JP2007060857A - Three-phase ac generator battery charger - Google Patents

Three-phase ac generator battery charger Download PDF

Info

Publication number
JP2007060857A
JP2007060857A JP2005245656A JP2005245656A JP2007060857A JP 2007060857 A JP2007060857 A JP 2007060857A JP 2005245656 A JP2005245656 A JP 2005245656A JP 2005245656 A JP2005245656 A JP 2005245656A JP 2007060857 A JP2007060857 A JP 2007060857A
Authority
JP
Japan
Prior art keywords
phase
battery
generator
circuits
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005245656A
Other languages
Japanese (ja)
Inventor
Yoshitada Sasagawa
喜督 笹川
Takuya Matsumoto
卓也 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP2005245656A priority Critical patent/JP2007060857A/en
Publication of JP2007060857A publication Critical patent/JP2007060857A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Charge By Means Of Generators (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery charger capable of accurately controlling thyristors even if an output voltage of a three-phase AC generator increases. <P>SOLUTION: This three-phase AC generator battery charger turns off the thyristors S4, S5 and S6 when a battery voltage detector detects a voltage equal to or more than a predetermined value, where the three-phase AC generator 10 and a battery 8 are connected through an output of the AC generator 10 at respective phases AC1, AC2 and AC3 through a rectifier including the thyristors S4, S5 and S6 and ignition circuits 1d, 1e and 1f, and the battery 8 is connected with a voltage detector for detecting a battery voltage. This battery charger connects the thyristors S1, S2 and S3 and the ignition circuits 1a, 1b and 1c in series with the thyristors S4, S5 and S6 at the respective phases AC1, AC2 and AC3 and controls the ignition of the thyristors S1, S2, S3, S4, S5 and S6 by a phase control portion 100 for controlling ignition timings for the ignition circuits 1a, 1b, 1c, 1d, 1e and 1f. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、三相交流発電機を用いてバッテリの充電を行う三相交流発電機バッテリ充電装置に関する。   The present invention relates to a three-phase AC generator battery charging apparatus that charges a battery using a three-phase AC generator.

従来、三相交流発電機を用いたオープン式バッテリ充電装置が知られている(例えば、特許文献1参照。)。従来のオープン式バッテリ充電装置は、図4に示すように、三相交流発電機20と、三相交流発電機20の出力(AC1〜AC3)とバッテリ18の陽極との間に設けられたダイオード群D11〜D13と、三相交流発電機20の出力(AC1〜AC3)とバッテリ18の陰極との間に設けられたサイリスタ群S11〜S13と、点弧回路11と、点弧トリガ回路13と、比較器16と、基準電圧17と、バッテリ18と、外部負荷19とから構成されている。   Conventionally, an open-type battery charger using a three-phase AC generator is known (for example, refer to Patent Document 1). As shown in FIG. 4, the conventional open-type battery charging device includes a three-phase AC generator 20, a diode provided between the output (AC1 to AC3) of the three-phase AC generator 20 and the anode of the battery 18. Groups D11 to D13, thyristor groups S11 to S13 provided between the outputs (AC1 to AC3) of the three-phase AC generator 20 and the cathode of the battery 18, the ignition circuit 11, and the ignition trigger circuit 13, , A comparator 16, a reference voltage 17, a battery 18, and an external load 19.

三相交流発電機20の出力とバッテリ18の陽極との間に設けられたダイオード群D11〜D13と三相交流発電機20の出力とバッテリ18の陰極との間に設けられたサイリスタ群S11〜S13は、三相交流発電機20の出力(AC1〜AC3)を整流してバッテリ18に供給する。   Diode groups D11 to D13 provided between the output of the three-phase AC generator 20 and the anode of the battery 18 and thyristor groups S11 to S13 provided between the output of the three-phase AC generator 20 and the cathode of the battery 18. In step S <b> 13, the output (AC <b> 1 to AC <b> 3) of the three-phase AC generator 20 is rectified and supplied to the battery 18.

点弧回路11は、後述する点弧トリガ回路13からの信号により、サイリスタS11〜S13のゲートにゲート信号を供給する。点弧トリガ回路13は、後述する比較器16からの出力信号に応じて、点弧回路11に対する点弧トリガ信号を生成する。比較器16は、基準電圧17とバッテリ18の端子電圧とを比較して、その比較結果を点弧トリガ回路13に出力する。なお、図4の従来例において、三相交流電圧(線間電圧)に対するバッテリ基準電圧と、比較器16の出力および点弧回路11の動作は、図5のようになる。また、図4の従来例における全出力時の充電電流波形は図6のようになる。   The ignition circuit 11 supplies a gate signal to the gates of the thyristors S11 to S13 by a signal from an ignition trigger circuit 13 described later. The ignition trigger circuit 13 generates an ignition trigger signal for the ignition circuit 11 in accordance with an output signal from the comparator 16 described later. The comparator 16 compares the reference voltage 17 with the terminal voltage of the battery 18 and outputs the comparison result to the ignition trigger circuit 13. In the conventional example of FIG. 4, the battery reference voltage for the three-phase AC voltage (line voltage), the output of the comparator 16, and the operation of the ignition circuit 11 are as shown in FIG. Moreover, the charging current waveform at the time of all outputs in the conventional example of FIG. 4 is as shown in FIG.

また、他の従来例として図7に示すような、位相制御を備えたオープン式バッテリ充電装置が知られている。このオープン式バッテリ充電装置は、図7に示すように、三相交流発電機20と、三相交流発電機20の出力(AC1〜AC3)とバッテリ18の陽極との間に設けられたダイオード群D11〜D13と、三相交流発電機20の出力(AC1〜AC3)とバッテリ18の陰極との間に設けられたサイリスタ群S11〜S13と、点弧回路11a〜11cと、AC検出回路12a〜12cと、点弧トリガ回路13a〜13cと、三角波生成回路14a〜14cと、比較器回路15a〜15cと、差動増幅器16と、基準電圧17と、バッテリ18と、外部負荷19とから構成されている。
特開平10−70851号公報
As another conventional example, an open-type battery charging device having phase control as shown in FIG. 7 is known. As shown in FIG. 7, this open-type battery charging device includes a three-phase AC generator 20, a diode group provided between the outputs (AC1 to AC3) of the three-phase AC generator 20 and the anode of the battery 18. D11 to D13, thyristor groups S11 to S13 provided between the outputs (AC1 to AC3) of the three-phase AC generator 20 and the cathode of the battery 18, ignition circuits 11a to 11c, and AC detection circuits 12a to 12c. 12c, firing trigger circuits 13a to 13c, triangular wave generation circuits 14a to 14c, comparator circuits 15a to 15c, differential amplifier 16, reference voltage 17, battery 18, and external load 19. ing.
Japanese Patent Laid-Open No. 10-70851

しかしながら、図4のバッテリ充電装置では、S11、S12、S13を同時に点孤させるため、充電電流を取ることは可能であるが、バッテリ電圧の速度特性が悪く、発電機と外部負荷のバランスによって、各サイリスタの通電幅が異なってしまうことがあった。そこで、図7のように、サイリスタS11、S12、S13に対して位相制御を行うと、バッテリ電圧の速度特性と各サイリスタの通電幅の違いを解決することができる。図8に、図7の回路において、三相交流電圧(線間電圧)に対する各回路の動作シーケンスを示す。しかし、数1からわかるようにこの方法では充電電流が0.717Pと大きく落ち込んでしまう。その理由は、例えば、図7に示すような従来のオープン式バッテリ充電装置では、例えば、サイリスタS11に着目すると、その充電経路は、三相交流発電機の出力であるAC2からダイオードD12、バッテリの陽極から陰極を通ってサイリスタS11に至る経路(AC2−AC1間)と、三相交流発電機の出力であるAC3からダイオードD13、バッテリの陽極から陰極を通ってサイリスタS11に至る経路(AC3−AC1間)との2つの経路が存在する。   However, in the battery charging device of FIG. 4, since S11, S12, and S13 are simultaneously lit, it is possible to take a charging current, but the speed characteristic of the battery voltage is poor, and due to the balance between the generator and the external load, In some cases, the energization width of each thyristor is different. Therefore, as shown in FIG. 7, when phase control is performed on the thyristors S11, S12, and S13, the difference between the speed characteristics of the battery voltage and the energization width of each thyristor can be solved. FIG. 8 shows an operation sequence of each circuit with respect to a three-phase AC voltage (line voltage) in the circuit of FIG. However, as can be seen from Equation 1, in this method, the charging current is greatly reduced to 0.717P. The reason for this is, for example, in the conventional open battery charger as shown in FIG. 7, for example, when focusing on the thyristor S11, the charging path is from the AC2 that is the output of the three-phase AC generator to the diode D12, A path from the anode through the cathode to the thyristor S11 (between AC2 and AC1), a path from the AC3 output from the three-phase AC generator to the diode D13, and a path from the battery anode to the cathode through the thyristor S11 (AC3-AC1) There are two paths between

Figure 2007060857
Figure 2007060857

この場合、サイリスタS11を点弧すると、AC2−AC1間の出力電圧とAC3−AC1の出力電圧のうち出力電圧が高い方に充電経路が形成される。つまり、三相交流発電機20の各出力間(AC2−AC1、AC2−AC3、AC3−AC1等)には、所定の線間電圧が発生するが、上記の例の場合、AC2−AC1の線間電圧とAC3−AC1の線間電圧のクロスポイントに対して、左側では、AC3−AC1の充電ループ後に、AC2−AC1の充電ループに転流され、また、AC2−AC1の線間電圧とAC3−AC1の線間電圧のクロスポイントに対して、右側では、AC2−AC1の充電ループとなる。   In this case, when the thyristor S11 is fired, a charging path is formed on the higher output voltage of the output voltage between AC2 and AC1 and the output voltage of AC3 to AC1. That is, a predetermined line voltage is generated between the outputs of the three-phase AC generator 20 (AC2-AC1, AC2-AC3, AC3-AC1, etc.). In the above example, the AC2-AC1 line is generated. On the left side, the AC3-AC1 charging loop and then the AC2-AC1 charging loop are commutated to the AC2-AC1 line voltage and the AC3-AC1 line voltage crossing point. -On the right side of the AC1 line voltage cross point, the charging loop is AC2-AC1.

したがって、負荷が小さくバッテリの状態が満充電に近い場合には、充電電流が少なくてよいため、AC2−AC1側の充電ループで制御を行うべきであるが、図7に示すような従来のオープン式バッテリ充電装置では、そうした制御を行うことができるようになる。ただし、従来のオープン式バッテリ充電装置では、2つの充電ループを形成する線間電圧のクロスポイントからしかサイリスタをONすることができないため、全出力時の充電電流波形は、図9に示すように、クロスポイントで出力電流がゼロとなる波形となり、数1に示すように、全出力時の充電電流の平均値が0.717Ipとなって、位相制御を行わない場合に対して25%充電電流が低下するという問題があった。   Therefore, when the load is small and the battery state is almost fully charged, the charging current may be small. Therefore, control should be performed in the charging loop on the AC2-AC1 side, but the conventional open as shown in FIG. Such a control can be performed in the battery charger. However, in the conventional open type battery charger, the thyristor can be turned on only from the cross point of the line voltage forming two charging loops. Therefore, the charging current waveform at all outputs is as shown in FIG. As shown in Equation 1, the average value of the charging current at all outputs is 0.717 Ip, which is 25% charging current compared to the case where phase control is not performed. There was a problem that decreased.

また、図7の点弧回路11a〜11cでは、バッテリ電圧(測定値)が差動増幅器16の出力電圧に近い場合には、その制御角が180degに近い角度となり、バッテリ電圧(測定値)が差動増幅器16の出力電圧から離れている場合には、その制御角が60degに近い角度となる。そのため、位相制御角が狭いという問題がある。   In the ignition circuits 11a to 11c of FIG. 7, when the battery voltage (measured value) is close to the output voltage of the differential amplifier 16, the control angle is close to 180 degrees, and the battery voltage (measured value) is When away from the output voltage of the differential amplifier 16, the control angle is close to 60 degrees. Therefore, there is a problem that the phase control angle is narrow.

そこで、本発明は上記事情に鑑みてなされたものであり、三相交流発電機の出力電圧が上昇した場合であっても、サイリスタを的確に制御できる三相交流発電機バッテリ充電装置を提供することを目的とする。   Therefore, the present invention has been made in view of the above circumstances, and provides a three-phase AC generator battery charging device capable of accurately controlling a thyristor even when the output voltage of the three-phase AC generator is increased. For the purpose.

上記した課題を解決するために本発明は、以下の手段を提案している。
請求項1に係る発明は、三相交流発電機10とバッテリ8とがそれぞれ相AC1、AC2、AC3で前記交流発電機10の出力をサイリスタS4、S5、S6を含む整流手段及び点弧回路1d、1e、1fを介して接続され、前記バッテリ8はバッテリ電圧を検出するバッテリ電圧検出手段に接続され、前記バッテリ電圧検出手段が所定値以上の電圧を検出したときに、前記サイリスタS4、S5、S6をOFFするようにした三相交流発電機バッテリ充電装置において、前記それぞれの相AC1、AC2、AC3のサイリスタS4、S5、S6に直列にサイリスタS1、S2、S3及び点弧回路1a、1b、1cを接続し、該点弧回路1a、1b、1c、1d、1e、1fの点弧タイミングを制御する位相制御部100により、サイリスタS1、S2、S3、S4、S5、S6の点弧を制御することを特徴とする三相交流発電機バッテリ充電装置を提案している。
In order to solve the above-described problems, the present invention proposes the following means.
In the invention according to claim 1, the three-phase alternating current generator 10 and the battery 8 are in the phases AC1, AC2, and AC3, respectively, and the output of the alternating current generator 10 includes the thyristors S4, S5, and S6 and the ignition circuit 1d. 1e, 1f, the battery 8 is connected to a battery voltage detecting means for detecting a battery voltage, and when the battery voltage detecting means detects a voltage of a predetermined value or more, the thyristors S4, S5, In the three-phase AC generator battery charging apparatus in which S6 is turned off, thyristors S1, S2, S3 and ignition circuits 1a, 1b, and thyristors S1, S2, S3 in series with the thyristors S4, S5, S6 of the respective phases AC1, AC2, AC3, 1c is connected to the thyristor by a phase control unit 100 that controls the ignition timing of the ignition circuits 1a, 1b, 1c, 1d, 1e, and 1f. Proposes 1, S2, S3, S4, S5, the three-phase AC generator battery charging apparatus, characterized by controlling the ignition of S6.

請求項2に係る発明は、請求項1に記載の三相交流発電機バッテリ充電装置について、前記位相制御部100が、前記三相交流発電機10の各相AC1、AC2、AC3の線間電圧を検出するAC検出回路2a〜2cと、該AC検出回路が検出したAC電圧から三角波を生成する三角波生成回路4a〜4cと、前記バッテリ電圧検出手段の検出結果と該三角波生成回路により生成された三角波とを比較する比較器回路5a〜5cと、該比較器回路5a〜5cの比較結果に基づいて前記点弧回路1a、1b、1c、1d、1e、1fに点弧信号を出力する点弧トリガ回路3a〜3fとを備えたことを特徴とする三相交流発電機バッテリ充電装置を提案している。   According to a second aspect of the present invention, in the three-phase AC generator battery charging device according to the first aspect, the phase control unit 100 has a line voltage of each phase AC1, AC2, AC3 of the three-phase AC generator 10. AC detection circuits 2a to 2c for detecting the voltage, triangular wave generation circuits 4a to 4c for generating a triangular wave from the AC voltage detected by the AC detection circuit, detection results of the battery voltage detection means, and the triangular wave generation circuit Comparator circuits 5a to 5c for comparing the triangular wave and an ignition signal for outputting an ignition signal to the ignition circuits 1a, 1b, 1c, 1d, 1e, and 1f based on the comparison results of the comparator circuits 5a to 5c. A three-phase alternating current generator battery charging device characterized by comprising trigger circuits 3a to 3f is proposed.

本発明によれば、基準電圧とバッテリ電圧との電位差を差動増幅器で計算させて、その出力結果と三角波の比較によって、サイリスタを点弧しなければならない制御角が決定され、任意にサイリスタの制御角を制御できるため、全出力時の平均充電電流値を最適化することができるという効果がある。また、位相制御角を広くすることができるため、最適な制御が可能となるという効果がある。   According to the present invention, the potential difference between the reference voltage and the battery voltage is calculated by the differential amplifier, and the control angle at which the thyristor must be fired is determined by comparing the output result and the triangular wave, and the thyristor is arbitrarily set. Since the control angle can be controlled, the average charging current value at all outputs can be optimized. Further, since the phase control angle can be widened, there is an effect that optimum control is possible.

以下、図面を用いて、本発明の実施形態について詳細に説明する。
本実施形態に係る三相交流発電機バッテリ充電装置は、図1に示すように、三相交流発電機10と、三相交流発電機10の出力(AC1〜AC3)とバッテリ8の陽極との間に設けられたサイリスタ群S1〜S3と、三相交流発電機10の出力(AC1〜AC3)とバッテリ8の陰極との間に設けられたサイリスタ群S4〜S6と、点弧回路1a〜1fと、位相制御部(位相制御手段に相当)100をなすAC検出回路2a〜2fと、点弧トリガ回路3a〜3fと、三角波生成回路4a〜4cと、比較器回路5a〜5cと、差動増幅器6と、基準電圧7と、バッテリ8と、外部負荷9とから構成されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the three-phase AC generator battery charging device according to this embodiment includes a three-phase AC generator 10, an output (AC1 to AC3) of the three-phase AC generator 10, and an anode of the battery 8. Thyristor groups S1 to S3 provided between them, thyristor groups S4 to S6 provided between the outputs (AC1 to AC3) of the three-phase AC generator 10 and the cathode of the battery 8, and ignition circuits 1a to 1f And AC detection circuits 2a to 2f, ignition trigger circuits 3a to 3f, triangular wave generation circuits 4a to 4c, comparator circuits 5a to 5c, which form a phase control unit (corresponding to phase control means) 100, and differential The amplifier 6 includes a reference voltage 7, a battery 8, and an external load 9.

三相交流発電機10の出力とバッテリ8の陽極との間に設けられたサイリスタ群S1〜S3と三相交流発電機10の出力とバッテリ8の陰極との間に設けられたサイリスタ群S4〜S6は、三相交流発電機10の出力電圧(AC1〜AC3)を整流してバッテリ8に供給する。   Thyristor groups S1 to S3 provided between the output of the three-phase AC generator 10 and the anode of the battery 8 and thyristor groups S4 to S3 provided between the output of the three-phase AC generator 10 and the cathode of the battery 8 S 6 rectifies the output voltage (AC 1 to AC 3) of the three-phase AC generator 10 and supplies it to the battery 8.

点弧回路1a〜1fは、後述する点弧トリガ回路3a〜3fからの信号に基づいて、サイリスタ群S1〜S6のゲートにゲート信号を供給し、サイリスタ群S1〜S6を点弧する。   The starting circuits 1a to 1f supply gate signals to the gates of the thyristor groups S1 to S6 based on signals from starting trigger circuits 3a to 3f, which will be described later, and start the thyristor groups S1 to S6.

AC検出回路2a〜2cは、三相交流発電機10の出力間(AC1−AC2、AC2−AC3、AC3−AC1等)のAC成分を検出し、検出したAC成分を三角波生成回路4a〜4cに供給する。三角波生成回路4a〜4cは、AC検出回路2a〜2cから入力したAC成分に基づいて三角波を生成する。   The AC detection circuits 2a to 2c detect AC components between outputs of the three-phase AC generator 10 (AC1-AC2, AC2-AC3, AC3-AC1, etc.), and the detected AC components are supplied to the triangular wave generation circuits 4a to 4c. Supply. The triangular wave generation circuits 4a to 4c generate triangular waves based on the AC components input from the AC detection circuits 2a to 2c.

比較器回路5a〜5cは、後述する差動増幅器6からの出力電圧値と三角波生成回路4a〜4cから供給される三角波とを比較し、三角波が差動増幅器6からの出力電圧値を下回ったときに、「Hi」レベルの信号を点弧トリガ回路3a〜3fに出力する。点弧トリガ回路3a〜3fは、比較器回路5a〜5cから「Hi」レベルの信号を入力すると、制御信号を点弧回路1a〜1fに対して供給する。差動増幅器6は、バッテリ8の端子電圧と基準電圧7との差分値を比較器回路5a〜5cに供給する。   The comparator circuits 5a to 5c compare the output voltage value from the differential amplifier 6 described later with the triangular wave supplied from the triangular wave generation circuits 4a to 4c, and the triangular wave is lower than the output voltage value from the differential amplifier 6. Sometimes, a “Hi” level signal is output to the firing trigger circuits 3a to 3f. When the "Hi" level signal is input from the comparator circuits 5a to 5c, the ignition trigger circuits 3a to 3f supply control signals to the ignition circuits 1a to 1f. The differential amplifier 6 supplies a difference value between the terminal voltage of the battery 8 and the reference voltage 7 to the comparator circuits 5a to 5c.

次に、図2を用いて、本実施形態に係る三相交流発電機バッテリ充電装置におけるシーケンスを説明する。まず、線間電圧としてAC1−AC2、AC2−AC3、AC3−AC1に着目した場合、AC検出回路2aは、AC1−AC2の線間電圧が正の電圧のときに、「Hi」レベルの信号を出力する。同様に、AC検出回路2bは、AC2−AC3の線間電圧が正の電圧のときに、AC検出回路2cは、AC3−AC1の線間電圧が正の電圧のときに、「Hi」レベルの信号を出力する。   Next, a sequence in the three-phase AC generator battery charging device according to the present embodiment will be described with reference to FIG. First, when attention is paid to AC1-AC2, AC2-AC3, AC3-AC1 as the line voltages, the AC detection circuit 2a outputs a signal of “Hi” level when the line voltage of AC1-AC2 is a positive voltage. Output. Similarly, the AC detection circuit 2b is in the “Hi” level when the AC2-AC3 line voltage is a positive voltage, and the AC detection circuit 2c is in the “Hi” level when the AC3-AC1 line voltage is a positive voltage. Output a signal.

三角波生成回路4aは、AC1−AC2の線間電圧がゼロをよぎってその位相角が30°になったポイントから、AC1−AC2の線間電圧が再びゼロをよぎるまでの間、三角波を出力する。なお、三角波生成回路4b、4cについても同様である。三角波生成回路4aで生成された三角波は、比較器回路5aに入力される。比較器回路5aでは、三角波生成回路4aから入力された三角波と差動増幅器6から入力される出力電圧とを比較する。具体的には、三角波が差動増幅器6から入力される出力電圧を下回ったときに、「Hi」レベルの信号が点弧トリガ回路3aに出力される。点弧トリガ回路3aは、比較器回路5aからの信号を入力すると、制御信号を生成して点弧回路1aに出力する。なお、この一連の動作は、三角波生成回路4b、4c、比較器回路5b、5c、点弧トリガ回路3b、3cにおいても同様である。   The triangular wave generation circuit 4a outputs a triangular wave from the point when the line voltage of AC1-AC2 crosses zero and the phase angle becomes 30 ° until the line voltage of AC1-AC2 crosses zero again. . The same applies to the triangular wave generating circuits 4b and 4c. The triangular wave generated by the triangular wave generation circuit 4a is input to the comparator circuit 5a. The comparator circuit 5 a compares the triangular wave input from the triangular wave generation circuit 4 a with the output voltage input from the differential amplifier 6. Specifically, when the triangular wave falls below the output voltage input from the differential amplifier 6, a “Hi” level signal is output to the firing trigger circuit 3a. When the signal from the comparator circuit 5a is input, the ignition trigger circuit 3a generates a control signal and outputs it to the ignition circuit 1a. This series of operations is the same in the triangular wave generation circuits 4b and 4c, the comparator circuits 5b and 5c, and the firing trigger circuits 3b and 3c.

ここで、本実施形態に係るバッテリ充電装置は、図1に示すように、三相交流発電機10の出力(AC1〜AC3)とバッテリ8の陽極との間にサイリスタ群S1〜S3を設け、サイリスタ群S1〜S6の点弧タイミングを制御する位相制御部100を設けた点において従来例との差異を有する。   Here, as shown in FIG. 1, the battery charger according to the present embodiment includes thyristor groups S1 to S3 between the outputs (AC1 to AC3) of the three-phase AC generator 10 and the anode of the battery 8, The difference from the conventional example is that a phase control unit 100 for controlling the ignition timing of the thyristor groups S1 to S6 is provided.

本実施形態の三相交流発電機バッテリ充電装置は、図1に示すような構成となっているため、例えば、サイリスタS4に着目して充電経路を考えると、三相交流発電機の出力であるAC2からサイリスタS2、バッテリの陽極から陰極を通ってサイリスタS4に至る経路(AC2−AC1間)と、三相交流発電機の出力であるAC3からサイリスタS3、バッテリの陽極から陰極を通ってサイリスタS4に至る経路(AC3−AC1間)との2つの経路が存在する。   Since the three-phase AC generator battery charging device of the present embodiment is configured as shown in FIG. 1, for example, when considering the charging path by paying attention to the thyristor S4, it is the output of the three-phase AC generator. The path from AC2 to thyristor S2, the path from the anode to the cathode of the battery to thyristor S4 (between AC2 and AC1), the output of the three-phase AC generator from AC3 to thyristor S3, the thyristor S4 from the battery anode to the cathode There are two paths to the path (between AC3 and AC1).

しかし、本実施形態に係る三相交流発電機バッテリ充電装置では、従来例と異なり、バッテリ1の陽極側および陰極側にそれぞれサイリスタ群S1〜S3およびS4〜S6を設けているため、例えば、サイリスタS1とサイリスタS4とに対して点弧回路1aおよび点弧回路1dから同時にゲート信号を供給するように、動作させるサイリスタS1〜S6を任意に決めて制御することができる。そのため、位相制御のタイミングによって充電経路が変化することがない。   However, in the three-phase AC generator battery charging device according to the present embodiment, unlike the conventional example, the thyristor groups S1 to S3 and S4 to S6 are provided on the anode side and the cathode side of the battery 1, respectively. The thyristors S1 to S6 to be operated can be arbitrarily determined and controlled so that gate signals are simultaneously supplied to the S1 and the thyristor S4 from the ignition circuit 1a and the ignition circuit 1d. Therefore, the charging path does not change depending on the phase control timing.

また、従来例では、2つの充電ループを形成する線間電圧のクロスポイントからしか制御を行うことができないため、全出力時の充電電流波形は、図9に示すように、クロスポイントで出力電流がゼロとなる波形となり、全出力時の充電電流の平均値が位相制御を行わない場合に対して低下していたが、本実施形態の場合には、動作させたいサイリスタS1〜S6の組み合わせを任意に決定できることから、図3に示すように、全出力時の充電電流波形には、従来例に見られるようなクロスポイントでの落ち込みもない。なお、全出力時の充電電流の平均値は、数2に示すように、0.83Ipとなり、位相制御を行わない場合に対しては、13.4%減少するが、従来例と対比すると、11.6%の改善効果が見られる。   Further, in the conventional example, control can be performed only from the cross point of the line voltage forming two charging loops. Therefore, as shown in FIG. 9, the charge current waveform at all outputs is the output current at the cross point. However, in the case of this embodiment, the combination of thyristors S1 to S6 to be operated is reduced. Since it can be arbitrarily determined, as shown in FIG. 3, the charging current waveform at all outputs does not have a drop at the cross point as seen in the conventional example. In addition, the average value of the charging current at the time of all outputs is 0.83 Ip, as shown in Equation 2, and is reduced by 13.4% compared to the case where phase control is not performed. An improvement effect of 11.6% is seen.

Figure 2007060857
Figure 2007060857

また、図1に示す本実施形態における点弧回路1a〜1fは、差動増幅器6の出力電圧と三角波生成回路4a〜4cで生成される三角波のクロスポイントで各サイリスタにゲート信号を供給するため、図2に示すように、バッテリ電圧(測定値)が差動増幅器6の出力電圧に近い場合には、その制御角が180degに近い角度となり、バッテリ電圧(測定角度)が差動増幅器6の出力電圧から離れている場合には、その制御角が30degに近い角度となる。そのため、位相制御角が従来よりも広くなるという効果がある。   Further, the ignition circuits 1a to 1f in the present embodiment shown in FIG. 1 supply gate signals to the thyristors at the output points of the differential amplifier 6 and the triangular wave cross points generated by the triangular wave generation circuits 4a to 4c. 2, when the battery voltage (measured value) is close to the output voltage of the differential amplifier 6, the control angle is close to 180 deg, and the battery voltage (measured angle) is that of the differential amplifier 6. When away from the output voltage, the control angle is close to 30 deg. Therefore, there is an effect that the phase control angle becomes wider than that in the prior art.

さらに、図1に示す本実施形態における点弧回路1a〜1fは、トランジスタで構成され、各サイリスタS1〜S6のゲート電流経路が、例えば、三相交流発電機の出力AC1から点弧回路1aを経て、サイリスタS1のゲート−カソード間を通って点弧回路1e、点弧回路1eからサイリスタS5のゲート−カソード間を通って三相交流発電機の出力AC2に至るループになる。したがって、三相交流発電機の出力電圧が大きくなっても、上記のように、ゲート電流経路に2つの半導体素子(点弧回路1a〜1f)が入る構成となり、電圧を的確に制御できないという問題が発生しない。   Further, the ignition circuits 1a to 1f in the present embodiment shown in FIG. 1 are constituted by transistors, and the gate current path of each thyristor S1 to S6 is, for example, from the output AC1 of the three-phase AC generator to the ignition circuit 1a. After that, a loop is formed from the ignition circuit 1e through the gate and cathode of the thyristor S1, and from the ignition circuit 1e to the output AC2 of the three-phase AC generator through the gate and cathode of the thyristor S5. Therefore, even if the output voltage of the three-phase alternating current generator increases, as described above, the two semiconductor elements (ignition circuits 1a to 1f) enter the gate current path, and the voltage cannot be accurately controlled. Does not occur.

したがって、本実施形態によれば、任意にサイリスタの制御角を制御できるため、全出力時の平均充電電流値を最適化することができる。また、位相制御角を広くすることができるため、最適な制御が可能となる。   Therefore, according to this embodiment, the control angle of the thyristor can be arbitrarily controlled, so that the average charging current value at all outputs can be optimized. In addition, since the phase control angle can be widened, optimal control is possible.

以上、この発明の実施形態につき、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。   The embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to the embodiments, and includes designs and the like that do not depart from the gist of the present invention.

本実施形態に係るバッテリ充電装置の構成図である。It is a block diagram of the battery charging device which concerns on this embodiment. 本実施形態に係る三相交流電圧波形および回路各部の波形を示した図である。It is the figure which showed the three-phase alternating current voltage waveform and waveform of each part of a circuit which concern on this embodiment. 本実施形態に係る全出力時の充電電流波形を示した図である。It is the figure which showed the charging current waveform at the time of all the outputs concerning this embodiment. 従来例に係るバッテリ充電装置の構成図である。It is a block diagram of the battery charging device which concerns on a prior art example. 従来例に係る三相交流電圧波形および回路各部の波形を示した図である。It is the figure which showed the three-phase alternating current voltage waveform and waveform of each part of a circuit which concern on a prior art example. 従来例に係る全出力時の充電電流波形を示した図である。It is the figure which showed the charging current waveform at the time of all the outputs concerning a prior art example. 従来例に係るバッテリ充電装置の構成図である。It is a block diagram of the battery charging device which concerns on a prior art example. 従来例に係る三相交流電圧波形および回路各部の波形を示した図である。It is the figure which showed the three-phase alternating current voltage waveform and waveform of each part of a circuit which concern on a prior art example. 従来例に係る全出力時の充電電流波形を示した図である。It is the figure which showed the charging current waveform at the time of all the outputs concerning a prior art example.

符号の説明Explanation of symbols

1a〜1f・・・点弧回路、2a〜2c・・・AC検出回路、3a〜3f・・・点弧トリガ回路、4a〜4c・・・三角波生成回路、5a〜5c・・・比較器回路、6・・・差動増幅器、7・・・基準電圧、8・・・バッテリ、9・・・外部負荷、10・・・三相交流発電機、S1〜S6・・・サイリスタ群、100・・・位相制御部(位相制御手段に相当)   1a to 1f ... ignition circuit, 2a to 2c ... AC detection circuit, 3a to 3f ... ignition trigger circuit, 4a to 4c ... triangular wave generation circuit, 5a to 5c ... comparator circuit , 6 ... differential amplifier, 7 ... reference voltage, 8 ... battery, 9 ... external load, 10 ... three-phase AC generator, S1-S6 ... thyristor group, 100 ..Phase control unit (equivalent to phase control means)

Claims (2)

三相交流発電機10とバッテリ8とがそれぞれ相AC1、AC2、AC3で前記交流発電機10の出力をサイリスタS4、S5、S6を含む整流手段及び点弧回路1d、1e、1fを介して接続され、前記バッテリ8はバッテリ電圧を検出するバッテリ電圧検出手段に接続され、前記バッテリ電圧検出手段が所定値以上の電圧を検出したときに、前記サイリスタS4、S5、S6をOFFするようにした三相交流発電機バッテリ充電装置において、
前記それぞれの相AC1、AC2、AC3のサイリスタS4、S5、S6に直列にサイリスタS1、S2、S3及び点弧回路1a、1b、1cを接続し、該点弧回路1a、1b、1c、1d、1e、1fの点弧タイミングを制御する位相制御部100により、サイリスタS1、S2、S3、S4、S5、S6の点弧を制御することを特徴とする三相交流発電機バッテリ充電装置。
The three-phase AC generator 10 and the battery 8 are connected in phase AC1, AC2, and AC3, respectively, with the output of the AC generator 10 via rectifiers and igniters 1d, 1e, and 1f including thyristors S4, S5, and S6. The battery 8 is connected to battery voltage detection means for detecting battery voltage, and when the battery voltage detection means detects a voltage of a predetermined value or more, the thyristors S4, S5, S6 are turned off. In the phase alternator battery charger,
Thyristors S1, S2, S3 and ignition circuits 1a, 1b, 1c are connected in series to the thyristors S4, S5, S6 of the respective phases AC1, AC2, AC3, and the ignition circuits 1a, 1b, 1c, 1d, The three-phase alternating current generator battery charging device, wherein the ignition of the thyristors S1, S2, S3, S4, S5, and S6 is controlled by the phase control unit 100 that controls the ignition timing of 1e and 1f.
前記位相制御部100が、前記三相交流発電機10の各相AC1、AC2、AC3の線間電圧を検出するAC検出回路2a〜2cと、
該AC検出回路が検出したAC電圧から三角波を生成する三角波生成回路4a〜4cと、
前記バッテリ電圧検出手段の検出結果と該三角波生成回路により生成された三角波とを比較する比較器回路5a〜5cと、
該比較器回路5a〜5cの比較結果に基づいて前記点弧回路1a、1b、1c、1d、1e、1fに点弧信号を出力する点弧トリガ回路3a〜3fと、
を備えたことを特徴とする請求項1に記載の三相交流発電機バッテリ充電装置。


AC detection circuits 2a to 2c for detecting a line voltage of each phase AC1, AC2, AC3 of the three-phase AC generator 10 by the phase control unit 100;
Triangular wave generation circuits 4a to 4c for generating a triangular wave from the AC voltage detected by the AC detection circuit;
Comparator circuits 5a to 5c for comparing the detection result of the battery voltage detecting means with the triangular wave generated by the triangular wave generating circuit;
Firing trigger circuits 3a to 3f that output firing signals to the firing circuits 1a, 1b, 1c, 1d, 1e, and 1f based on the comparison results of the comparator circuits 5a to 5c;
The three-phase AC generator battery charging device according to claim 1, comprising:


JP2005245656A 2005-08-26 2005-08-26 Three-phase ac generator battery charger Pending JP2007060857A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005245656A JP2007060857A (en) 2005-08-26 2005-08-26 Three-phase ac generator battery charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005245656A JP2007060857A (en) 2005-08-26 2005-08-26 Three-phase ac generator battery charger

Publications (1)

Publication Number Publication Date
JP2007060857A true JP2007060857A (en) 2007-03-08

Family

ID=37923805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005245656A Pending JP2007060857A (en) 2005-08-26 2005-08-26 Three-phase ac generator battery charger

Country Status (1)

Country Link
JP (1) JP2007060857A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013017298A (en) * 2011-07-04 2013-01-24 Kokusan Denki Co Ltd Battery charging device
CN102969914A (en) * 2011-08-31 2013-03-13 国产电机株式会社 Power source device
US9941728B2 (en) 2014-10-24 2018-04-10 Kokusan Denki Co., Ltd. Battery charging device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870576A (en) * 1994-08-30 1996-03-12 Yaskawa Electric Corp Main circuit power-on circuit of servo controller
JPH08214598A (en) * 1995-02-01 1996-08-20 Isuzu Ceramics Kenkyusho:Kk Voltage controller of magnet-type generator
JPH1198843A (en) * 1997-09-19 1999-04-09 Mitsubishi Heavy Ind Ltd Ignition phase control circuit of thyristor rectifier
JPH11178392A (en) * 1997-12-10 1999-07-02 Hitachi Ltd Control system for variable frequency power supply facilities
JP2002186260A (en) * 2000-11-01 2002-06-28 General Electric Co <Ge> Method and system for detecting zero current level in line rectification converter
JP2004147388A (en) * 2002-10-22 2004-05-20 Sanyo Electric Co Ltd Converter device, air conditioner, and system-interconnecting system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0870576A (en) * 1994-08-30 1996-03-12 Yaskawa Electric Corp Main circuit power-on circuit of servo controller
JPH08214598A (en) * 1995-02-01 1996-08-20 Isuzu Ceramics Kenkyusho:Kk Voltage controller of magnet-type generator
JPH1198843A (en) * 1997-09-19 1999-04-09 Mitsubishi Heavy Ind Ltd Ignition phase control circuit of thyristor rectifier
JPH11178392A (en) * 1997-12-10 1999-07-02 Hitachi Ltd Control system for variable frequency power supply facilities
JP2002186260A (en) * 2000-11-01 2002-06-28 General Electric Co <Ge> Method and system for detecting zero current level in line rectification converter
JP2004147388A (en) * 2002-10-22 2004-05-20 Sanyo Electric Co Ltd Converter device, air conditioner, and system-interconnecting system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013017298A (en) * 2011-07-04 2013-01-24 Kokusan Denki Co Ltd Battery charging device
CN102969914A (en) * 2011-08-31 2013-03-13 国产电机株式会社 Power source device
US8736233B2 (en) 2011-08-31 2014-05-27 Kokusan Denki Co., Ltd. Power source device
US9941728B2 (en) 2014-10-24 2018-04-10 Kokusan Denki Co., Ltd. Battery charging device

Similar Documents

Publication Publication Date Title
US8159179B2 (en) Battery charging device, three-phase voltage generating circuit, three-phase voltage generation method and delay angle control method
US9853564B2 (en) Synchronous rectifier and control circuit thereof
US8159180B2 (en) Battery charging device and delay angle control method for battery charging device
JP2007042638A (en) Electronic trip device provided with power supply circuit comprising voltage raising means and circuit breaker comprising such trip device
US6456106B1 (en) Method and circuit for detection of primary switches status in isolated DC/DC converters
JP2007060857A (en) Three-phase ac generator battery charger
JP6400103B2 (en) Power converter
JP5063731B2 (en) Power supply
KR101096146B1 (en) Controller for hvdc and hvdc sysem including the same
US20210135591A1 (en) Power conversion device
KR101362693B1 (en) Circuit arrangement for operating discharge lamps and method for operating discharge lamps
JP4793396B2 (en) Overvoltage protection circuit
JP4978249B2 (en) Power conditioner
US10256651B2 (en) Battery charging device and method of controlling battery charging device
JP6352864B2 (en) Power converter
JP7508646B1 (en) Excitation Control Device
JP5442905B1 (en) Battery charging device and battery charging method
US10250173B1 (en) Power generator system and generator exciter device thereof
JP2009089555A (en) Ac-dc converter
JP4561215B2 (en) Thyristor converter device
JPS63286275A (en) Power unit for ac arc welding machine
JP5523499B2 (en) Power converter
JPH07147731A (en) Battery charger
JP5626146B2 (en) Battery charger
JP2005192269A (en) Power unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101005