JP2007058675A - Slab design method - Google Patents

Slab design method Download PDF

Info

Publication number
JP2007058675A
JP2007058675A JP2005244716A JP2005244716A JP2007058675A JP 2007058675 A JP2007058675 A JP 2007058675A JP 2005244716 A JP2005244716 A JP 2005244716A JP 2005244716 A JP2005244716 A JP 2005244716A JP 2007058675 A JP2007058675 A JP 2007058675A
Authority
JP
Japan
Prior art keywords
slab
order
manufacturing
orders
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005244716A
Other languages
Japanese (ja)
Inventor
Kazunao Obata
一直 小畑
Masukazu Azami
益和 莇
Yutaka Nakayama
豊 中山
Takahisa Hara
孝久 原
Koichi Ishida
耕一 石田
Minoru Haruyama
稔 春山
Yoshiyuki Yamatsuta
義幸 山蔦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
NS Solutions Corp
Original Assignee
Nippon Steel Corp
NS Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, NS Solutions Corp filed Critical Nippon Steel Corp
Priority to JP2005244716A priority Critical patent/JP2007058675A/en
Publication of JP2007058675A publication Critical patent/JP2007058675A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • General Factory Administration (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow slab design for reducing redundant parts in a slab for increasing slab individual weight, and to realize manufacturing cost reduction through productivity improvement. <P>SOLUTION: A method for designing slabs, corresponding to orders for a plurality of steel products for which a manufacturing specifications constituted of a plurality of condition items is set arbitrarily for each order, includes (1) a step for sequentially assigning standard slabs matching, in terms of the manufacturing specification to the order for a prescribed period and producing a set of orders, for which redundant parts are caused in the standard slabs; (2) a step for producing a combination packing, for one slab, a plurality of orders bearing the common manufacturing specification, regarding manufacturing specifications including a prescribed condition item being moderated, in a set of orders each causing redundant parts; and (3) a step for determining the propriety of moderation of the manufacturing specifications for each order, in each produced combination, and for making the step (2) to produce another combination, for the order for the combination, when the order has been placed for which the moderation of the manufacturing specification has been determined as disapproval according to the determination. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は,鉄鋼業にてコイル等の薄板製品を製造するための材料となるスラブの設計に際し,スラブ内の余剰部を低減し,スラブ単重を大きくすることが可能なスラブ設計方法に関する。   The present invention relates to a slab design method capable of reducing surplus portions in a slab and increasing a slab unit weight when designing a slab as a material for manufacturing a thin plate product such as a coil in the steel industry.

鉄鋼メーカーでは,従来から受注生産方式によるコイル等の薄板製品の生産を行っている。この受注生産方式においては,客先より注文があると,その注文に応じたスラブ設計と,生産ラインに対して当該製品の生産を指示し,この指示に応じて生産ラインでスラブの鋳造及び加工を行い,最終工程にて客先の注文を満足し得る品種及び質量の薄板製品を所定量採取し,指定の納期までに客先に納品するものである。   Steel makers have traditionally produced thin-plate products such as coils using a build-to-order method. In this build-to-order manufacturing system, when an order is received from a customer, the slab design according to the order and production of the product are instructed to the production line, and the slab is cast and processed on the production line according to this instruction. In the final process, a predetermined amount of a thin plate product of a variety and mass that can satisfy the customer's order is collected and delivered to the customer by a specified delivery date.

この受注生産方式においては,注文消化歩留の視点からスラブ内の余剰部を極力少なくすると共に,製造コストを低減するうえでも,スラブ単重を製造工程上可能な限り大きくし,複数の小さな注文を1つのスラブにまとめるようにスラブ設計することが望ましい。   In this build-to-order manufacturing method, from the viewpoint of order digestion yield, the surplus part in the slab is reduced as much as possible, and the slab unit weight is made as large as possible in the manufacturing process to reduce the manufacturing cost. It is desirable to design the slabs so that they are combined into one slab.

これを実現するためのスラブ設計方法が,いくつかの文献で開示されている。例えば特許文献1(特開平10−214103号公報)では,注文ごとに予め複数の基準スラブ単重を用意し,各基準スラブ単重と注文量との割当て結果の中から最適な基準スラブ単重を採用するというスラブ設計方法である。しかしながら,用意できる基準スラブ単重の種類にはおのずと限界があり,加えて製造仕様,すなわち成分や特性などの指標に応じて別個に基準スラブを持つ必要があるため,多種多様な注文に対しては,十分に対応することは難しい。   Several literatures disclose slab design methods for realizing this. For example, in Patent Document 1 (Japanese Patent Laid-Open No. 10-214103), a plurality of reference slab unit weights are prepared in advance for each order, and an optimum reference slab unit weight is selected from the allocation results of each reference slab unit weight and the order quantity. It is a slab design method that adopts. However, the types of standard slabs that can be prepared are naturally limited, and in addition, it is necessary to have separate standard slabs according to manufacturing specifications, that is, indicators such as components and characteristics. It is difficult to respond sufficiently.

また従来一般の技術として,1スラブ内複数注文詰込み設計が検討されてきた。これは端数注文と基準スラブに対して,基準スラブ内(スラブの余剰部)に充当する注文の組合せを検索することを特徴としたスラブ設計方法である。しかしこの方法では,スラブの製造仕様は予め固定し,注文とスラブの組合せ検索を行うため,これらの条件の適合する範囲内でしか,注文とスラブとの組合せを見つけることができず,顧客ニーズの多様化が高まる今日,有効な手段とは言えない。   In addition, as a conventional general technique, a multi-order packing design in one slab has been studied. This is a slab design method characterized by retrieving a combination of orders applied to a reference slab (a surplus part of a slab) for a fractional order and a reference slab. However, in this method, the slab manufacturing specifications are fixed in advance and the combination of orders and slabs is searched. Therefore, combinations of orders and slabs can be found only within the range where these conditions are met. Today's diversification is not effective.

特開平10−214103号公報JP-A-10-214103

本発明は以上のような認識に基づき,スラブ設計について検討した結果,製造仕様における各条件の設定をあわせて考慮することで,スラブの詰め込みの充填度を向上できることを知見したものである。   As a result of examining the slab design based on the above recognition, the present invention has found that the filling degree of slab filling can be improved by considering the setting of each condition in the manufacturing specification.

本発明は以下の構成からなる。
即ち,複数の条件項目からなる製造仕様が各注文に任意に設定された,複数の鉄鋼製品の注文に対応したスラブを設計する方法であって,
(1)所定の期間の注文に対して,製造仕様の適合する基準スラブを順次割り当てるとともに,基準スラブでは余剰部が生じる注文の集合を作成するステップと,
(2)前記余剰部が生じる注文の集合において,所定の条件項目を緩和した製造仕様で,製造仕様が共通する複数の注文を1つのスラブに詰め込んだ組合せを作成するステップと,
(3)前記作成された組合せのそれぞれにおいて,各注文に製造仕様の緩和可否を判定し,前記判定により,製造仕様の緩和不可と判定された注文があった場合に,当該組合せの注文について,再び前記(2)のステップによる別の組合せの作成を行わせるステップと,
(4)前記判定により,製造仕様の緩和可能と判定された組合せについて,所定の条件項目を緩和した共通の製造仕様のスラブを割り当てるステップと,
(5)前記(3)のステップにおいて製造仕様の緩和可能と判定された組合せが見つからなかった注文について,当該注文の製造仕様に適合するスラブを割り当てるステップと,
を有することを特徴とする,スラブ設計方法である。
The present invention has the following configuration.
That is, a method for designing a slab corresponding to an order for a plurality of steel products, in which manufacturing specifications including a plurality of condition items are arbitrarily set for each order,
(1) A step of sequentially assigning reference slabs conforming to manufacturing specifications to orders for a predetermined period, and creating a set of orders in which a surplus part is generated in the reference slabs;
(2) creating a combination in which a plurality of orders with common manufacturing specifications are packed in one slab with manufacturing specifications with relaxed predetermined condition items in a set of orders in which the surplus part occurs;
(3) In each of the created combinations, it is determined whether or not the manufacturing specifications can be relaxed for each order. If there is an order that the manufacturing specifications cannot be relaxed by the determination, A step of creating another combination by the step (2) again;
(4) assigning a slab of a common manufacturing specification in which a predetermined condition item is relaxed for a combination determined to be relaxable in manufacturing specification by the determination;
(5) For an order for which a combination determined to be relaxable in the manufacturing specification in the step (3) is not found, assigning a slab conforming to the manufacturing specification of the order;
A slab design method characterized by having

前記基準スラブは,例えば通過工程で許容される最大質量とする。また,前記(1)のステップで製造仕様の適合する基準スラブを割り当てるに際し,通過工程で許容される最大質量を超えている注文については,基準スラブを繰り返して割り当て,基準スラブでは余剰部が生じることとなった残りの部分は,前記余剰部が生じる注文の集合に含めるようにしても良い。   The reference slab is, for example, the maximum mass allowed in the passing process. In addition, when assigning a reference slab that meets the manufacturing specifications in step (1) above, for orders that exceed the maximum mass allowed in the passing process, the reference slab is assigned repeatedly, and a surplus portion is generated in the reference slab. The remaining part may be included in a set of orders in which the surplus part is generated.

また,前記(2)のステップで製造仕様を緩和するに際し,所定の条件項目を,上位の条件もしくは変更可能な条件に変更すること許容するようにしても良い。   Further, when the manufacturing specifications are relaxed in the step (2), it may be allowed to change a predetermined condition item to a higher condition or a changeable condition.

また,前記(3)のステップで製造仕様の緩和不可と判定された注文について,再び前記(2)のステップによる別の組合せの作成を行わせるに際し,別の組合せの作成を所定の回数行った注文については,再び前記(2)のステップによる別の組合せの作成を行わずに,前記(5)のステップで,当該注文の製造仕様に適合するスラブを割り当てるようにしても良い。   In addition, regarding the order determined to be unrelaxable in the manufacturing specification in the step (3), another combination was created a predetermined number of times when another combination was created in the step (2). With respect to the order, a slab suitable for the manufacturing specification of the order may be assigned in the step (5) without creating another combination in the step (2) again.

また,前記(4)のステップで所定の条件項目を緩和した共通の製造仕様のスラブを割り当てるに際し,当該スラブの単重は,通過工程で許容される範囲内である限り,当該スラブに詰め込んだ組合せにかかる各注文の総和にほぼ一致させるようにしても良い。   In addition, when assigning a slab with a common manufacturing specification with the specified condition items relaxed in step (4) above, the unit weight of the slab is packed into the slab as long as it is within the allowable range in the passing process. You may make it substantially correspond to the sum total of each order concerning a combination.

また,前記(5)のステップで組合せが見つからなかった注文の製造仕様に適合するスラブを割り当てるに際し,当該スラブの単重は,通過工程で許容される範囲内である限り,組合せが見つからなかった注文にほぼ一致させるようにしても良い。   In addition, when assigning a slab that conforms to the manufacturing specifications of an order for which a combination was not found in step (5), the combination was not found as long as the unit weight of the slab was within the allowable range of the passing process. You may make it substantially correspond to an order.

本発明によれば,スラブ品質特性値などの製造仕様が異なる複数の端数注文に対応してスラブ設計する際,製造仕様の制約を一定の条件下で緩和して注文とスラブの組合せを検索し,スラブ品質特性値などを満足する共通の製造仕様を設定することで,1スラブ内に複数の注文を詰込んだスラブ設計が可能となる。この結果,スラブ内の余剰部を増加させることなく,スラブ単重を大きくするスラブ設計が可能となり,製造工程の生産性向上による製造コストの安価化を実現できる。   According to the present invention, when designing a slab corresponding to a plurality of fractional orders with different manufacturing specifications such as slab quality characteristic values, the restrictions on the manufacturing specifications are relaxed under a certain condition, and a combination of the order and the slab is searched. By setting common manufacturing specifications that satisfy slab quality characteristic values, etc., it is possible to design a slab that contains multiple orders in one slab. As a result, it is possible to design a slab that increases the unit weight of the slab without increasing the surplus portion in the slab, and it is possible to reduce the manufacturing cost by improving the productivity of the manufacturing process.

以下に本発明の実施の形態について詳細に説明する。
本発明は,スラブの単重をできるだけ大きくすることを第一の目的としたスラブ設計方法であり,基準とするサイズのスラブへの可能な限りの注文の詰め込みを適正化するものである。その方法としては,品質特性値などの製造仕様が異なる複数の端数注文を,製造仕様のうち,所定の条件項目を緩和した製造仕様で組合せを検索し,得られた組合せに対して,仕様緩和した共通の製造仕様を割り当てることにある。上記方法によれば,製造仕様が異なる端数注文を1スラブ内に複数詰込んだスラブ設計が可能なため,スラブ内の余剰部を増加させることなく,スラブ単重を大きくするスラブ設計が可能となる。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention is a slab design method whose primary purpose is to increase the unit weight of a slab as much as possible, and optimizes the packing of orders as much as possible into a slab of a reference size. As a method, multiple fraction orders with different manufacturing specifications such as quality characteristic values, etc., are searched for combinations with manufacturing specifications with the specified condition items relaxed among the manufacturing specifications, and the specifications are relaxed for the obtained combinations. Is to assign common manufacturing specifications. According to the above method, it is possible to design a slab in which multiple fraction orders with different manufacturing specifications are packed in one slab, so that it is possible to design a slab that increases the slab unit weight without increasing the surplus part in the slab. Become.

本発明の実施の形態について図を用いて説明する。図1は本発明の実施の形態にかかるスラブ設計方法を説明するためのフローチャートである。図中の「S」はステップを意味している。参考までに,従来一般の技術である複数注文詰込みのスラブ設計処理のフローチャートを図2に示す。これから説明する処理は,実際には生産管理用のコンピューターで実行するものであり,処理に必要な情報(注文情報や設備制約範囲情報,また処理プログラムなど)は,コンピューター内のディスクやメモリなどに予め記憶している。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining a slab design method according to an embodiment of the present invention. “S” in the figure means a step. For reference, FIG. 2 shows a flowchart of a slab design process for packing multiple orders, which is a conventional general technique. The processing described below is actually executed on a computer for production management, and information necessary for processing (order information, equipment constraint range information, processing programs, etc.) is stored on a disk or memory in the computer. Pre-stored.

先ず,鉄鋼メーカーに対して,多種多様の鉄鋼製品の注文が発注される。この場合,各注文ごとに鉄鋼製品に対応した製造仕様が任意に設定されている。鉄鋼製品に対応した製造仕様とは,例えば量(質量),成分,グレード,寸法,使用すべき連続鋳造機等の複数の条件項目からなる。これら複数の条件項目からなる製造仕様は,各注文ごとに任意に設定されるものであり,各注文の製造仕様は同一ではなく,各注文ごとにまちまちである。そこで本発明では,そのような複数の鉄鋼製品の注文に対応して,次のステップS1〜S5に示す処理を行い,各注文を考慮したスラブ設計を行う。   First, orders for a wide variety of steel products are ordered from steel manufacturers. In this case, manufacturing specifications corresponding to steel products are arbitrarily set for each order. Manufacturing specifications corresponding to steel products consist of multiple condition items such as quantity (mass), composition, grade, dimensions, continuous casting machine to be used, and the like. The manufacturing specifications composed of a plurality of condition items are arbitrarily set for each order, and the manufacturing specifications of each order are not the same, and are different for each order. Accordingly, in the present invention, the processing shown in the following steps S1 to S5 is performed in response to such orders for a plurality of steel products, and slab design is performed in consideration of each order.

(1)所定の期間の注文に対して,製造仕様の適合する基準スラブを順次割り当てるとともに,基準スラブでは余剰部が生じる注文の集合を作成するステップS1
先ず,所定期間に発注された多種多様の鉄鋼製品の複数の注文に対して,製造仕様の適合する基準スラブを順次割当てて行く。この場合,所定期間とは,例えば1週間,1ヶ月といった期間であり,鉄鋼メーカーに対して次々と発注された複数の注文を,例えば1週間,1ヶ月といった単位期間ごとに区切り,各期間内に発注された複数の注文の集合単位ごとに,本発明を適用していく。なお,この所定期間を定めるにあたり,例えば1週間,1ヶ月といった時間的な期間の代わりに,例えば所定の回数の注文が発注された場合に所定期間とする,あるいは,各注文の総重量が所定量に達した場合に所定期間とする,などといったように,注文数や,その他のパラメータによって期間を区切ることも可能である。
(1) Step S1 of sequentially assigning reference slabs that meet the manufacturing specifications to orders for a predetermined period and creating a set of orders in which surplus portions are generated in the reference slabs
First, reference slabs that conform to manufacturing specifications are sequentially assigned to a plurality of orders for a wide variety of steel products ordered in a predetermined period. In this case, the predetermined period is a period such as one week or one month, for example, and a plurality of orders ordered one after the other are separated into unit periods such as one week or one month. The present invention is applied to each set unit of a plurality of orders placed in (1). In setting the predetermined period, instead of a time period such as one week or one month, for example, a predetermined period is set when a predetermined number of orders are placed, or the total weight of each order is determined. It is also possible to divide the period according to the number of orders and other parameters, such as setting a predetermined period when a fixed amount is reached.

このように所定期間になされた各注文に対して,製造仕様の適合する基準スラブを割り当てるに際し,基準スラブとして,例えば,通過工程で許容される最大質量のものを適用する。ここで,通過工程とは,各注文の製造仕様に適合するスラブの製造開始から,熱延鋼板,冷延鋼板として客先に納入するまでにスラブもしくは鋼板が通過する各種製造工程,納入工程等であり,それら製造工程,納入工程等で通過する設備的制約,客先納入時の許容単重範囲などを考慮した範囲内で,許容される最大質量のスラブを基準スラブとする。   When assigning a reference slab conforming to the manufacturing specification to each order made in a predetermined period in this way, for example, the reference slab having the maximum mass allowed in the passing process is applied. Here, the passage process refers to the various production processes, delivery processes, etc. through which the slab or steel plate passes from the start of slab production that meets the production specifications of each order to delivery to the customer as hot-rolled steel sheet or cold-rolled steel sheet. The slab with the maximum mass allowed within the range that considers the facility restrictions that pass through the manufacturing process, delivery process, etc., and the allowable unit weight range at the time of customer delivery, is taken as the reference slab.

このステップS1について,例えば,ある注文について定められた製造仕様中の量(質量)がXであり,当該注文に製造仕様が適合する基準スラブについて通過過程で許容される最大質量がYである場合について具体的に説明すると,先ず,量Xと最大質量Yを比較することによって,その注文に対して,当該注文の製造仕様に適合する基準スラブを割り当てられるかどうか,即ち,その注文に対して通過工程で許容される最大質量の基準スラブを適用した場合に余剰部を生じるかどうかを判定する。   In this step S1, for example, when the quantity (mass) in the production specification determined for an order is X, and the maximum mass allowed in the passing process for a reference slab that meets the production specification for the order is Y Specifically, first, by comparing the quantity X and the maximum mass Y, whether or not a reference slab conforming to the manufacturing specifications of the order can be assigned to the order, that is, for the order It is determined whether or not a surplus portion is generated when a reference slab having a maximum mass allowed in the passing process is applied.

そして,量X=最大質量Yである場合は余剰部が生じないので,その注文に対しては,当該注文の製造仕様に適合する基準スラブを割り当てる。これによって,その注文に対するスラブ設計は終了する。   When the quantity X = the maximum mass Y, no surplus portion is generated, and therefore, a reference slab conforming to the manufacturing specification of the order is assigned to the order. This completes the slab design for that order.

一方,量X<最大質量Yである場合は,その注文に対して当該注文の製造仕様に適合する基準スラブをそのまま割り当てると,基準スラブ中に注文を超えた余剰部(Y−X)が生じてしまう。そこで,そのように量X<最大質量Yとなり余剰部を生じさせる注文については基準スラブを割り当てることはせず,その注文は,余剰部が生じる注文の集合Uに入れてしまう。   On the other hand, if quantity X <maximum mass Y, if a reference slab that matches the manufacturing specifications of the order is assigned to the order as it is, an excess part (Y-X) exceeding the order is generated in the reference slab. End up. Therefore, a reference slab is not assigned to an order in which the quantity X <maximum mass Y and the surplus part is generated, and the order is put in the set U of orders in which the surplus part is generated.

こうして,このステップS1では,所定期間になされた各注文に対して,量Xと最大質量Yをそれぞれ比較し,量X=最大質量Yである場合は,その注文に対しては基準スラブを割り当て,一方で,量X<最大質量Yである場合は,その注文は余剰部が生じる注文の集合Uに入れることにより,基準スラブでは余剰部が生じる注文の集合Uを作成する。   Thus, in this step S1, the quantity X is compared with the maximum mass Y for each order made during a predetermined period, and if the quantity X = maximum mass Y, a reference slab is assigned to that order. On the other hand, if quantity X <maximum mass Y, the order is placed in the order set U in which the surplus part occurs, thereby creating the order set U in which the surplus part occurs in the reference slab.

なお,このようにステップS1において各注文に対して量Xと最大質量Yを比較する場合,注文によっては,量Xが通過工程で許容される最大質量Yを超えている場合もありえる。そのような量X>最大質量Yである注文については,最大質量Yの基準スラブを可能な範囲で繰り返し差し引くと共に,一回差し引くごとに当該注文の製造仕様に適合する基準スラブを一つずつ割り当てる。そして最後に,基準スラブでは余剰部が生じることとなった残りの部分を,前述の余剰部が生じる注文の集合Uに含めれば良い。   When the amount X and the maximum mass Y are compared for each order in step S1, the amount X may exceed the maximum mass Y allowed in the passing process depending on the order. For orders with such an amount X> maximum mass Y, the reference slab with the maximum mass Y is repeatedly subtracted as much as possible, and each reference slab that matches the manufacturing specifications of the order is assigned one by one. . Finally, the remaining part that would cause the surplus part in the reference slab may be included in the order set U in which the surplus part occurs.

(2)前記余剰部が生じる注文の集合Uにおいて,所定の条件項目を緩和した製造仕様で,製造仕様が共通する複数の注文を1つのスラブに詰め込んだ組合せを作成するステップS2
次にステップS2では,先ず,前述のステップS1で作成した余剰部が生じる注文の集合Uにおいて,各注文ごとに定められている製造仕様中の仕様緩和可能な条件項目を緩和する。前述のように,製造仕様には,量(質量),成分,グレード,寸法,使用すべき連続鋳造機等といった複数の条件項目があるが,それら条件項目の中において,例えば表面グレード,内欠グレードなどは,コスト面等を無視すれば製造仕様よりも優れた上位の条件とすることが許容される。また,例えば使用すべき連続鋳造機などについては,他の連続鋳造機を代替的に使用する,といったように変更が許容される条件項目も存在する。そこで,各注文ごとに定められている製造仕様の中で,このように仕様緩和可能な条件項目を予め選定しておく。
(2) Step S2 of creating a combination in which a plurality of orders having the same manufacturing specifications are packed in one slab with manufacturing specifications with relaxed predetermined condition items in the order set U in which the surplus part occurs
Next, in step S2, first, in the order set U in which the surplus part created in step S1 described above occurs, the condition items that can be relaxed in the manufacturing specifications defined for each order are relaxed. As mentioned above, manufacturing specifications have multiple condition items such as quantity (mass), composition, grade, dimensions, continuous casting machine to be used, etc. Among these condition items, for example, surface grade, Grades etc. are allowed to have superior conditions that are superior to manufacturing specifications if cost and other factors are ignored. For example, there are condition items that are allowed to be changed, such as using another continuous casting machine instead of a continuous casting machine to be used. Therefore, in the manufacturing specifications determined for each order, the condition items that can be relaxed are selected in advance.

そして,このステップS2では,前述のステップS1で作成した余剰部が生じる注文の集合Uにおいて,先ず,各注文ごとに定められている製造仕様中の仕様緩和可能な条件項目の中で,変更可能な所定の条件項目を,上位の条件に変更することを許容する,もしくは,変更可能な条件に変更することを許容することにより製造仕様を緩和する。そして,各注文それぞれについて所定の条件項目を緩和した製造仕様とした上で,製造仕様が共通する複数の注文を1つのスラブに詰め込んだ組合せを作成する。なお,このように緩和した製造仕様によって各注文同士の可能な組合せの検索は,一般的な組合せ問題(スラブ:注文=M:N)であるため,市販のパッケージソフトなどを使用して可能か組合せを探し出すことができる。なお,図2に示す従来法では,製造仕様中の条件項目が完全に合致する注文のみ組合せ可能とする最適組合せの作成が行われいている。   In this step S2, in the order set U in which the surplus part created in the above-mentioned step S1 occurs, first, it can be changed among the condition items that can be relaxed in the manufacturing specifications defined for each order. The manufacturing specification is relaxed by permitting the change of a predetermined condition item to a higher condition or allowing the change to a changeable condition. Then, after making a manufacturing specification in which predetermined condition items are relaxed for each order, a combination in which a plurality of orders having the same manufacturing specification are packed in one slab is created. It should be noted that searching for possible combinations between orders based on such relaxed manufacturing specifications is a general combination problem (slab: order = M: N), so is it possible to use commercially available package software? You can find combinations. In the conventional method shown in FIG. 2, an optimum combination is created so that only orders that completely satisfy the condition items in the manufacturing specification can be combined.

(3)前記作成された組合せのそれぞれにおいて,各注文ごとに製造仕様の緩和可否を判定し,前記判定により,製造仕様の緩和不可と判定された注文があった場合に,当該組合せの注文について,再び前記ステップS2による別の組合せの作成を行わせるステップS3
前述のように,ステップS2では,緩和した製造仕様が共通する複数の注文を1つのスラブに詰め込んだ組合せが作成されるが,条件項目の変更が過大になると,好ましくない場合もある。例えば,表面グレード,内欠グレードなどが注文に比べて著しく上位となると,却ってコスト的に見合わなくなってしまうような場合もありえる。あるいはまた,変更された各条件項目の組合せによっては,製造ができないような条件設定が生ずる可能性もある。
(3) In each of the created combinations, it is determined whether or not the manufacturing specifications can be relaxed for each order. If there is an order that the manufacturing specifications cannot be relaxed by the determination, the order of the combination is determined. , Step S3 for creating another combination again in Step S2.
As described above, in step S2, a combination in which a plurality of orders having the same relaxed manufacturing specifications are packed in one slab is created. However, if the change of the condition items becomes excessive, it may not be preferable. For example, if the surface grade, internal grade, etc. are significantly higher than the order, there may be cases where the cost is not met. Alternatively, depending on the combination of the changed condition items, there may be a condition setting that cannot be manufactured.

そこでステップS3では,先ず,ステップS2で作成された各組合せそれぞれにおいて,各注文ごとに製造仕様の緩和可否を判定する。ここで緩和可否の判定は,ステップS2で作成された組合中に含まれる各注文において,共通の製造仕様とさせるために緩和させた条件項目の変更が,予め定めた条件に適合するかどうかで判断する。一例として,表面グレード,内欠グレードなどの品質に関する条件項目では,例えばグレードを1段階上位とさせる変更(緩和)は「可」,2段階以上グレードを上位とさせる変更(緩和)は「不可」とする,あるいは,変更(緩和)後の各条件項目の組合せが,予め定めた組合せの範囲内にあれば「可」,そうでない場合は「不可」とする,などである。   In step S3, first, in each combination created in step S2, it is determined whether or not the manufacturing specification can be relaxed for each order. Here, whether or not relaxation is possible is determined by whether or not the change of the condition items relaxed to make a common production specification in each order included in the union created in step S2 meets a predetermined condition. to decide. As an example, in quality condition items such as surface grades and internal grades, for example, a change (relaxation) that raises the grade by one level is “possible”, and a change (relaxation) that raises two or more grades is “impossible”. Or, if the combination of the condition items after the change (relaxation) is within the predetermined combination range, “Yes” is set, otherwise “No” is set.

そして,この判定により,組み合わせ中に製造仕様の緩和不可と判定された注文があった場合は,当該組合せを解消する。そして,そのように組合せを解消した各注文については,再び前述のステップS2に戻り,更に別の組合せの作成を行わせる。このように,組合せを解消した各注文をステップS2に戻して別の組合せの作成を行わせるにあたり,所定期間内の注文数が少数であれば,各注文同士を総当りさせて製造仕様の緩和可能な組合せを繰り返し探すようにしても良いが,注文数が多い場合は,計算機能力などを考慮して,ステップS2に戻して別の組合せの作成を行わせる回数をあらかじめ決定しておき,その範囲内でステップS2に戻して別の組合せの作成を行わせることが望ましい。なお,市販のパッケージソフトでは,何度も同じ組合せがなされないよう,組合せの作成順序を設定するか,一度作成した組合せを記憶するなどの機能を有するものがある。また,最適組合せの選択についても,平均スラブ単重やスラブ本数などに基づく評価指標を算出して行うようにしているものもあり,これらを用いるのはより好ましい。   If there is an order that is determined to be inevitable in manufacturing specifications during the combination by this determination, the combination is canceled. Then, for each order for which the combination has been canceled, the process returns to the above-described step S2 again to create another combination. In this way, when each order whose combination has been canceled is returned to step S2 to create another combination, if the number of orders within a predetermined period is small, each order is breached to ease manufacturing specifications. It is possible to repeatedly search for possible combinations. However, if the number of orders is large, considering the calculation function, etc., the number of times to return to step S2 and create another combination is determined in advance. It is desirable to return to step S2 within the range and create another combination. Some commercially available package software has functions such as setting the creation order of combinations so that the same combination is not repeated many times, or storing a once created combination. Some of the optimum combinations are selected by calculating an evaluation index based on the average slab unit weight or the number of slabs, and it is more preferable to use these.

(4)前記判定により,製造仕様の緩和可能と判定された組合せについて,所定の条件項目を緩和した共通の製造仕様のスラブを割り当てるステップS4
次に,ステップS4では,前述のステップS3における判定によって製造仕様の緩和が可能と判定された組合せについては,組合せを決定し,所定の条件項目を緩和した共通の製造仕様のスラブを割り当てる。この場合,製造仕様が異なる複数の注文を1つのスラブに詰め込んだ組合せが作成されているのであれば,組み合わせ中の少なくとも一部の注文については,何らかの条件項目が,緩和可能な範囲内において変更されたものとなっている。例えば,一部の注文については,表面グレード,内欠グレードなどの品質に関する条件項目が,所定の範囲内(例えば1段階まで)で他の注文にあわせた上位グレードに変更(緩和)されている,あるいは,各注文について,いずれも予め定めた組合せの範囲内で各条件項目の組合せが変更(緩和)されている,などである。
(4) Step S4 for allocating a slab of a common manufacturing specification in which a predetermined condition item is relaxed for a combination determined to be relaxable in manufacturing specification by the determination.
Next, in step S4, for the combination determined to be able to relax the manufacturing specification by the determination in step S3, the combination is determined, and a common manufacturing specification slab in which predetermined condition items are relaxed is assigned. In this case, if a combination has been created in which a plurality of orders with different manufacturing specifications are packed into one slab, at least some of the orders in the combination can be changed within a range that can be relaxed. It has been made. For example, for some orders, quality condition items such as surface grades and missing grades have been changed (relaxed) to higher grades that match other orders within a specified range (for example, up to one level). Or, for each order, the combination of the condition items is changed (relaxed) within a predetermined combination range.

そして,このようにステップS4において,所定の条件項目を緩和した共通の製造仕様のスラブを割り当てるに際し,当該スラブの単重は,通過工程で許容される範囲内である限り,当該スラブに詰め込んだ組合せにかかる各注文の総和に一致させる。例えば,当該スラブに詰め込んだ組合せにかかる2つの注文について定められたそれぞれの製造仕様中の量(質量)がX1,X2であれば,通過工程で許容される範囲内である限り,これら2つの注文の組合せを詰め込んだ当該スラブの単重は,X1+X2とする。但し,2つの注文の量(質量)の総和X1+X2が,通過工程で許容される範囲内に足りない場合は,当該スラブの単重は,通過工程で許容される範囲内最小質量とする。   In step S4, when assigning a slab having a common manufacturing specification in which predetermined condition items are relaxed, the unit weight of the slab is packed into the slab as long as it is within the allowable range in the passing process. Match the sum of each order in the combination. For example, if the quantities (mass) in the production specifications determined for the two orders for the combination packed in the slab are X1 and X2, these two are within the allowable range of the passing process. The unit weight of the slab packed with the combination of orders is X1 + X2. However, when the sum (X1 + X2) of the quantities (mass) of the two orders is not within the allowable range for the passing process, the unit weight of the slab is the minimum mass within the allowable range for the passing process.

(5)前記ステップS3において製造仕様の緩和可能と判定された組合せが見つからなかった注文について,当該注文の製造仕様に適合するスラブを割り当てるステップS5
一方,ステップS5では,前述のステップS3において製造仕様の緩和可能と判定された組合せが最後まで見つからなかった注文について,当該注文の製造仕様に適合する注文どおりのスラブを割り当てる。なお,前述のように,ステップS3において製造仕様の緩和不可と判定された組合せに含まれる各注文については,再び前述のステップS2に戻り,更に別の組合せの作成が行われるが,所定期間内の注文数が多い場合は,各注文同士の全ての組合せを検討したのでは,処理時間が長くなってしまう。そこで,計算機能力などを考慮して,ステップS3において製造仕様の緩和不可と判定された組合せに含まれる各注文について,ステップS2に戻して別の組合せの作成を行わせる回数をあらかじめ決定しておき,別の組合せの作成を予め定めておいた所定の回数を既に行った注文については,製造仕様の緩和可能と判定された組合せが見つからなかった注文と判断し,再び前記ステップS2による別の組合せの作成を行うことなく,このステップS5において,当該注文の製造仕様に適合するスラブを割り当てるようにする。
(5) Step S5 for assigning a slab suitable for the manufacturing specification of the order for the order for which the combination determined to be relaxable in the manufacturing specification is not found in Step S3
On the other hand, in step S5, a slab according to the order conforming to the manufacturing specification of the order is assigned to the order for which the combination determined that the manufacturing specification can be relaxed in step S3 is not found until the end. As described above, for each order included in the combination determined to be unrelaxable in the manufacturing specification in step S3, the process returns to step S2 again to create another combination, but within a predetermined period. If there are many orders, the processing time will be long if all combinations of orders are considered. Therefore, in consideration of the calculation function, etc., for each order included in the combination determined to be unrelaxable in the manufacturing specification in step S3, the number of times of returning to step S2 and creating another combination is determined in advance. , Regarding an order that has already been created a predetermined number of times for creating another combination, it is determined that the combination that is determined to be able to relax the manufacturing specification is not found, and another combination according to step S2 is again performed. In step S5, a slab that conforms to the manufacturing specifications of the order is assigned.

そして,このステップS5において,上述のように製造仕様の緩和可能と判定された組合せが最後まで見つからなかった注文の製造仕様に適合するスラブを割り当てるに際し,当該スラブの単重は,通過工程で許容される範囲内である限り,組合せが見つからなかった注文に一致させる。例えば,この組合せが見つからなかった注文について定められた製造仕様中の量(質量)がX3であれば,通過工程で許容される範囲内である限り,この組合せが見つからなかった注文に割り当てられるスラブの単重は,X3とする。但し,この組合せが見つからなかった注文の量(質量)X3が,通過工程で許容される範囲内に足りない場合は,当該スラブの単重は,通過工程で許容される範囲内最小質量とする。   In this step S5, when assigning a slab conforming to the manufacturing specification of the order in which the combination determined to be relaxable as described above is not found until the end, the unit weight of the slab is allowed in the passing process. Match orders for which no combination was found as long as they are within the scope For example, if the quantity (mass) in the production specification for an order for which this combination was not found is X3, the slab assigned to the order for which this combination was not found, as long as it is within the allowable range for the passing process. The unit weight of X is X3. However, if the order quantity (mass) X3 for which this combination was not found is not within the allowable range for the passing process, the unit weight of the slab shall be the minimum allowable mass for the passing process. .

こうして,それぞれの場合に応じた製造仕様のスラブを適宜割り当てることにより,所定の期間内の注文に対するスラブの設計が終了する。そして,次の所定の期間内の注文に対するスラブの設計が順次行われる。   In this way, the slab design for the order within a predetermined period is completed by appropriately assigning the slab of the manufacturing specification corresponding to each case. Then, slabs are sequentially designed for orders within the next predetermined period.

以上,本発明の実施の形態の一例を説明したが,本発明はここに示した形態に限定されない。例えば,ステップS1では,所定期間に発注された各注文に対して最初に割り当てられる基準スラブとして,通過工程で許容される最大質量のものを用いる例を説明したが,で最初に割り当てられる基準スラブは必ずしも最大質量のものでなくても構わない。この基準スラブの単重は,なるべく大きいことが望ましいが,通過工程で許容される範囲内の大きさであれば特に限定はない。   As mentioned above, although an example of embodiment of this invention was demonstrated, this invention is not limited to the form shown here. For example, in step S1, the example in which the maximum mass allowed in the passing process is used as the reference slab initially assigned to each order placed in a predetermined period has been described. May not necessarily have the maximum mass. The unit weight of the reference slab is preferably as large as possible, but is not particularly limited as long as it is within a range allowed in the passing process.

なお,本発明は上述の通りコンピュータを用いて実施するものである。本発明の実施の形態にかかる機能ブロック図を図3に示す。具体的には,注文に関する情報,基準スラブに関する情報,集合Uに関する情報はコンピュータの記憶手段に格納され,必要に応じて読み出される。記憶手段に記憶された注文に関する情報や基準スラブに関する情報は,コンピュータのCPUによって読み出され,ステップS1からステップS5までの各処理に用いられる。つまり,CPUは量Xと最大重量Yとの比較をする機能,仕様緩和をする機能,そして,それらに基づいて基準スラブに割り当てる機能の各機能として動作し,最終的にはスラブの設計情報を出力する。   The present invention is implemented using a computer as described above. FIG. 3 shows a functional block diagram according to the embodiment of the present invention. Specifically, the information regarding the order, the information regarding the reference slab, and the information regarding the set U are stored in the storage means of the computer and read out as necessary. Information relating to orders and information relating to reference slabs stored in the storage means are read out by the CPU of the computer and used for each processing from step S1 to step S5. In other words, the CPU operates as a function for comparing the quantity X and the maximum weight Y, a function for relaxing the specification, and a function assigned to the reference slab based on them, and finally the slab design information is obtained. Output.

次に,本発明の実施例を説明する。表1に示す7個の熱延鋼板(No.1〜7)の注文に対して,図1に示す本発明法によるスラブ設計を行った場合と,図2に示す従来一般法による複数注文詰込みスラブ設計を行った場合の,スラブ設計の結果を比較した。ここで,各注文ごとに製造仕様で設定される条件項目としては,注文量(t),成分コード,表面グレード,内欠グレード,ホットコイル寸法(厚み(mm),幅(mm)),連続鋳造機可否区分があり,そのうち表面グレード,内欠グレード,ホットコイル厚み(mm),連続鋳造機可否区分が,緩和可能な条件項目(※)である。このうち,表面グレード,内欠グレードについては,成分コードに応じた設定可能な組合せが表2のとおりに規定されている。ここでグレードの値は,小さいほど良いものである。   Next, examples of the present invention will be described. When the slab design by the method of the present invention shown in FIG. 1 is performed for the order of the seven hot-rolled steel plates (Nos. 1 to 7) shown in Table 1, and the multi-order packing by the conventional general method shown in FIG. We compared the results of the slab design when the included slab design was performed. Here, the condition items set in the manufacturing specifications for each order are the order quantity (t), component code, surface grade, internal grade, hot coil dimensions (thickness (mm), width (mm)), continuous There are casting machine availability categories, of which the surface grade, internal grade, hot coil thickness (mm), and continuous casting machine availability category are relaxable condition items (*). Among these, for the surface grade and internal grade, combinations that can be set according to the component code are defined as shown in Table 2. Here, the smaller the grade value, the better.

Figure 2007058675
Figure 2007058675

Figure 2007058675
Figure 2007058675

また,ホットコイルの幅によって定められるコイルの単重制限が別途規定されており,表1および表3,表4に示している。近年の一貫製鉄所における連続鋳造装置では,幅をスラブ毎に所定の値として,長さは切断位置である程度調整が可能である。本実施例もこの前提で検討を行っているが,最小単重に満たない注文が付与されたスラブは,最小単重で設計され,注文量との差が余剰量となる。   Further, the coil single weight limit determined by the width of the hot coil is separately defined, and is shown in Table 1, Table 3, and Table 4. In a continuous casting machine in a recent integrated steelworks, the width can be set to a predetermined value for each slab, and the length can be adjusted to some extent at the cutting position. The present embodiment is also examined based on this premise, but a slab to which an order less than the minimum unit weight is given is designed with the minimum unit weight, and the difference from the order quantity is the surplus quantity.

Figure 2007058675
Figure 2007058675

Figure 2007058675
Figure 2007058675

本発明法と従来法によるスラブ設計の結果をそれぞれ表3,表4に示す。ここで,平均余剰率は,平均余剰量を平均スラブ単重で除したものである。表3において,スラブNo.2,3,4はそれぞれ,スラブ品質特性値,連続鋳造機,ホットコイル厚みで,それぞれ仕様統一した条件設定を行っている。このうちスラブNo.4のホットコイル厚みは,熱延工程で分割して熱延することが可能として,組合せ可能と判断した。   Tables 3 and 4 show the results of slab design according to the method of the present invention and the conventional method, respectively. Here, the average surplus rate is the average surplus divided by the average slab weight. In Table 3, slab no. For 2, 3 and 4, the slab quality characteristic value, continuous casting machine, and hot coil thickness are set in accordance with the standardized specifications. Of these, Slab No. It was judged that the hot coil thickness of 4 could be combined because it could be split and hot rolled in the hot rolling process.

表3と表4の比較から明らかなように,本発明によるスラブ設計方法はスラブ内余剰を抑えながら,同時にスラブ単重を大きくしたスラブ設計を実現していることが確認できる。   As is clear from the comparison between Table 3 and Table 4, it can be confirmed that the slab design method according to the present invention realizes a slab design in which the slab unit weight is increased while suppressing the surplus in the slab.

本発明は,例えば薄板製品を製造するための材料となるスラブの設計に利用できる。   The present invention can be used, for example, in designing a slab that is a material for manufacturing a thin plate product.

本発明の実施の形態にかかるスラブ設計方法を説明するためのフローチャートである。It is a flowchart for demonstrating the slab design method concerning embodiment of this invention. 従来一般の技術である複数注文詰込みのスラブ設計処理のフローチャートである。It is a flowchart of the slab design process of multiple orders packing which is a conventional general technique. 本発明の実施の形態にかかる機能ブロック図である。It is a functional block diagram concerning an embodiment of the invention.

Claims (7)

複数の条件項目からなる製造仕様が各注文に任意に設定された,複数の鉄鋼製品の注文に対応したスラブを設計する方法であって,
(1)所定の期間の注文に対して,製造仕様の適合する基準スラブを順次割り当てるとともに,基準スラブでは余剰部が生じる注文の集合を作成するステップと,
(2)前記余剰部が生じる注文の集合において,所定の条件項目を緩和した製造仕様で,製造仕様が共通する複数の注文を1つのスラブに詰め込んだ組合せを作成するステップと,
(3)前記作成された組合せのそれぞれにおいて,各注文に製造仕様の緩和可否を判定し,前記判定により,製造仕様の緩和不可と判定された注文があった場合に,当該組合せの注文について,再び前記(2)のステップによる別の組合せの作成を行わせるステップと,
(4)前記判定により,製造仕様の緩和可能と判定された組合せについて,所定の条件項目を緩和した共通の製造仕様のスラブを割り当てるステップと,
(5)前記(3)のステップにおいて製造仕様の緩和可能と判定された組合せが見つからなかった注文について,当該注文の製造仕様に適合するスラブを割り当てるステップと,
を有することを特徴とする,スラブ設計方法。
A method for designing a slab corresponding to an order for a plurality of steel products, in which manufacturing specifications including a plurality of condition items are arbitrarily set for each order,
(1) A step of sequentially assigning reference slabs conforming to manufacturing specifications to orders for a predetermined period, and creating a set of orders in which a surplus part is generated in the reference slabs;
(2) creating a combination in which a plurality of orders with common manufacturing specifications are packed in one slab with manufacturing specifications with relaxed predetermined condition items in a set of orders in which the surplus part occurs;
(3) In each of the created combinations, it is determined whether or not the manufacturing specifications can be relaxed for each order. If there is an order that the manufacturing specifications cannot be relaxed by the determination, A step of creating another combination by the step (2) again;
(4) assigning a slab of a common manufacturing specification in which a predetermined condition item is relaxed for a combination determined to be relaxable in manufacturing specification by the determination;
(5) For an order for which a combination determined to be relaxable in the manufacturing specification in the step (3) is not found, assigning a slab conforming to the manufacturing specification of the order;
A slab design method characterized by comprising:
前記基準スラブは,通過工程で許容される最大質量であることを特徴とする,請求項1に記載のスラブ設計方法。   The slab design method according to claim 1, wherein the reference slab is a maximum mass allowed in a passing process. 前記(1)のステップで製造仕様の適合する基準スラブを割り当てるに際し,通過工程で許容される最大質量を超えている注文については,基準スラブを繰り返して割り当て,基準スラブでは余剰部が生じることとなった残りの部分は,前記余剰部が生じる注文の集合に含めることを特徴とする,請求項2に記載のスラブ設計方法。   When assigning a reference slab that meets the manufacturing specifications in step (1) above, for orders that exceed the maximum mass allowed in the passing process, the reference slab is assigned repeatedly, and a surplus part is generated in the reference slab. The slab design method according to claim 2, wherein the remaining portion is included in a set of orders in which the surplus portion is generated. 前記(2)のステップで製造仕様を緩和するに際し,所定の条件項目を,上位の条件もしくは変更可能な条件に変更することを許容することを特徴とする,請求項1〜3のいずれかに記載のスラブ設計方法。   4. The method according to claim 1, wherein when the manufacturing specification is relaxed in the step (2), the predetermined condition item is allowed to be changed to a higher condition or a changeable condition. 5. The slab design method described. 前記(3)のステップで製造仕様の緩和不可と判定された注文について,再び前記(2)のステップによる別の組合せの作成を行わせるに際し,別の組合せの作成を所定の回数行った注文については,再び前記(2)のステップによる別の組合せの作成を行わずに,前記(5)のステップで,当該注文の製造仕様に適合するスラブを割り当てることを特徴とする,請求項1〜4のいずれかに記載のスラブ設計方法。   For an order that has been determined that the manufacturing specifications cannot be relaxed in the step (3), when another combination is created in the step (2) again, the order in which another combination has been created a predetermined number of times. In the step (5), a slab that conforms to the manufacturing specifications of the order is allocated without creating another combination in the step (2) again. The slab design method according to any one of the above. 前記(4)のステップで所定の条件項目を緩和した共通の製造仕様のスラブを割り当てるに際し,当該スラブの単重は,通過工程で許容される範囲内である限り,当該スラブに詰め込んだ組合せにかかる各注文の総和にほぼ一致させることを特徴とする,請求項1〜5のいずれかに記載のスラブ設計方法。   When assigning a slab with a common manufacturing specification in which the predetermined condition items have been relaxed in the step (4), the unit weight of the slab is the combination packed in the slab as long as it is within the allowable range of the passing process. The slab design method according to any one of claims 1 to 5, wherein the slab design method substantially matches the sum of the orders. 前記(5)のステップで組合せが見つからなかった注文の製造仕様に適合するスラブを割り当てるに際し,当該スラブの単重は,通過工程で許容される範囲内である限り,組合せが見つからなかった注文にほぼ一致させることを特徴とする,請求項1〜6のいずれかに記載のスラブ設計方法。   When assigning a slab that meets the manufacturing specifications of an order for which a combination was not found in step (5) above, the unit weight of the slab will be assigned to an order for which no combination was found, as long as it is within the allowable range for the passing process. The slab design method according to claim 1, wherein the slab design methods are substantially matched.
JP2005244716A 2005-08-25 2005-08-25 Slab design method Withdrawn JP2007058675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005244716A JP2007058675A (en) 2005-08-25 2005-08-25 Slab design method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005244716A JP2007058675A (en) 2005-08-25 2005-08-25 Slab design method

Publications (1)

Publication Number Publication Date
JP2007058675A true JP2007058675A (en) 2007-03-08

Family

ID=37922098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005244716A Withdrawn JP2007058675A (en) 2005-08-25 2005-08-25 Slab design method

Country Status (1)

Country Link
JP (1) JP2007058675A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044516A (en) * 2012-08-24 2014-03-13 Kobe Steel Ltd Change support system for production schedule
JP2018147168A (en) * 2017-03-03 2018-09-20 株式会社神戸製鋼所 Applied business support method and applied business support device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044516A (en) * 2012-08-24 2014-03-13 Kobe Steel Ltd Change support system for production schedule
JP2018147168A (en) * 2017-03-03 2018-09-20 株式会社神戸製鋼所 Applied business support method and applied business support device

Similar Documents

Publication Publication Date Title
JP5134601B2 (en) Production schedule creation device
JP4847030B2 (en) Ordering system and ordering method
WO2010018709A1 (en) Production plan making program, device, and method
JP2007058675A (en) Slab design method
JP2004118429A (en) Reasonable inventory quantity calculation method and its system
JP5000369B2 (en) Delivery date adjustment support device, delivery date negotiation support device, method, computer program, and computer-readable storage medium
JP2007264682A (en) Production management method in steel plate manufacture
JP5442524B2 (en) Schedule creation method, schedule creation program, and schedule creation device
JP5442526B2 (en) Schedule creation method, schedule creation program, and schedule creation device
JP2016194900A (en) Production schedule automatic planning device, production schedule automatic planning method and production schedule automatic planning program
JPH06149850A (en) Product material and order reserving method/system
JP4269539B2 (en) Production planning method in planing
WO2019064789A1 (en) Recommended order quantity determining device, recommended order quantity determination method, and recommended order quantity determination program
JP2004334831A (en) Information-processing device, information-processing system, information-processing method and program thereof
JP4648013B2 (en) Production scheduling system
JP2005242816A (en) Order reception bargaining support method by computer
JP2004178572A (en) Allocation method of actual article to order in manufacturing process of steel product
JPH11245142A (en) Method and device for making production plan
US6560502B1 (en) System and method for campaign planning
JP2004326268A (en) Production schedule creation method and its system
JP2003263213A (en) Production management system and production management method
JP7547293B2 (en) Intermediate inventory calculation device, program, and intermediate inventory calculation method
JP2003237946A (en) Inventory allocation method
JPH07271855A (en) Device for evaluating production planning
JP4308554B2 (en) PRODUCTION MANAGEMENT SUPPORT DEVICE, PRODUCTION MANAGEMENT SUPPORT COMPUTER PROGRAM, AND RECORDING MEDIUM CONTAINING THE COMPUTER PROGRAM

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081104