JP2007057591A - Optical transmission system for optical spatial communication, light receiving system, and optical waveguide processing method for optical spatial communication - Google Patents

Optical transmission system for optical spatial communication, light receiving system, and optical waveguide processing method for optical spatial communication Download PDF

Info

Publication number
JP2007057591A
JP2007057591A JP2005239959A JP2005239959A JP2007057591A JP 2007057591 A JP2007057591 A JP 2007057591A JP 2005239959 A JP2005239959 A JP 2005239959A JP 2005239959 A JP2005239959 A JP 2005239959A JP 2007057591 A JP2007057591 A JP 2007057591A
Authority
JP
Japan
Prior art keywords
optical
optical waveguide
signal light
space communication
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005239959A
Other languages
Japanese (ja)
Inventor
Takeshi Tsujimura
健 辻村
Koichi Yoshida
耕一 吉田
Izumi Mikawa
泉 三川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2005239959A priority Critical patent/JP2007057591A/en
Publication of JP2007057591A publication Critical patent/JP2007057591A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve miniaturization of each of optical transmitting and receiving systems and flexibility of laying out by separating a light emitting element or a light receiving element from start and terminal points of optical spatial communication. <P>SOLUTION: Only the light emitting element 111 and its drive circuit 112 are incorporated in an optical transmission part 11, and signal light emitted from the light emitting element 111 is guided to a prescribed position by an optical waveguide 12 to discharge the signal light L with a prescribed spot size to a space by a transmission lens 13. A receiving lens 21 is arranged at an opposite receiving position, the signal light transmitted spatially from the transmission lens 13 is condensed, guided to a light receiving part 23 by an optical waveguide 22 and the signal light from the optical waveguide 22 is received with the light receiving element 231, and the received signal is demodulated to obtain the original transmission signal. In the configuration, only lens parts at the transmission side and the receiving side may be accurately aligned while facing, and arrangement/size or the like of the optical transmission part 11 and the optical receiving part 23 are not restricted. In addition, a power supply facility in the vicinity of the lenses is not needed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空間を介して光信号を送受信するための光空間通信装置に用いられる光送信装置及び光受信装置に関する。   The present invention relates to an optical transmission device and an optical reception device used in an optical space communication device for transmitting and receiving an optical signal through a space.

従来より、光空間通信装置を構成する光送信装置及び光受信装置は、それぞれ光学レンズの焦点位置に発光素子または受光素子を配置する形で、光学レンズと発光素子または受光素子を一体として製作されている(例えば非特許文献1、2参照)。しかしながら、上記のような従来の光学レンズと発光素子または受光素子の一体型構造では、個々の装置の小型化に限界があり、その分、装置の設置スペースを確保しなくてはならないという問題があった。また、送受信光学系の光軸が一致するように高精度に調整するため、光送信装置と光受信装置を互いに正確に対向させる必要があった。   2. Description of the Related Art Conventionally, an optical transmission device and an optical reception device constituting an optical space communication device are manufactured by integrating an optical lens and a light emitting device or a light receiving device in such a manner that the light emitting device or the light receiving device is disposed at the focal position of the optical lens. (See Non-Patent Documents 1 and 2, for example). However, the conventional integrated structure of the optical lens and the light emitting element or the light receiving element as described above has a limit in reducing the size of each device, and there is a problem that the installation space for the device must be secured accordingly. there were. Further, in order to adjust with high accuracy so that the optical axes of the transmission / reception optical systems coincide with each other, the optical transmission device and the optical reception device have to be accurately opposed to each other.

また、さらに、光送信機、光受信機それぞれに対する給電が必要であり、屋外設置の場合給電のための配線やバッテリー設置など、通信とは本来無関係の設備を設ける必要があった。   Furthermore, it is necessary to supply power to each of the optical transmitter and the optical receiver, and in the case of outdoor installation, it is necessary to provide facilities that are not originally related to communication, such as wiring for power supply and battery installation.

H. Willebrand, B. S. Ghuman : “Free-space optics”, Sams Publishing (2002).H. Willebrand, B. S. Ghuman: “Free-space optics”, Sams Publishing (2002).

H. Hemmati el al. : “Approachs forefficient coupling of lasers to telescopes with secondary mirror and buffle obsuration”, Proc. SPIE Vol.4635, pp.288 - 297 (2002).H. Hemmati el al.: “Approachs for efficient coupling of lasers to telescopes with secondary mirror and buffle obsuration”, Proc. SPIE Vol.4635, pp.288-297 (2002).

以上述べたように、従来の光空間通信装置では、光学レンズと発光素子または受光素子の一体構造による光送信装置及び光受信装置を用いるため、個々の装置に対する小型化の要求に対応しきれなくなってきている。また、送受信光学系の光軸が一致するように高精度に調整するため、光送信装置と光受信装置を互いに正確に対向させる必要があり、さらには個々の装置で給電設備を必要としている。   As described above, the conventional optical space communication device uses the optical transmission device and the optical reception device having an integrated structure of the optical lens and the light emitting element or the light receiving element, and thus cannot meet the demand for downsizing of each device. It is coming. Further, in order to adjust with high accuracy so that the optical axes of the transmission / reception optical systems coincide with each other, the optical transmission device and the optical reception device need to be accurately opposed to each other, and power supply equipment is required for each device.

本発明は上記の事情を鑑みてなされたもので、光学レンズと発光素子または受光素子の一体光学設計の制約を解き、発光素子または受光素子を光空間通信の始終点から離して、装置の小型化ととりまわしの柔軟性を実現する光空間通信用光送信装置、光受信装置及び光空間通信用光導波路加工方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and solves the limitation of the integrated optical design of the optical lens and the light emitting element or the light receiving element, and separates the light emitting element or the light receiving element from the start and end points of the optical space communication to reduce the size of the apparatus It is an object of the present invention to provide an optical transmission device for optical space communication, an optical reception device, and an optical waveguide processing method for optical space communication, which realize flexibility in use and handling.

本発明に係る光空間通信用光送信装置は、信号光を発生する発光素子と、一方の端部から前記発光素子で発生される信号光を取り込んで任意の箇所まで伝送し、他方の端部から空間に向けて照射する光導波路とを具備して構成し、これによって光学レンズと発光素子の一体光学設計の制約を解く。   An optical transmission device for optical space communication according to the present invention includes a light emitting element that generates signal light, and transmits signal light generated by the light emitting element from one end to an arbitrary position, and transmits the other end. And an optical waveguide that irradiates the space toward the space, thereby solving the restrictions on the integrated optical design of the optical lens and the light emitting element.

また、本発明に係る光空間通信用光受信装置は、光送信装置から空間に向けて照射される信号光を一方の端部から取り込んで任意の箇所まで伝送する光導波路と、前記光導波路の他方の端部から導出する信号光を受光して電気信号に変換する受光素子とを具備して構成し、これによって光学レンズと受光素子の一体光学設計の制約を解く。   In addition, the optical receiver for optical space communication according to the present invention includes an optical waveguide that takes in signal light emitted toward the space from the optical transmitter and transmits the signal light to an arbitrary place, and the optical waveguide. It comprises a light receiving element that receives signal light derived from the other end and converts it into an electrical signal, thereby unrestricting the integrated optical design of the optical lens and light receiving element.

また、本発明に係る光空間通信用光導波路加工方法は、光空間通信用の光導波路先端面で信号光を入射または出射するために、前記光導波路の光ファイバを石英チューブに挿入した後、延伸しテーパ状に加工して前記光導波路の先端面断面積を拡大する。あるいは、前記光導波路の端部に径の異なる複数の光導波路を先端部に向かって広がるように連結しテーパ状に加工して前記光導波路の先端面断面積を拡大する。   Further, the optical waveguide processing method for optical space communication according to the present invention, after inserting the optical fiber of the optical waveguide into the quartz tube in order to enter or output the signal light at the optical waveguide tip surface for optical space communication, The optical waveguide is stretched and processed into a taper shape to enlarge the cross-sectional area of the tip surface of the optical waveguide. Alternatively, a plurality of optical waveguides having different diameters are connected to the end portion of the optical waveguide so as to spread toward the distal end portion, and are processed into a taper shape to enlarge the sectional area of the distal end surface of the optical waveguide.

本発明では、光導波路で信号光を伝送することにより光学レンズと発光素子または受光素子を分離し、また、光導波路自体を加工することによりレンズを不要とする。この場合、光空間通信の始終点には光学レンズまたは光導波路先端のみを配置するだけでよく、実質的に装置小型化が可能になり、光軸調整に関わる取りまわしも容易となる。また、光導波路先端を、テーパ状に加工して光導波路の先端面断面積を拡大するだけで対応できる。よって、本発明によれば、レンズと発光素子または受光素子の一体光学設計の制約を解き、発光素子または受光素子を光空間通信の始終点から離すことにより、装置小型化・装置とりまわしの柔軟性を実現する光空間通信用光送信装置、光受信装置及び光空間通信用光導波路加工方法を提供することができる。   In the present invention, the optical lens is separated from the light emitting element or the light receiving element by transmitting the signal light through the optical waveguide, and the lens is unnecessary by processing the optical waveguide itself. In this case, it is only necessary to arrange the optical lens or the optical waveguide tip at the start and end of the optical space communication, and it is possible to substantially reduce the size of the apparatus and to easily handle the optical axis adjustment. Further, it is possible to cope with the problem by simply processing the tip of the optical waveguide into a tapered shape and enlarging the sectional area of the tip surface of the optical waveguide. Therefore, according to the present invention, the limitation of the integrated optical design of the lens and the light emitting element or the light receiving element is solved, and the light emitting element or the light receiving element is separated from the start and end points of the optical space communication, thereby reducing the size of the apparatus and the flexibility of the apparatus It is possible to provide an optical transmission device for optical space communication, an optical reception device, and an optical waveguide processing method for optical space communication that realize the optical characteristics.

以下、図面を参照して本発明の実施の形態を詳細に説明する。
図1は本発明に係る光空間通信装置の第1の実施形態として、単方向通信系の構成を示す概念図である。図1において、光送信部11には発光素子111とその駆動回路112が組み込まれる。発光素子111は駆動回路112によって駆動され、一定波長の光を伝送信号によって変調出力する光源である。この発光素子111によって発光された信号光は、任意の発光位置まで、例えば光ファイバケーブルによる光導波路12で所定位置まで導かれる。光導波路12には、石英系、プラスチック系のいずれでもよい。光導波路12の先端には送信用レンズ13が取り付けられる。この送信用レンズ13は、光導波路12を介して伝送されてきた信号光Lを所定のスポットサイズで空間に放出する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a conceptual diagram showing a configuration of a unidirectional communication system as a first embodiment of an optical space communication apparatus according to the present invention. In FIG. 1, a light emitting element 111 and its drive circuit 112 are incorporated in the optical transmitter 11. The light emitting element 111 is a light source that is driven by a driving circuit 112 and modulates and outputs light having a predetermined wavelength by a transmission signal. The signal light emitted by the light emitting element 111 is guided to an arbitrary light emitting position, for example, to a predetermined position by the optical waveguide 12 using an optical fiber cable. The optical waveguide 12 may be either quartz or plastic. A transmission lens 13 is attached to the tip of the optical waveguide 12. The transmission lens 13 emits the signal light L transmitted through the optical waveguide 12 into the space with a predetermined spot size.

対向する受信位置には受信用レンズ21が配置される。この受信用レンズ21は、上記送信用レンズ13から空間伝送される信号光を集光して、例えば光ファイバケーブルによる光導波路22に導くもので、光導波路22の他端は光受信部23に接続される。この光受信部23は、受光素子231とその受信信号処理回路232を備え、光導波路22からの信号光を受光素子231で受光して電気信号(受信信号)に変換し、その受信信号を復調してもとの伝送信号を得る。   A receiving lens 21 is disposed at the opposite receiving position. The receiving lens 21 condenses the signal light spatially transmitted from the transmitting lens 13 and guides it to the optical waveguide 22 using, for example, an optical fiber cable. The other end of the optical waveguide 22 is connected to the optical receiving unit 23. Connected. The light receiving unit 23 includes a light receiving element 231 and a reception signal processing circuit 232 thereof. The light receiving element 231 receives the signal light from the optical waveguide 22 and converts it into an electric signal (reception signal), and demodulates the reception signal. The original transmission signal is obtained.

本実施形態による構成では、送信側、受信側ともレンズ13,21の部分だけを正確に対向するだけでよく、光送信部11、光受信部23の配置・寸法等の制約を受けない。また、レンズ近傍の給電設備も必要としない。
図2は本発明に係る光空間通信装置の第2の実施形態として、第1の実施形態の光送受信部分を改良し、光導波路12,22の先端をテーパ状に加工して光導波路の先端面断面積を拡大することにより、レンズなしで信号光を送受信する場合の構成を示す概念図である。14は送信部テーパ、24は受信部テーパを表す。図3に光導波路12または22の先端部にテーパを形成した様子を示す。図3において、光ファイバを加工した場合、A1はコア、A2はクラッドを表す。
In the configuration according to the present embodiment, it is only necessary to oppose the lens 13 and 21 accurately on both the transmission side and the reception side, and there is no restriction on the arrangement / size of the optical transmission unit 11 and the optical reception unit 23. Further, no power supply equipment in the vicinity of the lens is required.
FIG. 2 shows a second embodiment of the optical space communication apparatus according to the present invention, in which the optical transmission / reception part of the first embodiment is improved, and the tips of the optical waveguides 12 and 22 are processed into a tapered shape. It is a conceptual diagram which shows the structure in the case of transmitting / receiving signal light without a lens by enlarging a surface cross-sectional area. Reference numeral 14 denotes a transmitter taper, and 24 denotes a receiver taper. FIG. 3 shows a state where a taper is formed at the tip of the optical waveguide 12 or 22. In FIG. 3, when an optical fiber is processed, A1 represents a core and A2 represents a clad.

すなわち、レンズなしの場合、受光面積は光導波路のコア径に依存する。例えば光導波路がシングルモードファイバの場合にはコア径10μmなので、遠距離からこの精度で信号光を命中させることは困難である。また、信号光を10μmに絞ること自体困難である。ここで、受光強度は信号光のスポット面積と光導波路コアの面積の比となる。例えば、信号光を直径1mmに絞ったとしても面積比は1/10000となり、受光強度も1/10000に減衰してしまう。これに対して、導波路先端をテーパ状に加工すれば、受光強度の低下を防ぐことができる。   That is, when there is no lens, the light receiving area depends on the core diameter of the optical waveguide. For example, when the optical waveguide is a single mode fiber, since the core diameter is 10 μm, it is difficult to hit the signal light with this accuracy from a long distance. Further, it is difficult to reduce the signal light to 10 μm. Here, the received light intensity is the ratio of the spot area of the signal light to the area of the optical waveguide core. For example, even if the signal light is reduced to a diameter of 1 mm, the area ratio is 1/10000, and the received light intensity is attenuated to 1/10000. On the other hand, if the tip of the waveguide is processed into a tapered shape, it is possible to prevent a decrease in received light intensity.

図4は本発明に係る光空間通信装置の第3の実施形態として、第2の実施形態の光導波路テーパ14,24に第1の実施形態で使用した送信用レンズ13、受信用レンズ21を取り付けた場合の構成を示す概念図である。この構成によれば、受光すべき信号光の直径がテーパ加工した光導波路より大きい場合でも、広範囲の信号を集光して受信ロスを抑えることができる。発光に関しては光学的に精度のよい信号光を発射できる。   FIG. 4 shows a third embodiment of the space optical communication apparatus according to the present invention, in which the transmission lens 13 and the reception lens 21 used in the first embodiment are applied to the optical waveguide tapers 14 and 24 of the second embodiment. It is a conceptual diagram which shows the structure at the time of attaching. According to this configuration, even when the diameter of the signal light to be received is larger than the tapered optical waveguide, a wide range of signals can be collected and reception loss can be suppressed. Regarding light emission, optically accurate signal light can be emitted.

図5は第2の実施形態で説明したテーパの作成例を示す概念図である。まず、図5(a)に示すように、光空間通信用の光導波路に使用される大口径ファイバB1を石英チューブB2に挿入した後、図5(b)に示すように延伸してテーパ状に加工して光導波路の先端面断面積を拡大する。例えば、コア径1mmの大口径ファイバを用いてシングルモードファイバのコア径(10μm)まで延伸すれば、面積比10000倍のテーパが作成できる。   FIG. 5 is a conceptual diagram showing an example of creating a taper described in the second embodiment. First, as shown in FIG. 5A, a large-diameter fiber B1 used for an optical waveguide for optical space communication is inserted into a quartz tube B2, and then stretched and tapered as shown in FIG. 5B. To increase the cross-sectional area of the end face of the optical waveguide. For example, if a large diameter fiber having a core diameter of 1 mm is used and drawn to the core diameter (10 μm) of a single mode fiber, a taper with an area ratio of 10,000 times can be created.

以上が本発明に係る光空間通信装置の基本構造の説明であるが、さらに以下のような構造を組み合わせると効果的である。
まず、図3に示したテーパ構造において、図6に示すように、光導波路先端面を球面状に加工すれば、そのレンズ効果により発射光の発散を防いだり、入射光を効率的に集光したりする効果が得られる。
The above is the description of the basic structure of the space optical communication apparatus according to the present invention, but it is effective to combine the following structures.
First, in the taper structure shown in FIG. 3, if the tip surface of the optical waveguide is processed into a spherical shape as shown in FIG. 6, the lens effect prevents the emitted light from diverging, and the incident light is efficiently collected. Effect.

また、図7に示すように、テーパ端面を光軸に対し傾斜角度θを付与するよう加工することで、当該端面での信号光の反射を抑制する効果が得られる。このことは、特に双方向通信時の反射による漏話を防ぐ効果につながる。傾斜面の角度θは光ファイバ通信で一般に用いられる数°以上が望ましい(参考文献:鈴木・藤原、光コネクタフレネル反射対策の検討、信学技報、OQE82−15(1982−05))。   Further, as shown in FIG. 7, by processing the tapered end face so as to give an inclination angle θ with respect to the optical axis, an effect of suppressing reflection of signal light on the end face can be obtained. This leads to the effect of preventing crosstalk due to reflection, particularly during bidirectional communication. The angle θ of the inclined surface is preferably several degrees or more, which is generally used in optical fiber communication (reference: Suzuki / Fujiwara, examination of optical connector Fresnel reflection countermeasures, IEICE Technical Report, OQE 82-15 (1982-05)).

また、テーパ形成の手法として、図8に示すように、直径小、中、大の光導波路C1,C2,C3を光導波路の先端部に向かって広がるように連結し、各々の接合部分に融着接続等を施して光学的結合を図る方法もある。これによって形成されたテーパでも、第2の実施形態の場合と同等の作用効果が得られる。   As a taper forming method, as shown in FIG. 8, optical waveguides C1, C2, and C3 having a small diameter, a medium diameter, and a large diameter are connected so as to spread toward the distal end portion of the optical waveguide, and are melted at respective joint portions. There is also a method for achieving optical coupling by performing a landing connection or the like. Even with the taper formed by this, the same effect as that of the second embodiment can be obtained.

以上の実施形態では単方向通信系を示したが、光分岐装置を用いることにより双方向通信も実現できる。図9は、図2に示した単方向通信系システムを双方向通信系システムに変更した場合の構成を示す概念図である。このシステムでは、図2に示した送信側には、第1の光送信部11A及び第1の光受信部23Aを配置し、それぞれ光分岐装置15を介して光導波路12に光接続する。この場合、導波路12の端部は光送受信共用のテーパ16として機能する。一方、図2に示した受信側には、第2の光送信部11B及び第2の光受信部23Bを配置し、それぞれ光分岐装置25を介して光導波路22に光接続する。この場合、導波路22の端部は光送受信共用のテーパ26として機能する。   Although the unidirectional communication system has been described in the above embodiment, bidirectional communication can also be realized by using an optical branching device. FIG. 9 is a conceptual diagram showing a configuration when the unidirectional communication system shown in FIG. 2 is changed to a bidirectional communication system. In this system, the first optical transmitter 11A and the first optical receiver 23A are arranged on the transmission side shown in FIG. 2 and are optically connected to the optical waveguide 12 via the optical branching device 15, respectively. In this case, the end of the waveguide 12 functions as a taper 16 used for both optical transmission and reception. On the other hand, the second optical transmitter 11B and the second optical receiver 23B are arranged on the receiving side shown in FIG. 2, and are optically connected to the optical waveguide 22 via the optical branching device 25, respectively. In this case, the end of the waveguide 22 functions as a taper 26 used for both optical transmission and reception.

上記構成によれば、第1の光送信部11Aから発信された信号光は光分岐装置15を経由して光送受信共用テーパ16から空間に発射される。対向する光送受信共用テーパ26で受光した信号は光導波路22を通過し光分岐装置25を経由して第2の光受信部23Bで受信される。逆方向も同様であり、第2の光送信部11Bから発信された信号光は光分岐装置25を経由して光送受信共用テーパ26から空間に発射される。対向する光送受信共用テーパ16で受光した信号は光導波路12を通過し光分岐装置15を経由して第1の光受信部23Aで受信される。   According to the above configuration, the signal light transmitted from the first optical transmitter 11 </ b> A is emitted to the space from the optical transmission / reception shared taper 16 via the optical branching device 15. The signal received by the opposing optical transmission / reception shared taper 26 passes through the optical waveguide 22 and is received by the second optical receiver 23B via the optical branching device 25. The same applies to the reverse direction, and the signal light transmitted from the second optical transmission unit 11B is emitted into the space from the optical transmission / reception taper 26 via the optical branching device 25. The signal received by the opposing optical transmission / reception shared taper 16 passes through the optical waveguide 12 and is received by the first optical receiver 23A via the optical branching device 15.

尚、上記双方向通信の実施形態は、図2に示した単方向通信の応用例として説明しているが、他の実施形態についても同様に双方向通信を実現可能である。
その他、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
In addition, although the embodiment of the bidirectional communication has been described as an application example of the unidirectional communication shown in FIG. 2, bidirectional communication can be similarly realized in other embodiments.
In addition, the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

本発明に係る光空間通信装置の第1の実施形態として、単方向通信系の構成を示す概念図。1 is a conceptual diagram showing a configuration of a unidirectional communication system as a first embodiment of an optical space communication apparatus according to the present invention. 本発明に係る光空間通信装置の第2の実施形態として、レンズなしで信号光を送受信する場合の構成を示す概念図。The conceptual diagram which shows the structure in the case of transmitting / receiving signal light without a lens as 2nd Embodiment of the optical space communication apparatus which concerns on this invention. 図2に示す実施形態において、光導波路の先端部にテーパを形成した実施例を示す図。The figure which shows the Example which formed the taper in the front-end | tip part of the optical waveguide in embodiment shown in FIG. 本発明に係る光空間通信装置の第3の実施形態として、光導波路の先端部にレンズを取り付けた場合の構成を示す概念図。The conceptual diagram which shows the structure at the time of attaching a lens to the front-end | tip part of an optical waveguide as 3rd Embodiment of the optical space communication apparatus which concerns on this invention. 第2の実施形態で説明したテーパの作成例を示す概念図。The conceptual diagram which shows the creation example of the taper demonstrated in 2nd Embodiment. 図3に示すテーパ構造において、光導波路先端面を球面状に加工した実施例を示す図。The figure which shows the Example which processed the optical waveguide front end surface into the spherical shape in the taper structure shown in FIG. 図3に示すテーパ構造において、光導波路先端面を光軸に対して傾斜角度を付けて加工した実施例を示す図。The figure which shows the Example which processed the front-end surface of the optical waveguide in the taper structure shown in FIG. 図3に示すテーパ構造において、直径の異なる光導波路を直列に結合した実施例を示す図。The figure which shows the Example which couple | bonded the optical waveguide from which a diameter differs in series in the taper structure shown in FIG. 図2に示す単方向通信系をもとに双方向通信系を構成する実施例を示す概念図。The conceptual diagram which shows the Example which comprises a bidirectional | two-way communication system based on the unidirectional communication system shown in FIG.

符号の説明Explanation of symbols

11,11A,11B:光送信部
111:発光素子
112:駆動回路
12:光導波路
13:送信用レンズ
14:送信部テーパ
15:光分岐装置
16:光送受信共用テーパ
21:受信用レンズ
22:光導波路
23,23A,23B:光受信部
231:受光素子
232:受信信号処理回路
24:受信部テーパ
25:光分岐装置
26:光送受信共用テーパ
11, 11A, 11B: Optical transmitter 111: Light emitting element 112: Drive circuit 12: Optical waveguide 13: Transmission lens 14: Transmitter taper 15: Optical branching device 16: Optical transmission / reception shared taper 21: Reception lens 22: Optical Waveguides 23, 23A, 23B: optical receiver 231: light receiving element 232: received signal processing circuit 24: receiver taper 25: optical branching device 26: optical transmission / reception shared taper

Claims (12)

信号光を発生する発光素子と、
一方の端部から前記発光素子で発生される信号光を取り込んで任意の箇所まで伝送し、他方の端部から空間に向けて照射する光導波路と、
を具備することを特徴とする光空間通信用光送信装置。
A light emitting element for generating signal light;
An optical waveguide that takes in the signal light generated by the light emitting element from one end and transmits it to an arbitrary location, and irradiates the space from the other end to the space;
An optical transmission device for optical space communication.
さらに、前記光導波路の他方の端部の信号光照射光軸上に配置され、照射光の形状を整形する光学レンズを備えることを特徴とする請求項1記載の光空間通信用光送信装置。   2. The optical transmission device for optical space communication according to claim 1, further comprising an optical lens arranged on the signal light irradiation optical axis at the other end of the optical waveguide and shaping the shape of the irradiation light. 前記光導波路は、前記信号光を照射する他方の端部がテーパ状に加工されることを特徴とする請求項1記載の光空間通信用光送信装置。   2. The optical transmission device for optical space communication according to claim 1, wherein the other end of the optical waveguide that irradiates the signal light is processed into a tapered shape. 3. 前記光導波路は、前記テーパ加工側の端面が球面状であることを特徴とする請求項3記載の光空間通信用光送信装置。   4. The optical transmission device for optical space communication according to claim 3, wherein the end face on the taper processing side of the optical waveguide is spherical. 前記光導波路は、前記テーパ加工側の端面が前記信号光の照射光軸に対して傾斜を有することを特徴とする請求項3記載の光空間通信用光送信装置。   4. The optical transmission device for optical space communication according to claim 3, wherein the end face on the taper processing side of the optical waveguide has an inclination with respect to the irradiation optical axis of the signal light. 光送信装置から空間に向けて照射される信号光を一方の端部から取り込んで任意の箇所まで伝送する光導波路と、
前記光導波路の他方の端部から導出する信号光を受光して電気信号に変換する受光素子と、
を具備することを特徴とする光空間通信用受信装置。
An optical waveguide that takes in signal light emitted toward the space from the optical transmitter from one end and transmits it to an arbitrary location;
A light receiving element that receives signal light derived from the other end of the optical waveguide and converts it into an electrical signal;
A receiver for optical space communication, comprising:
さらに、前記光導波路の他方の端部の信号光照射光軸上に配置され、照射光の形状を整形する光学レンズを備えることを特徴とする請求項6記載の光空間通信用光受信装置。   7. The optical receiver for optical space communication according to claim 6, further comprising an optical lens arranged on the signal light irradiation optical axis at the other end of the optical waveguide and shaping the shape of the irradiation light. 前記光導波路は、前記信号光を入射する一方の端部がテーパ状に加工されることを特徴とする請求項6記載の光空間通信用光受信装置。   7. The optical receiving device for optical space communication according to claim 6, wherein one end of the optical waveguide that receives the signal light is processed into a tapered shape. 前記光導波路は、前記テーパ加工側の端面が球面状であることを特徴とする請求項8記載の光空間通信用光受信装置。   9. The optical receiver for optical space communication according to claim 8, wherein the end face on the taper processing side of the optical waveguide is spherical. 前記光導波路は、前記テーパ加工側の端面が前記信号光の入射光軸に対して傾斜を有することを特徴とする請求項8記載の光空間通信用光受信装置。   9. The optical receiving device for optical space communication according to claim 8, wherein an end face of the optical waveguide has an inclination with respect to an incident optical axis of the signal light. 光空間通信用の光導波路先端面で信号光を入射または出射するために、前記光導波路の光ファイバを石英チューブに挿入した後、延伸しテーパ状に加工して前記光導波路の先端面断面積を拡大することを特徴とする光空間通信用光導波路加工方法。   In order to input or output signal light at the front end surface of the optical waveguide for optical space communication, the optical fiber of the optical waveguide is inserted into a quartz tube, and then stretched and processed into a tapered shape to obtain a sectional area of the front end surface of the optical waveguide. An optical waveguide processing method for optical space communication, characterized by enlarging the size of the optical waveguide. 光空間通信用の光導波路先端面で信号光を入射または出射するために、前記光導波路の端部に径の異なる複数の光導波路を先端部に向かって広がるように連結しテーパ状に加工して前記光導波路の先端面断面積を拡大することを特徴とする光空間通信用光導波路加工方法。   In order to input or output signal light at the front end surface of the optical waveguide for optical space communication, a plurality of optical waveguides having different diameters are connected to the end of the optical waveguide so as to spread toward the end, and processed into a tapered shape. An optical waveguide processing method for optical space communication characterized by enlarging the cross-sectional area of the tip surface of the optical waveguide.
JP2005239959A 2005-08-22 2005-08-22 Optical transmission system for optical spatial communication, light receiving system, and optical waveguide processing method for optical spatial communication Pending JP2007057591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239959A JP2007057591A (en) 2005-08-22 2005-08-22 Optical transmission system for optical spatial communication, light receiving system, and optical waveguide processing method for optical spatial communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239959A JP2007057591A (en) 2005-08-22 2005-08-22 Optical transmission system for optical spatial communication, light receiving system, and optical waveguide processing method for optical spatial communication

Publications (1)

Publication Number Publication Date
JP2007057591A true JP2007057591A (en) 2007-03-08

Family

ID=37921191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239959A Pending JP2007057591A (en) 2005-08-22 2005-08-22 Optical transmission system for optical spatial communication, light receiving system, and optical waveguide processing method for optical spatial communication

Country Status (1)

Country Link
JP (1) JP2007057591A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153919A (en) * 2014-02-17 2015-08-24 三星ダイヤモンド工業株式会社 Optical fiber and laser oscillator using the same
WO2019180813A1 (en) * 2018-03-20 2019-09-26 日本電気株式会社 Light receiving device and light transmitting and receiving device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152244A (en) * 1981-03-13 1982-09-20 Nec Corp Adjusting device for direction of signal light
JPS63144734U (en) * 1987-03-16 1988-09-22
JPH01118811A (en) * 1987-05-21 1989-05-11 Corning Glass Works Mode field modifier
JPH02163708A (en) * 1988-10-24 1990-06-25 Corning Inc Mode field changer and optical apparatus
JP2002536683A (en) * 1999-02-05 2002-10-29 コーニング インコーポレイテッド Optical fiber member having shaped optical element and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57152244A (en) * 1981-03-13 1982-09-20 Nec Corp Adjusting device for direction of signal light
JPS63144734U (en) * 1987-03-16 1988-09-22
JPH01118811A (en) * 1987-05-21 1989-05-11 Corning Glass Works Mode field modifier
JPH02163708A (en) * 1988-10-24 1990-06-25 Corning Inc Mode field changer and optical apparatus
JP2002536683A (en) * 1999-02-05 2002-10-29 コーニング インコーポレイテッド Optical fiber member having shaped optical element and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153919A (en) * 2014-02-17 2015-08-24 三星ダイヤモンド工業株式会社 Optical fiber and laser oscillator using the same
WO2019180813A1 (en) * 2018-03-20 2019-09-26 日本電気株式会社 Light receiving device and light transmitting and receiving device
US20210003792A1 (en) * 2018-03-20 2021-01-07 Nec Corporation Light receiving device, and light transmitting and receiving device
JPWO2019180813A1 (en) * 2018-03-20 2021-02-25 日本電気株式会社 Receiver and transmitter / receiver
JP7156364B2 (en) 2018-03-20 2022-10-19 日本電気株式会社 Photodetector and transmitter/receiver
US11921330B2 (en) 2018-03-20 2024-03-05 Nec Corporation Light receiving device, and light transmitting and receiving device

Similar Documents

Publication Publication Date Title
CN101833130B (en) Light-guide, light source apparatus and endoscope system
CN104977670B (en) Light connects construct
US9625653B2 (en) Universal fiber optic connector
EP2518549B1 (en) Spatial multiplexer for coupling single-mode fibers to a multi-core fiber
EP2494394A1 (en) Expanded beam interface device and method for fabricating same
JP2010127934A5 (en)
JP3122890U (en) Fiber assembly and optical transceiver module
US9566752B2 (en) Methods of forming a TIR optical fiber lens
US6498668B1 (en) Alignment system for laser communication beam
JP2007057591A (en) Optical transmission system for optical spatial communication, light receiving system, and optical waveguide processing method for optical spatial communication
CN102402112A (en) Light source device, light source generation method and laser projector having same
US6478479B1 (en) Optical connector module with optical fibers for connecting optical module and optical fiber connector
CN109154704A (en) Optical signal sending assembly
JP2008040042A (en) Optical system and optical apparatus
US6493485B1 (en) Systems and methods for aligning a laser beam with an optical fiber
JPS619610A (en) Module for bidirectional optical communication
JP2007259179A (en) Optical communication apparatus
JP2017102139A (en) Probe fiber and optical fiber side input/output device
JP2002182126A (en) Illuminating optical system for light guide and endoscope
JP6484279B2 (en) Optical fiber cable unit
JP2004078109A (en) Optical communication system
JP2000147324A (en) Optical fiber connector and optical transceiver using the same
US20130064553A1 (en) Optical communication module and optical communication apparatus
US20030179996A1 (en) Fiber optic apparatus with fiber fused lenses
JP2009003007A (en) Light receiving element module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406