JP2007059478A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor Download PDF

Info

Publication number
JP2007059478A
JP2007059478A JP2005240163A JP2005240163A JP2007059478A JP 2007059478 A JP2007059478 A JP 2007059478A JP 2005240163 A JP2005240163 A JP 2005240163A JP 2005240163 A JP2005240163 A JP 2005240163A JP 2007059478 A JP2007059478 A JP 2007059478A
Authority
JP
Japan
Prior art keywords
acid
electrolyte
electrolytic solution
electrolytic capacitor
blended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005240163A
Other languages
Japanese (ja)
Other versions
JP4653593B2 (en
Inventor
Tomoyuki Tani
智之 谷
Akihiro Matsuda
晃啓 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2005240163A priority Critical patent/JP4653593B2/en
Publication of JP2007059478A publication Critical patent/JP2007059478A/en
Application granted granted Critical
Publication of JP4653593B2 publication Critical patent/JP4653593B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolyte which can ensure high breakdown voltage and suppress the increase in tanδ, by preventing reaction between an electrode foil and a water content in an electrolyte over a long time. <P>SOLUTION: A solvent made mainly of ethylene glycol is mixed with azelaic acid, carboxylic acid, such as benzoic acid, ammonium salt of boric acid, and triacrylformal indicated by a chemical Formula (1). The mixing quantity of triacrylformal is 0.10-5.0 wt.% with respect to the electrolyte as a whole, for example. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電解コンデンサの駆動用電解液(以下、電解液と称す)の改良に関するものである。   The present invention relates to an improvement in an electrolytic solution for driving an electrolytic capacitor (hereinafter referred to as an electrolytic solution).

従来、アルミニウム電解コンデンサでは、エチレングリコールを主成分とする溶媒にカルボン酸やホウ酸、またはそれらのアンモニウム塩を配合し、さらに電極箔と電解液中の水分との反応を抑えることを目的にオルトリン酸などの添加剤を配合した電解液が用いられている(例えば特許文献1〜3参照)。
特公平7−48459号公報(第1−4頁) 特公平7−48460号公報(第1−3頁) 特公平7−63047号公報(第1−4頁)
Conventionally, in an aluminum electrolytic capacitor, orthophosphoric acid is mixed with a solvent mainly composed of ethylene glycol, carboxylic acid, boric acid, or ammonium salt thereof to further suppress the reaction between the electrode foil and moisture in the electrolytic solution. An electrolytic solution containing an additive such as an acid is used (see, for example, Patent Documents 1 to 3).
Japanese Examined Patent Publication No. 7-48459 (page 1-4) Japanese Patent Publication No. 7-48460 (page 1-3) Japanese Examined Patent Publication No. 7-63047 (page 1-4)

しかしながら、オルトリン酸は強酸であり、電極箔に対する作用が強すぎるため、多量の添加は電解液の耐電圧を低下させる。従って、オルトリン酸は、電解液にごく僅かしか配合できないため、電極箔と電解液中の水分との反応を長期間にわたって十分に抑制することができないという問題点がある。   However, orthophosphoric acid is a strong acid and its action on the electrode foil is too strong, so that a large amount of addition reduces the withstand voltage of the electrolyte. Therefore, since orthophosphoric acid can be blended very little in the electrolytic solution, there is a problem that the reaction between the electrode foil and the water in the electrolytic solution cannot be sufficiently suppressed for a long period of time.

以上の問題点に鑑みて、本発明の課題は、高い耐電圧を確保でき、かつ、電極箔と電解液中の水分との反応を長期間にわたって抑制することによりtanδの上昇などを抑えることのできる電解液を提供することにある。   In view of the above problems, an object of the present invention is to secure a high withstand voltage and to suppress an increase in tan δ by suppressing the reaction between the electrode foil and moisture in the electrolyte over a long period of time. It is in providing the electrolyte solution which can be performed.

本発明は、上記課題を解決するために各種検討した結果見出されたものであり、トリアクリルホルマールは、それを添加した際の電極箔への作用がオルトリン酸より緩慢であり、電解液の耐電圧が大きく低下しないという知見を得た。従って、電極箔と電解液中の水分との反応を長期間にわたって抑制するのに十分な量を配合できるので、信頼性試験におけるtanδの上昇を抑えることができる。
すなわち、本発明では、エチレングリコールを主成分とする溶媒に、有機カルボン酸およびホウ酸のうちの少なくとも一方が酸または塩として配合された電解コンデンサの駆動用電解液において、さらに、以下の化学式で示されるトリアクリルホルマールが配合されていることを特徴とする。
The present invention has been found as a result of various studies to solve the above problems, and triacryl formal has a slower effect on electrode foil when it is added than orthophosphoric acid. The knowledge that the withstand voltage is not greatly reduced was obtained. Therefore, an amount sufficient to suppress the reaction between the electrode foil and moisture in the electrolytic solution over a long period of time can be blended, and an increase in tan δ in the reliability test can be suppressed.
That is, in the present invention, in an electrolytic solution for driving an electrolytic capacitor in which at least one of an organic carboxylic acid and boric acid is blended as an acid or salt in a solvent mainly composed of ethylene glycol, the following chemical formula The triacryl formal shown is blended.

Figure 2007059478
Figure 2007059478

本発明において、比抵抗が低く、かつ、耐電圧の高い電解液を構成する場合には、有機
カルボン酸およびホウ酸の双方が酸または塩として配合されていることがより好ましい。
In the present invention, when an electrolytic solution having a low specific resistance and a high withstand voltage is constituted, it is more preferable that both the organic carboxylic acid and boric acid are blended as an acid or a salt.

本発明において、トリアクリルホルマールの配合量は、電解液全体に対して0.10〜5.0重量%であることが好ましい。トリアクリルホルマールの配合量が、電解液全体に対して0.10重量%未満のときは、長期間にわたって高い信頼性が求められる用途には不適であり、5.0重量%を超えると、電解液の比抵抗が上昇するため、トリアクリルホルマールの配合量は、電解液全体に対して0.10〜5.0重量%の範囲が好ましい。   In this invention, it is preferable that the compounding quantity of a triacryl formal is 0.10 to 5.0 weight% with respect to the whole electrolyte solution. When the blending amount of triacryl formal is less than 0.10% by weight with respect to the whole electrolyte solution, it is unsuitable for applications that require high reliability over a long period of time. Since the specific resistance of the liquid is increased, the blending amount of triacryl formal is preferably in the range of 0.10 to 5.0% by weight with respect to the entire electrolytic solution.

本発明において、エチレングリコールに混合する副溶媒としては、水の他、プロピレングリコール等のグリコール類、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、N−メチル−2−ピロリドン等のラクトン類、N−メチルホルムアミド、N,N−ジメチルホルムアミド、N−エチルホルムアミド、N,N−ジエチルホルムアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド、N−エチルアセトアミド、N,N−ジエチルアセトアミド、ヘキサメチルホスホリックアミド等のアミド類、エチレンカーボネート、プロピレンカーボネート、イソブチレンカーボネート等の炭酸類、アセトニトリル等のニトリル類、ジメチルスルホキシド等のオキシド類、エーテル類、ケトン類、エステル類、スルホラン類等を例示することができる。   In the present invention, as a co-solvent to be mixed with ethylene glycol, water, glycols such as propylene glycol, lactones such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, N-methyl-2-pyrrolidone, etc. N-methylformamide, N, N-dimethylformamide, N-ethylformamide, N, N-diethylformamide, N-methylacetamide, N, N-dimethylacetamide, N-ethylacetamide, N, N-diethylacetamide, hexa Examples include amides such as methylphosphoric amide, carbonates such as ethylene carbonate, propylene carbonate, and isobutylene carbonate, nitriles such as acetonitrile, oxides such as dimethyl sulfoxide, ethers, ketones, esters, and sulfolanes. It can be.

また、上記有機カルボン酸として、アゼライン酸の他、ギ酸、酢酸、アクリル酸、プロピオン酸、乳酸、酪酸、吉草酸、グルコン酸、安息香酸、p−ニトロ安息香酸、アントラニル酸、サリチル酸、ゲンチシン酸、没食子酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸、デカンジカルボン酸、シュウ酸、トルトロン酸、フマル酸、マレイン酸、シトラコン酸、リンゴ酸、酒石酸、フタル酸、ボロジサリチル酸、クエン酸、ピロメリト酸、ナフトエ酸等が挙げられる。   In addition to azelaic acid, the organic carboxylic acid includes formic acid, acetic acid, acrylic acid, propionic acid, lactic acid, butyric acid, valeric acid, gluconic acid, benzoic acid, p-nitrobenzoic acid, anthranilic acid, salicylic acid, gentisic acid, Gallic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, decanedicarboxylic acid, oxalic acid, tolutronic acid, fumaric acid, maleic acid, citraconic acid, malic acid, tartaric acid, phthalic acid , Borodisalicylic acid, citric acid, pyromellitic acid, naphthoic acid and the like.

さらに、有機カルボン酸の塩として、アンモニウム塩の他、モノメチルアミン、モノエチルアミン、モノエタノールアミン、イソプロピルアミン、n−プロピルアミン、ジメチルアミン、ジエチルアミン、ジエタノールアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、トリ−n−プロピルアミン、トリメチルアミン、トリエチルアミン、トリエタノールアミン、トリ−n−ブチルアミン、ジメチルエチルアミン、ナフタレンジアミン、ベンジルアミン等の塩が挙げられる。   Further, as an organic carboxylic acid salt, in addition to ammonium salt, monomethylamine, monoethylamine, monoethanolamine, isopropylamine, n-propylamine, dimethylamine, diethylamine, diethanolamine, di-n-propylamine, diisopropylamine, triisopropylamine -N-propylamine, trimethylamine, triethylamine, triethanolamine, tri-n-butylamine, dimethylethylamine, naphthalenediamine, benzylamine and the like.

本発明を適用した電解液において、トリアクリルホルマールは、それを添加した際の電解液の耐電圧低下がリン酸より緩慢であり、電極箔と電解液中の水分との反応を長期間にわたって抑制するので、信頼性試験におけるtanδの上昇などを抑えることができる。   In the electrolytic solution to which the present invention is applied, the triacryl formal has a slower withstanding voltage drop than the phosphoric acid when added, and suppresses the reaction between the electrode foil and moisture in the electrolytic solution over a long period of time. Therefore, an increase in tan δ in the reliability test can be suppressed.

以下、実施例に基づき、本発明をより具体的に説明する。まず、表1に示す組成で電解液を調合し、30℃における比抵抗を測定した。その結果を表1に示す。   Hereinafter, based on an Example, this invention is demonstrated more concretely. First, an electrolyte solution was prepared with the composition shown in Table 1, and the specific resistance at 30 ° C. was measured. The results are shown in Table 1.

Figure 2007059478
Figure 2007059478

また、アルミニウム陽極箔とアルミニウム陰極箔とを電解紙を介して巻回したコンデンサ素子に、表1に示す組成の電解液をそれぞれ含浸し、定格電圧250V/68μF(φ16×25mmL)のアルミニウム電解コンデンサを作製した。次に、定格電圧でエージング処理を行った後、105℃−7000時間、定格電圧印加試験を行い、各時間におけるtanδを計測した。その結果を表1に示す。   In addition, a capacitor element in which an aluminum anode foil and an aluminum cathode foil are wound through electrolytic paper is impregnated with an electrolytic solution having the composition shown in Table 1, and an aluminum electrolytic capacitor having a rated voltage of 250 V / 68 μF (φ16 × 25 mmL). Was made. Next, after performing an aging process at a rated voltage, a rated voltage application test was performed at 105 ° C. for 7000 hours, and tan δ at each time was measured. The results are shown in Table 1.

表1に示すように、トリアクリルホルマールを配合した本発明の実施例1〜14に係る電解液は、オルトリン酸を添加した従来例2〜5に係る電解液より、耐電圧が高いため、オルトリン酸を0.5重量%、1.0重量%添加した電解液(従来例4、5)を用いた場合、エージング中あるいは定格電圧印加試験中にショートパンクが発生したのに対して、実施例1〜14に係る電解液を用いた場合、このようなショートパンクは発生しなかった。
さらに、実施例1〜14は、従来例1と比較し、定格電圧印加試験中の圧力弁の作動が無く、また、従来例2、3と比較し、定格電圧印加試験中のtanδ上昇の抑制効果が得られた。
As shown in Table 1, the electrolytes according to Examples 1 to 14 of the present invention blended with triacryl formal had higher withstand voltage than the electrolytes according to Conventional Examples 2 to 5 to which orthophosphoric acid was added. In the case of using an electrolyte solution containing 0.5% by weight and 1.0% by weight of acid (conventional examples 4 and 5), a short puncture occurred during aging or a rated voltage application test. When the electrolytic solutions according to 1 to 14 were used, such a short puncture did not occur.
Further, in Examples 1 to 14, there is no operation of the pressure valve during the rated voltage application test as compared with the conventional example 1, and as compared with the conventional examples 2 and 3, the increase in tan δ during the rated voltage application test is suppressed. The effect was obtained.

ここで、トリアクリルホルマールの配合量は、電解液全体に対して0.10重量%未満のときは(例えば、実施例1)、信頼性試験中のtanδの増加が大きい傾向にあり、長期間にわたって高い信頼性が求められる用途には不適である。また、トリアクリルホルマールの配合量が5.0重量%を超えると(例えば、実施例12)、電解液の比抵抗が高く、初期のtanδが高い傾向にある。従って、トリアクリルホルマールの配合量は、電解液全体に対して0.10〜5.0重量%の範囲が好ましい。   Here, when the blending amount of triacryl formal is less than 0.10% by weight with respect to the entire electrolyte (for example, Example 1), the increase in tan δ during the reliability test tends to be large, and the long term It is unsuitable for applications that require high reliability over a wide range. Moreover, when the compounding quantity of triacryl formal exceeds 5.0 weight% (for example, Example 12), there exists a tendency for the specific resistance of electrolyte solution to be high and initial tan-delta to be high. Therefore, the blending amount of triacryl formal is preferably in the range of 0.10 to 5.0% by weight with respect to the entire electrolyte solution.

なお、本発明によるトリアクリルホルマールの効果は、実施例に限定されるものではなく、先に記載した各種化合物を単独または複数溶解した電解液や副溶媒を混合した電解液に用いても実施例と同等の効果があった。また、有機カルボン酸およびホウ酸のうちのいずれか一方が酸または塩として配合された電解液においても、同様の効果があった。   In addition, the effect of the triacryl formal according to the present invention is not limited to the examples, and the examples may be used even in an electrolytic solution in which the above-described various compounds are singly or plurally dissolved or an auxiliary solvent is mixed. Had the same effect. In addition, the same effect was obtained in an electrolytic solution in which either one of organic carboxylic acid and boric acid was blended as an acid or a salt.

Claims (3)

エチレングリコールを主成分とする溶媒に、有機カルボン酸およびホウ酸のうちの少なくとも一方が酸または塩として配合された電解コンデンサの駆動用電解液において、
さらに、以下の化学式で示されるトリアクリルホルマールが配合されていることを特徴とする電解コンデンサの駆動用電解液。
Figure 2007059478
In an electrolytic solution for driving an electrolytic capacitor in which at least one of an organic carboxylic acid and boric acid is blended as an acid or salt in a solvent containing ethylene glycol as a main component,
Further, an electrolytic solution for driving an electrolytic capacitor, characterized in that a triacryl formal represented by the following chemical formula is blended.
Figure 2007059478
請求項1において、有機カルボン酸およびホウ酸の双方が酸または塩として配合されていることを特徴とする電解コンデンサの駆動用電解液。   2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein both the organic carboxylic acid and boric acid are blended as an acid or a salt. 請求項1または2において、トリアクリルホルマールの配合量が、電解液全体に対して0.10〜5.0重量%であることを特徴とする電解コンデンサの駆動用電解液。   3. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the blending amount of triacryl formal is 0.10 to 5.0% by weight with respect to the whole electrolytic solution.
JP2005240163A 2005-08-22 2005-08-22 Electrolytic solution for electrolytic capacitor drive Active JP4653593B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240163A JP4653593B2 (en) 2005-08-22 2005-08-22 Electrolytic solution for electrolytic capacitor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240163A JP4653593B2 (en) 2005-08-22 2005-08-22 Electrolytic solution for electrolytic capacitor drive

Publications (2)

Publication Number Publication Date
JP2007059478A true JP2007059478A (en) 2007-03-08
JP4653593B2 JP4653593B2 (en) 2011-03-16

Family

ID=37922728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240163A Active JP4653593B2 (en) 2005-08-22 2005-08-22 Electrolytic solution for electrolytic capacitor drive

Country Status (1)

Country Link
JP (1) JP4653593B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058480A1 (en) * 2013-10-23 2015-04-30 深圳新宙邦科技股份有限公司 Composition for gel polymer electrolyte, gel polymer electrolyte and electrochemical device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291081A (en) * 1992-04-09 1993-11-05 Matsushita Electric Ind Co Ltd Electrolytic capacitor driving electrolytic solution and electrolytic capacitor provided therewith
JP2002217067A (en) * 2001-01-22 2002-08-02 Nichicon Corp Electrolyte for driving electrolytic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291081A (en) * 1992-04-09 1993-11-05 Matsushita Electric Ind Co Ltd Electrolytic capacitor driving electrolytic solution and electrolytic capacitor provided therewith
JP2002217067A (en) * 2001-01-22 2002-08-02 Nichicon Corp Electrolyte for driving electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058480A1 (en) * 2013-10-23 2015-04-30 深圳新宙邦科技股份有限公司 Composition for gel polymer electrolyte, gel polymer electrolyte and electrochemical device

Also Published As

Publication number Publication date
JP4653593B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
JP4589218B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4653593B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4571021B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2009054691A (en) Electrolytic solution for driving electrolytic capacitor
JP4653631B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2005019773A (en) Aluminum electrolytic capacitor
JP2007129112A (en) Electrolyte for driving electrolytic capacitor
JP3902061B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4391779B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2006351579A (en) Electrolyte for driving electrolytic capacitor
JP4318430B2 (en) Electrolytic solution for electrolytic capacitor drive
JP2007115947A (en) Electrolyte for driving electrolytic capacitor
JP2006156707A (en) Electrolytic liquid for driving electrolytic capacitor
JP4344564B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4576317B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2006186217A (en) Electrolyte for driving aluminium electrolytic capacitor
JP2006339225A (en) Electrolyte for driving electrolytic capacitor
JP2004165332A (en) Electrolyte for driving electrolytic capacitor
JP4085009B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4699650B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4641455B2 (en) Electrolytic solution for electrolytic capacitor drive
JP4162980B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4555152B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4150251B2 (en) Electrolytic solution for driving electrolytic capacitors
JP4637701B2 (en) Electrolytic solution for electrolytic capacitor drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4653593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250