JP2007061108A - Method for decomposing organic halogen compound - Google Patents

Method for decomposing organic halogen compound Download PDF

Info

Publication number
JP2007061108A
JP2007061108A JP2005205361A JP2005205361A JP2007061108A JP 2007061108 A JP2007061108 A JP 2007061108A JP 2005205361 A JP2005205361 A JP 2005205361A JP 2005205361 A JP2005205361 A JP 2005205361A JP 2007061108 A JP2007061108 A JP 2007061108A
Authority
JP
Japan
Prior art keywords
propanol
organic halogen
halogen compound
reaction
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005205361A
Other languages
Japanese (ja)
Other versions
JP4963014B2 (en
Inventor
Yuuji Ukisu
祐二 浮須
Tatsuo Miyadera
達雄 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005205361A priority Critical patent/JP4963014B2/en
Publication of JP2007061108A publication Critical patent/JP2007061108A/en
Application granted granted Critical
Publication of JP4963014B2 publication Critical patent/JP4963014B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Fire-Extinguishing Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently decomposing a harmful organic halogen compound under a mild condition. <P>SOLUTION: The organic halogen compound is brought into contact with a 2-propanol / methanol liquid mixture and made to react therewith under the presence of a catalyst and an alkaline compound and is dehalogenated / made harmless. The 2-propanol / methanol liquid mixture preferably has a methanol mixing ratio of 0.5-50 when the entire volume of the liquid mixture is 100. The catalyst preferably employs a carrier carrying at least one selected from platinum, palladium, ruthenium, rhodium, nickel or their oxides. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機ハロゲン化合物を脱ハロゲン・無害化する分解方法に関する。   The present invention relates to a decomposition method for dehalogenating and detoxifying an organic halogen compound.

有機ハロゲン化合物には、クロロベンゼン類、ポリ塩化ビフェニル(PCB)のように人体に対する毒性が高いものが多く、しかも化学的に非常に安定であるため、いったん環境中に放出されると長期間残存し、蓄積される恐れがある。そのため、廃棄物として排出される有害な有機ハロゲン化合物を無害化処理する技術の開発が進められている。   Many of the organic halogen compounds, such as chlorobenzenes and polychlorinated biphenyls (PCB), are highly toxic to the human body and are chemically very stable. Therefore, once they are released into the environment, they remain for a long time. , May accumulate. Therefore, development of technology for detoxifying harmful organic halogen compounds discharged as waste is being promoted.

有機ハロゲン化合物の無害化処理の主な方法としては従来、焼却処理、生物処理、化学処理等が提案されている。しかし、焼却処理では1100℃以上の高温を必要とし、ハロゲン化物の分解時に発生する塩酸等の強酸による装置の腐食に対する対策を講じなければならないのに加え、ダイオキシン類等の毒性の高い化学物質が生成する危険性がある。また、微生物を用いる生物処理では、分解が完了するまでに長時間を要するという欠点がある。   Conventionally, incineration treatment, biological treatment, chemical treatment, and the like have been proposed as the main methods for detoxifying organic halogen compounds. However, incineration requires a high temperature of 1100 ° C or higher, and in addition to taking measures against corrosion of equipment caused by strong acids such as hydrochloric acid generated during the decomposition of halides, highly toxic chemicals such as dioxins are present. There is a risk of generating. In addition, the biological treatment using microorganisms has a drawback that it takes a long time to complete the decomposition.

これに対し、化学処理法は、短時間で、しかも比較的低温で有機ハロゲン化合物を分解できるという特徴を有する。主な化学処理法としては、水素添加法、光照射法、超臨界水法などが提案されている。水素添加法は、貴金属触媒等の存在下で水素ガスを添加して脱ハロゲン化する方法であるが、水素ガスを用いるため爆発の危険があるのに加え、触媒の活性劣化の問題もある。光照射法は、常温で分解反応が進行するという利点はあるものの、反応の効率が低いという問題があり、生成物として有害なハロゲン化合物の重合体が生成する可能性もある。超臨界水法は、水を374℃、218気圧以上の超臨界状態にして加水分解する方法であるが、高温、高圧を必要とするため安全性に問題があり、装置の大型化も困難である。   On the other hand, the chemical treatment method is characterized in that the organic halogen compound can be decomposed in a short time and at a relatively low temperature. As a main chemical treatment method, a hydrogenation method, a light irradiation method, a supercritical water method and the like have been proposed. The hydrogenation method is a method of dehalogenating by adding hydrogen gas in the presence of a noble metal catalyst or the like. However, since hydrogen gas is used, there is a risk of explosion, and there is also a problem of catalyst activity deterioration. Although the light irradiation method has an advantage that the decomposition reaction proceeds at room temperature, there is a problem that the efficiency of the reaction is low, and there is a possibility that a harmful halogen compound polymer is generated as a product. The supercritical water method is a method in which water is hydrolyzed in a supercritical state of 374 ° C. and 218 atm or higher. However, since it requires high temperature and high pressure, there is a problem in safety and it is difficult to enlarge the apparatus. is there.

本発明者等は、先に芳香族ハロゲン化合物、又はハロゲン化脂肪族炭化水素を、2−プロパノ−ルと、触媒及びアルカリ化合物の存在下に反応させることにより、脱ハロゲン、無害化する方法を提案した。(特許文献1及び2参照)
これらの方法は、従来技術に比較して有機ハロゲン化合物を低コストで処理することができるものであるが、さらに反応時間を短縮し、低コストで効率良く有機ハロゲン化合物を処理する方法が求められていた。
特開平8−266888号公報 特開平11−226399号公報
The present inventors have previously made a method of dehalogenating and detoxifying an aromatic halogen compound or halogenated aliphatic hydrocarbon by reacting 2-propanol with a catalyst and an alkali compound. Proposed. (See Patent Documents 1 and 2)
These methods can process an organic halogen compound at a low cost compared with the prior art, but there is a need for a method for further reducing the reaction time and efficiently treating the organic halogen compound at a low cost. It was.
JP-A-8-266888 JP 11-226399 A

本発明は、上記従来技術の問題点を解消し、有害な有機ハロゲン化合物を温和な条件で効率よく分解する方法を提供することを目的とする。   The object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for efficiently decomposing harmful organic halogen compounds under mild conditions.

本発明者らは鋭意研究した結果、2−プロパノ−ル・メタノ−ル混合液、触媒及びアルカリを用いると、温和な条件で、かつ、短時間で有機ハロゲン化合物を分解しうること見い出し、この知見に基づき本発明をなすに至った。
すなわち本発明は、次の1〜4の構成を採用するものである。
1.有機ハロゲン化合物を2−プロパノ−ル・メタノ−ル混合液と、触媒及びアルカリ化合物の存在下に反応させて脱ハロゲン・無害化することを特徴とする有機ハロゲン化合物の分解方法。
2.前記2−プロパノ−ル・メタノ−ル混合液の全容積を100としたとき、メタノ−ルの混合割合が0.1〜50であることを特徴とする1に記載の有機ハロゲン化合物の分解方法。
3.前記触媒が、白金、パラジウム、ルテニウム、ロジウム、ニッケル又はそれらの酸化物から選ばれた少なくとも1種を担体に担持させたものであることを特徴とする1又は2に記載の有機ハロゲン化合物の分解方法。
4.前記アルカリ化合物が、水酸化リチウム、水酸化ナトリウム又は水酸化カリウムから選ばれた少なくとも1種であることを特徴とする1〜3のいずれかに記載の有機ハロゲン化合物の分解方法。
As a result of diligent research, the present inventors have found that when a 2-propanol / methanol mixed solution, a catalyst and an alkali are used, an organic halogen compound can be decomposed in a short period of time under mild conditions. The present invention has been made based on the findings.
That is, the present invention employs the following configurations 1 to 4.
1. A method for decomposing an organic halogen compound, which comprises dehalogenating and detoxifying an organic halogen compound by reacting with a 2-propanol / methanol mixed solution in the presence of a catalyst and an alkali compound.
2. 2. The method for decomposing an organic halogen compound according to 1, wherein a mixing ratio of methanol is 0.1 to 50 when the total volume of the 2-propanol / methanol mixed solution is 100. .
3. 3. The decomposition of the organic halogen compound according to 1 or 2, wherein the catalyst is a catalyst in which at least one selected from platinum, palladium, ruthenium, rhodium, nickel or oxides thereof is supported on a carrier. Method.
4). 4. The method for decomposing an organic halogen compound according to any one of 1 to 3, wherein the alkali compound is at least one selected from lithium hydroxide, sodium hydroxide, or potassium hydroxide.

本発明によれば、安価な2−プロパノ−ルとメタノ−ルを溶媒として用いて、常圧、83℃以下という温和な条件で有機ハロゲン化合物を脱ハロゲン化して無害化することができる。そのため、省エネルギ−並びにランニングコストの低減を達成することができる。本発明においては、装置を腐食させる強酸の生成もなく、また、高価で爆発の危険性がある水素ガスを使用しないので、安全に、かつ低コストで実施できる。また本発明では、容易に触媒を分離、再使用できる。   According to the present invention, an organic halogen compound can be dehalogenated and detoxified using mild 2-propanol and methanol as a solvent under mild conditions of normal pressure and 83 ° C. or lower. Therefore, energy saving and reduction of running cost can be achieved. In the present invention, no strong acid that corrodes the apparatus is generated, and hydrogen gas that is expensive and has a risk of explosion is not used. Therefore, the present invention can be carried out safely and at low cost. In the present invention, the catalyst can be easily separated and reused.

本発明において無害化処理しうる化合物は、置換基としてハロゲン原子を少なくとも1つ有する有機化合物であり、芳香族炭化水素でも脂肪族炭化水素でもよい。また、ハロゲン原子以外の置換基を有していてもよい。炭素数1〜20程度の炭化水素が好ましく、炭素数1〜12がさらに好ましい。このようなものとして具体的には、例えば、クロロベンゼン、PCB、塩素化ダイオキシン、トリクロロエチレンなどがあげられる。   The compound that can be detoxified in the present invention is an organic compound having at least one halogen atom as a substituent, and may be an aromatic hydrocarbon or an aliphatic hydrocarbon. Moreover, you may have substituents other than a halogen atom. A hydrocarbon having 1 to 20 carbon atoms is preferable, and 1 to 12 carbon atoms is more preferable. Specific examples of such a material include chlorobenzene, PCB, chlorinated dioxin, and trichloroethylene.

次に本発明を詳細に説明する。アルカリ化合物を溶解した2−プロパノ−ル・メタノ−ル混合液に有機ハロゲン化合物と触媒を添加した後、例えばスタ−ラ−と攪拌子を使用して、攪拌しながら反応を行う。反応温度は室温近傍でよいが、必要に応じて反応溶液は2−プロパノ−ルの沸点(83℃)以下に加熱される。
2−プロパノ−ル・メタノ−ル混合液は、全容積を100としたとき、メタノ−ルの混合割合が容積で0.1〜50、特に0.1〜25であるものが好ましい。反応溶液中の有機ハロゲン化合物濃度は特に制限はないが、通常5%重量以下であり、好ましくは0.1〜1重量%である。アルカリの添加量は、有機ハロゲン化合物中のハロゲン原子とのモル比で1.0以上であればよいが、2〜10程度が好適である。アルカリ化合物は反応開始前に全量を反応溶液に溶解させておくことが望ましいが、常にアルカリ化合物が飽和濃度に近い状態になるように適宜添加してもよく、あるいは完全に溶解しない場合には固体のまま添加してもよい。触媒の添加量は特に制限はないが、1〜50g/Lが好適である。
Next, the present invention will be described in detail. After adding the organic halogen compound and the catalyst to the 2-propanol / methanol mixed solution in which the alkali compound is dissolved, the reaction is carried out with stirring using, for example, a stirrer and a stirrer. Although the reaction temperature may be around room temperature, the reaction solution is heated to the boiling point (83 ° C.) or lower of 2-propanol as necessary.
The 2-propanol / methanol mixed solution is preferably such that when the total volume is 100, the mixing ratio of methanol is 0.1 to 50, particularly 0.1 to 25 in volume. The concentration of the organic halogen compound in the reaction solution is not particularly limited, but is usually 5% by weight or less, preferably 0.1 to 1% by weight. The addition amount of the alkali may be 1.0 or more in terms of a molar ratio with the halogen atom in the organic halogen compound, but about 2 to 10 is preferable. It is desirable to dissolve the entire amount of the alkali compound in the reaction solution before the start of the reaction. However, the alkali compound may be added as appropriate so that the alkali compound is always close to the saturated concentration, or a solid if not completely dissolved. It may be added as it is. The addition amount of the catalyst is not particularly limited, but 1 to 50 g / L is preferable.

前記分解法において、触媒としては、白金、パラジウム、ルテニウム、ロジウム、ニッケル又はそれらの酸化物から選ばれた少なくとも1種からなるものが使用できる。通常、触媒には上記金属成分を担体に担持したものを用いる。担体としては、シリカゲル、アルミナ等の金属酸化物や活性炭を用いることができる。上記担体のなかでは、特に大きな表面積を有する活性炭が好ましい。金属の担持量には特に制限はないが、0.1〜10重量%担持したものが好適である。   In the decomposition method, as the catalyst, a catalyst composed of at least one selected from platinum, palladium, ruthenium, rhodium, nickel or oxides thereof can be used. Usually, a catalyst is used in which the metal component is supported on a carrier. As the carrier, metal oxides such as silica gel and alumina, and activated carbon can be used. Among the above carriers, activated carbon having a particularly large surface area is preferable. The amount of metal supported is not particularly limited, but a metal supported by 0.1 to 10% by weight is preferable.

アルカリ化合物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等を使用することができるが、特に安価でアルコ−ルに対して溶解度が高い水酸化ナトリウム又は水酸化カリウムが好ましい。反応温度は2−プロパノ−ルの沸点である83℃を越えることはないが、室温(25℃程度)でも十分に反応が進行する。反応雰囲気には特に制限はないが、反応温度が高い場合には、安全性を考慮して窒素等の不活性ガス雰囲気下で行うことが望ましい。また、この分解反応は常圧で行うことができる。   As the alkali compound, lithium hydroxide, sodium hydroxide, potassium hydroxide, or the like can be used, and sodium hydroxide or potassium hydroxide that is particularly inexpensive and highly soluble in alcohol is preferable. The reaction temperature does not exceed 83 ° C. which is the boiling point of 2-propanol, but the reaction proceeds sufficiently even at room temperature (about 25 ° C.). The reaction atmosphere is not particularly limited, but when the reaction temperature is high, it is desirable to carry out in an inert gas atmosphere such as nitrogen in consideration of safety. In addition, this decomposition reaction can be carried out at normal pressure.

一般に、反応時間は、有機ハロゲン化合物濃度、触媒量、反応温度に依存するが、これらの反応条件が同じ場合、本発明では、2−プロパノ−ル・メタノ−ル混合溶媒を用いることにより、2−プロパノ−ルまたはメタノ−ルを単独で溶媒として用いる従来法より、反応時間を大幅に短縮することができる。   In general, the reaction time depends on the concentration of the organic halogen compound, the amount of catalyst, and the reaction temperature. When these reaction conditions are the same, in the present invention, by using a 2-propanol / methanol mixed solvent, 2 -The reaction time can be greatly shortened compared with the conventional method using propanol or methanol alone as a solvent.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれらに限定されるものではない。
(比較例1)
水酸化ナトリウム12mgを溶解した2−プロパノ−ル5mLを試験管に採り、パラ−クロロメトキシベンゼン8mgを加えた。さらに、触媒として活性炭上に5重量%のパラジウムを担持させたもの(Pd/C)を10mg加え、スタ−ラ−で撹拌しながら30℃で反応させた。ガスクロマトグラフ−質量分析計で反応を追跡したところ、パラ−クロロメトキシベンゼンの反応率が100%に達するのに、180分の反応時間を要した。脱塩素生成物としては、メトキシベンゼンのみが検出された。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these.
(Comparative Example 1)
5 mL of 2-propanol in which 12 mg of sodium hydroxide was dissolved was taken in a test tube, and 8 mg of para-chloromethoxybenzene was added. Further, 10 mg of a catalyst in which 5% by weight of palladium was supported on activated carbon (Pd / C) was added as a catalyst, and the mixture was reacted at 30 ° C. while stirring with a stirrer. When the reaction was traced with a gas chromatograph-mass spectrometer, it took 180 minutes for the reaction rate of para-chloromethoxybenzene to reach 100%. Only methoxybenzene was detected as the dechlorination product.

(比較例2)
溶媒にメタノ−ルを用いた以外は、比較例1と同様にして、パラ−クロロメトキシベンゼンの脱塩素反応を行った。ガスクロマトグラフ−質量分析計で反応を追跡したところ、パラ−クロロメトキシベンゼンの反応率が100%に達するのに、180分の反応時間を要した。脱塩素生成物としては、メトキシベンゼンのみが検出された。
(Comparative Example 2)
A dechlorination reaction of para-chloromethoxybenzene was carried out in the same manner as in Comparative Example 1 except that methanol was used as the solvent. When the reaction was traced with a gas chromatograph-mass spectrometer, it took 180 minutes for the reaction rate of para-chloromethoxybenzene to reach 100%. Only methoxybenzene was detected as the dechlorination product.

(実施例1)
溶媒として、2−プロパノールに代えて、混合液の全容積を100としたときメタノ−ルの混合割合が1である2−プロパノ−ル・メタノ−ル混合液を使用した以外は、比較例1と同様にして、パラ−クロロメトキシベンゼンの脱塩素反応を行った。ガスクロマトグラフ−質量分析計で反応を追跡したところ、パラ−クロロメトキシベンゼンの反応率が100%に達するのに、20分の反応時間を要した。脱塩素生成物としては、メトキシベンゼンのみが検出された。このように、2−プロパノ−ル・メタノ−ル混合液を用いると、比較例1及び2に比べ、反応時間を短縮することができた。
Example 1
Comparative Example 1 except that, instead of 2-propanol, a 2-propanol / methanol mixed solution having a methanol mixing ratio of 1 when the total volume of the mixed solution was 100 was used instead of 2-propanol. In the same manner as described above, dechlorination reaction of para-chloromethoxybenzene was carried out. When the reaction was traced with a gas chromatograph-mass spectrometer, it took 20 minutes for the reaction rate of para-chloromethoxybenzene to reach 100%. Only methoxybenzene was detected as the dechlorination product. As described above, when the 2-propanol / methanol mixed solution was used, the reaction time could be shortened as compared with Comparative Examples 1 and 2.

(実施例2)
溶媒として、2−プロパノールに代えて、混合液の全容積を100としたときメタノ−ルの混合割合が5である2−プロパノ−ル・メタノ−ル混合液を使用した以外は、比較例1と同様にして、パラ−クロロメトキシベンゼンの脱塩素反応を行った。ガスクロマトグラフ−質量分析計で反応を追跡したところ、パラ−クロロメトキシベンゼンの反応率が100%に達するのに、30分の反応時間を要した。脱塩素生成物としては、メトキシベンゼンのみが検出された。このように、2−プロパノ−ル・メタノ−ル混合液を用いると、比較例1及び2に比べ、反応時間を短縮することができた。
(Example 2)
Comparative Example 1 except that, instead of 2-propanol, a 2-propanol / methanol mixed solution having a methanol mixing ratio of 5 when the total volume of the mixed solution was 100 was used instead of 2-propanol. In the same manner as described above, dechlorination reaction of para-chloromethoxybenzene was carried out. When the reaction was monitored with a gas chromatograph-mass spectrometer, it took 30 minutes for the reaction rate of para-chloromethoxybenzene to reach 100%. Only methoxybenzene was detected as the dechlorination product. As described above, when the 2-propanol / methanol mixed solution was used, the reaction time could be shortened as compared with Comparative Examples 1 and 2.

(実施例3)
溶媒として、2−プロパノールに代えて、混合液の全容積を100としたときメタノ−ルの混合割合が25である2−プロパノ−ル・メタノ−ル混合液を使用した以外は、比較例1と同様にして、パラ−クロロメトキシベンゼンの脱塩素反応を行った。ガスクロマトグラフ−質量分析計で反応を追跡したところ、パラ−クロロメトキシベンゼンの反応率が100%に達するのに、60分の反応時間を要した。脱塩素生成物としては、メトキシベンゼンのみが検出された。このように、2−プロパノ−ル・メタノ−ル混合液を用いると、比較例1及び2に比べ、反応時間を短縮することができた。
(Example 3)
Comparative Example 1 except that, instead of 2-propanol, a 2-propanol / methanol mixed solution having a methanol mixing ratio of 25 when the total volume of the mixed solution was 100 was used instead of 2-propanol. In the same manner as described above, dechlorination reaction of para-chloromethoxybenzene was carried out. When the reaction was monitored with a gas chromatograph-mass spectrometer, a reaction time of 60 minutes was required for the reaction rate of para-chloromethoxybenzene to reach 100%. Only methoxybenzene was detected as the dechlorination product. As described above, when the 2-propanol / methanol mixed solution was used, the reaction time could be shortened as compared with Comparative Examples 1 and 2.

(実施例4)
溶媒として、2−プロパノールに代えて、混合液の全容積を100としたときメタノ−ルの混合割合が50である2−プロパノ−ル・メタノ−ル混合液を使用した以外は、比較例1と同様にして、パラ−クロロメトキシベンゼンの脱塩素反応を行った。ガスクロマトグラフ−質量分析計で反応を追跡したところ、パラ−クロロメトキシベンゼンの反応率が100%に達するのに、120分の反応時間を要した。脱塩素生成物としては、メトキシベンゼンのみが検出された。このように、2−プロパノ−ル・メタノ−ル混合液を用いると、比較例1及び2に比べ、反応時間を短縮することができた。
Example 4
Comparative Example 1 except that, instead of 2-propanol, a 2-propanol / methanol mixed solution having a methanol mixing ratio of 50 when the total volume of the mixed solution was 100 was used instead of 2-propanol. In the same manner as described above, dechlorination reaction of para-chloromethoxybenzene was carried out. When the reaction was monitored with a gas chromatograph-mass spectrometer, it took 120 minutes for the reaction rate of para-chloromethoxybenzene to reach 100%. Only methoxybenzene was detected as the dechlorination product. As described above, when the 2-propanol / methanol mixed solution was used, the reaction time could be shortened as compared with Comparative Examples 1 and 2.

上記実施例1〜4及び比較例1,2における反応時間とパラ−クロロメトキシベンゼンの反応率の関係を図1に示した。
図1に見られるように、本発明では溶媒として2−プロパノ−ル・メタノ−ル混合液を用いることによって、2−プロパノール又はメタノールを単独で使用する場合に比較して、反応時間を大幅に短縮することができる。特に、2−プロパノ−ル・メタノ−ル混合液の全容積を100としたときに、メタノールの混合割合が1〜50、特に1〜25である混合液を使用した場合には、反応時間を一段と短縮することができる。
The relationship between the reaction time and the reaction rate of para-chloromethoxybenzene in Examples 1 to 4 and Comparative Examples 1 and 2 is shown in FIG.
As shown in FIG. 1, in the present invention, by using a 2-propanol / methanol mixed solution as a solvent, the reaction time is greatly increased as compared with the case of using 2-propanol or methanol alone. It can be shortened. In particular, when the total volume of the 2-propanol / methanol mixed solution is 100, when a mixed solution having a methanol mixing ratio of 1 to 50, particularly 1 to 25, is used, the reaction time is reduced. This can be further shortened.

産業界では、有害な有機ハロゲン化合物が大量に用いられ、使用済みのものは廃棄されている。本発明方法によれば、このような有機ハロゲン化合物を温和な条件で効率よく脱ハロゲン・無害化することができる。   In industry, harmful organic halogen compounds are used in large quantities, and used ones are discarded. According to the method of the present invention, such an organic halogen compound can be efficiently dehalogenated and detoxified under mild conditions.

実施例1〜4及び比較例1,2における反応時間とパラ−クロロメトキシベンゼンの反応率の関係を示す図である。It is a figure which shows the relationship between the reaction time in Examples 1-4 and Comparative Examples 1 and 2, and the reaction rate of para-chloromethoxybenzene.

Claims (4)

有機ハロゲン化合物を2−プロパノ−ル・メタノ−ル混合液と、触媒及びアルカリ化合物の存在下に反応させて脱ハロゲン・無害化することを特徴とする有機ハロゲン化合物の分解方法。   A method for decomposing an organic halogen compound, which comprises dehalogenating and detoxifying an organic halogen compound by reacting with a 2-propanol / methanol mixed solution in the presence of a catalyst and an alkali compound. 前記2−プロパノ−ル・メタノ−ル混合液の全容積を100としたとき、メタノ−ルの混合割合が0.1〜50であることを特徴とする請求項1記載の有機ハロゲン化合物の分解方法。   2. The decomposition of an organic halogen compound according to claim 1, wherein a mixing ratio of methanol is 0.1 to 50 when the total volume of the 2-propanol / methanol mixed solution is 100. Method. 前記触媒が、白金、パラジウム、ルテニウム、ロジウム、ニッケル又はそれらの酸化物から選ばれた少なくとも1種を担体に担持させたものであることを特徴とする請求項1又は2記載の有機ハロゲン化合物の分解方法。   3. The organohalogen compound according to claim 1 or 2, wherein the catalyst comprises a support on which at least one selected from platinum, palladium, ruthenium, rhodium, nickel or oxides thereof is supported. Disassembly method. 前記アルカリ化合物が、水酸化リチウム、水酸化ナトリウム又は水酸化カリウムから選ばれた少なくとも1種であることを特徴とする請求項1〜3のいずれかに記載の有機ハロゲン化合物の分解方法。







The said alkali compound is at least 1 sort (s) selected from lithium hydroxide, sodium hydroxide, or potassium hydroxide, The decomposition method of the organic halogen compound in any one of Claims 1-3 characterized by the above-mentioned.







JP2005205361A 2005-07-14 2005-07-14 Decomposition method of organic halogen compounds Active JP4963014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205361A JP4963014B2 (en) 2005-07-14 2005-07-14 Decomposition method of organic halogen compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205361A JP4963014B2 (en) 2005-07-14 2005-07-14 Decomposition method of organic halogen compounds

Publications (2)

Publication Number Publication Date
JP2007061108A true JP2007061108A (en) 2007-03-15
JP4963014B2 JP4963014B2 (en) 2012-06-27

Family

ID=37924025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205361A Active JP4963014B2 (en) 2005-07-14 2005-07-14 Decomposition method of organic halogen compounds

Country Status (1)

Country Link
JP (1) JP4963014B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125675A (en) * 2010-12-14 2012-07-05 National Institute Of Advanced Industrial Science & Technology Method of preparing supported palladium catalyst and decomposition method of organic halogen compound using the catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266888A (en) * 1995-04-03 1996-10-15 Ebara Corp Method for decomposing aromatic halogen compound
JPH1085584A (en) * 1996-09-17 1998-04-07 Toshiba Corp Decomposition process for halogen containing organic compound
JPH11226399A (en) * 1998-02-19 1999-08-24 Agency Of Ind Science & Technol Treatment of halogenated aliphatic hydrocarbon
JP2000301170A (en) * 1999-02-16 2000-10-31 Hitachi Zosen Corp Method for decomposition treatment of organochlorine compound
JP2003171319A (en) * 2001-12-06 2003-06-20 Nikko Rika Kk Method for treating polychlorinated biphenyl
JP2004277292A (en) * 2003-03-13 2004-10-07 Nikko Rika Kk Method for treating dioxins and pcb

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266888A (en) * 1995-04-03 1996-10-15 Ebara Corp Method for decomposing aromatic halogen compound
JPH1085584A (en) * 1996-09-17 1998-04-07 Toshiba Corp Decomposition process for halogen containing organic compound
JPH11226399A (en) * 1998-02-19 1999-08-24 Agency Of Ind Science & Technol Treatment of halogenated aliphatic hydrocarbon
JP2000301170A (en) * 1999-02-16 2000-10-31 Hitachi Zosen Corp Method for decomposition treatment of organochlorine compound
JP2003171319A (en) * 2001-12-06 2003-06-20 Nikko Rika Kk Method for treating polychlorinated biphenyl
JP2004277292A (en) * 2003-03-13 2004-10-07 Nikko Rika Kk Method for treating dioxins and pcb

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125675A (en) * 2010-12-14 2012-07-05 National Institute Of Advanced Industrial Science & Technology Method of preparing supported palladium catalyst and decomposition method of organic halogen compound using the catalyst

Also Published As

Publication number Publication date
JP4963014B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4963014B2 (en) Decomposition method of organic halogen compounds
JP2019037931A (en) Hydrothermal oxidation reaction catalyst composed of binary oxide containing copper, and method of treating poorly-degradable organic pollutant using the catalyst
WO2000071472A1 (en) Method of decomposing organochlorine compound
US6483006B1 (en) Method of decomposing organochlorine compound
KR20110076668A (en) Detoxification method of pbdes by debrominating agent and alkali compound
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP4337958B2 (en) Method for dechlorination of aromatic chlorine compounds
JP3442623B2 (en) Decomposition method of halogen-containing organic compounds
JP2007105059A (en) Method of decomposing dioxins
JP2000042575A (en) Treatment of water containing endocrine disrupters
JP2008272594A (en) Electrolytic reduction dehalogenation method for activated carbon adsorbed organic halide
JP2003183183A (en) Method for decomposition treatment of halogen- containing organic compound
JP3216773B2 (en) Decomposition method of aromatic halogen compound
JP2006117533A (en) Decomposition method for hexachlorocyclohexane
JPH11226399A (en) Treatment of halogenated aliphatic hydrocarbon
EP0850092A1 (en) Process for the decontamination and treatment with oxidative counterflow of a liquid, gaseous or solid matrix
JP2001340488A (en) Method for detoxifying dioxins
JP2007111661A (en) Regenerating method for dechlorinating catalyst
JP2008194063A (en) Method of degrading highly-concentrated organic chlorine compound
JP2003183184A (en) Method for decomposition treatment of halogen- containing organic compound
JP2005058974A (en) Method for detoxifying dioxins in incineration ash
JP3969632B2 (en) Method for decomposing halogen-containing organic compounds
JPH08141107A (en) Decomposing method for organic compound halide
JP2005253884A (en) Method for decomposition treatment and loop decomposition system for organic halogen compound
JP3497915B2 (en) Chemical decomposition method of polychlorobiphenyl by phase transfer catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

R150 Certificate of patent or registration of utility model

Ref document number: 4963014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250