JP2007061809A - Method for purifying ground water and apparatus therefor - Google Patents

Method for purifying ground water and apparatus therefor Download PDF

Info

Publication number
JP2007061809A
JP2007061809A JP2006106460A JP2006106460A JP2007061809A JP 2007061809 A JP2007061809 A JP 2007061809A JP 2006106460 A JP2006106460 A JP 2006106460A JP 2006106460 A JP2006106460 A JP 2006106460A JP 2007061809 A JP2007061809 A JP 2007061809A
Authority
JP
Japan
Prior art keywords
flow path
oxygen
filter medium
manganese
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006106460A
Other languages
Japanese (ja)
Inventor
Nobuya Ishio
暢弥 石尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUSO KENSETSU KOGYO
Fuso Kensetsu Kogyo KK
Original Assignee
FUSO KENSETSU KOGYO
Fuso Kensetsu Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUSO KENSETSU KOGYO, Fuso Kensetsu Kogyo KK filed Critical FUSO KENSETSU KOGYO
Priority to JP2006106460A priority Critical patent/JP2007061809A/en
Publication of JP2007061809A publication Critical patent/JP2007061809A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for purifying ground water wherein the section for iron removal is separated from the section for manganese removal so as to provide a dissolved oxygen content suitable for microorganism activity. <P>SOLUTION: The inside of a tubular filter column 1 is so partitioned as to form a first channel 4 for an ascending flow and a second channel 5 for a descending flow which communicates with the first channel 4 at the top thereof. The first channel 4 is filled with a filter material for the iron removal 2, while the second channel 5 with a filter material for the manganese removal 3. The first channel 4 has an inlet for raw water 6 and an inlet for oxygen or water to which oxygen is dissolved 7 below the filter material for the iron removal 2, and has an inlet for minute bubbles and oxygen or water to which oxygen is dissolved 8 above the filter material for the iron removal 2. A floss outlet 9 for discharging the floss is disposed above the portion where the first channel 4 communicates with the second channel 5, which has an outlet for treated water 10 below the filter material for the manganese removal 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、地下水の浄化装置に関し、特に、鉄の除去部分とマンガンの除去部分とを分離し、その各部に於いて各々の微生物の活動に適した溶存酸素濃度を与えられるようにした地下水の浄化方法及びその装置に関するものである。   The present invention relates to an apparatus for purifying groundwater, and in particular, separates an iron removal portion and a manganese removal portion, and in each portion, a dissolved oxygen concentration suitable for the activity of each microorganism is given. The present invention relates to a purification method and an apparatus therefor.

井戸水などの地下水中には、鉄、マンガン及びアンモニア性窒素等が溶解しているケースが見られる。
従来の地下水の浄化装置では、上記物質の塩素酸化による除去が試みられていたが、塩素剤注入管理の難しさや、仮にそれらの物質が除去されたにせよ残留塩素濃度の高すぎによる「カルキ臭」、さらに塩素と地下水中の有機化合物との反応による有害な副生成物の発生など、次第に社会的に受容され難くなり、その結果、地下水源としての取水井が数多く放棄されている。
There are cases where iron, manganese, ammonia nitrogen, etc. are dissolved in groundwater such as well water.
In conventional groundwater purification equipment, attempts have been made to remove the above substances by chlorination. However, it is difficult to control the injection of chlorinating agents, and even if these substances are removed, the "chlorine odor due to too high residual chlorine concentration. In addition, the generation of harmful by-products due to the reaction of chlorine with organic compounds in groundwater is becoming increasingly unacceptable to society, resulting in the abandonment of many intake wells as groundwater sources.

このような状況の中で、今後受け入れられる可能性のある地下水の浄化装置としては、地中に生息するバクテリアを利用して、鉄、マンガン及びアンモニア性窒素を除去する地下水の浄化装置がある。
この地下水の浄化装置は、薬品として唯一使用の可能性があるものは、微生物を活性化させるためのリン酸塩位のものである(但し法定の滅菌用の塩素剤は除く)。
Under such circumstances, as a groundwater purification device that may be accepted in the future, there is a groundwater purification device that removes iron, manganese, and ammonia nitrogen using bacteria that live in the ground.
In this groundwater purification device, the only thing that can be used as a chemical is that of phosphate level for activating microorganisms (except for chlorination agents for legal sterilization).

ところで、このような地下水の浄化装置では、原水に対して微生物を作用させる過程で、溶存酸素を補給するのが微生物によるFe、Mn、NH4+除去の常法であるが、除鉄バクテリアと除マンガンバクテリアでは適する溶存酸素濃度が異なり、従来の浄化装置では、筒状に形成した1つの濾過処理塔にこれらのバクテリアを一緒に担持することから、各々のバクテリア群に適する溶存酸素のコントロールが困難であった。 By the way, in such a groundwater purification apparatus, it is a common method for removing Fe, Mn, and NH 4+ by microorganisms in the process of causing microorganisms to act on the raw water. Manganese bacteria have different concentrations of dissolved oxygen, and conventional purification devices carry these bacteria together in a single filtration tower formed in a cylindrical shape, making it difficult to control dissolved oxygen suitable for each bacterial group. Met.

本発明は、上記従来の地下水の浄化装置が有する問題点に鑑み、鉄の除去部分とマンガンの除去部分とを分離し、微生物の活動に適した溶存酸素濃度を与えられるようにした地下水の浄化方法及びその装置を提供することを目的とする。   In view of the problems of the above-described conventional groundwater purification apparatus, the present invention separates the iron removal portion and the manganese removal portion to provide a dissolved oxygen concentration suitable for the activity of microorganisms. It is an object to provide a method and apparatus.

上記目的を達成するため、本第1発明の地下水の浄化方法は、除鉄用濾材を配設した第1流路に、酸素又は酸素を溶解させた水を一次DOとして供給して、原水中の除鉄処理に必要な濃度の溶存酸素を供給した後、除マンガン用濾材を配設した第2流路に、酸素又は酸素を溶解させた水を二次DOとして供給して、原水中の除マンガン処理に必要な濃度の溶存酸素を供給することを特徴とする。   In order to achieve the above object, the groundwater purification method according to the first aspect of the present invention supplies oxygen or oxygen-dissolved water as primary DO to the first flow path in which the filter medium for iron removal is disposed, After supplying dissolved oxygen at a concentration necessary for the iron removal treatment, oxygen or oxygen-dissolved water is supplied as secondary DO to the second flow path in which the manganese removal filter medium is disposed. It is characterized by supplying dissolved oxygen at a concentration required for manganese removal treatment.

そして、この地下水の浄化方法を実施するための本発明の地下水の浄化装置は、筒状の濾過処理塔の内部を区画して、上向流を形成する第1流路と、該第1流路と上部で連通して下向流を形成する第2流路とを形成し、第1流路に除鉄用濾材を配設し、第2流路に除マンガン用濾材を配設するとともに、第1流路の除鉄用濾材の下に原水導入部と、酸素又は酸素を溶解させた水導入部とを設け、除鉄用濾材の上に酸素又は酸素を溶解させた水及び微細気泡導入部を設け、かつ第1流路と第2流路の連通部の上にフロスを排出するフロス排出部を設け、第2流路の除マンガン用濾材の下に処理水の導出部を設けたことを特徴とする。   And the groundwater purification apparatus of this invention for enforcing this groundwater purification method divides the inside of a cylindrical filtration processing tower, forms the 1st flow path which forms an upward flow, and this 1st flow And a second flow path that forms a downward flow in communication with the upper path, and a filter medium for removing iron is disposed in the first flow path, and a filter medium for removing manganese is disposed in the second flow path. In addition, a raw water introduction part and a water introduction part in which oxygen or oxygen is dissolved are provided under the filter material for removing iron in the first flow path, and water and fine bubbles in which oxygen or oxygen is dissolved on the filter medium for removing iron An introduction part is provided, a floss discharge part for discharging floss is provided above the communication part of the first flow path and the second flow path, and a treated water lead-out part is provided under the filter material for removing manganese in the second flow path. It is characterized by that.

また、同様に、この地下水の浄化方法を実施するための本発明の地下水の浄化装置は、筒状の濾過処理塔の内部を区画して、下向流を形成する第1流路と、該第1流路と接続流路を介することによって連通して下向流を形成する第2流路とを形成し、第1流路に除鉄用濾材を配設し、第2流路に除マンガン用濾材を配設するとともに、第1流路に原水導入部と、酸素又は酸素を溶解させた水導入部とを設け、接続流路の始端部に酸素又は酸素を溶解させた水導入部を、終端部に気液分離部を設け、第2流路の除マンガン用濾材の下に処理水の導出部を設けたことを特徴とする。   Similarly, the groundwater purification apparatus of the present invention for carrying out this method for purifying groundwater partitions the inside of a cylindrical filtration tower and forms a downward flow, A first flow path and a second flow path that communicates with each other through the connection flow path to form a downward flow are formed, and a filter medium for iron removal is disposed in the first flow path, and the second flow path is removed. A water introduction part in which a raw material introduction part and a water introduction part in which oxygen or oxygen is dissolved are provided in the first flow path, and oxygen or oxygen is dissolved in the start end part of the connection flow path, with the manganese filter medium disposed Is characterized in that a gas-liquid separation part is provided at the terminal part and a treatment water outlet part is provided under the manganese removal filter medium in the second flow path.

この場合において、除鉄用濾材に、除鉄バクテリアを担持する除鉄用濾材を用いるようにすることができる。   In this case, the iron-removing filter medium carrying iron-removing bacteria can be used as the iron-removing filter medium.

また、除マンガン用濾材に、除マンガンバクテリアを担持する除マンガン用濾材を用いることができる。   Further, a manganese removal filter medium carrying manganese removal bacteria can be used as the manganese removal filter medium.

さらに、本第2発明の地下水の浄化装置は、筒状の濾過処理塔の内部を区画して、上向流を形成する第1流路と、該第1流路と上部で連通して下向流を形成する第2流路とを形成し、第1流路に緩速撹拌機構を構成するプレートを配設し、第2流路に濾材を配設するとともに、第1流路に原水導入部と過マンガン酸カリウム溶液導入部とを設け、緩速撹拌機構の上に微細気泡を発生する気泡導入部を設け、かつ第1流路と第2流路の連通部の上にフロスを排出するフロス排出部を設け、第2流路の濾材の下に処理水の導出部を設けたことを特徴とする。   Furthermore, the groundwater purification apparatus according to the second aspect of the present invention partitions the inside of the cylindrical filtration tower, forms a upward flow, and communicates with the first flow path at the upper part. A second flow path forming a counter flow, a plate constituting a slow stirring mechanism is disposed in the first flow path, a filter medium is disposed in the second flow path, and raw water is disposed in the first flow path. An introduction part and a potassium permanganate solution introduction part are provided, a bubble introduction part for generating fine bubbles is provided on the slow stirring mechanism, and a floss is provided on the communication part of the first channel and the second channel. A floss discharge part for discharging is provided, and a discharge part for treated water is provided under the filter medium of the second flow path.

本第1発明の地下水の浄化方法及びその装置によれば、鉄の除去部分とマンガンの除去部分とを分離し、微生物の活動に適した溶存酸素濃度を与えることができ、これにより、バクテリアの活性を高めるとともに、濾材におけるバクテリアの住み分けを促進し、浄化の効率を向上させることができる。   According to the groundwater purification method and apparatus of the first aspect of the present invention, the removed portion of iron and the removed portion of manganese can be separated to give a dissolved oxygen concentration suitable for the activity of microorganisms. In addition to enhancing the activity, the bacteria can be segregated in the filter medium and the purification efficiency can be improved.

また、除鉄用濾材に、除鉄バクテリアを担持する除鉄用濾材を用いるようにしたり、除マンガン用濾材に、除マンガンバクテリアを担持する除マンガン用濾材を用いるようにすることにより、原水中の除鉄処理や除マンガン処理を微生物により行うことができる。   In addition, by using a filter medium for removing iron that supports iron-removing bacteria as a filter medium for removing iron, or by using a filter medium for removing manganese that supports manganese-removing bacteria as a filter medium for removing manganese, The removal of iron and the removal of manganese can be performed by microorganisms.

また、本第2発明の地下水の浄化装置によれば、本第1発明の地下水の浄化装置とほぼ同構造の装置を用いて、鉄やマンガン濃度が極めて高い場合や鉄バクテリアやマンガンバクテリアの数が増えるのも待っていられないような緊急の場合等でも、除鉄、除マンガン処理を確実に行うことができる。   Further, according to the groundwater purification apparatus of the second invention, an apparatus having substantially the same structure as that of the groundwater purification apparatus of the first invention is used, when the concentration of iron or manganese is extremely high, or the number of iron bacteria or manganese bacteria. Even in the case of an emergency in which it is impossible to wait for the increase of iron, the removal of iron and removal of manganese can be performed reliably.

以下、本発明の地下水の浄化方法及びその装置の実施の形態を、図面に基づいて説明する。   Embodiments of the groundwater purification method and apparatus according to the present invention will be described below with reference to the drawings.

図1〜図2に、本発明の地下水の浄化装置の第1実施例を示す。
この地下水の浄化装置は、筒状の濾過処理塔1の内部を区画して、上向流を形成する第1流路4と、この第1流路4と上部で連通して下向流を形成する第2流路5とを形成し、第1流路4に除鉄バクテリアを担持する除鉄用濾材2を配設し、第2流路5に除マンガンバクテリアを担持する除マンガン用濾材3を配設するとともに、第1流路4の除鉄用濾材2の下に原水導入部6と、酸素又は酸素を溶解させた水導入部7とを設け、除鉄用濾材2の上に酸素又は酸素を溶解させた水及び微細気泡導入部8を設け、かつ第1流路4と第2流路5の連通部の上にフロスを排出するフロス排出部9を設け、第2流路5の除マンガン用濾材3の下に処理水の導出部10を設けている。
1 to 2 show a first embodiment of the groundwater purification apparatus of the present invention.
This groundwater purification apparatus divides the inside of the cylindrical filtration tower 1 and forms a first flow path 4 that forms an upward flow, and communicates with the first flow path 4 at the upper portion to generate a downward flow. And the second flow path 5 to be formed, the first flow path 4 is provided with the iron removal filter medium 2 carrying the iron removal bacteria, and the second flow path 5 is loaded with the manganese removal bacteria. 3, a raw water introduction part 6 and a water introduction part 7 in which oxygen or oxygen is dissolved are provided below the iron removal filter medium 2 in the first flow path 4. Oxygen or water in which oxygen is dissolved and a fine bubble introduction portion 8 are provided, and a floss discharge portion 9 for discharging floss is provided on the communication portion between the first flow path 4 and the second flow path 5, and the second flow path The treated water outlet 10 is provided under the filter medium 3 for removing manganese.

濾過処理塔1は、縦置きした有底の外筒11と、この外筒11内に同心状に配設された有底の内筒12とを備え、内筒12の内部を第1流路4、外筒11と内筒12の間を第2流路5としている。
外筒11は、上部を内筒12よりも高くすることにより、内筒12との連通部を形成するとともに、裁頭円錐状のホッパ13を上部に設置することにより、水酸化第二鉄細片群のフロスをオーバーフローにより排出するフロス排出部9を形成している。
The filtration treatment tower 1 includes a vertically disposed bottomed outer cylinder 11 and a bottomed inner cylinder 12 disposed concentrically within the outer cylinder 11, and the inside of the inner cylinder 12 has a first flow path. 4. The second flow path 5 is defined between the outer cylinder 11 and the inner cylinder 12.
The outer cylinder 11 is formed with a communication portion with the inner cylinder 12 by making the upper part higher than the inner cylinder 12, and by installing a frustoconical hopper 13 on the upper part, A floss discharge part 9 for discharging one group of floss by overflow is formed.

第1流路4には除鉄バクテリアが繁殖する除鉄用濾材2が配設されるとともに、第2流路5には除マンガンバクテリアが繁殖する除マンガン用濾材3が配設されている。
これらは装置のコンパクト化を狙ったものであり、各々のバクテリア群に適した濃度の溶存酸素の補給を行い、かつ除マンガン用濾材3にとってその阻害要因ともなりかねない鉄水酸化物塊と一体化した除鉄バクテリアの除去を効果的に行うためのものである。
The first flow path 4 is provided with an iron removal filter medium 2 on which iron-removing bacteria propagate, and the second flow path 5 is provided with a manganese removal filter medium 3 on which manganese removal bacteria propagate.
These are aimed at downsizing of the device, and are supplemented with dissolved oxygen at a concentration suitable for each bacterial group, and integrated with the iron hydroxide lump which may be an obstacle to the filter medium 3 for removing manganese. It is for effectively removing the iron-removing bacteria.

次に、本実施例の地下水の浄化装置の作用を説明する。
原水の流れに沿って各処理工程をたどっていくと、まず取水井からポンプアップされた地下水は内筒12の下端部の原水導入部6より内筒12に対して接線方向に流入し、内筒内旋回流を形成する。
また、図3に示すガス溶解塔14の溶解タンクで酸素を溶解させた水(この場合、酸素(又は空気)を用いることもできる。)を、酸素又は酸素を溶解させた水導入部7から一次DOとして一次DOノズル15から内筒12に注入し、原水中のFe2+の酸化に必要な濃度の溶存酸素を供給する。
Next, the effect | action of the purification apparatus of the groundwater of a present Example is demonstrated.
When following each treatment process along the flow of raw water, groundwater pumped up from the intake well first flows in the tangential direction from the raw water introduction part 6 at the lower end of the inner cylinder 12 to the inner cylinder 12, An in-cylinder swirl flow is formed.
Further, water in which oxygen is dissolved in the dissolution tank of the gas dissolution tower 14 shown in FIG. 3 (in this case, oxygen (or air) can also be used) is supplied from the water introduction section 7 in which oxygen or oxygen is dissolved. The primary DO is injected into the inner cylinder 12 from the primary DO nozzle 15 as a primary DO, and dissolved oxygen having a concentration necessary for oxidizing Fe 2+ in the raw water is supplied.

溶存酸素の補給を受けた原水は、直ちに上向流にて、除鉄バクテリアを繁殖させてある除鉄用濾材2の中を通過してゆく。
この過程で、Fe2+は除鉄バクテリアの外側に水酸化第二鉄層として固形化して水中から除去されるとともに、常に上向流によりバクテリアの担持体である除鉄用濾材2が緩やかに動いているために、除鉄用濾材2表面の余剰の水酸化第二鉄層がこすれ合い、余剰の水酸化第二鉄の細片が上方向へ排出されてゆく。その結果、原水と除鉄バクテリアの接触がよく維持されることになる。
The raw water supplied with dissolved oxygen immediately passes through the iron removal filter medium 2 on which iron removal bacteria are propagated in an upward flow.
In this process, Fe 2+ is solidified as a ferric hydroxide layer on the outside of the iron-removing bacteria and removed from the water. At the same time, the iron-removing filter medium 2 which is a bacterial support constantly moves slowly by upward flow. Therefore, the surplus ferric hydroxide layer on the surface of the filter medium 2 for removing iron is rubbed, and the surplus ferric hydroxide strips are discharged upward. As a result, the contact between the raw water and the iron-removing bacteria is well maintained.

内筒12をさらに上昇していくと、減圧ノズル(二次DOノズル)16を装着した酸素又は酸素を溶解させた水及び微細気泡導入部8にこれらの水酸化第二鉄の細片が到達する。
そこに於いて、減圧ノズル(二次DOノズル)16から放出されている数十ミクロンの直径の微細気泡とこれらの細片が合体し、図2に示すように、上昇速度を増しながら処理塔頂部の水面に向かってゆく。
この場合、図3に示すガス溶解塔14の溶解タンクで酸素を溶解させた水(この場合、酸素(又は空気)を用いることもできる。)を、二次DOとして酸素又は酸素を溶解させた水及び微細気泡導入部8から、減圧ノズル(二次DOノズル)16を介して、内筒12に注入し、原水中の除マンガン処理に必要な濃度の溶存酸素を供給する。
水面に達した多数の気泡と水酸化第二鉄細片群はフロスを形成し、以下のような操作の内のいずれかにより水中から排除される。
この場合、内筒12の適宜位置において、ポリ塩化アルミニウム(PAC)等の凝集剤を添加し、フロック化を促進させることができる。
操作その1:フロスを専用のスクレーパーのようなかき寄せ機により処理塔の頂部からかき落とす。
操作その2:処理水導出部10に設けたフロス放出用遮断弁17を閉じ、処理塔内の水位を上昇させ、水面にたまったフロス層を処理塔の外へ流去させる。
この場合、操作1と操作2を併用してもよい。
濾層内の気泡は、除マンガン用濾材3内においてDO又はDNとして水中に溶解していた空気や酸素や窒素が析出、集合することにより大径化して生じ、正常な濾過を妨げる働きをするが、上記の操作により下向流速によって濾層内に拘束されていた気泡が上方へ浮力のために抜けてゆき、通常の濾過速度を維持することが可能になる。
As the inner cylinder 12 is further raised, these pieces of ferric hydroxide reach the oxygen or water in which oxygen is dissolved and the fine bubble introduction part 8 equipped with the decompression nozzle (secondary DO nozzle) 16. To do.
In this case, fine bubbles having a diameter of several tens of microns discharged from the decompression nozzle (secondary DO nozzle) 16 and these pieces are combined, and as shown in FIG. Head towards the top of the water.
In this case, water in which oxygen is dissolved in the dissolution tank of the gas dissolution tower 14 shown in FIG. 3 (in this case, oxygen (or air) can also be used) is dissolved as oxygen or oxygen as secondary DO. From water and the fine bubble introduction part 8, it inject | pours into the inner cylinder 12 via the pressure reduction nozzle (secondary DO nozzle) 16, and supplies the dissolved oxygen of the density | concentration required for the manganese removal process in raw | natural water.
A large number of bubbles reaching the water surface and the ferric hydroxide strips form a floss and are removed from the water by any of the following operations.
In this case, a flocculant can be promoted by adding a flocculant such as polyaluminum chloride (PAC) at an appropriate position of the inner cylinder 12.
Operation 1: Scrape off the floss from the top of the processing tower with a scraper, such as a special scraper.
Operation 2: The froth discharge shutoff valve 17 provided in the treated water outlet 10 is closed, the water level in the treatment tower is raised, and the froth layer accumulated on the water surface is drained out of the treatment tower.
In this case, operation 1 and operation 2 may be used together.
Air bubbles in the filter layer are generated by increasing the diameter of air, oxygen and nitrogen dissolved in water as DO or DN in the manganese removal filter medium 3 and preventing normal filtration. However, by the above operation, the bubbles confined in the filter layer by the downward flow velocity are removed upward due to buoyancy, and the normal filtration rate can be maintained.

以上のように、余剰な鉄の水酸化物は殆んど除去されるのであるが、これと同時に微細気泡から水中に二次DOとして溶存酸素がもたらされる。
微細気泡から水中に酸素がもたらされることにより、連通部の反転流中の水中の溶存酸素濃度は除鉄部分よりも高められることとなる。
これが次の工程である除マンガン処理にとって都合のよい条件となり、除マンガンバクテリアの除マンガン機能が高められることとなる。
この場合、溶存酸素濃度は、ある一定限度を超えると除鉄バクテリアの活性・生育にとって好ましくない条件となるが、各部に於いて各々の微生物の活動に適した溶存酸素濃度を与えることにより、結果的に各々の濾材に於けるバクテリアの住み分けができるようになる。
As described above, excess iron hydroxide is almost removed, but at the same time, dissolved oxygen is brought into the water as secondary DO from the fine bubbles.
By bringing oxygen into the water from the fine bubbles, the dissolved oxygen concentration in the water in the reversal flow of the communicating portion will be higher than in the iron removal portion.
This is a convenient condition for the next step, manganese removal treatment, and the manganese removal function of the manganese removal bacteria is enhanced.
In this case, if the dissolved oxygen concentration exceeds a certain limit, it becomes an unfavorable condition for the activity and growth of iron-removing bacteria, but by giving a dissolved oxygen concentration suitable for the activity of each microorganism in each part, the result Thus, bacteria can be segregated in each filter medium.

なお、除鉄用濾材2は、逆洗管20、21から逆洗水や逆洗空気を供給することによって逆洗浄して、捕捉物質や余剰なバクテリア及び鉄酸化物等を内筒12上部のフロス排出部9から排泥管22を介して濾過処理塔1の外へ流去できるようにしている。
また、除マンガン用濾材3は、処理水導出部10の逆洗管18から逆洗水を供給することによって逆洗浄して、捕捉物質や余剰なバクテリア及びマンガン酸化物等を外筒11上部の排水管19から濾過処理塔1の外へ流去できるようにしている。
The filter medium 2 for removing iron is back-washed by supplying backwash water or backwash air from the backwash tubes 20 and 21 to remove trapping substances, excess bacteria, iron oxide, and the like in the upper portion of the inner cylinder 12. It is possible to flow out of the filtration processing tower 1 from the floss discharge part 9 through the sludge pipe 22.
Further, the filter medium 3 for removing manganese is back-washed by supplying backwash water from the backwash pipe 18 of the treated water outlet 10 to remove trapping substances, excess bacteria, manganese oxide, and the like on the upper portion of the outer cylinder 11. The drainage pipe 19 can flow out of the filtration tower 1.

このように、DOに富んだ中間処理水のほんの一部はフロスの除去に伴って流出してゆくが、大部分は図示したように反転して下降し、除マンガン用濾材3を通過してゆく。
この除マンガン用濾材3の上部は、粒状活性炭のような比較的粗な濾材で構成され、下部はケイ砂、支持砂利層で構成され、除マンガン機能を果たすと同時に、ある程度の除濁機能を果たすようになっている。
必要とあれば、別体として除濁専用のコンベンショナルな急速濾過器を設置してもよい。
なお、アンモニア性窒素の除去は、この除マンガン用濾材3で行うことができ、また、アンモニアの除去は除鉄用濾材2でも行うことができる。
Thus, a small portion of the intermediate treated water rich in DO flows out with the removal of the froth, but most of the water is inverted as shown in the figure and passes through the filter medium 3 for removing manganese. go.
The upper part of the filter medium 3 for manganese removal is composed of a relatively coarse filter medium such as granular activated carbon, and the lower part is composed of silica sand and a supporting gravel layer. It has come to fulfill.
If necessary, a conventional quick filter dedicated to turbidity may be installed as a separate body.
The removal of ammoniacal nitrogen can be performed with the manganese removal filter medium 3, and the removal of ammonia can also be performed with the iron removal filter medium 2.

かくして、本実施例の地下水の浄化装置によれば、筒状の濾過処理塔1の内部に、除鉄バクテリアを担持する除鉄用濾材2と、除マンガンバクテリアを担持する除マンガン用濾材3とを配設した地下水の浄化装置において、濾過処理塔1の内部を区画して、上向流を形成する第1流路4と、該第1流路4と上部で連通して下向流を形成する第2流路5とを形成し、第1流路4に除鉄用濾材2を配設し、第2流路5に除マンガン用濾材3を配設するとともに、第1流路4の除鉄用濾材2の下に原水導入部6と酸素又は酸素を溶解させた水導入部7とを設け、除鉄用濾材2の上に酸素又は酸素を溶解させた水及び微細気泡導入部8を設け、かつ第1流路4と第2流路5の連通部の上にフロスを排出するフロス排出部9を設け、第2流路5の除マンガン用濾材3の下に処理水導出部10を設けることから、鉄の除去部分とマンガンの除去部分とを分離し、その各部に於いて各々の微生物の活動に適した溶存酸素濃度を与えることができ、これにより、各バクテリアの活性を高めるとともに、各々の濾材におけるバクテリアの住み分けを促進し、浄化の効率を向上させることができる。   Thus, according to the groundwater purification apparatus of the present embodiment, the filter medium 2 for removing iron that carries iron-removing bacteria and the filter medium 3 for removing manganese that carries manganese-removing bacteria are provided inside the cylindrical filtration tower 1. In the groundwater purification apparatus provided with the first flow path 4 that partitions the inside of the filtration treatment tower 1 and forms an upward flow, and the first flow path 4 communicates with the upper portion of the first flow path 4 to generate the downward flow. The second flow path 5 to be formed is formed, the filter medium 2 for removing iron is disposed in the first flow path 4, the filter medium 3 for removing manganese is disposed in the second flow path 5, and the first flow path 4 A raw water introduction part 6 and a water introduction part 7 in which oxygen or oxygen is dissolved are provided under the iron removal filter medium 2, and water and fine bubble introduction part in which oxygen or oxygen is dissolved on the iron removal filter medium 2 8 and a floss discharge part 9 for discharging the floss on the communication part of the first flow path 4 and the second flow path 5 is provided. Since the treated water lead-out section 10 is provided under the filter medium 3 for iron, the removed portion of iron and the removed portion of manganese are separated, and in each portion, a dissolved oxygen concentration suitable for the activity of each microorganism is given. As a result, the activity of each bacterium can be increased, and the bacteria can be segregated in each filter medium, thereby improving the purification efficiency.

ところで、上記第1実施例の地下水の浄化装置においては、原水中の除マンガン処理に、除マンガンバクテリアを担持する除マンガン用濾材3を用いるようにしたが、図4の本発明の地下水の浄化装置の第2実施例のチャート図に示すように、除マンガン処理を、高性能の除マンガン用濾材を用いて行うこともできる。
この除マンガン用濾材には、マンガン砂を好適に用いることができ、特に、セラミックを基材に用い、MnOの付着量を増大させることができるようにしたものをより好適に用いることができる。
これにより、コンパクトなスペース内で高度の除マンガン処理を行うことができる。
なお、現在の水道法では滅菌のために塩素注入を行わざるを得ないことから、除鉄及びアンモニア性窒素の除去の完了した水に対してマンガン砂による除マンガン処理を行っても何らの問題もない。さらに、除マンガン処理をバクテリア処理とした場合に必要となる可能性のある除濁、除菌のための後凝集やそれに引き続く別体の砂濾過が不要になる(この第2実施例の地下水の浄化装置だけで、高レベルの処理水を得ることができる)という利点がある。
なお、本実施例のその他の構成及び作用は、上記第1実施例の地下水の浄化装置と同様である。
By the way, in the groundwater purification apparatus of the first embodiment, the manganese removal filter medium 3 carrying manganese removal bacteria is used for the manganese removal treatment in the raw water. As shown in the chart of the second embodiment of the apparatus, the manganese removal treatment can be performed using a high performance filter medium for manganese removal.
Manganese sand can be suitably used for the filter medium for removing manganese, and in particular, a ceramic that is used as a base material and can increase the amount of MnO 2 attached can be more suitably used. .
Thereby, advanced manganese removal treatment can be performed in a compact space.
In addition, since the current water law requires chlorination for sterilization, it is not a problem even if manganese removal treatment with manganese sand is performed on water that has been removed of iron and ammonia nitrogen. Nor. Furthermore, there is no need for turbidity, post-aggregation for sterilization, and subsequent separate sand filtration that may be necessary when the manganese removal treatment is a bacterial treatment (the groundwater in this second embodiment). There is an advantage that high-level treated water can be obtained only with the purification device).
In addition, the other structure and effect | action of a present Example are the same as that of the purification apparatus of the groundwater of the said 1st Example.

また、上記第1及び第2実施例の地下水の浄化装置においては、筒状の濾過処理塔1の内部を区画して、上向流を形成する第1流路4と、この第1流路4と上部で連通して下向流を形成する第2流路5とを形成するようにしたが、図5の本発明の地下水の浄化装置の第3実施例に示すように、筒状の濾過処理塔1の内部を区画して、下向流を形成する第1流路4と、この第1流路4と接続流路23を介することによって連通して下向流を形成する第2流路5とを形成し、第1流路4に除鉄バクテリアを担持する除鉄用濾材2を配設し、第2流路5に除マンガンバクテリアを担持する除マンガン用濾材3を配設するとともに、第1流路4に原水導入部6と、酸素又は酸素を溶解させた水導入部7とを設け、接続流路23の始端部に酸素又は酸素を溶解させた水導入部8Aを、終端部に気液分離部24を設け、第2流路5の除マンガン用濾材3の下に処理水の導出部10を設けている。
そして、本実施例のように、第1流路4において下向流を形成するようにすることによって、原水中に高濃度(例えば、5mg/L以上)の鉄分が存在する場合の鉄分の除去を効率よく行うことができるとともに、従来技術を転用しやすく、装置の設計を簡易に行うことができる利点がある。
なお、本実施例のその他の構成及び作用は、上記第1実施例の地下水の浄化装置と同様である。
Moreover, in the groundwater purification apparatus of the said 1st and 2nd Example, the inside of the cylindrical filtration processing tower 1 is divided, the 1st flow path 4 which forms an upward flow, and this 1st flow path 4 and the second flow path 5 communicating with the upper part to form a downward flow, but as shown in the third embodiment of the groundwater purification apparatus of the present invention in FIG. A first flow path 4 that divides the inside of the filtration tower 1 to form a downward flow, and a second flow path that communicates with the first flow path 4 and the connection flow path 23 to form a downward flow. The flow passage 5 is formed, the first flow passage 4 is provided with the iron removal filter medium 2 carrying the iron removal bacteria, and the second flow passage 5 is provided with the manganese removal filter medium 3 carrying the manganese removal bacteria. In addition, the raw water introduction part 6 and the water introduction part 7 in which oxygen or oxygen is dissolved are provided in the first flow path 4, and oxygen or oxygen is provided at the start end of the connection flow path 23. Water inlet portion 8A dissolved, the gas-liquid separator 24 is provided, and a lead portion 10 of treated water provided beneath the removal of manganese filter material 3 of the second flow path 5 at the end.
Then, as in this embodiment, by forming a downward flow in the first flow path 4, removal of iron when high concentration (for example, 5 mg / L or more) of iron is present in the raw water. Can be efficiently performed, and it is easy to divert the prior art, and there is an advantage that the device can be designed easily.
In addition, the other structure and effect | action of a present Example are the same as that of the purification apparatus of the groundwater of the said 1st Example.

さらに、鉄やマンガン濃度が極めて高い場合には、バクテリア処理に代えて、鉄やマンガンに対する酸化力が強く、しかも反応が極めて迅速な過マンガン酸カリウム等の薬品による処理を行ってもよい。特に、鉄バクテリアやマンガンバクテリアの数が増えるのも待っていられないような緊急時には有用な手法となる。
具体的には、上記第1実施例の図1〜図2に示す濾過処理塔1と同様の装置を使用し、内筒12に収容する鉄バクテリアを繁殖させるべき除鉄用濾材2に代えて、内筒12中に、原水中に過マンガン酸カリウム溶液を注入した後に形成され始める水酸化鉄とマンガン酸化物が一体化したフロックをさらに成長させ大径化させるための緩速撹拌機構を組み込む。一例として、迂流を形成させるようなプレートを何段か入れ、フロックの形成を促進するようにする。
また、酸素又は酸素を溶解させた水導入部7から導入する溶存酸素を含んだ水の代わりに、過マンガン酸カリウム溶液を注入し、それよりFe2+とMn2+の酸化による固形化を行わしめる。
内筒12の中で注入した薬品との反応が完結し、微小フロックができた時点で、ポリ塩化アルミニウム(PAC)等の凝集剤を添加し、フロック化を促進させる。
フロックが十分に成長した段階(内筒12の上方部)で、減圧ノズル(二次DOノズル)16から放出させた微細気泡をフロックに付着させ、フロスとして系外へ排出する。残るアンモニア性窒素については、フロス除去後の反転流中にリン酸塩を若干注入し、外筒11に収容する除マンガン用濾材3に対応する濾材中に繁殖したバクテリアにより硝化を行って除去することができる。
Further, when the iron or manganese concentration is extremely high, instead of the bacterial treatment, treatment with a chemical such as potassium permanganate having a strong oxidizing power against iron or manganese and a very rapid reaction may be performed. In particular, it is a useful technique in emergencies where the number of iron and manganese bacteria cannot be waited for.
Specifically, using the same apparatus as the filtration tower 1 shown in FIGS. 1 to 2 of the first embodiment, instead of the filter medium 2 for removing iron that should be propagated with iron bacteria accommodated in the inner cylinder 12. Incorporating a slow stirring mechanism in the inner cylinder 12 for further growing and increasing the diameter of a floc that is integrated with iron hydroxide and manganese oxide that begins to form after pouring a potassium permanganate solution into the raw water . As an example, several plates that form a diversion are inserted to facilitate the formation of flocs.
Further, instead of oxygen or water containing dissolved oxygen introduced from the water introduction part 7 in which oxygen is dissolved, a potassium permanganate solution is injected, and solidification is performed by oxidation of Fe 2+ and Mn 2+. .
When the reaction with the chemicals injected in the inner cylinder 12 is completed and micro flocs are formed, a flocculant such as polyaluminum chloride (PAC) is added to promote flocking.
At the stage where the floc has sufficiently grown (the upper portion of the inner cylinder 12), the fine bubbles released from the decompression nozzle (secondary DO nozzle) 16 are attached to the floc and discharged out of the system as floss. The remaining ammoniacal nitrogen is removed by injecting a small amount of phosphate into the reverse flow after removing the froth, and nitrifying with bacteria propagated in the filter medium corresponding to the filter medium 3 for removing manganese stored in the outer cylinder 11. be able to.

以上、本発明の地下水の浄化方法及びその装置について、その実施例に基づいて説明したが、本発明は上記実施例に記載した構成に限定されるものではなく、実施例に記載した構成を適宜組み合わせるなど、その趣旨を逸脱しない範囲において適宜その構成を変更することができる。   As mentioned above, although the purification method and the apparatus of the groundwater of this invention were demonstrated based on the Example, this invention is not limited to the structure described in the said Example, The structure described in the Example is suitably used. The configuration can be changed as appropriate within a range that does not depart from the gist, such as combining.

本発明の地下水の浄化方法及びその装置は、鉄の除去部分とマンガンの除去部分とを分離し、その各部に於いて各々の微生物の活動に適した溶存酸素濃度を与えるという特性を有していることから、例えば、高速でコンパクトな地下水の浄化装置として好適に用いることができる。   The method and apparatus for purifying groundwater according to the present invention have the property of separating the iron removal portion and the manganese removal portion and providing a dissolved oxygen concentration suitable for the activity of each microorganism in each portion. Therefore, for example, it can be suitably used as a high-speed and compact groundwater purification device.

本発明の地下水の浄化装置の第1実施例を示す正面図である。It is a front view which shows 1st Example of the purification apparatus of groundwater of this invention. 同正面断面図である。It is the same front sectional view. 同浄化装置を用いた地下水の浄化システムを示すチャート図である。It is a chart figure which shows the purification system of groundwater using the purification device. 本発明の第2実施例の地下水の浄化装置を用いた地下水の浄化システムを示すチャート図である。It is a chart figure which shows the purification system of groundwater using the purification device of groundwater of the 2nd example of the present invention. 本発明の地下水の浄化装置の第3実施例を示し、(a)は正面断面図、(b)は気液分離部の詳細図である。The 3rd Example of the purification apparatus of the groundwater of this invention is shown, (a) is front sectional drawing, (b) is a detailed figure of a gas-liquid separation part.

符号の説明Explanation of symbols

1 濾過処理塔
2 除鉄用濾材
3 除マンガン用濾材
4 第1流路
5 第2流路
6 原水導入部
7 酸素又は酸素を溶解させた水導入部(一次DO)
8 酸素又は酸素を溶解させた水及び微細気泡導入部(二次DO)
8A 酸素又は酸素を溶解させた水導入部(二次DO)
9 フロス排出部
10 処理水導出部
11 外筒
12 内筒
13 ホッパ
14 ガス溶解塔
15 一次DOノズル
16 減圧ノズル(二次DOノズル)
17 フロス放出用遮断弁
18 逆洗管
19 排水管
20 逆洗管
21 逆洗管
22 排泥管
23 接続流路
24 気液分離部
DESCRIPTION OF SYMBOLS 1 Filtration tower 2 Filter medium for iron removal 3 Filter medium for manganese removal 4 1st flow path 5 2nd flow path 6 Raw water introduction part 7 Water introduction part (primary DO) which dissolved oxygen or oxygen
8 Oxygen or water in which oxygen is dissolved and microbubble introduction part (secondary DO)
8A Oxygen or water-introducing part in which oxygen is dissolved (secondary DO)
DESCRIPTION OF SYMBOLS 9 Floss discharge | emission part 10 Treated water derivation | leading-out part 11 Outer cylinder 12 Inner cylinder 13 Hopper 14 Gas dissolution tower 15 Primary DO nozzle 16 Decompression nozzle (secondary DO nozzle)
17 Floss discharge shut-off valve 18 Backwash pipe 19 Drain pipe 20 Backwash pipe 21 Backwash pipe 22 Drainage pipe 23 Connection flow path 24 Gas-liquid separator

Claims (6)

除鉄用濾材を配設した第1流路に、酸素又は酸素を溶解させた水を一次DOとして供給して、原水中の除鉄処理に必要な濃度の溶存酸素を供給した後、除マンガン用濾材を配設した第2流路に、酸素又は酸素を溶解させた水を二次DOとして供給して、原水中の除マンガン処理に必要な濃度の溶存酸素を供給することを特徴とする地下水の浄化方法。   After supplying oxygen or oxygen-dissolved water as primary DO to the first flow path in which the filter medium for iron removal is provided, and supplying dissolved oxygen at a concentration required for iron removal treatment in the raw water, manganese removal The second flow path in which the filter medium is disposed is supplied with oxygen or oxygen-dissolved water as secondary DO to supply dissolved oxygen having a concentration necessary for manganese removal treatment in the raw water. Groundwater purification method. 筒状の濾過処理塔の内部を区画して、上向流を形成する第1流路と、該第1流路と上部で連通して下向流を形成する第2流路とを形成し、第1流路に除鉄用濾材を配設し、第2流路に除マンガン用濾材を配設するとともに、第1流路の除鉄用濾材の下に原水導入部と、酸素又は酸素を溶解させた水導入部とを設け、除鉄用濾材の上に酸素又は酸素を溶解させた水及び微細気泡導入部を設け、かつ第1流路と第2流路の連通部の上にフロスを排出するフロス排出部を設け、第2流路の除マンガン用濾材の下に処理水の導出部を設けたことを特徴とする地下水の浄化装置。   The inside of the cylindrical filtration processing tower is partitioned to form a first flow path that forms an upward flow, and a second flow path that communicates with the first flow path at the top to form a downward flow. The filter medium for removing iron is disposed in the first flow path, the filter medium for removing manganese is disposed in the second flow path, and the raw water introduction part and oxygen or oxygen are placed under the filter medium for removing iron in the first flow path. A water introduction part in which oxygen is dissolved, oxygen or water in which oxygen is dissolved and a fine bubble introduction part are provided on the filter medium for removing iron, and on the communication part between the first channel and the second channel An apparatus for purifying groundwater, comprising a floss discharge part for discharging floss, and a discharge part for treated water provided under the manganese removal filter medium in the second flow path. 筒状の濾過処理塔の内部を区画して、下向流を形成する第1流路と、該第1流路と接続流路を介することによって連通して下向流を形成する第2流路とを形成し、第1流路に除鉄用濾材を配設し、第2流路に除マンガン用濾材を配設するとともに、第1流路に原水導入部と、酸素又は酸素を溶解させた水導入部とを設け、接続流路の始端部に酸素又は酸素を溶解させた水導入部を、終端部に気液分離部を設け、第2流路の除マンガン用濾材の下に処理水の導出部を設けたことを特徴とする地下水の浄化装置。   A first flow path that divides the inside of the cylindrical filtration tower and forms a downward flow, and a second flow that forms a downward flow in communication with each other via the first flow path and the connection flow path And a filter medium for removing iron in the first flow path, a filter medium for removing manganese in the second flow path, and the raw water introduction part and oxygen or oxygen dissolved in the first flow path. And a water introduction part in which oxygen or oxygen is dissolved at the start end of the connection channel, a gas-liquid separation part at the end, and under the manganese removal filter medium in the second channel. An apparatus for purifying groundwater, wherein a treated water outlet is provided. 除鉄用濾材に、除鉄バクテリアを担持する除鉄用濾材を用いるようにしたことを特徴とする請求項2又は3記載の地下水の浄化装置。   4. The apparatus for purifying groundwater according to claim 2, wherein the filter medium for iron removal uses a filter medium for iron removal that carries iron-removing bacteria. 除マンガン用濾材に、除マンガンバクテリアを担持する除マンガン用濾材を用いるようにしたことを特徴とする請求項2、3又は4記載の地下水の浄化装置。   5. The apparatus for purifying groundwater according to claim 2, 3 or 4, wherein the filter medium for removing manganese uses a filter medium for removing manganese which carries manganese-removing bacteria. 筒状の濾過処理塔の内部を区画して、上向流を形成する第1流路と、該第1流路と上部で連通して下向流を形成する第2流路とを形成し、第1流路に緩速撹拌機構を構成するプレートを配設し、第2流路に濾材を配設するとともに、第1流路に原水導入部と過マンガン酸カリウム溶液導入部とを設け、緩速撹拌機構の上に微細気泡を発生する気泡導入部を設け、かつ第1流路と第2流路の連通部の上にフロスを排出するフロス排出部を設け、第2流路の濾材の下に処理水の導出部を設けたことを特徴とする地下水の浄化装置。   The inside of the cylindrical filtration processing tower is partitioned to form a first flow path that forms an upward flow, and a second flow path that communicates with the first flow path at the top to form a downward flow. In addition, a plate constituting a slow stirring mechanism is disposed in the first flow path, a filter medium is disposed in the second flow path, and a raw water introduction part and a potassium permanganate solution introduction part are provided in the first flow path. A bubble introduction part for generating fine bubbles is provided on the slow stirring mechanism, and a floss discharge part for discharging floss is provided on the communication part of the first flow path and the second flow path. An apparatus for purifying groundwater, wherein a treated water outlet is provided under the filter medium.
JP2006106460A 2005-08-01 2006-04-07 Method for purifying ground water and apparatus therefor Withdrawn JP2007061809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006106460A JP2007061809A (en) 2005-08-01 2006-04-07 Method for purifying ground water and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005222553 2005-08-01
JP2006106460A JP2007061809A (en) 2005-08-01 2006-04-07 Method for purifying ground water and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2007061809A true JP2007061809A (en) 2007-03-15

Family

ID=37924630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006106460A Withdrawn JP2007061809A (en) 2005-08-01 2006-04-07 Method for purifying ground water and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2007061809A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148696A (en) * 2007-12-20 2009-07-09 Daiki Axis:Kk Iron-manganese removing apparatus, iron-manganese removing method, iron-manganese removing oxidation catalyst, and manufacturing method of iron-manganese removing oxidation catalyst
JP2009274020A (en) * 2008-05-15 2009-11-26 Fuso Kensetsu Kogyo Kk Method for cleaning raw water
JP2010089046A (en) * 2008-10-10 2010-04-22 Japan Organo Co Ltd Biofiltration device
JP2011200829A (en) * 2010-03-26 2011-10-13 Fuso Kensetsu Kogyo Kk Raw water purifying method and apparatus of the same
CN102713091A (en) * 2010-01-12 2012-10-03 格伦德福斯管理联合股份公司 Deep-well pump system
CN104445829A (en) * 2014-12-15 2015-03-25 东北农业大学 Treating method of biologically and synchronously removing high iron and manganese in underground drinking water under low-temperature condition
CN105523644A (en) * 2015-12-27 2016-04-27 北京工业大学 High-iron, high-manganese and high-ammonia nitrogen underground water integral treatment apparatus and method thereof
CN106745665A (en) * 2017-03-29 2017-05-31 珠海京工检测技术有限公司 A kind of device and method for improving biological deferrization manganese efficiency
CN107973456A (en) * 2017-11-27 2018-05-01 江苏中超环保股份有限公司 A kind of small-sized domestic sewage treater and its processing method
JP2020062628A (en) * 2018-10-19 2020-04-23 国立大学法人九州大学 Method of manganese removal
CN112194287A (en) * 2020-10-21 2021-01-08 中国石油化工股份有限公司 Sewage treatment device and method thereof
CN114477414A (en) * 2022-01-17 2022-05-13 哈尔滨工业大学 Device and method for removing iron and manganese in underground water based on self-circulation of high-concentration active manganese oxide

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148696A (en) * 2007-12-20 2009-07-09 Daiki Axis:Kk Iron-manganese removing apparatus, iron-manganese removing method, iron-manganese removing oxidation catalyst, and manufacturing method of iron-manganese removing oxidation catalyst
JP2009274020A (en) * 2008-05-15 2009-11-26 Fuso Kensetsu Kogyo Kk Method for cleaning raw water
JP2010089046A (en) * 2008-10-10 2010-04-22 Japan Organo Co Ltd Biofiltration device
CN102713091A (en) * 2010-01-12 2012-10-03 格伦德福斯管理联合股份公司 Deep-well pump system
JP2011200829A (en) * 2010-03-26 2011-10-13 Fuso Kensetsu Kogyo Kk Raw water purifying method and apparatus of the same
CN104445829A (en) * 2014-12-15 2015-03-25 东北农业大学 Treating method of biologically and synchronously removing high iron and manganese in underground drinking water under low-temperature condition
CN104445829B (en) * 2014-12-15 2015-12-30 东北农业大学 The biological synchronous treatment process removing high-iron and high manganese in underground drinking water of a kind of cold condition
CN105523644B (en) * 2015-12-27 2017-11-21 北京工业大学 A kind of integrated treatment unit and method of the high ammonia nitrogen underground water of high-iron and high manganese
CN105523644A (en) * 2015-12-27 2016-04-27 北京工业大学 High-iron, high-manganese and high-ammonia nitrogen underground water integral treatment apparatus and method thereof
CN106745665A (en) * 2017-03-29 2017-05-31 珠海京工检测技术有限公司 A kind of device and method for improving biological deferrization manganese efficiency
CN107973456A (en) * 2017-11-27 2018-05-01 江苏中超环保股份有限公司 A kind of small-sized domestic sewage treater and its processing method
JP2020062628A (en) * 2018-10-19 2020-04-23 国立大学法人九州大学 Method of manganese removal
WO2020080035A1 (en) * 2018-10-19 2020-04-23 国立大学法人九州大学 Method for removing manganese
JP7176686B2 (en) 2018-10-19 2022-11-22 国立大学法人九州大学 Manganese removal method
CN112194287A (en) * 2020-10-21 2021-01-08 中国石油化工股份有限公司 Sewage treatment device and method thereof
CN112194287B (en) * 2020-10-21 2022-06-24 中国石油化工股份有限公司 Sewage treatment device and method thereof
CN114477414A (en) * 2022-01-17 2022-05-13 哈尔滨工业大学 Device and method for removing iron and manganese in underground water based on self-circulation of high-concentration active manganese oxide
CN114477414B (en) * 2022-01-17 2022-09-09 哈尔滨工业大学 Device and method for removing iron and manganese in underground water based on self-circulation of high-concentration active manganese oxide

Similar Documents

Publication Publication Date Title
JP2007061809A (en) Method for purifying ground water and apparatus therefor
CN104926034B (en) Catalytic ozonation combines biofilter Treatment of Wastewater in Coking technique and device
KR100927629B1 (en) Wastewater treatment method and device
CN106745970A (en) A kind of processing system and method for removing organic extracts from water and ammonia nitrogen
JP2008518753A (en) Biological denitrification method and apparatus
JP2007289847A (en) Raw tap water purification method and its apparatus
JP4732845B2 (en) Water treatment method and apparatus
JP5049929B2 (en) Water treatment apparatus and water treatment method
EP2566821A1 (en) A method and plant for purifying raw water
JP2010082599A (en) Water treatment apparatus and water treatment method
KR20170038349A (en) Waste water treatment system
JP3731806B2 (en) Organic wastewater treatment method and apparatus
JP3575047B2 (en) Wastewater treatment method
KR20140099060A (en) Highrate clarifier filtration and tunnel construction wastewater treatment system using the same
JP2003088885A (en) Method and apparatus for treating organic waste water
JP2003290784A (en) Iron and manganese remover and method for the same
JP4908542B2 (en) Filtration method, filtration device and filtration pond
JP2002177956A (en) Water cleaning method and water cleaning plant
JPH01242187A (en) Treatment of aqueous suspension in single tank and equipment therefor
KR20170029853A (en) Phosphorus removal system of waste water treatment
KR20030076549A (en) Nutrient removal of wastewater using Struvite crystalization
JP4403704B2 (en) Biofilm filtration apparatus and treatment method
JP2008049251A (en) Apparatus for removing nitrogen
JP2008212865A (en) Nitration tank
JP3257944B2 (en) Sewage treatment method and sewage treatment apparatus

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090707