JP2005058974A - Method for detoxifying dioxins in incineration ash - Google Patents

Method for detoxifying dioxins in incineration ash Download PDF

Info

Publication number
JP2005058974A
JP2005058974A JP2003296294A JP2003296294A JP2005058974A JP 2005058974 A JP2005058974 A JP 2005058974A JP 2003296294 A JP2003296294 A JP 2003296294A JP 2003296294 A JP2003296294 A JP 2003296294A JP 2005058974 A JP2005058974 A JP 2005058974A
Authority
JP
Japan
Prior art keywords
dioxins
ash
propanol
incineration ash
incineration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003296294A
Other languages
Japanese (ja)
Inventor
Yuuji Ukisu
祐二 浮須
Tatsuo Miyadera
達雄 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003296294A priority Critical patent/JP2005058974A/en
Publication of JP2005058974A publication Critical patent/JP2005058974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently detoxifying dioxins in incineration ash in a calm condition. <P>SOLUTION: In this method for detoxifying dioxins in the incineration ash, the ash containing dioxins is subjected to acidic treatment, and then allowed to react with 2-propanol in the presence of a hydrogen activating catalyst and an alkaline substance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、焼却灰中のダイオキシン類を無害化する方法に関する。   The present invention relates to a method for detoxifying dioxins in incineration ash.

都市ごみ焼却施設から環境中に排出されるダイオキシン類が社会問題となり、近年、その排出規制が強化されている。ダイオキシン類は非常に毒性が高く、ごく微量でも人体に影響を与える化学物質であり、しかも化学的に非常に安定であるため、いったん環境中に出ると長期間残存し、蓄積される恐れがある。なかでも、焼却施設から排出される焼却灰中には多量のダイオキシン類が含まれているため、その処理技術の開発が精力的に進められている。焼却灰中のダイオキシン類の主な処理法としては、溶融処理法、超臨界水法、触媒処理法等がこれまでに提案されている。溶融処理法は焼却灰を1200℃以上の高温条件下で加熱して、焼却灰中に含まれるダイオキシン類を分解する方法であるが、高温条件を作り出すためには、大量のエネルギーを投入しなければならず処理コストが上昇する。超臨界水法は、水を374℃、218気圧以上の超臨界状態にして、焼却灰中のダイオキシン類を加水分解する方法であるが、高温、高圧を必要とするため安全性に問題があるほか、装置の大型化が困難であるという欠点がある。また、触媒処理法は焼却灰を400℃程度に加熱してダイオキシン類をガス化させて気相に追い出し、ガス化したダイオキシン類を触媒と接触させて酸化分解する方法であるが、触媒を350〜400℃程度に加熱する必要があるため、より低い温度で作用する触媒の開発が望まれている。   Dioxins discharged into the environment from municipal waste incineration facilities have become a social problem, and in recent years their emission regulations have been strengthened. Dioxins are extremely toxic, are chemical substances that affect the human body even in very small amounts, and are chemically very stable, so once they enter the environment, they may remain and accumulate for a long time. . In particular, the incineration ash discharged from incineration facilities contains a large amount of dioxins, and therefore, the development of the treatment technology is energetically advanced. As main treatment methods for dioxins in incinerated ash, a melt treatment method, a supercritical water method, a catalyst treatment method, and the like have been proposed so far. The melt treatment method is a method that decomposes dioxins contained in the incineration ash by heating the incineration ash under a high temperature condition of 1200 ° C or higher. However, in order to create a high temperature condition, a large amount of energy must be input. Processing costs will increase. The supercritical water method is a method of hydrolyzing dioxins in the incinerated ash by setting water to a supercritical state of 374 ° C. and 218 atm or more, but it requires a high temperature and a high pressure, so there is a problem in safety. Another disadvantage is that it is difficult to increase the size of the apparatus. The catalyst treatment method is a method in which incinerated ash is heated to about 400 ° C. to gasify dioxins to expel them into the gas phase, and the gasified dioxins are brought into contact with the catalyst to oxidize and decompose. Since it is necessary to heat to about ˜400 ° C., development of a catalyst that operates at a lower temperature is desired.

特開2001−340488号公報(特許文献1)によれば、ダイオキシン類を無害化するために、該ダイオキシン類を、パラジウム等の水素活性化触媒及びアルカリ性物質の存在下で、第2級アルコールと反応させる方法が提案されている。
この方法によれば、ダイオキシン類をそれに含まれている塩素を温和な条件下で脱塩素して無害化することができるが、焼却灰中に含まれているダイオキシン類の無害化処理法としては、未だ満足し得るものではなかった。
According to Japanese Patent Application Laid-Open No. 2001-340488 (Patent Document 1), in order to detoxify dioxins, the dioxins are reacted with a secondary alcohol in the presence of a hydrogen activation catalyst such as palladium and an alkaline substance. A method of reacting has been proposed.
According to this method, dioxins can be dechlorinated by dechlorinating the chlorine contained in them under mild conditions, but as a detoxification treatment method for dioxins contained in incinerated ash, It was still not satisfactory.

特開2001−340488号公報JP 2001-340488 A

本発明は、焼却灰中のダイオキシン類を温和な条件で効率よく無害化する方法を提供することをその課題とする。   An object of the present invention is to provide a method for efficiently detoxifying dioxins in incineration ash under mild conditions.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、ダイオキシン類を含む焼却灰を酸処理した後、水素活性化触媒及びアルカリ性物質の存在下で、2−プロパノールと反応させるときには、該焼却灰中のダイオキシン類を容易に脱塩素化し、無害化し得ることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have conducted an acid treatment on incinerated ash containing dioxins and then reacting with 2-propanol in the presence of a hydrogen activation catalyst and an alkaline substance. The present inventors have found that dioxins in the incinerated ash can be easily dechlorinated and rendered harmless, thereby completing the present invention.

即ち、本発明によれば、ダイオキシン類を含む焼却灰を酸処理した後、水素活性化触媒及びアルカリ性物質の存在下で2−プロパノールと反応させることを特徴とする焼却灰中のダイオキシン類の無害化方法が提供される。   That is, according to the present invention, the incineration ash containing dioxins is acid-treated and then reacted with 2-propanol in the presence of a hydrogen activation catalyst and an alkaline substance. A method is provided.

本発明によれば、焼却灰中に含まれるダイオキシン類を、温和な条件下で効率よく無害化することができる。   According to the present invention, dioxins contained in incineration ash can be made harmless efficiently under mild conditions.

本発明の無害化対象物質であるダイオキシン類を含む焼却灰には、飛灰及び炉灰の両方が包含される。また、この場合のダイオキシン類には、従来公知の各種のもの、例えば、塩素化ジベンゾ−パラ−ダイオキシン(PCDDs)、塩素化ジベンゾフラン(PCDFs)、コプラナ−PCB(Co−PCBs)等が含まれる。   Incinerated ash containing dioxins, which are the detoxified substances of the present invention, includes both fly ash and furnace ash. The dioxins in this case include various conventionally known ones such as chlorinated dibenzo-para-dioxins (PCDDs), chlorinated dibenzofurans (PCDFs), coplanar-PCBs (Co-PCBs), and the like.

本発明で用いる水素活性化金属触媒としては、従来公知の各種のものを用いることができる。このようなものには、遷移金属、特に周期律表第8族金属、好ましくは白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)、ニッケル等が包含される。該水素活性化金属は、金属の他、酸化物等の金属化合物の状態で用いられる。   Various conventionally known catalysts can be used as the hydrogen-activated metal catalyst used in the present invention. Such include transition metals, particularly Group 8 metals of the Periodic Table, preferably platinum (Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), nickel and the like. The hydrogen activated metal is used in the form of a metal compound such as an oxide in addition to a metal.

本発明で用いる水素活性化金属触媒は、担体に担持させた担持触媒として好ましく用いることができる。該担体としては、従来公知の各種の多孔質物質、例えば、シリカゲル(シリカ)、アルミナ、シリカ−アルミナ、マグネシア、チタニア、ジルコニア、ゼオライト、セピオライト、クレー、活性炭等が用いられる。本発明では、特に、シリカゲルや、アルミナ、活性炭等の使用が好ましい。
水素活性化金属を担体に担持させた担持触媒において、該金属の担持量は、全触媒中、0.1〜20重量%、好ましくは0.5〜10重量%である。
The hydrogen-activated metal catalyst used in the present invention can be preferably used as a supported catalyst supported on a carrier. As the carrier, conventionally known various porous materials such as silica gel (silica), alumina, silica-alumina, magnesia, titania, zirconia, zeolite, sepiolite, clay, activated carbon and the like are used. In the present invention, it is particularly preferable to use silica gel, alumina, activated carbon or the like.
In a supported catalyst in which a hydrogen-activated metal is supported on a carrier, the amount of the supported metal is 0.1 to 20% by weight, preferably 0.5 to 10% by weight, based on the total catalyst.

本発明で用いるアルカリ性物質としては、塩化水素を中和し得るものであればどのようなものでも使用可能である。このようなものには、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸ナトリウム、水酸化カルシウム、水酸化マグネシウム等が包含される。本発明では、特に、安価で2−プロパノールに対して溶解度が高い水酸化ナトリウム又は水酸化カリウムが好ましい。該アルカリ性物質は、粉末状や2−プロパノール溶液状で用いられるが、好ましくは2−プロパノール溶液状で用いられる。この場合、該2−プロパノール溶液において、アルカリ性物質の濃度は、0.05〜5重量%、好ましくは0.1〜2重量%である。   As the alkaline substance used in the present invention, any substance can be used as long as it can neutralize hydrogen chloride. Such things include lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, calcium hydroxide, magnesium hydroxide and the like. In the present invention, sodium hydroxide or potassium hydroxide that is inexpensive and has high solubility in 2-propanol is particularly preferable. The alkaline substance is used in the form of powder or 2-propanol solution, but is preferably used in the form of 2-propanol solution. In this case, in the 2-propanol solution, the concentration of the alkaline substance is 0.05 to 5% by weight, preferably 0.1 to 2% by weight.

ダイオキシン類を含む焼却灰の酸処理は、該焼却灰を酸性水溶液と接触させることによって実施することができる。この場合、該酸としては、塩酸、硫酸、硝酸、リン酸等の無機酸の他、ギ酸や酢酸、クエン酸、有機スルホン酸等の有機酸を用いることができる。   The acid treatment of incineration ash containing dioxins can be carried out by bringing the incineration ash into contact with an acidic aqueous solution. In this case, as the acid, in addition to inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid, organic acids such as formic acid, acetic acid, citric acid, and organic sulfonic acid can be used.

焼却灰を酸処理するために用いる酸性水溶液において、該溶液に含まれる酸の濃度は、0.1〜10モル/L、好ましくは1〜5モル/Lである。焼却灰と酸性水溶液との接触法には、スプレー法や浸漬法等が包含される。該接触時間は、焼却灰の種類や酸性水溶液の種類によって異なるが、通常、1〜24時間、好ましくは2〜12時間である。また、その接触温度は常温〜50℃程度である。この酸処理により、焼却灰に含まれていたダイオキシン類が2−プロパノールに溶解しやすくなる。   In the acidic aqueous solution used for acid-treating the incineration ash, the concentration of the acid contained in the solution is 0.1 to 10 mol / L, preferably 1 to 5 mol / L. Examples of the contact method between the incinerated ash and the acidic aqueous solution include a spray method and a dipping method. Although this contact time changes with kinds of incineration ash and the kind of acidic aqueous solution, it is 1 to 24 hours normally, Preferably it is 2 to 12 hours. Moreover, the contact temperature is about normal temperature-about 50 degreeC. By this acid treatment, dioxins contained in the incineration ash are easily dissolved in 2-propanol.

酸性水溶液の使用割合は、通常、焼却灰100重量部当り100〜2000重量部、好ましくは200〜1000重量部である。   The usage ratio of the acidic aqueous solution is usually 100 to 2000 parts by weight, preferably 200 to 1000 parts by weight, per 100 parts by weight of incinerated ash.

本発明の方法は、2−プロパノール中に、酸処理した焼却灰、触媒及びアルカリ性物質を添加し、攪拌することによって実施される。2−プロパノール100重量部当り、該焼却灰の割合は、0.1〜50重量部、好ましくは1〜20重量部であり、該触媒の割合は、0.01〜10重量部、好ましくは0.1〜5重量部であり、アルカリ性物質の割合は、0.05〜5重量部、好ましくは0.1〜2重量部である。
反応温度は、常温〜82℃(2−プロパノールの沸点)、好ましくは30〜50℃である。
反応雰囲気は空気で良いが、安全性を考慮して窒素等の不活性ガス雰囲気下で行うことが望ましい。
The method of the present invention is performed by adding acid-treated incineration ash, a catalyst and an alkaline substance to 2-propanol and stirring. The proportion of the incinerated ash per 100 parts by weight of 2-propanol is 0.1 to 50 parts by weight, preferably 1 to 20 parts by weight, and the proportion of the catalyst is 0.01 to 10 parts by weight, preferably 0. 0.1-5 parts by weight, and the proportion of the alkaline substance is 0.05-5 parts by weight, preferably 0.1-2 parts by weight.
The reaction temperature is from room temperature to 82 ° C (the boiling point of 2-propanol), preferably from 30 to 50 ° C.
The reaction atmosphere may be air, but it is desirable to carry out in an inert gas atmosphere such as nitrogen in consideration of safety.

以下に、本発明における作用を説明する。焼却灰中に含まれるダイオキシン類は、撹拌中に2−プロパノールへ抽出されると同時に、触媒の作用により2−プロパノールと反応する。ダイオキシン類の2−プロパノールへの抽出は、焼却灰を塩酸等の酸で前処理することにより促進される。これは、焼却灰中に存在する炭酸塩をCOに、硫化物をHSに、さらに金属陽イオンを可溶性の塩化物にして焼却灰から取り除くことにより、焼却灰中に細孔構造ができ、抽出効率が向上するためと考えられる。また、本発明におけるダイオキシン類の分解は以下に示す反応式に従って進行するものと考えられる。ここでは、その1例として、ダイオキシン類が一塩化ジベンゾ−パラ−ダイオキシン(MCDD)で、アルカリ化合物が水酸化ナトリウムの場合を示す。 The operation in the present invention will be described below. Dioxins contained in the incinerated ash are extracted into 2-propanol during stirring, and at the same time, react with 2-propanol by the action of a catalyst. Extraction of dioxins into 2-propanol is facilitated by pretreating the incinerated ash with an acid such as hydrochloric acid. This is because the carbonate present in the incineration ash is removed from the incineration ash by converting the carbonate to CO 2 , the sulfide to H 2 S, and the metal cation to a soluble chloride. This is thought to be because the extraction efficiency is improved. The decomposition of dioxins in the present invention is considered to proceed according to the reaction formula shown below. Here, as an example, dioxins are dibenzo-para-dioxin monochloride (MCDD) and the alkali compound is sodium hydroxide.

Figure 2005058974
Figure 2005058974

触媒上で2−プロパノール1分子からアセトン1分子と2個の活性な水素種(H)が生成する。さらに触媒上で、ダイオキシン類中の塩素は活性水素種と置換反応を起こし、ダイオキシン類は脱塩素化されてジベンゾ−パラ−ダイオキシン(DD)と塩化水素が生成する。塩化水素は水酸化ナトリウムにより中和され、塩化ナトリウムと水が生成する。複数の塩素を含むダイオキシン類の場合には、逐次的に脱塩素反応が進行し、最終的にすべての塩素が水素で置換され無害化される。
以上のように、本発明における焼却灰中のダイオイシン類の無害化方法は、2−プロパノールによる溶媒抽出と2−プロパノールとの反応による無害化を同時に行うものである。
One molecule of 2-propanol and two active hydrogen species (H * ) are produced from one molecule of 2-propanol on the catalyst. Further, on the catalyst, chlorine in the dioxins undergoes a substitution reaction with the active hydrogen species, and the dioxins are dechlorinated to produce dibenzo-para-dioxin (DD) and hydrogen chloride. Hydrogen chloride is neutralized with sodium hydroxide to produce sodium chloride and water. In the case of dioxins containing a plurality of chlorines, the dechlorination reaction proceeds sequentially, and finally all chlorine is replaced with hydrogen and rendered harmless.
As described above, the method for detoxifying diiocins in incineration ash according to the present invention simultaneously performs solvent extraction with 2-propanol and detoxification by reaction with 2-propanol.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

比較例1
ごみ焼却施設から入手したダイオキシン類を含む焼却飛灰2.0gを、水酸化ナトリム(0.24g)を溶解した2−プロパノール(60 ml)に加え、さらに、5重量%のパラジウムをアルミナに担持した触媒(Pd/Al)0.20gを添加し、上部に冷却管が付いたフラスコ内で撹拌子で攪拌しながら、82℃で8時間反応させた。反応前後の焼却飛灰中のダイオキシン類(PCDDsとPCDFsの4塩化物〜8塩化物およびCo−PCBs)の濃度を高分解能ガスクロマトグラフ−質量分析計で分析した。焼却飛灰中のダイオキシン類濃度の合計は、反応前は2000ng/gであったが、反応後には1400ng/gに減少した。反応後の溶液中には、ダイオキシン類は検出されなかった。
Comparative Example 1
Add 2.0 g of incineration fly ash containing dioxins obtained from a garbage incineration facility to 2-propanol (60 ml) in which sodium hydroxide (0.24 g) is dissolved, and further support 5% by weight of palladium on alumina. The catalyst (Pd / Al 2 O 3 ) 0.20 g was added, and the mixture was allowed to react at 82 ° C. for 8 hours while stirring with a stirrer in a flask equipped with a condenser tube at the top. The concentration of dioxins (4 to 8 chlorides of PCDDs and PCDFs and Co-PCBs) in the incineration fly ash before and after the reaction was analyzed with a high resolution gas chromatograph-mass spectrometer. The total concentration of dioxins in the incineration fly ash was 2000 ng / g before the reaction, but decreased to 1400 ng / g after the reaction. Dioxins were not detected in the solution after the reaction.

実施例1
ごみ焼却施設から入手したダイオキシン類を含む焼却飛灰2.0gを2mol/L塩酸中に3時間浸してから、水で十分に洗浄し、110℃で3時間乾燥させた。この焼却飛灰を水酸化ナトリム(0.24g)を溶解した2−プロパノール(60 ml)に加え、さらに、5重量%のパラジウムをアルミナに担持した触媒(Pd/Al)0.20gを添加し、上部に冷却管が付いたフラスコ内で撹拌子で攪拌しながら、82℃で8時間反応させた。反応前後の焼却飛灰中のダイオキシン類(PCDDsとPCDFsの4塩化物〜8塩化物およびCo−PCBs)の濃度を高分解能ガスクロマトグラフ−質量分析計で分析した。焼却飛灰中のダイオキシン類濃度の合計は、反応前は2000ng/gであったが、反応後には500ng/gに減少した。反応後の溶液中には、ダイオキシン類は検出されなかった。
この実験結果から、焼却灰を酸処理することにより、ダイオキシン類の無害化を大幅に促進し得ることが明らかである。
Example 1
2.0 g of incineration fly ash containing dioxins obtained from a waste incineration facility was immersed in 2 mol / L hydrochloric acid for 3 hours, washed thoroughly with water, and dried at 110 ° C. for 3 hours. This incinerated fly ash was added to 2-propanol (60 ml) in which sodium hydroxide (0.24 g) was dissolved, and further, 0.20 g of a catalyst (Pd / Al 2 O 3 ) on which 5% by weight of palladium was supported on alumina. Was added, and the mixture was reacted at 82 ° C. for 8 hours while stirring with a stir bar in a flask having a condenser tube at the top. The concentration of dioxins (4 to 8 chlorides of PCDDs and PCDFs and Co-PCBs) in the incineration fly ash before and after the reaction was analyzed with a high resolution gas chromatograph-mass spectrometer. The total concentration of dioxins in the incineration fly ash was 2000 ng / g before the reaction, but decreased to 500 ng / g after the reaction. Dioxins were not detected in the solution after the reaction.
From this experimental result, it is clear that detoxification of dioxins can be greatly promoted by acid treatment of incinerated ash.

Claims (1)

ダイオキシン類を含む焼却灰を酸処理した後、水素活性化触媒及びアルカリ性物質の存在下で2−プロパノールと反応させることを特徴とする焼却灰中のダイオキシン類の無害化方法。   A method for detoxifying dioxins in incineration ash, comprising treating the incineration ash containing dioxins with acid and then reacting with 2-propanol in the presence of a hydrogen activation catalyst and an alkaline substance.
JP2003296294A 2003-08-20 2003-08-20 Method for detoxifying dioxins in incineration ash Pending JP2005058974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003296294A JP2005058974A (en) 2003-08-20 2003-08-20 Method for detoxifying dioxins in incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003296294A JP2005058974A (en) 2003-08-20 2003-08-20 Method for detoxifying dioxins in incineration ash

Publications (1)

Publication Number Publication Date
JP2005058974A true JP2005058974A (en) 2005-03-10

Family

ID=34372245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296294A Pending JP2005058974A (en) 2003-08-20 2003-08-20 Method for detoxifying dioxins in incineration ash

Country Status (1)

Country Link
JP (1) JP2005058974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514940B (en) * 2012-01-19 2018-03-14 Power Minerals Ltd Process for the treatment of ash, treated ash thus obtained and uses of treated ash
CN112570432A (en) * 2020-11-16 2021-03-30 浙江浙能技术研究院有限公司 Dechlorination method for coal-fired power plant desulfurization wastewater drying ash

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2514940B (en) * 2012-01-19 2018-03-14 Power Minerals Ltd Process for the treatment of ash, treated ash thus obtained and uses of treated ash
CN112570432A (en) * 2020-11-16 2021-03-30 浙江浙能技术研究院有限公司 Dechlorination method for coal-fired power plant desulfurization wastewater drying ash

Similar Documents

Publication Publication Date Title
KR19980087226A (en) Hydrolysis Method of Alkyl Monohalide
JPS625008A (en) Method of decomposing noxious organic halide
JP2005058974A (en) Method for detoxifying dioxins in incineration ash
JP3852856B1 (en) Decomposition method of dioxins
KR20010079510A (en) Method of decomposing organochlorine compound
KR20110076668A (en) Detoxification method of pbdes by debrominating agent and alkali compound
JP2004201967A (en) Method and apparatus for treating organohalogen compound
JP4337958B2 (en) Method for dechlorination of aromatic chlorine compounds
WO2000048968A1 (en) Method of decomposing organochlorine compound
JP4963014B2 (en) Decomposition method of organic halogen compounds
JP2001340488A (en) Method for detoxifying dioxins
JP2001259607A (en) Treatment method and apparatus for heavy metal or organic chlorine compound
JPH1190460A (en) Decomposition of halogen-containing organic compound
JP4182033B2 (en) Energy-saving decomposition method of organic halogen compounds
JPH11226399A (en) Treatment of halogenated aliphatic hydrocarbon
JP2000246059A (en) Reactive agent for decomposing hardly decomposable organochlorine compound and method for decomposing it
RU2400434C1 (en) Method for adsorption-catalytic purification of water from chloroaromatic compounds, adsorbent-catalyst and preparation method thereof
JPH10225632A (en) Method for detoxicate polychlorinated biphenyl by supercritical water
JP2006117533A (en) Decomposition method for hexachlorocyclohexane
JPH0857255A (en) Fluorocarbon decomposing apparatus
JPH08266888A (en) Method for decomposing aromatic halogen compound
JPH08141107A (en) Decomposing method for organic compound halide
JP4537539B2 (en) Decomposition treatment method and treatment equipment for hazardous substances
JP2003200134A (en) Method for treating solid adsorbing dioxins
JP2002166253A (en) Decomposition method of dioxins

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129