JP2007064265A - Constant velocity universal joint and its inner member - Google Patents

Constant velocity universal joint and its inner member Download PDF

Info

Publication number
JP2007064265A
JP2007064265A JP2005248209A JP2005248209A JP2007064265A JP 2007064265 A JP2007064265 A JP 2007064265A JP 2005248209 A JP2005248209 A JP 2005248209A JP 2005248209 A JP2005248209 A JP 2005248209A JP 2007064265 A JP2007064265 A JP 2007064265A
Authority
JP
Japan
Prior art keywords
spline
diameter surface
hardened layer
constant velocity
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005248209A
Other languages
Japanese (ja)
Inventor
Kisao Yamazaki
起佐雄 山崎
Masazumi Kobayashi
正純 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2005248209A priority Critical patent/JP2007064265A/en
Publication of JP2007064265A publication Critical patent/JP2007064265A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To secure strength of an outer diameter surface of an inner ring and track grooves and secure strength of a spline and accuracy of fitting at the same time by forming an optimum thermal treatment hardened layer with the outer diameter surface of the inner ring, the track grooves and the spline. <P>SOLUTION: In the inner ring 6 mounted in the constant velocity universal joint for transmitting torque while allowing angular displacement between the inner ring 6 and an outer ring, the plurality of track grooves 5 are formed at equal intervals along an axial direction in an outer diameter surface 4 and the spline 23 for shaft fitting is formed in an inner diameter surface of a shaft hole 22, thermal treatment hardened layers 21, 28 by induction hardening are formed at the outer diameter surface 4, the track grooves 5 and the spline 23 and the hardened layer 21 of the outer diameter surface 4 and the track grooves 5 is deeper than the hardened layer 28 of the spline 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、自動車や各種産業機械の動力伝達系において使用され、例えば4WD車やFR車などで使用されるドライブシャフトやプロペラシャフトに組み込まれる固定型あるいは摺動型の等速自在継手及びその等速自在継手の一部を構成する内方部材に関する。   The present invention is used in power transmission systems of automobiles and various industrial machines. For example, a fixed or sliding type constant velocity universal joint incorporated in a drive shaft or a propeller shaft used in a 4WD vehicle, an FR vehicle, or the like, and the like. The present invention relates to an inner member that constitutes a part of a quick universal joint.

例えば、自動車のドライブシャフト等の連結用継手として使用されている固定型等速自在継手(ツェパー型等速自在継手:BJ)は、球面状の内径面に曲線状のトラック溝を軸方向に形成した外方部材としての外輪と、球面状の外径面に曲線状のトラック溝を軸方向に形成した内方部材としての内輪と、外輪のトラック溝とこれに対応する内輪のトラック溝とが協働して形成されるボールトラックに配された複数のトルク伝達用ボールと、それらのボールを保持するポケットを備えたケージとで構成される。複数のボールは、ケージに形成されたポケットに収容されて円周方向等間隔に配置されている。   For example, fixed type constant velocity universal joints (Zeper type constant velocity universal joints: BJ) used as coupling joints for automobile drive shafts, etc., have curved track grooves in the axial direction on the spherical inner surface. An outer ring as an outer member, an inner ring as an inner member in which a curved track groove is formed in the axial direction on a spherical outer diameter surface, a track groove of the outer ring and a corresponding track groove of the inner ring. A plurality of torque transmitting balls arranged on a ball track formed in cooperation with each other and a cage having pockets for holding those balls. The plurality of balls are accommodated in pockets formed in the cage and arranged at equal intervals in the circumferential direction.

この等速自在継手をドライブシャフトに使用する場合、外輪の一端から軸方向に一体的に延びる軸部(従動軸)を車輪軸受装置に連結すると共に、内輪の軸孔にスプライン嵌合されたシャフト(駆動軸)を摺動型等速自在継手に連結するようにしている。この外輪の軸部と内輪側のシャフトの二軸間で外輪と内輪とが角度変位すると、ケージのポケットに収容されたボールは常にどの作動角においても、その作動角の二等分面内に維持され、継手の等速性が確保される。ここで、作動角とは、外輪の軸部と内輪のシャフトとがなす角度を意味する。   When this constant velocity universal joint is used for a drive shaft, a shaft portion (driven shaft) that extends integrally from one end of the outer ring in the axial direction is connected to the wheel bearing device, and the shaft is spline-fitted into the shaft hole of the inner ring. The (drive shaft) is connected to the sliding type constant velocity universal joint. When the outer ring and the inner ring are angularly displaced between the outer ring shaft and the inner ring side shaft, the ball accommodated in the cage pocket is always within the bisector of the operating angle at any operating angle. This maintains the constant velocity of the joint. Here, the operating angle means an angle formed by the shaft portion of the outer ring and the shaft of the inner ring.

等速自在継手の内輪については、熱処理を施すことにより、製品寿命を向上させ、ひいては等速自在継手の製品寿命を向上させるようにしている(例えば、特許文献1参照)。この内輪の熱処理は、一般的に浸炭焼入れで行われれている。
特開2000−227123号公報
The inner ring of the constant velocity universal joint is subjected to heat treatment to improve the product life, and consequently the product life of the constant velocity universal joint (see, for example, Patent Document 1). The heat treatment of the inner ring is generally performed by carburizing and quenching.
JP 2000-227123 A

ところで、前述した等速自在継手における内輪は、通常、焼入れ硬化能を有する鋼材にて形成されており、図6および図7に示すようにケージの内径面と接触する外径面104と、ボールが転動するために高面圧に晒されるトラック溝105と、シャフトが嵌合するスプライン123とに、浸炭焼入れによる硬化層121,128が形成されている。   By the way, the inner ring in the constant velocity universal joint described above is normally formed of a steel material having quench hardening ability, and as shown in FIGS. 6 and 7, an outer diameter surface 104 that comes into contact with the inner diameter surface of the cage, and a ball Hardened layers 121 and 128 are formed by carburizing and quenching in the track groove 105 exposed to a high surface pressure for rolling and the spline 123 into which the shaft is fitted.

なお、図6は図7のF−F線に沿う断面図であり、図7は図6のE−E線に沿う断面図である。同図においては、断面を表すハッチングを省略し、硬化層121,128を形成部位をハッチングで表している。   6 is a cross-sectional view taken along line FF in FIG. 7, and FIG. 7 is a cross-sectional view taken along line EE in FIG. In the figure, the hatching representing the cross section is omitted, and the portions where the hardened layers 121 and 128 are formed are represented by hatching.

この内輪106では、ボールが転動するために高面圧に晒されるトラック溝105には深い熱処理硬化層を形成する必要があるのに対して、シャフトが嵌合するスプライン123には、熱処理変形の観点から浅い熱処理硬化層を形成することが望ましい。   In this inner ring 106, it is necessary to form a deep heat treatment hardened layer in the track groove 105 exposed to a high surface pressure because the ball rolls, whereas in the spline 123 to which the shaft is fitted, the heat treatment deformation From the viewpoint of the above, it is desirable to form a shallow heat-treated cured layer.

つまり、内輪106の軸孔122にシャフトを挿入することにより、内輪106のスプライン123とシャフトの外径面に形成されたスプラインを噛み合わせることで内輪106とシャフトをトルク伝達可能なように連結固定するが、この内輪106のスプライン123に深い硬化層が形成されていると、その熱処理変形によってスプライン嵌合の精度を確保することが困難となる。一方、内輪106のスプライン123に硬化層が全く形成されていないと、内輪106の強度が低いものになってしまう。従って、耐磨耗性の点で内輪106の強度を確保しつつ、スプライン嵌合の精度を確保するため、内輪106のスプライン123には、浅い熱処理硬化層を形成する必要がある。   That is, by inserting the shaft into the shaft hole 122 of the inner ring 106, the spline 123 of the inner ring 106 and the spline formed on the outer diameter surface of the shaft are engaged, and the inner ring 106 and the shaft are connected and fixed so that torque can be transmitted. However, if a deep hardened layer is formed on the spline 123 of the inner ring 106, it becomes difficult to ensure the accuracy of spline fitting due to the heat treatment deformation. On the other hand, if no hardened layer is formed on the spline 123 of the inner ring 106, the strength of the inner ring 106 will be low. Therefore, in order to ensure the accuracy of the spline fitting while ensuring the strength of the inner ring 106 in terms of wear resistance, it is necessary to form a shallow heat treatment hardened layer on the spline 123 of the inner ring 106.

しかしながら、従来の内輪106における熱処理硬化層121,128は、浸炭焼入れにより、外径面104、トラック溝105およびスプライン123を同時に形成されていることから、それら外径面104、トラック溝105およびスプライン123の一部にのみ、深い熱処理硬化層を形成することは困難である。一方、外径面104およびトラック溝105に深い熱処理硬化層を形成すると共に、スプライン123に深い熱処理硬化層が形成されないようにするため、内輪106のスプライン123に蓋をしてから浸炭焼入れを行う例(防炭処理)もあるが、生産性が低下する原因となる。このように、浸炭焼入れによる熱処理では、硬化層の深さを内輪106の外径面104、トラック溝105およびスプライン123で必要に応じて制御することが困難であった。   However, since the heat-treated hardened layers 121 and 128 in the conventional inner ring 106 are formed by carburizing and quenching simultaneously with the outer diameter surface 104, the track groove 105, and the spline 123, the outer diameter surface 104, the track groove 105, and the spline. It is difficult to form a deep heat treatment hardened layer only on a part of 123. On the other hand, a deep heat treatment hardened layer is formed on the outer diameter surface 104 and the track groove 105, and in order to prevent a deep heat treatment hardened layer from being formed on the spline 123, carburizing and quenching is performed after the spline 123 of the inner ring 106 is covered. There is an example (coalproofing treatment), but it causes a decrease in productivity. As described above, in the heat treatment by carburizing and quenching, it is difficult to control the depth of the hardened layer as required by the outer diameter surface 104, the track groove 105, and the spline 123 of the inner ring 106.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、内方部材の外径面、トラック溝およびスプラインで最適な熱処理硬化層を形成し、内方部材の強度を確保すると共にスプラインの精度も同時に確保することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to form an optimal heat treatment hardened layer on the outer diameter surface, track grooves and splines of the inner member, Is to ensure the strength of the spline and the accuracy of the spline at the same time.

前述の目的を達成するための技術的手段として、本発明は、外方部材との間で角度変位を許容しながらトルクを伝達する等速自在継手に装備され、外径面に複数のトラック溝が円周方向等間隔に軸方向に沿って形成され、かつ、軸孔の内径面にシャフト嵌合用のスプラインが形成された内方部材であって、前記外径面、トラック溝およびスプラインに高周波焼入れによる熱処理硬化層を形成し、かつ、外径面およびトラック溝の硬化層の深さをスプラインの硬化層よりも大きくしたことを特徴とする。   As a technical means for achieving the above-mentioned object, the present invention is equipped with a constant velocity universal joint that transmits torque while allowing angular displacement with an outer member, and has a plurality of track grooves on the outer diameter surface. Is an inner member formed along the axial direction at equal intervals in the circumferential direction and having a shaft fitting spline formed on the inner diameter surface of the shaft hole, and a high frequency on the outer diameter surface, the track groove and the spline. A heat treatment hardened layer is formed by quenching, and the depth of the hardened layer of the outer diameter surface and the track groove is made larger than that of the spline hardened layer.

ここで、スプラインの硬化層は、軸孔の円周方向に沿って不連続に形成したり、あるいは全周に亘って形成したりすることが可能である。また、前述の構成からなる内方部材に、外方部材と、その外方部材と内方部材の間に介在してトルクを伝達するトルク伝達部材とを付加すれば、等速自在継手を構成することが可能となる。   Here, the hardened layer of the spline can be formed discontinuously along the circumferential direction of the shaft hole, or can be formed over the entire circumference. Further, a constant velocity universal joint can be configured by adding an outer member and a torque transmission member that transmits torque by being interposed between the outer member and the inner member to the inner member having the above-described configuration. It becomes possible to do.

本発明では、外径面、トラック溝およびスプラインに高周波焼入れによる熱処理硬化層を形成する。このように高周波焼入れを適用することで、外径面、トラック溝およびスプラインの熱処理硬化層の深さを自由に設定することができる。従って、外径面およびトラック溝の硬化層の深さをスプラインの硬化層よりも大きくしたことにより、ボールが転動するために高面圧に晒されるトラック溝やケージの内径面に摺接する外径面に深い熱処理硬化層を形成すると共に、強度およびスプライン嵌合の精度を確保するのに必要な最低限の浅い熱処理硬化層をスプラインに形成することが可能となる。   In the present invention, a heat-treated hardened layer is formed on the outer diameter surface, the track groove and the spline by induction hardening. By applying induction hardening in this way, the depth of the heat-treated hardened layer of the outer diameter surface, the track groove, and the spline can be freely set. Therefore, the depth of the hardened layer of the outer diameter surface and the track groove is made larger than that of the hardened layer of the spline, so that the outer surface is in sliding contact with the track groove or the inner diameter surface of the cage exposed to high surface pressure because the ball rolls. It is possible to form a deep heat-treated hardened layer on the radial surface, and to form a minimum shallow heat-treated hardened layer necessary for ensuring the strength and spline fitting accuracy on the spline.

本発明によれば、外径面、トラック溝およびスプラインに高周波焼入れによる熱処理硬化層を形成し、かつ、外径面およびトラック溝の硬化層の深さをスプラインの硬化層よりも大きくしたことにより、ボールが転動するために高面圧に晒されるトラック溝やケージの内径面に摺接する外径面に深い熱処理硬化層を形成すると共に、シャフトが嵌合されるスプラインに浅い熱処理硬化層を形成することが可能となる。これにより、トラック溝および外径面の強度を確保すると同時に、スプラインの強度および嵌合精度を確保することができ、製品寿命を向上させることができると共に製品の信頼性も大幅に向上させることができる。   According to the present invention, the heat-cured hardened layer is formed by induction hardening on the outer diameter surface, the track groove and the spline, and the depth of the hardened layer of the outer diameter surface and the track groove is made larger than the hardened layer of the spline. A deep heat treatment hardened layer is formed on the outer surface of the track groove that is exposed to high surface pressure due to rolling of the balls and the inner surface of the cage, and a shallow heat treatment hardened layer is formed on the spline to which the shaft is fitted. It becomes possible to form. As a result, the strength of the track groove and the outer diameter surface can be secured, and at the same time, the strength of the spline and the fitting accuracy can be secured, so that the product life can be improved and the reliability of the product can be greatly improved. it can.

本発明の実施形態を以下に詳述する。なお、以下の実施形態は、8個ボールの固定型(ツェパー型)等速自在継手(BJ)に適用した場合を例示するが、他の等速自在継手、例えば、固定型(アンダーカットフリー型)等速自在継手(UJ)、摺動型(クロスグルーブ型)等速自在継手(LJ)や摺動型(ダブルオフセット型)等速自在継手(DOJ)、摺動型(トリポード型)等速自在継手(TJ)も適用可能である。また、6個ボールの固定型等速自在継手にも適用可能である。   Embodiments of the present invention are described in detail below. In addition, although the following embodiment illustrates the case where it applies to the fixed type (Zepper type) constant velocity universal joint (BJ) of 8 balls, other constant velocity universal joints, for example, a fixed type (undercut free type) ) Constant velocity universal joint (UJ), sliding type (cross groove type) constant velocity universal joint (LJ), sliding type (double offset type) constant velocity universal joint (DOJ), sliding type (tripod type) constant velocity A universal joint (TJ) is also applicable. It is also applicable to a fixed type constant velocity universal joint with six balls.

図4および図5に示す実施形態の等速自在継手は、球面状の内径面1に曲線状のトラック溝2を軸方向に形成した外方部材としての外輪3と、球面状の外径面4に曲線状のトラック溝5を軸方向に形成した内方部材としての内輪6と、外輪3のトラック溝2とこれに対応する内輪6のトラック溝5とが協働して形成されるボールトラックに配された8個のトルク伝達用ボール7と、それらのボール7を保持するポケット8を備えたケージ9とで構成される。8個のボール7は、ケージ9に形成されたポケット8に一個ずつ収容されて円周方向等間隔に配置されている。   The constant velocity universal joint of the embodiment shown in FIGS. 4 and 5 includes an outer ring 3 as an outer member in which a curved track groove 2 is formed in the axial direction on a spherical inner surface 1 and a spherical outer surface. 4 is a ball formed by cooperation of an inner ring 6 as an inner member in which a curved track groove 5 is formed in the axial direction in FIG. 4, a track groove 2 of the outer ring 3 and a track groove 5 of the inner ring 6 corresponding thereto. It is composed of eight torque transmitting balls 7 arranged on the track and a cage 9 having pockets 8 for holding these balls 7. Eight balls 7 are accommodated one by one in pockets 8 formed in the cage 9 and arranged at equal intervals in the circumferential direction.

外輪3のトラック溝2の曲率中心Oと内輪6のトラック溝5の曲率中心Oとは、ボール7の中心を含む継手中心面Oに対して軸方向に等距離だけ反対側にオフセットされ、そのため、ボールトラックは開口側が広く、奥側に向かって漸次縮小した楔形状になっている。また、外輪3の内径面1および内輪6の外径面4の球面中心はいずれも継手中心面Oと一致する。 The center of curvature O 2 of the track grooves 5 of the center of curvature O 1 and the inner ring 6 of the track grooves 2 of the outer ring 3, it is offset by the opposite side an equal distance axially with respect to the joint center plane O including the center of the ball 7 For this reason, the ball track has a wedge shape that is wide on the opening side and is gradually reduced toward the back side. The spherical centers of the inner diameter surface 1 of the outer ring 3 and the outer diameter surface 4 of the inner ring 6 both coincide with the joint center plane O.

前述の構成からなる等速自在継手を自動車のドライブシャフトに使用する場合、前述の外輪3のマウス部10の底部から一体的に延びる軸部11(従動軸)を車輪軸受装置(図示せず)に連結すると共に、内輪6の軸孔22にスプライン嵌合されたシャフト12(駆動軸)を摺動型等速自在継手(図示せず)を連結する。   When the constant velocity universal joint having the above-described configuration is used for a drive shaft of an automobile, the shaft portion 11 (driven shaft) extending integrally from the bottom portion of the mouse portion 10 of the outer ring 3 is a wheel bearing device (not shown). The shaft 12 (drive shaft) that is spline-fitted into the shaft hole 22 of the inner ring 6 is connected to a sliding type constant velocity universal joint (not shown).

この等速自在継手では、外輪3の軸部11と内輪側のシャフト12の二軸間で作動角度変位を許容しながらトルク伝達が可能な構造となっている。つまり、外輪3と内輪6とが角度θだけ角度変位すると、ケージ9に案内されたボール7は常にどの作動角θにおいても、その作動角θの二等分面(θ/2)内に維持され、継手の等速性が確保される。   This constant velocity universal joint has a structure capable of transmitting torque while allowing operating angular displacement between the two shafts of the shaft portion 11 of the outer ring 3 and the shaft 12 on the inner ring side. That is, when the outer ring 3 and the inner ring 6 are angularly displaced by the angle θ, the ball 7 guided to the cage 9 is always maintained within the bisector (θ / 2) of the operating angle θ at any operating angle θ. Thus, the constant velocity of the joint is ensured.

前述した内輪6において、その外径面4はケージ9の内径面13と摺接するために耐磨耗性を必要とし、また、トラック溝5はボール7が転動するために高面圧に晒されることから耐磨耗性の点で強度を必要とする。さらに、軸孔22の内径面のスプライン23はシャフト12の外径面のスプライン24が嵌合するために強度および嵌合精度を必要とする。   In the inner ring 6 described above, the outer diameter surface 4 of the inner ring 6 requires wear resistance in order to come into sliding contact with the inner diameter surface 13 of the cage 9, and the track groove 5 is exposed to a high surface pressure because the ball 7 rolls. Therefore, strength is required in terms of wear resistance. Further, the spline 23 on the inner diameter surface of the shaft hole 22 requires strength and fitting accuracy in order to fit the spline 24 on the outer diameter surface of the shaft 12.

この等速自在継手の内輪6は、高周波焼入れによる硬化処理が可能な鋼材、例えば機械構造用炭素鋼で製作されている。内輪6は、図1および図2に示すようにケージ9の内径面13と摺接する外径面4と、ボール7が転動するために高面圧に晒されるトラック溝5と、軸孔22の内径面のスプライン23とに、高周波焼入れによる熱処理硬化層21,28が形成されている。なお、スプライン23の焼入れ範囲は、スプライン23の有効嵌合長の部分だけでよい。   The inner ring 6 of the constant velocity universal joint is made of a steel material that can be hardened by induction hardening, for example, carbon steel for machine structure. As shown in FIGS. 1 and 2, the inner ring 6 includes an outer diameter surface 4 that is in sliding contact with the inner diameter surface 13 of the cage 9, a track groove 5 that is exposed to high surface pressure because the ball 7 rolls, and a shaft hole 22. The heat treatment hardened layers 21 and 28 by induction hardening are formed on the spline 23 on the inner diameter surface. The quenching range of the spline 23 may be only the portion of the effective fitting length of the spline 23.

ここで、図1は図2のB−B線に沿う断面図であり、図2は図1のA−A線に沿う断面図であるが、同図においては、断面を表すハッチングを省略し、硬化層21,28を形成部位をハッチングで表している。   Here, FIG. 1 is a cross-sectional view taken along the line BB in FIG. 2, and FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1, but in FIG. The formation portions of the hardened layers 21 and 28 are indicated by hatching.

前述したように硬化層21,28の形成に高周波焼入れを適用したことにより、内輪6の外径面4、トラック溝5および軸孔22のスプライン23に形成された硬化層21,28の深さを自由に設定することができる。この硬化層21,28の深さを自由に設定する手段としては、例えば高周波焼入れ用の加熱コイルの出力を変更すること等により可能である。   As described above, by applying induction hardening to the formation of the hardened layers 21 and 28, the depth of the hardened layers 21 and 28 formed on the outer diameter surface 4 of the inner ring 6, the track groove 5 and the spline 23 of the shaft hole 22. Can be set freely. As means for freely setting the depth of the hardened layers 21 and 28, for example, it is possible to change the output of a heating coil for induction hardening.

そこで、内輪6の外径面4およびトラック溝5の硬化層21の深さをスプライン23の硬化層28よりも大きくする。つまり、ボール7が転動するために高面圧に晒されるトラック溝5やケージ9の内径面13に摺接する外径面4に深い熱処理硬化層21を形成すると共に、シャフト12が嵌合されるスプライン23に強度およびスプライン嵌合の精度を確保するのに必要な最低限の浅い熱処理硬化層28を形成する。これにより、トラック溝5および外径面4の強度を確保すると同時に、スプライン23の強度および嵌合精度を確保することができる。   Therefore, the outer diameter surface 4 of the inner ring 6 and the depth of the hardened layer 21 of the track groove 5 are made larger than the hardened layer 28 of the spline 23. That is, a deep heat treatment hardened layer 21 is formed on the outer diameter surface 4 slidably in contact with the inner surface 13 of the track groove 5 and the cage 9 exposed to a high surface pressure because the ball 7 rolls, and the shaft 12 is fitted. A minimum shallow heat-cured layer 28 necessary for ensuring strength and spline fitting accuracy is formed on the spline 23. Thereby, the strength of the spline 23 and the fitting accuracy of the track groove 5 and the outer diameter surface 4 can be secured at the same time.

このように、ボール7が転動するために高面圧に晒されるトラック溝5やケージ9の内径面13に摺接する外径面4に深い熱処理硬化層21を形成するには、高周波焼入れ時、高周波加熱用コイルと内輪6の外径面4との距離を近くし、そのコイルの電源周波数を低くすればよい。また、内輪6の軸孔22のスプライン23に強度およびスプライン嵌合の精度を確保するのに必要な最低限の浅い熱処理硬化層28を形成するには、高周波焼入れ時、高周波加熱用コイルと内輪6のスプライン23との距離を遠くし、そのコイルの電源周波数を高くすればよい。   Thus, in order to form the deep heat-treated hardened layer 21 on the outer diameter surface 4 that is in sliding contact with the inner diameter surface 13 of the track groove 5 or the cage 9 exposed to a high surface pressure because the balls 7 roll, The distance between the high-frequency heating coil and the outer diameter surface 4 of the inner ring 6 may be reduced to lower the power frequency of the coil. Further, in order to form the minimum shallow heat treatment hardened layer 28 necessary for ensuring the strength and the accuracy of spline fitting in the spline 23 of the shaft hole 22 of the inner ring 6, a high-frequency heating coil and an inner ring are formed during induction hardening. It is only necessary to increase the power frequency of the coil by increasing the distance from the 6 spline 23.

なお、内輪6の軸孔22のスプライン23に形成された硬化層28については、図2に示すように円周方向に沿って全周に亘って形成したり、あるいは、図3に示すように円周方向に沿って不連続に形成することも可能である。図3に示す硬化層28’は、円周方向に沿って等間隔に複数配列した状態で断続的に形成された場合を例示している。この硬化層28’は、内輪6の肉厚が最も小さい箇所、つまり、トラック溝5と対応する箇所に形成することにより、内輪6の強度を確保するようにしている。   The hardened layer 28 formed on the spline 23 of the shaft hole 22 of the inner ring 6 may be formed over the entire circumference along the circumferential direction as shown in FIG. 2, or as shown in FIG. It is also possible to form it discontinuously along the circumferential direction. 3 illustrates the case where the hardened layer 28 ′ shown in FIG. 3 is formed intermittently in a state where a plurality of hardened layers 28 ′ are arranged at equal intervals along the circumferential direction. The hardened layer 28 ′ is formed at a location where the inner ring 6 has the smallest thickness, that is, a location corresponding to the track groove 5, thereby ensuring the strength of the inner race 6.

本発明の実施形態で、図4の固定型等速自在継手の内輪を示し、図2のB−B線に沿う断面図である。FIG. 5 is a cross-sectional view taken along the line B-B of FIG. 2, showing the inner ring of the fixed type constant velocity universal joint of FIG. 4 in the embodiment of the present invention. 図1のA−A線に沿う断面図である。It is sectional drawing which follows the AA line of FIG. 図2の実施形態の変形例を示す断面図である。It is sectional drawing which shows the modification of embodiment of FIG. 固定型等速自在継手の構造例で、図5のD−D線に沿う断面図である。It is a structural example of a fixed type constant velocity universal joint, and is sectional drawing which follows the DD line | wire of FIG. 図4のC−C線に沿う断面図である。It is sectional drawing which follows the CC line of FIG. 内輪の従来例で、図7のF−F線に沿う断面図である。FIG. 8 is a cross-sectional view taken along line FF in FIG. 7, showing a conventional example of an inner ring. 図6のE−E線に沿う断面図である。It is sectional drawing which follows the EE line | wire of FIG.

符号の説明Explanation of symbols

3 外方部材(外輪)
4 内方部材(内輪)の外径面
5 内方部材(内輪)のトラック溝
6 内方部材(内輪)
7 トルク伝達部材(ボール)
21 硬化層
22 軸孔
23 スプライン
28 硬化層
3 Outer member (outer ring)
4 Outer diameter surface of inner member (inner ring) 5 Track groove of inner member (inner ring) 6 Inner member (inner ring)
7 Torque transmission member (ball)
21 Hardened layer 22 Shaft hole 23 Spline 28 Hardened layer

Claims (4)

外方部材との間で角度変位を許容しながらトルクを伝達する等速自在継手に装備され、外径面に複数のトラック溝が円周方向等間隔に軸方向に沿って形成され、かつ、軸孔の内径面にシャフト嵌合用のスプラインが形成された内方部材であって、前記外径面、トラック溝およびスプラインに高周波焼入れによる熱処理硬化層を形成し、かつ、外径面およびトラック溝の硬化層の深さをスプラインの硬化層よりも大きくしたことを特徴とする等速自在継手の内方部材。   Equipped with a constant velocity universal joint that transmits torque while allowing angular displacement with the outer member, a plurality of track grooves are formed along the axial direction at equal intervals in the circumferential direction on the outer diameter surface, and An inner member having a shaft fitting spline formed on the inner diameter surface of the shaft hole, wherein the outer diameter surface, the track groove and the spline are formed with a heat-treated hardened layer by induction hardening, and the outer diameter surface and the track groove An inner member of a constant velocity universal joint, wherein the depth of the hardened layer is made larger than the hardened layer of the spline. 前記スプラインの硬化層は、軸孔の円周方向に沿って不連続に形成されている請求項1に記載の等速自在継手の内方部材。   The inward member of the constant velocity universal joint according to claim 1, wherein the hardened layer of the spline is formed discontinuously along the circumferential direction of the shaft hole. 前記スプラインの硬化層は、軸孔の円周方向に沿って全周に亘って形成されている請求項1に記載の等速自在継手の内方部材。   The inward member of the constant velocity universal joint according to claim 1, wherein the hardened layer of the spline is formed over the entire circumference along the circumferential direction of the shaft hole. 外方部材と、請求項1〜3のいずれか一項に記載の内方部材と、前記外方部材と内方部材の間に介在してトルクを伝達するトルク伝達部材とを具備した等速自在継手。   The constant velocity provided with the outer member, the inner member as described in any one of Claims 1-3, and the torque transmission member which intervenes between the said outer member and an inner member, and transmits torque. Universal joint.
JP2005248209A 2005-08-29 2005-08-29 Constant velocity universal joint and its inner member Withdrawn JP2007064265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005248209A JP2007064265A (en) 2005-08-29 2005-08-29 Constant velocity universal joint and its inner member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005248209A JP2007064265A (en) 2005-08-29 2005-08-29 Constant velocity universal joint and its inner member

Publications (1)

Publication Number Publication Date
JP2007064265A true JP2007064265A (en) 2007-03-15

Family

ID=37926698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005248209A Withdrawn JP2007064265A (en) 2005-08-29 2005-08-29 Constant velocity universal joint and its inner member

Country Status (1)

Country Link
JP (1) JP2007064265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054216A1 (en) * 2007-10-24 2009-04-30 Ntn Corporation Constant velocity universal joint

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054216A1 (en) * 2007-10-24 2009-04-30 Ntn Corporation Constant velocity universal joint
JP2009103250A (en) * 2007-10-24 2009-05-14 Ntn Corp Constant velocity universal joint
US20100210368A1 (en) * 2007-10-24 2010-08-19 Masazumi Kobayashi Constant velocity universal joint
CN101836002A (en) * 2007-10-24 2010-09-15 Ntn株式会社 Constant velocity universal joint
US8403764B2 (en) 2007-10-24 2013-03-26 Ntn Corporation Constant velocity universal joint

Similar Documents

Publication Publication Date Title
US7651400B2 (en) Constant velocity universal joint and inner member thereof
WO2017169674A1 (en) Tripod constant-velocity universal joint and method for heat-treating tripod member
JP5355876B2 (en) Constant velocity universal joint
JP2007139094A (en) Constant speed universal joint
JP2007064264A (en) Fixed type constant velocity universal joint
EP2202421A1 (en) Constant speed universal joint
EP2136094B1 (en) Universal joint
JP2007333154A (en) Constant-velocity universal joint
JP2007064265A (en) Constant velocity universal joint and its inner member
JP2006090518A (en) Power transmission device
EP2749783B1 (en) Constant velocity universal joint and method for producing same
JP2007002943A (en) Constant velocity universal joint and its inner member
JP2007170423A (en) Constant velocity universal joint and its inner member
JP2007162874A (en) Constant velocity universal joint and its internal member
JP6433689B2 (en) Sliding constant velocity universal joint
JP2008051190A (en) Fixed type constant velocity universal joint
JP4795271B2 (en) Cage for constant velocity universal joint and assembly method thereof
JP2010031910A (en) Outside joint member of constant velocity universal joint and constant velocity universal joint
JP2009250266A (en) Tripod type constant velocity universal joint
JP2007064322A (en) Fixed type constant velocity universal joint
JP2007333155A (en) Constant-velocity universal joint
JP2009085327A (en) Sliding type constant velocity universal joint and its outer side joint member
JP2007225025A (en) Fitting structure between inner joint member and shaft of constant velocity universal joint
JP2010106892A (en) Tripod-type constant velocity universal joint
JP2011208674A (en) Constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104