becomes very high. As a response to such a demand, Patent Document 1 proposes an endoscope air supply device that is small, quiet, and can arbitrarily adjust the discharge pressure.

しかし、特許文献1に提案された内視鏡用送気装置は、内視鏡で観察している部位にパルス上の空気を吐出するのみであるから、術者は空気が吐出された内臓の内壁等の変形状体を光学的な観察方法で内臓の弾性や体腔内異物の硬さを判断することになり、判断が難しく経験を要するという問題があった。   However, since the endoscopic air supply device proposed in Patent Document 1 only discharges air on a pulse to a site observed by the endoscope, the surgeon can avoid the internal organs from which air has been discharged. The deformed body such as the inner wall is judged by the optical observation method for the elasticity of the internal organs and the hardness of the foreign substance in the body cavity, which makes it difficult to judge and requires experience.

この様な問題点を解決すべく、特許文献2に、空気を噴射することができるノズルと、所定のパターンフィルタを通したラインレーザ光を投射するとともに反射光を受光する内視鏡と、該反射光を受光して視覚化する観察手段とからなる表面硬さ分布測定装置が提案されている。   In order to solve such problems, Patent Document 2 discloses a nozzle that can eject air, an endoscope that projects line laser light that passes through a predetermined pattern filter and receives reflected light, and There has been proposed a surface hardness distribution measuring apparatus comprising observation means for receiving reflected light and visualizing it.

特開2000-14637号公報JP 2000-14637 A 特開2005-91265号公報JP 2005-91265 A

しかしながら、特許文献2に提案された表面硬さ分布測定装置は、ラインレーザを必要とし装置全体が大がかりで高価な装置になるという問題がある。また、内視鏡として使用するにはさらに小型化が必要であるが、機構上相当な困難を伴うおそれがあるという問題がある。   However, the surface hardness distribution measuring apparatus proposed in Patent Document 2 requires a line laser and has a problem that the entire apparatus is large and expensive. Further, it is necessary to further reduce the size for use as an endoscope, but there is a problem that it may be accompanied by considerable difficulty in terms of mechanism.

本発明は係る従来の問題点に鑑み、単純な構成でコンパクトであり、弾性体の内部に硬さの異なる部分を高精度で検出することができ、特に内臓の内壁等に生じたしこりや軟化部を高精度で検知することができる、内視鏡に好適な非接触型変形状態検出装置を提供することを目的とする。   In view of the conventional problems, the present invention is simple and compact, and can detect a portion with different hardness inside the elastic body with high accuracy, particularly a lump or softening generated on the inner wall of the internal organs. An object of the present invention is to provide a non-contact deformation state detection device suitable for an endoscope, which can detect a part with high accuracy.

本発明に係る非接触型変形状態検出装置は、ノズルを通して空気が吹き付けられた弾性体表面の変形状態を検知する変形感知センサと、開閉弁を介して前記ノズルに加圧空気を供給する空圧源と、前記変形感知センサからの信号を受けこれを処理するデータ処理装置と、からなる非接触型変形状態検出装置であって、
前記変形感知センサは、その先端から被測定部までの距離と被測定部における表面の傾斜角度に依存する出力特性を有するとともに、両者の出力曲線の勾配が同じ符号を有するものである。
A non-contact type deformation state detection apparatus according to the present invention includes a deformation detection sensor that detects a deformation state of a surface of an elastic body blown with air through a nozzle, and a pneumatic pressure that supplies pressurized air to the nozzle through an on-off valve. A non-contact type deformation state detection device comprising: a source; and a data processing device for receiving and processing a signal from the deformation detection sensor,
The deformation detection sensor has output characteristics that depend on the distance from the tip to the part to be measured and the inclination angle of the surface of the part to be measured, and the slopes of both output curves have the same sign.

上記発明において、変形感知センサはノズルの周囲に二以上配設されているのがよく、また、変形感知センサは光ファイバセンサからなるものであるのがよい。データ処理装置は、開閉弁を制御する機能をあわせもつものであるのがよい。   In the above invention, two or more deformation detection sensors may be arranged around the nozzle, and the deformation detection sensor may be an optical fiber sensor. The data processing device preferably has a function of controlling the on-off valve.

また、データ処理装置からの信号を受けて、空気が吹き付けられた弾性体表面の変形状態を視覚化するモニタが設けられているのがよい。   In addition, it is preferable to provide a monitor that receives a signal from the data processing device and visualizes the deformation state of the surface of the elastic body to which air is blown.

本発明に係る非接触型変形状態検出装置は、空気が吹き付けられた弾性体表面の変形状態を検出することにより、非接触で弾性体の内部に硬さの異なる部分を高精度で検出することができる。また、内臓の内壁等に生じたしこりや軟化部を高精度で検知するとともに、そのような部位を観察しながら診断又は手術を行うことができる内視鏡に適用することができる。   The non-contact type deformed state detection device according to the present invention detects a deformed state of the surface of the elastic body to which air is blown, thereby detecting a portion with different hardness inside the elastic body with high accuracy. Can do. Further, the present invention can be applied to an endoscope that can detect a lump or a softened portion generated on an inner wall of an internal organ with high accuracy and perform diagnosis or surgery while observing such a site.

本発明に係る非接触型変形状態検出装置の実施形態について図面を基に説明する。図1は、本発明に係る非接触型変形状態検出装置の説明図である。本非接触型変形状態検出装置は、ノズル11、変形感知センサ15、開閉弁36、加圧源35、データ処理装置45と、モニタ46を有する。加圧源35、開閉弁36及びノズル11は配管12を通して連通されている。   An embodiment of a non-contact type deformation state detection apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of a non-contact type deformation state detection apparatus according to the present invention. The non-contact type deformation state detection device includes a nozzle 11, a deformation detection sensor 15, an on-off valve 36, a pressurization source 35, a data processing device 45, and a monitor 46. The pressurizing source 35, the on-off valve 36, and the nozzle 11 are communicated with each other through the pipe 12.

図2は、ノズル11及び変形感知センサ15の先端部分の拡大図である。図2に示すように、変形感知センサ15はノズル11の外周部に配設されている。この例では、4つの変形感知センサ15は、ノズル11の空気孔12の中心から同一半径の円周上等間隔に配設されている。   FIG. 2 is an enlarged view of the tip portions of the nozzle 11 and the deformation detection sensor 15. As shown in FIG. 2, the deformation detection sensor 15 is disposed on the outer periphery of the nozzle 11. In this example, the four deformation detection sensors 15 are arranged at equal intervals on the circumference of the same radius from the center of the air hole 12 of the nozzle 11.

本非接触型変形状態検出装置には以下の特性を有する変形感知センサ15が用いられる。すなわち、変形感知センサ15として、その先端から被測定部までの距離と被測定部における表面の傾斜角度に依存する出力特性を有するとともに、両者の出力曲線の勾配が同じ符号を有するものが用いられる。これにより、以下に説明するように被測定物たる弾性体の内部に硬さの偏りを有する部分を明瞭に検知することができる。   The non-contact deformation state detection apparatus uses a deformation detection sensor 15 having the following characteristics. That is, as the deformation detection sensor 15, one having an output characteristic that depends on the distance from the tip to the measured part and the inclination angle of the surface of the measured part, and the slopes of both output curves have the same sign is used. . Thereby, as will be described below, it is possible to clearly detect a portion having a deviation in hardness inside the elastic body as the object to be measured.

そのような特性を有する変形感知センサ15の例として、光ファイバセンサを用いた場合の出力特性を図3及び4に示す。図3は、変形感知センサ15の先端から被測定物までの距離dを変化させたときの変形感知センサ15の出力電圧を示すグラフである。図3に示すように、出力電圧曲線は下に凸の放物線形状をしており、負の勾配を有し、距離dが大きくなるほど出力電圧が小さくなっている。   3 and 4 show output characteristics when an optical fiber sensor is used as an example of the deformation sensor 15 having such characteristics. FIG. 3 is a graph showing the output voltage of the deformation detection sensor 15 when the distance d from the tip of the deformation detection sensor 15 to the object to be measured is changed. As shown in FIG. 3, the output voltage curve has a downwardly convex parabola shape, has a negative slope, and the output voltage decreases as the distance d increases.

図4は、変形感知センサ15の先端から被測定物までの距離dを5mmに保って、被測定物の表面の傾斜角度を変化させたときの変形感知センサ15の出力電圧を示すグラフである。図4に示すように、出力電圧曲線は上に凸の放物線形状をしており、負の勾配を有し、傾斜角度が大きくなるほど出力電圧が小さくなっている。   FIG. 4 is a graph showing the output voltage of the deformation sensor 15 when the distance d from the tip of the deformation sensor 15 to the object to be measured is maintained at 5 mm and the inclination angle of the surface of the object to be measured is changed. . As shown in FIG. 4, the output voltage curve has an upwardly convex parabola shape, has a negative slope, and the output voltage decreases as the tilt angle increases.

すなわち、この変形感知センサ15は距離と傾斜角の相乗効果を受ける特性を有し、距離dが大きくなるとともに傾斜角が大きくなるとその出力電圧はより小さくなり、距離dが小さくなるとともに傾斜角が小さくなるとその出力電圧はより大きくなる。したがって、この変形感知センサ15を用いると、距離dが大きくなるとともに傾斜角が大きくなるような変形現象、あるいは距離dが小さくなるとともに傾斜角が小さくなるような変形現象をより強調して表示することができる。   In other words, the deformation detection sensor 15 has a characteristic of receiving a synergistic effect of the distance and the inclination angle, and when the distance d increases and the inclination angle increases, the output voltage becomes smaller, and the distance d decreases and the inclination angle As it decreases, its output voltage increases. Therefore, when the deformation detection sensor 15 is used, a deformation phenomenon in which the distance d increases and the tilt angle increases, or a deformation phenomenon in which the distance d decreases and the tilt angle decreases is displayed with more emphasis. be able to.

以下に、このような出力特性を有する変形感知センサ15を用いて、空気が吹き付けられた弾性体表面の変形状態を測定する場合について、図5を基に説明する。図5は、ノズル11から空気が吹き付けられた弾性体50の表面の変形状態を変形感知センサ15を用いて測定する場合を示す。図5(a)は弾性体50の内部の硬さが均一な場合、図5(b)は弾性体50の内部に周囲より硬い部分53がある場合、図5(c)は弾性体50の内部に周囲より柔らかい部分54がある場合を示し、変形感知センサ15により弾性体のP点部の変形状態を測定する場合を示す。図5において、二点鎖線部分は弾性体50に空気を吹き付ける前の弾性体50の表面の状態を示し、弾性体50の実線部分は空気を吹き付けたときの弾性体50の表面の変形状態を模式的に示す。図5(b)及び(c)の一点鎖線部分は、図5(a)の場合の弾性体50の表面の変形状態を描き加えたものである。なお、本例では、硬い部分53又は柔らかい部分54は、P点近傍にある場合について説明するが、それらが他の箇所にある場合も同様である。   Hereinafter, a case where the deformation state of the elastic body surface to which air is blown is measured using the deformation detection sensor 15 having such output characteristics will be described with reference to FIG. FIG. 5 shows a case where the deformation state of the surface of the elastic body 50 to which air is blown from the nozzle 11 is measured using the deformation detection sensor 15. 5A shows a case where the hardness of the elastic body 50 is uniform, FIG. 5B shows a case where the elastic body 50 has a portion 53 harder than its surroundings, and FIG. A case is shown in which there is a softer part 54 than the surroundings, and a case in which the deformation detection sensor 15 measures the deformation state of the point P of the elastic body is shown. In FIG. 5, a two-dot chain line portion indicates a state of the surface of the elastic body 50 before air is blown to the elastic body 50, and a solid line portion of the elastic body 50 indicates a deformation state of the surface of the elastic body 50 when air is blown. This is shown schematically. The alternate long and short dash line portions in FIGS. 5B and 5C depict the deformation state of the surface of the elastic body 50 in the case of FIG. In this example, the case where the hard portion 53 or the soft portion 54 is in the vicinity of the point P will be described, but the same applies to the case where they are in other locations.

図5(a)の場合において、変形感知センサ15の出力電圧は、くぼみ深さd及び傾斜角θに対応する出力電圧V1が得られる。これに対し、図5(b)の場合は、変形感知センサ15の直下近傍に硬い部分53があるから、変形感知センサ15の直下部の弾性体表面の変形は図5(a)の場合と比較してくぼみ深さはより小さく、また傾斜角も同様により小さくなる。したがって、変形感知センサ15から得られる出力電圧は、図5(b)に示すように、くぼみ深さ(d-Δd)及び傾斜角(θ-Δθ)に対応した出力電圧V1より一層大きな出力電圧V2が得られる。 In the case of FIG. 5A, the output voltage V 1 corresponding to the indentation depth d and the inclination angle θ is obtained as the output voltage of the deformation detection sensor 15. On the other hand, in the case of FIG. 5B, since there is a hard portion 53 in the vicinity immediately below the deformation detection sensor 15, the deformation of the elastic body surface immediately below the deformation detection sensor 15 is the same as the case of FIG. In comparison, the depth of the indentation is smaller and the inclination angle is similarly smaller. Therefore, the output voltage obtained from the deformation detection sensor 15 is larger than the output voltage V 1 corresponding to the indentation depth (d−Δd) and the inclination angle (θ−Δθ), as shown in FIG. 5B. A voltage V 2 is obtained.

一方、図5(c)の場合は、変形感知センサ15の直下近傍に柔らかい部分54があるから、変形感知センサ15の直下部の弾性体表面の変形は図5(a)の場合と比較してくぼみ深さはより大きく、傾斜角はより大きくなる。したがって、変形感知センサ15から得られる出力電圧は、図5(c)に示すように、くぼみ深さ(d+Δd)及び傾斜角(θ+Δθ)に対応した出力電圧V1より一層小さい出力電圧V3が得られる。 On the other hand, in the case of FIG. 5C, since there is a soft portion 54 in the vicinity immediately below the deformation detection sensor 15, the deformation of the elastic body surface immediately below the deformation detection sensor 15 is compared with the case of FIG. The dent depth is greater and the tilt angle is greater. Therefore, the output voltage obtained from the deformation detection sensor 15 is smaller than the output voltage V 1 corresponding to the indentation depth (d + Δd) and the inclination angle (θ + Δθ), as shown in FIG. 5 (c). the voltage V 3 is obtained.

このようにして弾性体のP点部の変形状態を測定することができる。弾性体の他の位置についてもP点の測定と同一の条件(同一の空気量及び空気圧)下で同様な測定をすることによって弾性体全体の変形状態を測定することができる。このようにして表示された変形状態は、硬い部分53と柔らかい部分54とが強調されたものとして表示される。したがって、本変形感知センサ15を用いれば、光ファイバーを通して肉眼やレーザーで光学的に観察する方法に比較して、内臓壁の内部の硬さの異常部分をより高い精度で観察することができ、例えば、内臓壁の内部のしこり等の発見が容易になる。   In this way, the deformation state of the point P of the elastic body can be measured. For other positions of the elastic body, the deformation state of the entire elastic body can be measured by performing the same measurement under the same conditions (same air amount and air pressure) as the measurement of the P point. The deformation state displayed in this way is displayed as an emphasis of the hard part 53 and the soft part 54. Therefore, if the deformation sensor 15 is used, an abnormal portion of the internal hardness of the visceral wall can be observed with higher accuracy compared to the method of optically observing with the naked eye or laser through the optical fiber, for example, This makes it easier to find a lump inside the internal organs wall.

以上、本変形感知センサ15の特性について説明したが、本変形感知センサ15は上述のように、4つの変形感知センサ15がノズル11の空気孔12の中心を中心とする同心円上等間隔に配設されている。これにより、弾性体50に空気を吹き付ける中心から対称位置の変形状態を測定することができるから、弾性体の硬さの異常部分をより高い精度で測定することができる。このような効果を得るには、必ずしも4つの変形感知センサ15をノズルの外周に設ける必要はないが、2つ以上の変形感知センサ15をノズル11の空気孔12の中心から同一半径の円周上等間隔に配設するのがよい。   The characteristics of the deformation detection sensor 15 have been described above. As described above, the deformation detection sensor 15 has four deformation detection sensors 15 arranged at equal intervals on a concentric circle centered on the center of the air hole 12 of the nozzle 11. It is installed. Thereby, since the deformation state at the symmetrical position can be measured from the center where air is blown onto the elastic body 50, the abnormal portion of the hardness of the elastic body can be measured with higher accuracy. In order to obtain such an effect, it is not always necessary to provide the four deformation detection sensors 15 on the outer periphery of the nozzle. However, two or more deformation detection sensors 15 are arranged at the circumference of the same radius from the center of the air hole 12 of the nozzle 11. It is preferable to arrange them at equal intervals.

上述のように、変形感知センサ15は、その先端から被測定部までの距離と被測定部における表面の傾斜角度に依存する出力特性を有するとともに、両者の出力曲線の勾配が同じ符号を有するものであれば足り、その種類や機構を問わない。しかしながら、LED光源を用い、光を伝達する光ファイバケーブルとLED光源から被測定物に照射された反射光を受光する光電センサから構成される光ファイバセンサを用いるのがよい。これにより、簡単でコンパクトな構造で安価な変形感知センサ15を構成することができる。そして、内臓壁の内部の異常部分等をより高い精度で観察することができる内視鏡として好適な非接触型変形状態検出装置を構成することができる。   As described above, the deformation detection sensor 15 has output characteristics that depend on the distance from the tip to the part to be measured and the inclination angle of the surface of the part to be measured, and the slopes of both output curves have the same sign. If so, it doesn't matter what kind or mechanism it is. However, it is preferable to use an optical fiber sensor that uses an LED light source and includes an optical fiber cable that transmits light and a photoelectric sensor that receives reflected light emitted from the LED light source to the object to be measured. Thereby, an inexpensive deformation detection sensor 15 can be configured with a simple and compact structure. In addition, a non-contact deformation state detection apparatus suitable as an endoscope that can observe an abnormal portion or the like inside the visceral wall with higher accuracy can be configured.

また、光ファイバセンサは図3及び4に示す特性を有するものに限らない。測定の対象及び測定範囲を考慮し、適当な特性曲線を有するものを選択することにより弾性体中の硬さの異常部分を一層精度の高い測定を行うことができる非接触型変形状態検出装置を構成することができる。   Further, the optical fiber sensor is not limited to the one having the characteristics shown in FIGS. A non-contact type deformed state detection device capable of measuring an abnormal portion of hardness in an elastic body with higher accuracy by selecting an object having an appropriate characteristic curve in consideration of a measurement target and a measurement range. Can be configured.

以上、本発明に係る変形感知センサ15について説明した。本非接触型変形状態検出装置において、弾性体50の表面に空気を吹き付ける方法は、加圧源35から加圧空気を開閉弁36を介して必要に応じノズル11に供給し、この供給された加圧空気をノズル11から噴射することによって行われる。加圧源35は所定の圧力及び容量の空気を安定して供給することができるものであればよい。例えば、加圧源35は、圧力調整器及びバッファタンクを備える空気タンクを使用することができる。開閉弁36は、加圧源35からの所定量の加圧空気を必要に応じてノズル11に供給することができるものであればよい。例えば電磁式開閉弁を使用することができる。この場合、変形感知センサ15の走査と弾性体の表面への空気の噴射を任意に行うことができるように、スイッチ48を設けるのがよい。なお、弾性体50に吹き付ける空気は、必要に応じて、その他の気体を使用することができる。   The deformation sensor 15 according to the present invention has been described above. In this non-contact type deformation state detecting device, the method of blowing air to the surface of the elastic body 50 is to supply pressurized air from the pressurizing source 35 to the nozzle 11 as necessary via the on-off valve 36, and this supply This is done by injecting pressurized air from the nozzle 11. The pressurizing source 35 may be any one that can stably supply air having a predetermined pressure and volume. For example, the pressurization source 35 can use an air tank including a pressure regulator and a buffer tank. The on-off valve 36 may be any valve that can supply a predetermined amount of pressurized air from the pressurizing source 35 to the nozzle 11 as necessary. For example, an electromagnetic on-off valve can be used. In this case, it is preferable to provide a switch 48 so that the deformation detection sensor 15 can be arbitrarily scanned and air can be jetted onto the surface of the elastic body. As the air blown to the elastic body 50, other gases can be used as necessary.

弾性体50に吹き付ける空気の圧力及び容量は重要である。例えば、空気の圧力及び容量が小さく、弾性体の表面の変形量が、図6(a)に示すように小さい場合は、弾性体表面の変形状態を測定することが困難である。したがって、このような場合は、弾性体に吹き付ける空気の圧力及び容量を大きくする必要がある。すなわち、弾性体50に吹き付ける空気の圧力及び容量は、測定対象の弾性率、大きさあるいは測定環境等を考慮して適切な値が選ばれる。   The pressure and capacity of the air sprayed on the elastic body 50 are important. For example, when the pressure and capacity of air are small and the deformation amount of the elastic body surface is small as shown in FIG. 6A, it is difficult to measure the deformation state of the elastic body surface. Therefore, in such a case, it is necessary to increase the pressure and capacity of the air blown to the elastic body. That is, an appropriate value is selected for the pressure and capacity of the air blown to the elastic body 50 in consideration of the elastic modulus, size, measurement environment, etc. of the measurement object.

しかしながら、測定環境上所定の圧力及び容量以下にしなければならない場合は、ノズル11の外径を小さくし、また、変形感知センサ15の取り付け間隔や変形感知センサ15自体の大きさを小さくしなければならない。一方、吹き付けられる空気による弾性体の変形が非常に大きい場合は、図6(b)に示すように、複数の変形感知センサ15をノズル11の中心を通る直線上に配設することにより、測定作業を効率よくすることができる。なお、変形感知センサ15の取り付け間隔は、変形感知センサ15が受光する光が干渉しない程度以上にする必要がある。   However, when it is necessary to make the pressure and capacity below a predetermined level in the measurement environment, the outer diameter of the nozzle 11 must be reduced, and the mounting interval of the deformation detection sensor 15 and the size of the deformation detection sensor 15 itself must be reduced. Don't be. On the other hand, when the deformation of the elastic body due to the blown air is very large, measurement is performed by arranging a plurality of deformation detection sensors 15 on a straight line passing through the center of the nozzle 11 as shown in FIG. Work can be done efficiently. It should be noted that the mounting interval of the deformation detection sensor 15 needs to be more than the extent that the light received by the deformation detection sensor 15 does not interfere.

また、本非接触型変形状態検出装置において、データ処理装置45は、変形感知センサ15からの信号を受けこれを処理するものであればよく、例えば電圧記録計やコンピュータを使用することができる。この場合、弾性体50の変形状態を観察しながら、例えば手術や診断箇所を観察しながら手術や診断をすることができるように、弾性体50の変形状態を視認することができるモニタを設けるのがよい。なお、データ処理装置45は、開閉弁36を制御する機能を持たせることができる。   Further, in the non-contact type deformation state detection device, the data processing device 45 only needs to receive and process a signal from the deformation detection sensor 15, and for example, a voltage recorder or a computer can be used. In this case, a monitor capable of visually checking the deformation state of the elastic body 50 is provided so that the operation and diagnosis can be performed while observing the deformation state of the elastic body 50, for example, while observing the operation and the diagnosis location. Is good. The data processing device 45 can have a function of controlling the on-off valve 36.

図1に示す非接触型変形状態検出装置を用いて、図7(a)に示すような弾性体50の中に硬い部分53がある場合に、空気を吹き付けたときの弾性体50の表面の変化状態を測定する試験をした。変形感知センサ15は図3及び図4の特性を有する光ファイバセンサを用いた。変形感知センサ15はノズル11の外周に2つ対向するように15A、15Bを配設した。弾性体50はゴム硬度3以下のシリコンゴムを用いた。硬い部分53は、ゴム硬度99.5、上面の面積が5×5mmの直方体状の天然ゴムを用いた。硬い部分53の上面は、弾性体50の表面から5mm下にあるように配設されている。弾性体50の表面にはノズル11から空気圧0.15MPaの加圧空気を印加した。変形感知センサ15は、その先端が弾性体50の上面から5mm上にあるように配設し、弾性体50を移動させて変形感知センサ15を走査し、弾性体50の表面の変形状態を測定した。   Using the non-contact deformation state detection device shown in FIG. 1, when there is a hard portion 53 in the elastic body 50 as shown in FIG. 7 (a), the surface of the elastic body 50 when air is blown is used. A test was conducted to measure the change state. The deformation sensor 15 is an optical fiber sensor having the characteristics shown in FIGS. The deformation detection sensor 15 is provided with 15A and 15B so as to face the outer periphery of the nozzle 11. As the elastic body 50, silicon rubber having a rubber hardness of 3 or less was used. For the hard portion 53, a rectangular natural rubber having a rubber hardness of 99.5 and an upper surface area of 5 × 5 mm was used. The upper surface of the hard portion 53 is disposed so as to be 5 mm below the surface of the elastic body 50. Pressurized air with an air pressure of 0.15 MPa was applied from the nozzle 11 to the surface of the elastic body 50. The deformation detection sensor 15 is arranged so that its tip is 5 mm above the upper surface of the elastic body 50, and the deformation detection sensor 15 is scanned by moving the elastic body 50 to measure the deformation state of the surface of the elastic body 50. did.

試験結果を図7(b)に示す。図7(b)は、横軸に測定開始からの時間、縦軸に変形感知センサ15A、15Bの出力を変形感知センサ15A、15Bの先端から弾性体表面までの距離に換算した値を示す。実線は変形感知センサ15Aの結果を示し、破線は変形感知センサ15Bの結果を示す。図7(b)によると、柔らかい弾性体50と硬い部分53の境界部のように硬さが変化する部分が(図7(b)の丸印部分)が強調されて表示されていることが分かる。   The test results are shown in FIG. In FIG. 7B, the horizontal axis indicates the time from the start of measurement, and the vertical axis indicates the value obtained by converting the outputs of the deformation detection sensors 15A and 15B into the distance from the tips of the deformation detection sensors 15A and 15B to the elastic body surface. A solid line indicates the result of the deformation detection sensor 15A, and a broken line indicates the result of the deformation detection sensor 15B. According to FIG.7 (b), the part where hardness changes like the boundary part of the soft elastic body 50 and the hard part 53 (circled part of FIG.7 (b)) is highlighted and displayed. I understand.

本試験に用いた変形感知センサ15は外径が1.5mm、ノズル11の外径は8mmで、変形感知センサ15とノズル11が構成する外接円の半径は11mmであった。したがって、本非接触型変形状態検出装置は、例えば胸部に外径15mm程度の穴を数箇所開け、そこから手術具やカメラを入れながら行われる胸腔鏡手術に好適に使用することができる。   The deformation detection sensor 15 used in this test had an outer diameter of 1.5 mm, the outer diameter of the nozzle 11 was 8 mm, and the radius of the circumscribed circle formed by the deformation detection sensor 15 and the nozzle 11 was 11 mm. Therefore, this non-contact type deformed state detection device can be suitably used for thoracoscopic surgery, for example, in which several holes having an outer diameter of about 15 mm are formed in the chest and a surgical tool or camera is inserted from there.

本発明に係る非接触型変形状態検出装置の説明図である。It is explanatory drawing of the non-contact-type deformation state detection apparatus which concerns on this invention. 図1のノズル及び変形感知センサ先端部分の拡大図である。It is an enlarged view of the nozzle of FIG. 1, and a deformation | transformation detection sensor front-end | tip part. 変形感知センサの被測定物間距離と出力電圧の関係を示すグラフである。It is a graph which shows the relationship between the distance between to-be-measured objects of a deformation | transformation detection sensor, and output voltage. 変形感知センサの被測定物表面の傾斜角と出力電圧の関係を示すグラフである。It is a graph which shows the relationship between the inclination angle of the to-be-measured object surface of a deformation | transformation detection sensor, and output voltage. 本発明に係る非接触型変形状態検出装置により弾性体表面の変形状態を測定する場合の測定原理を示す説明図である。It is explanatory drawing which shows the measurement principle in the case of measuring the deformation | transformation state of the elastic body surface with the non-contact-type deformation state detection apparatus which concerns on this invention. 種々の測定環境下における測定方法の説明図である。It is explanatory drawing of the measuring method in various measurement environments. 図1に示す装置により弾性体表面の変形状態を測定する測定試験の説明図である。It is explanatory drawing of the measurement test which measures the deformation | transformation state of the elastic body surface with the apparatus shown in FIG.

符号の説明Explanation of symbols

11 ノズル
12 配管
15 変形感知センサ
35 加圧源
36 開閉弁
45 データ処理装置
46 モニタ
48 スイッチ
50 弾性体
53 硬い部分
54 柔らかい部分
11 nozzles
12 Piping
15 Deformation sensor
35 Pressure source
36 On-off valve
45 Data processing equipment
46 Monitor
48 switch
50 Elastic body
53 Hard part
54 Soft parts

Claims (5)

ノズルを通して空気が吹き付けられた弾性体表面の変形状態を検知する変形感知センサと、開閉弁を介して前記ノズルに加圧空気を供給する空圧源と、前記変形感知センサからの信号を受けこれを処理するデータ処理装置と、からなる非接触型変形状態検出装置であって、
前記変形感知センサは、その先端から被測定部までの距離と被測定部における表面の傾斜角度に依存する出力特性を有するとともに、両者の出力曲線の勾配が同じ符号を有するものである非接触型変形状態検出装置。
A deformation detection sensor that detects a deformation state of the surface of the elastic body blown with air through the nozzle, an air pressure source that supplies pressurized air to the nozzle via an on-off valve, and a signal from the deformation detection sensor. A non-contact type deformation state detection device comprising: a data processing device for processing
The deformation detection sensor has an output characteristic that depends on a distance from a tip thereof to a part to be measured and an inclination angle of a surface of the part to be measured, and a gradient of both output curves has the same sign. Deformation state detection device.
変形感知センサは、ノズルの周囲に二以上配設されていることを特徴とする請求項1に記載の非接触型変形状態検出装置。   The non-contact type deformation state detection device according to claim 1, wherein two or more deformation detection sensors are arranged around the nozzle. 変形感知センサは光ファイバセンサからなることを特徴とする請求項1又は2に記載の非接触型変形状態検出装置。   The non-contact type deformation state detection device according to claim 1, wherein the deformation detection sensor is an optical fiber sensor. データ処理装置は、開閉弁を制御する機能をあわせもつものであることを特徴とする請求項1〜3のいずれかに記載の非接触型変形状態検出装置。   4. The non-contact type deformation state detecting device according to claim 1, wherein the data processing device also has a function of controlling the on-off valve. データ処理装置からの信号を受けて、空気が吹き付けられた弾性体表面の変形状態を視覚化するモニタが設けられていることを特徴とする請求項1〜4のいずれかに記載の非接触型変形状態検出装置。   The non-contact type according to any one of claims 1 to 4, further comprising a monitor for receiving a signal from the data processing device and visualizing a deformation state of the surface of the elastic body blown with air. Deformation state detection device.
JP2005254176A 2005-09-01 2005-09-01 Non-contact type deformation state detection device Active JP4882062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254176A JP4882062B2 (en) 2005-09-01 2005-09-01 Non-contact type deformation state detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254176A JP4882062B2 (en) 2005-09-01 2005-09-01 Non-contact type deformation state detection device

Publications (2)

Publication Number Publication Date
JP2007064896A true JP2007064896A (en) 2007-03-15
JP4882062B2 JP4882062B2 (en) 2012-02-22

Family

ID=37927244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254176A Active JP4882062B2 (en) 2005-09-01 2005-09-01 Non-contact type deformation state detection device

Country Status (1)

Country Link
JP (1) JP4882062B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596469A (en) * 2014-11-10 2015-05-06 沈阳黎明航空发动机(集团)有限责任公司 Device and method for measuring axial symmetry vector spraying pipe deflection angle
JP2020064027A (en) * 2018-10-19 2020-04-23 株式会社パルメソ Particle projection device with wear mark measurement function

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666952A (en) * 1992-08-19 1994-03-11 Giken Torafuitsuku Kk Equipment for detecting moving person
JP2000014637A (en) * 1998-07-03 2000-01-18 Asahi Optical Co Ltd Air feeder for endoscope
JP2003294598A (en) * 2002-04-03 2003-10-15 Shiseido Co Ltd Method and system for measuring resilient characteristic
JP2004108794A (en) * 2002-09-13 2004-04-08 Kao Corp Method for evaluating surface characteristic against stress
JP2005091265A (en) * 2003-09-19 2005-04-07 Makoto Kaneko Method and apparatus for measuring distribution of surface hardness
JP2005164427A (en) * 2003-12-03 2005-06-23 Univ Nihon Method and apparatus for measuring softness

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0666952A (en) * 1992-08-19 1994-03-11 Giken Torafuitsuku Kk Equipment for detecting moving person
JP2000014637A (en) * 1998-07-03 2000-01-18 Asahi Optical Co Ltd Air feeder for endoscope
JP2003294598A (en) * 2002-04-03 2003-10-15 Shiseido Co Ltd Method and system for measuring resilient characteristic
JP2004108794A (en) * 2002-09-13 2004-04-08 Kao Corp Method for evaluating surface characteristic against stress
JP2005091265A (en) * 2003-09-19 2005-04-07 Makoto Kaneko Method and apparatus for measuring distribution of surface hardness
JP2005164427A (en) * 2003-12-03 2005-06-23 Univ Nihon Method and apparatus for measuring softness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104596469A (en) * 2014-11-10 2015-05-06 沈阳黎明航空发动机(集团)有限责任公司 Device and method for measuring axial symmetry vector spraying pipe deflection angle
JP2020064027A (en) * 2018-10-19 2020-04-23 株式会社パルメソ Particle projection device with wear mark measurement function

Also Published As

Publication number Publication date
JP4882062B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
CN105559886B (en) The monitoring system into behavior of automatic monitoring sleeve needle
ES2253776T3 (en) METHOD OF THE SITUATION OF A SEPARATION IN A DEFORMABLE STRUCTURE (PNEUMATIC).
JP4229791B2 (en) Endoscope device
CN111093914B (en) Friction-based tactile sensor for measuring clamping safety
US7882723B2 (en) Abnormality detecting method for form measuring mechanism and form measuring mechanism
RU2012121174A (en) INTERVENTIONAL INSTRUMENTS WITH OPTICAL SENSING SUPPORT FOR QUICK DISTRIBUTED MEASUREMENTS OF BIOSPHYSICAL PARAMETERS
CN106996739B (en) Optical measurement probe calibration
WO2001071035A3 (en) Method and apparatus for automatic pin detection in microarray spotting instruments
KR20180038454A (en) An image recording apparatus, a balloon for operation with an image recording apparatus, a method for operating an image recording apparatus, and a control program for an image recording apparatus
JP4882062B2 (en) Non-contact type deformation state detection device
US20210138660A1 (en) Cleaning system and method for cleaning work area of machine tool
WO2010107895A2 (en) Spray angle measurement apparatus and method
US6962070B1 (en) Apparatus and method for measuring characteristics of fluid spray patterns
KR20020090897A (en) Work center position determining method and apparatus
CA2296484A1 (en) Method and apparatus for surface profiling of materials and calibration of ablation lasers
US20040009453A1 (en) Tooth mobility measuring apparatus
US11219367B2 (en) Positioning system for ophthalmic instrument
JP2014145776A (en) Parallelism measurement device
JP6778087B2 (en) Hole wall shape measuring device
JP2015080600A (en) Ultrasonic probe and ultrasonic image device
JP3390970B2 (en) Hole shape measuring method and device
JP5167529B2 (en) Foreign object detection device
KR20180093160A (en) A hydraulic breaker, scratch monitoring system and scratch monitoring method
JP5140826B2 (en) Elastic body wavefront observation apparatus and method
JP2003294598A (en) Method and system for measuring resilient characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150