JP2007057500A - Angle detector - Google Patents

Angle detector Download PDF

Info

Publication number
JP2007057500A
JP2007057500A JP2005246555A JP2005246555A JP2007057500A JP 2007057500 A JP2007057500 A JP 2007057500A JP 2005246555 A JP2005246555 A JP 2005246555A JP 2005246555 A JP2005246555 A JP 2005246555A JP 2007057500 A JP2007057500 A JP 2007057500A
Authority
JP
Japan
Prior art keywords
angle
linear
characteristic
waveform
angle detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005246555A
Other languages
Japanese (ja)
Inventor
Junichi Nakaho
純一 仲保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2005246555A priority Critical patent/JP2007057500A/en
Publication of JP2007057500A publication Critical patent/JP2007057500A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angle detector for accurately detecting a wide range of angles independently of temperature change in a use environment. <P>SOLUTION: This angle detector is a detector for detecting an operation angle of a component such as a shift lever by utilizing a plurality of (e.g. four) magnetoresistive elements. The magnetoresistive elements are mounted on a vehicle body, etc. at disposition intervals of 45°. A difference R<SB>13</SB>between resistance values R<SB>1</SB>and R<SB>3</SB>, and a difference R<SB>24</SB>between resistance values R<SB>2</SB>and R<SB>4</SB>are calculated, these values being of magnetoresistive elements leaving disposition intervals of 90° from each other. Rectilinear portions of characteristic waveforms S<SB>13</SB>and S<SB>24</SB>of these differences R<SB>13</SB>and R<SB>24</SB>are cut out to write straight-line expressions EQ<SB>1</SB>to EQ<SB>5</SB>of the rectilinear portions as approximate expressions in angle detection in a ROM in the angle detector. In detecting an operation angle of the shift lever, angle calculation is performed by using the straight-line expressions in the ROM based on the resistance values of the magnetoresistive elements. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、操作部品を操作した際の角度を検出する角度検出装置に関する。   The present invention relates to an angle detection device that detects an angle when an operation component is operated.

従来、シフトレバー等の操作部品の操作角度(即ち、回転角度)を磁気抵抗素子を用いて検出する角度検出装置が広く使用されている。この角度検出装置においては、例えばシフトレバー等の操作部品に磁石を取り付け、その操作部品を支持するフレーム等に磁気抵抗素子を配置する。そして、操作部品が操作された際には、磁石と磁気抵抗素子との間の相対位置が変わることに伴い、図7に示すように磁石から磁気抵抗素子にかかる磁界の方向(以下、磁界向きθと記す)が変化するため、磁気抵抗素子がその磁界向きを検出して操作部品の回転角度を検出する。   Conventionally, an angle detection device that detects an operation angle (that is, a rotation angle) of an operation component such as a shift lever using a magnetoresistive element has been widely used. In this angle detection device, for example, a magnet is attached to an operation component such as a shift lever, and a magnetoresistive element is disposed on a frame or the like that supports the operation component. When the operation component is operated, the direction of the magnetic field applied from the magnet to the magnetoresistive element as shown in FIG. 7 (hereinafter referred to as the magnetic field direction) is changed as the relative position between the magnet and the magnetoresistive element changes. Therefore, the magnetoresistive element detects the direction of the magnetic field and detects the rotation angle of the operation component.

ところで、磁気抵抗素子の抵抗特性(出力特性)は、磁気抵抗素子の抵抗値をR(θ)、磁気抵抗素子の出力基準(出力波形の振幅中心)をR、磁気抵抗素子が磁石から受ける磁界向きをθ、磁気抵抗素子の最大抵抗をΔRとした場合、次式(1) で与えられる。
R(θ)=R+ΔR・cos θ … (1)
By the way, the resistance characteristic (output characteristic) of the magnetoresistive element is such that the resistance value of the magnetoresistive element is R (θ), the output reference of the magnetoresistive element (the amplitude center of the output waveform) is R 0 , and the magnetoresistive element receives from the magnet. When the magnetic field direction is θ and the maximum resistance of the magnetoresistive element is ΔR, the following equation (1) is given.
R (θ) = R 0 + ΔR · cos 2 θ (1)

よって、磁気抵抗素子の抵抗特性は、図8に示すように横軸を磁界向きθ、縦軸を変数値(R(θ)−R)/ΔRとすると、磁界向きθが−90度及び+90度の時に変数値が最小値「0」をとり、磁界向きθが0度の時に変数値が最大値「1」をとる正弦波状の特性波形Sを満たすことになる。同図からも分かるように、1つの磁気抵抗素子を用いて回転角度検出を行なった場合、特性波形Sは磁界向きθが0度の時を中心にして左右対称波形をとるため、一意に検出できる角度検出範囲が0度〜90度の範囲に限定されてしまう。 Therefore, as shown in FIG. 8, the resistance characteristic of the magnetoresistive element is as follows. When the horizontal axis is the magnetic field direction θ and the vertical axis is the variable value (R (θ) −R 0 ) / ΔR, the magnetic field direction θ is −90 degrees. When the angle is +90 degrees, the variable value takes the minimum value “0”, and when the magnetic field direction θ is 0 degrees, the sinusoidal characteristic waveform S 0 where the variable value takes the maximum value “1” is satisfied. As can be seen from the figure, when the rotation angle is detected by using one magnetoresistive element, the characteristic waveform S 0 has a symmetrical waveform centering on the magnetic field direction θ of 0 degree. The detectable angle detection range is limited to a range of 0 degrees to 90 degrees.

また、特性波形Sの曲線性部分(即ち、磁界向きθが−90度、0度、+90度付近)においては、磁気抵抗素子の性能の関係上、角度検出する度に毎回必ず同じ値を出力する保証がない。従って、特性波形Sの曲線性部分を用いて回転角度の検出を行なうと、その曲線性部分において検出精度が悪くなる問題が生じてしまう。そこで、特性波形Sの直線性部分のみを用いて回転角度検出を行なうことも考えられるが、これを用いると角度検出範囲が更に小さくなり、実用に適さなくなる。 Further, in the curvilinear portion of the characteristic waveform S 0 (that is, the magnetic field direction θ is around −90 degrees, 0 degrees, and +90 degrees), the same value is always obtained every time the angle is detected due to the performance of the magnetoresistive element. There is no guarantee of output. Therefore, if the rotation angle is detected using the curvilinear portion of the characteristic waveform S 0 , there arises a problem that the detection accuracy deteriorates in the curvilinear portion. Therefore, it is conceivable to perform the rotation angle detected by using only linear portion of the characteristic waveform S 0, the use of this angle detection range is further reduced, it is not suitable for practical use.

そこで、回転角度を広範囲に精度よく検出する技術が、例えば特許文献1に開示されている。この技術においては、2個(或いは3個)のホール素子を用い、これらホール素子の出力電圧に関してキャリブレーションレベルを設定して、ホール素子の出力電圧波形の直線性部分を切り出す。そして、この直線性部分の電圧出力波形を用いて回転角度検出を行なうことによって、90度以上の回転角度を精度よく検出する。
特開2002−303507号公報
Thus, for example, Patent Document 1 discloses a technique for accurately detecting a rotation angle over a wide range. In this technique, two (or three) Hall elements are used, a calibration level is set for the output voltage of these Hall elements, and the linear portion of the output voltage waveform of the Hall elements is cut out. Then, by detecting the rotation angle using the voltage output waveform of this linear portion, a rotation angle of 90 degrees or more is accurately detected.
JP 2002-303507 A

ところで、ホール素子の出力電圧は使用環境下の温度により変動するため、正確な回転角度検出を行なうためには、ホール素子の出力電圧に温度補正を施す必要がある。この温度補正の一例としては、例えばホール素子に温度補償回路を設けることでこの温度変化に対応する方法がある。しかし、この方法は回転角度検出装置の検出デバイスとして新たに温度補償回路を増設する必要があるため、その分だけ角度検出装置に関する部品点数が増加し、装置の複雑化、大型化及びコストアップ化等の問題を招いてしまう。   By the way, since the output voltage of the Hall element varies depending on the temperature in the usage environment, it is necessary to correct the temperature of the output voltage of the Hall element in order to accurately detect the rotation angle. As an example of this temperature correction, for example, there is a method of responding to this temperature change by providing a temperature compensation circuit in the Hall element. However, this method requires a new temperature compensation circuit as a detection device for the rotation angle detection device, which increases the number of parts related to the angle detection device, thereby increasing the complexity, size, and cost of the device. It will cause problems such as.

また、使用環境下の温度変化に対して回転角度の検出精度を確保する他の方法としては、例えばソフト上にキャリブレーションレベルテーブルを用意し、このキャリブレーションレベルテーブルを参照することで各使用温度に適したキャリブレーションレベルを適宜設定して補正する方法もある。しかし、この方法は煩雑な演算処理を要するため、補正処理に際して時間を要することから実装には向かず、また補正処理を短時間で済まそうとすると、その分だけ検出精度が落ちるため、結局のところキャリブレーションレベルテーブルを用いた方法では高い検出精度を得ることは難しい。また、ホール素子は素子間のバラツキも大きいため、このことも高い検出精度が得られない要因となる。   In addition, as another method for ensuring the detection accuracy of the rotation angle with respect to the temperature change in the use environment, for example, a calibration level table is prepared on the software, and each use temperature is referred to by referring to the calibration level table. There is also a method of correcting by appropriately setting a calibration level suitable for the above. However, since this method requires complicated calculation processing, it takes time for the correction processing, so it is not suitable for implementation, and if the correction processing is completed in a short time, the detection accuracy is reduced by that amount. However, it is difficult to obtain high detection accuracy by the method using the calibration level table. In addition, since the Hall element has a large variation between elements, this also becomes a factor that high detection accuracy cannot be obtained.

本発明の目的は、使用環境下の温度変化に寄らず、広範囲の角度を精度よく検出することができる角度検出装置を提供することにある。   An object of the present invention is to provide an angle detection device that can accurately detect a wide range of angles without depending on a temperature change in a use environment.

この発明によれば、操作部品を操作した際に、該操作部品を相対移動可能に支持する支持部品に対して前記操作部品の成す角度を検出する角度検出装置において、磁界を発生すべく前記操作部品及び前記支持部品の一方に設けられた磁界発生手段と、前記操作部品及び前記支持部品の他方に設けられ、前記磁界を検出すべく互いに一定角度の配置間隔を成した取付状態をとる複数の磁気抵抗素子と、前記一定角度の定数倍の配置間隔を成す前記磁気抵抗素子の特性値の差分において、その特性波形から切り出した直線性部分の直線式を記憶した記憶手段と、前記磁気抵抗素子の特性値に基づき、前記直線式を用いて前記角度を算出する算出手段とを備えたことを要旨とする。   According to the present invention, in the angle detection device that detects the angle formed by the operation component with respect to the support component that supports the operation component so as to be relatively movable when the operation component is operated, the operation to generate a magnetic field is performed. A plurality of magnetic field generating means provided on one of the component and the support component, and a plurality of mounting states provided on the other of the operation component and the support component and arranged at a predetermined angular interval to detect the magnetic field. A storage means for storing a linear expression of a linearity portion cut out from a characteristic waveform in a difference between characteristic values of the magnetoresistive element and a characteristic value of the magnetoresistive element having a constant interval of the constant angle; and the magnetoresistive element And a calculating means for calculating the angle using the linear equation based on the characteristic value.

この構成によれば、複数の磁気抵抗素子を用意し、これら磁気抵抗素子を例えば45度の間隔を持たせて例えば支持部品等に配置固定する。この取付状態を前提とし、これら磁気抵抗素子のうち例えば互いに90度の配置間隔を成すものについて特性値(例えば抵抗値)の差分をとり、複数組導出される各特性波形の直線性部分を切り出し、その切り出した部分の直線式を予め記憶手段に書き込んでおく。   According to this configuration, a plurality of magnetoresistive elements are prepared, and these magnetoresistive elements are arranged and fixed to, for example, a support component with an interval of, for example, 45 degrees. Based on this mounting condition, the difference between the characteristic values (for example, resistance values) of these magnetoresistive elements having an arrangement interval of, for example, 90 degrees is taken, and the linear portion of each characteristic waveform derived from a plurality of sets is cut out. The linear expression of the cut-out part is written in advance in the storage means.

操作部品が操作された際には、操作部品が支持部品に対して相対移動するため、磁界発生手段から磁気抵抗素子に加わる磁界の向きがその相対移動位置に応じて変化する。このとき、磁気抵抗素子はその磁界向きに応じた出力信号を算出手段に出力する。算出手段は、磁気抵抗素子から得た出力信号の値を基に、記憶手段に記憶された直線式を用いて演算を行なうことによって、操作部品の操作角度を算出する。   When the operating component is operated, the operating component moves relative to the support component, so that the direction of the magnetic field applied from the magnetic field generating means to the magnetoresistive element changes according to the relative movement position. At this time, the magnetoresistive element outputs an output signal corresponding to the direction of the magnetic field to the calculating means. The calculation means calculates the operation angle of the operation component by performing an operation using the linear expression stored in the storage means based on the value of the output signal obtained from the magnetoresistive element.

ところで、このように90度間隔を成す磁気抵抗素子の特性値の差分をとって導出した特性波形は、1つの磁気抵抗素子から得られる特性値の特性波形に比べて振幅が大きい波形となる。よって、特性波形の振幅が大きくなれば、特性波形から直線性部分が多くとれるため、本例のように直線性部分の直線式を用いて角度検出を行なう場合、角度検出範囲が広くとれることになる。従って、磁気抵抗素子の特性値の差分をとって導出した特性波形を例えば2組以上使用し、これら特性波形における直線性部分の直線式を用いて角度算出を行なえば、1つの磁気抵抗素子の場合よりも広範囲で角度検出を行なうことが可能となる。   By the way, the characteristic waveform derived by taking the difference between the characteristic values of the magnetoresistive elements having an interval of 90 degrees in this way is a waveform having a larger amplitude than the characteristic waveform of the characteristic value obtained from one magnetoresistive element. Therefore, if the amplitude of the characteristic waveform increases, more linear portions can be obtained from the characteristic waveform. Therefore, when angle detection is performed using the linear expression of the linear portion as in this example, the angle detection range can be widened. Become. Therefore, for example, when two or more sets of characteristic waveforms derived by taking the difference between the characteristic values of the magnetoresistive elements are used and the angle is calculated using the linear expression of the linearity portion of these characteristic waveforms, one magnetoresistive element Angle detection can be performed in a wider range than in the case.

また、差分の特性波形から切り出した直線性部分の直線式は、計算の関係上、角度算出の計算過程において、温度変化に影響されるパラメータが相殺される。よって、磁気抵抗素子を用いて角度検出を行なえば、角度検出装置の使用環境温度が変化しても、操作角度がその温度変化に影響されない値として算出されることから、角度検出精度の向上にも効果がある。   In addition, the linear expression of the linearity portion cut out from the difference characteristic waveform cancels out the parameter affected by the temperature change in the calculation process of the angle calculation because of the calculation. Therefore, if angle detection is performed using a magnetoresistive element, even if the operating environment temperature of the angle detection device changes, the operation angle is calculated as a value that is not affected by the temperature change, thereby improving the angle detection accuracy. Is also effective.

この発明によれば、直列接続された複数の前記磁気抵抗素子に一定値の電圧を供給する定電圧回路を備えたことを要旨とする。
この構成によれば、磁気抵抗素子群には一定値の電圧が常時供給されるため、磁気抵抗素子の出力信号(出力電圧)が磁界向きの変化以外の要因で変わってしまう状況になり難く、角度検出の精度向上に効果がある。
The gist of the present invention is that a constant voltage circuit for supplying a constant voltage to the plurality of magnetoresistive elements connected in series is provided.
According to this configuration, since a constant voltage is constantly supplied to the magnetoresistive element group, the output signal (output voltage) of the magnetoresistive element is unlikely to change due to factors other than the change in the magnetic field direction. This is effective in improving the accuracy of angle detection.

この発明によれば、前記直線性部分は、交流波形を成す前記差分の特性波形のトップとボトムとの間の連続した区間であることを要旨とする。
ところで、差分の特性波形から直線性部分を細かく区分けした状態で切り出し、その切り出した分だけ直線式を用意することも可能であるが、そうするとその分だけ多くの直線式を用いることになり、角度検出の際に計算処理が煩雑になる。しかし、差分の特性波形においてそのトップとボトムとの間の連続した区間を直線性部分として切り出して角度検出を行なったとしても、その際に生じる誤差は、角度検出の分解能によって異なるが一般的な装置においては許容できる範囲内に収るため、充分な検出精度を確保しつつ角度検出を行なうことが可能である。よって、この構成によれば、用意する直線式をできる限り少なく抑えつつ、かつ角度検出の精度を確保することが可能である。
The gist of the present invention is that the linearity portion is a continuous section between the top and bottom of the differential characteristic waveform forming the AC waveform.
By the way, it is possible to cut out in a state where the linearity portion is finely divided from the characteristic waveform of the difference, and it is possible to prepare a linear equation for the cut out portion, but then, as many linear equations as that amount are used, the angle Computation processing becomes complicated at the time of detection. However, even if angle detection is performed by cutting out a continuous section between the top and bottom of the difference characteristic waveform as a linear part, the error that occurs varies depending on the resolution of the angle detection. Since the apparatus falls within an allowable range, angle detection can be performed while ensuring sufficient detection accuracy. Therefore, according to this configuration, it is possible to secure the accuracy of angle detection while suppressing the number of prepared linear expressions as small as possible.

この発明によれば、前記算出手段は、前記角度を算出するに際して、各磁気抵抗素子から得られる前記特性値をパラメータとして、前記記憶手段に記憶された複数の前記直線式の中から使用する式を指定することを要旨とする。   According to this invention, when calculating the angle, the calculation unit uses the characteristic value obtained from each magnetoresistive element as a parameter, and uses the equation used from the plurality of linear equations stored in the storage unit. The gist is to specify.

この構成によれば、角度検出に際して使用する磁気抵抗素子の特性値を、記憶手段の中から直線式を指定する際のパラメータとして用いるので、直線式を指定する際に別のパラメータを用意する必要がなく、計算処理の煩雑化を招かずに済む。   According to this configuration, since the characteristic value of the magnetoresistive element used for angle detection is used as a parameter for designating the linear equation from the storage means, it is necessary to prepare another parameter when designating the linear equation Therefore, the calculation process is not complicated.

本発明によれば、使用環境下の温度変化に寄らず、広範囲の角度を精度よく検出することができる。   According to the present invention, it is possible to accurately detect a wide range of angles without depending on the temperature change in the use environment.

以下、本発明を具体化した角度検出装置の一実施形態を図1〜図5に従って説明する。
図1に示すように、自動変速機でギヤ変速が行なわれる車両(通称、オートマチック車)1には、自動変速機のギヤを切り換える際に操作するシフトレバー2が配設されている。シフトレバー2は、自身の基端を支点として回動可能な状態で車体3に支持されている。シフトレバー2には、シフトレバー2の操作角度Rθを検出する角度検出装置4が配設されている。角度検出装置4は、シフトレバー2がP位置、R位置、N位置、D位置、セカンド位置、L位置等の各位置にシフト操作された際、その操作位置を検出する。なお、シフトレバー2が操作部品に相当し、車体3が支持部品に相当する。
Hereinafter, an embodiment of an angle detection device embodying the present invention will be described with reference to FIGS.
As shown in FIG. 1, a shift lever 2 that is operated when a gear of an automatic transmission is switched is disposed in a vehicle (commonly referred to as an automatic vehicle) 1 in which gear shifting is performed by an automatic transmission. The shift lever 2 is supported by the vehicle body 3 so as to be rotatable about its base end as a fulcrum. The shift lever 2, the angle detection device 4 for detecting an operation angle of the shift lever 2 R theta is disposed. The angle detection device 4 detects the operation position when the shift lever 2 is shifted to each position such as the P position, the R position, the N position, the D position, the second position, and the L position. The shift lever 2 corresponds to an operation part, and the vehicle body 3 corresponds to a support part.

図2に示すように、車体3にはシフトレバー2の近傍に角度検出装置4の基板5が取着され、この基板5には複数の磁気抵抗素子6が実装されている。本例の磁気抵抗素子6は例えばNiCo(ニッケルコバルト)の強磁性体を材質としたものが使用され、本例においては4つ使用されている。これら磁気抵抗素子6a〜6dは、隣接する素子との間の配置間隔が45度をなした状態で車体3に取り付けられ、各々印加される磁界Hの方向(以下、磁界向きθと記す)に応じた出力電圧(出力信号)Va〜Vd(図3参照)を出力する。   As shown in FIG. 2, a substrate 5 of the angle detection device 4 is attached to the vehicle body 3 in the vicinity of the shift lever 2, and a plurality of magnetoresistive elements 6 are mounted on the substrate 5. The magnetoresistive element 6 of this example is made of, for example, a NiCo (nickel cobalt) ferromagnetic material, and four are used in this example. These magnetoresistive elements 6a to 6d are attached to the vehicle body 3 in a state where the arrangement interval between adjacent elements is 45 degrees, and each is applied in the direction of the applied magnetic field H (hereinafter referred to as the magnetic field direction θ). The corresponding output voltages (output signals) Va to Vd (see FIG. 3) are output.

一方、図2に示すように、シフトレバー2には磁気抵抗素子6a〜6dと向き合う位置に磁石7が取り付けられている。磁石7は、フェライト磁石等の一般的に使用される材質のものが用いられ、シフトレバー2が操作された際に、磁気抵抗素子6a〜6dにかかる磁界向きが順次変化する位置に配置されている。シフトレバー2が操作された際には、磁石7の移動に伴って、磁気抵抗素子6a〜6dの周囲の磁界Hの方向が変化するため、磁気抵抗素子6a〜6dがその磁界向きθを検出することで、シフトレバー2の操作角度Rθが検出される。なお、磁石7が磁界発生手段に相当する。 On the other hand, as shown in FIG. 2, a magnet 7 is attached to the shift lever 2 at a position facing the magnetoresistive elements 6 a to 6 d. The magnet 7 is made of a commonly used material such as a ferrite magnet, and is arranged at a position where the magnetic field directions applied to the magnetoresistive elements 6a to 6d change sequentially when the shift lever 2 is operated. Yes. When the shift lever 2 is operated, the direction of the magnetic field H around the magnetoresistive elements 6a to 6d changes as the magnet 7 moves, so that the magnetoresistive elements 6a to 6d detect the magnetic field direction θ. by the operation angle of the shift lever 2 R theta it is detected. The magnet 7 corresponds to a magnetic field generating unit.

図3に示すように、磁気抵抗素子6a〜6dは、上流側(電源側)から6d、6c、6b、6aの並び順で直列接続されている。また、磁気抵抗素子群の上流側には、これら磁気抵抗素子6a〜6dに一定電圧を供給する定電圧回路8接続されている。定電圧回路8としては、例えばツェナーダイオード及びコンデンサからなる回路や、ツェナーダイオードの電圧をトランジスタでバッファして出力する回路等がある。   As shown in FIG. 3, the magnetoresistive elements 6a to 6d are connected in series from the upstream side (power supply side) in the order of 6d, 6c, 6b, and 6a. A constant voltage circuit 8 for supplying a constant voltage to the magnetoresistive elements 6a to 6d is connected to the upstream side of the magnetoresistive element group. Examples of the constant voltage circuit 8 include a circuit composed of a Zener diode and a capacitor, and a circuit that outputs the voltage of the Zener diode by buffering it with a transistor.

車両1には、磁気抵抗素子6a〜6dの出力電圧(出力信号)Va〜Vdを基にシフトレバー2の操作角度Rθを算出するコンピュータ9が配設されている。コンピュータ9は、角度検出装置4を統括制御するCPU(Central Processing Unit) 10、各種データを記憶したROM(Read-Only Memory)11、プログラム実行時の作業領域として使用されるRAM(Random-Access Memory)12、データ入出力口となるインターフェース13等を備えている。コンピュータ9内のこれらデバイスは、コンピュータ9内のバス14を介して相互接続されている。インターフェース13には、電気配線を介して磁気抵抗素子6a〜6dが接続されている。なお、CPU10が算出手段に相当し、ROM11が記憶手段に相当する。 The vehicle 1, the computer 9 to calculate the operating angle of the shift lever 2 R theta on the basis of the output voltage (output signal) Va-Vd magnetoresistive elements 6a~6d are disposed. The computer 9 includes a central processing unit (CPU) 10 that centrally controls the angle detection device 4, a read only memory (ROM) 11 that stores various data, and a random access memory (RAM) that is used as a work area during program execution. ) 12, and an interface 13 serving as a data input / output port. These devices in the computer 9 are interconnected via a bus 14 in the computer 9. The magnetoresistive elements 6a to 6d are connected to the interface 13 via electric wiring. The CPU 10 corresponds to a calculation unit, and the ROM 11 corresponds to a storage unit.

ROM11には、CPU10が操作角度Rθを算出する際に使用する複数の直線式EQ(EQ〜EQ)が記憶されている。この直線式EQは、互いに90度の配置間隔を成す組である磁気抵抗素子6a,6c及び磁気抵抗素子6b,6dの各々において、その出力の差分をとって導出される特性波形S13,S24(図4参照)の直線性部分(図4の太線部分)の式に相当する。エンジンが始動すると角度検出装置4に電源が供給され、CPU10は電源が供給されたことを条件に操作角度θの角度検出を開始し、その操作角度θに応じた角度信号Dθをコンピュータ9の外部に出力する。 The ROM 11 stores a plurality of linear equations EQ (EQ 1 to EQ 5 ) used when the CPU 10 calculates the operation angle R θ . This linear EQ is a characteristic waveform S 13 , S derived by taking the difference in output in each of the magnetoresistive elements 6 a, 6 c and the magnetoresistive elements 6 b, 6 d, which are 90 ° apart from each other. 24 (see FIG. 4) corresponds to the equation of the linear portion (the thick line portion in FIG. 4). When the engine is started, power is supplied to the angle detector 4, and the CPU 10 starts detecting the operating angle θ on condition that the power is supplied, and an angle signal D θ corresponding to the operating angle θ is output from the computer 9. Output to the outside.

次に、直線式EQ〜EQの求め方について説明する。
まず、本例における4つの磁気抵抗素子6a〜6dは、隣接する素子同士の間隔が45度となるように配置されている。このため、各磁気抵抗素子6a〜6dの各抵抗値(特性値)R〜Rは、磁気抵抗素子6a〜6dの出力基準(出力波形の振幅中心)をR、磁気抵抗素子6a〜6dの最大抵抗(抵抗の最大変化値)をΔR、磁気抵抗素子6a〜6dに印加される磁界向きをθとすると、次式(2) 〜(5) を満たす値をとる。
=R+ΔR・cos (θ−45) … (2)
=R+ΔR・cos (θ) … (3)
=R+ΔR・cos (θ+45) … (4)
=R+ΔR・cos (θ+90) … (5)
Next, how to obtain the linear equations EQ 1 to EQ 5 will be described.
First, the four magnetoresistive elements 6a to 6d in this example are arranged so that the interval between adjacent elements is 45 degrees. Therefore, the resistance values (characteristic values) R 1 to R 4 of the magnetoresistive elements 6 a to 6 d are R 0 and the magnetoresistive elements 6 a to 6 are the output reference (the amplitude center of the output waveform) of the magnetoresistive elements 6 a to 6 d. When the maximum resistance of 6d (maximum change value of resistance) is ΔR and the direction of the magnetic field applied to the magnetoresistive elements 6a to 6d is θ, values satisfying the following expressions (2) to (5) are obtained.
R 1 = R 0 + ΔR · cos 2 (θ−45) (2)
R 2 = R 0 + ΔR · cos 2 (θ) (3)
R 3 = R 0 + ΔR · cos 2 (θ + 45) (4)
R 4 = R 0 + ΔR · cos 2 (θ + 90) (5)

図4に示すように、抵抗値R〜Rの特性波形S〜Sは振幅が「1」の交流波形をとっており、磁気抵抗素子6a〜6dの配置間隔が45度を成しているため、隣接する磁気抵抗素子間の波形においては位相が45度ずつ変位している。即ち、磁気抵抗素子6bの特性波形Sは磁気抵抗素子6aの特性波形Sに対して位相が−45度ずれ、磁気抵抗素子6cの特性波形Sは磁気抵抗素子6bの特性波形Sに対して位相が−45度ずれ、磁気抵抗素子6dの特性波形Sは磁気抵抗素子6cの特性波形Sに対して位相が−45度ずれている。 As shown in FIG. 4, the characteristic waveforms S 1 to S 4 of the resistance values R 1 to R 4 have an alternating waveform with an amplitude of “1”, and the arrangement interval of the magnetoresistive elements 6a to 6d forms 45 degrees. Therefore, in the waveform between adjacent magnetoresistive elements, the phase is displaced by 45 degrees. That is, phase shifted -45 degrees relative to the characteristic waveform S 1 characteristic waveform S 2 of the magnetoresistive element 6b magnetoresistive element 6a, characteristic waveform S 3 of the magnetoresistive element 6c magnetoresistive element 6b characteristic waveform S 2 phase shifted -45 degrees relative to the characteristic waveform S 4 of the magnetoresistive element 6d phase is shifted -45 degrees relative characteristic waveform S 3 of the magnetoresistive element 6c.

但し、本例においては磁気抵抗素子6a〜6dの抵抗特性が全て同じものとする。ここで、抵抗特性が揃った磁気抵抗素子6a〜6dを製造する一例として、例えば磁気抵抗素子6a〜6dの材料をスパッタ等で4個を同時に基板5に着ける製造方法が採用される。また、この製造方法を用いた場合には、磁気抵抗素子6a〜6dの抵抗特性が揃うだけでなく、磁気抵抗素子6a〜6dのパターンが極めて小さいものとなり、角度検出装置4のサイズの小型化にも効果がある。   However, in this example, the resistance characteristics of the magnetoresistive elements 6a to 6d are all the same. Here, as an example of manufacturing the magnetoresistive elements 6a to 6d having uniform resistance characteristics, for example, a manufacturing method in which four materials of the magnetoresistive elements 6a to 6d are simultaneously attached to the substrate 5 by sputtering or the like is employed. Further, when this manufacturing method is used, not only the resistance characteristics of the magnetoresistive elements 6a to 6d are uniform, but also the patterns of the magnetoresistive elements 6a to 6d become extremely small, and the size of the angle detection device 4 is reduced. Is also effective.

続いて、互いに90度間隔をなす組である磁気抵抗素子6a,6cにおいて、その抵抗値R,Rの差分R13(=R−R)を求め、同じく互いに90度間隔をなす組である磁気抵抗素子6b,6dにおいて、その抵抗値R,Rの差分R24(=R−R)を同様にして求める。これら差分R13,R24は、次式(6) ,(7) を満たす値をとる。
13=R−R=ΔR・sin 2θ … (6)
24=R−R=ΔR・cos 2θ … (7)
Subsequently, a difference R 13 (= R 1 −R 3 ) between the resistance values R 1 and R 3 is obtained in the magnetoresistive elements 6a and 6c which are a set having a 90 ° interval, and the 90 ° interval is also obtained. set a is magnetoresistive element 6b, in 6d, obtains a difference R 24 of the resistance value R 2, R 4 a (= R 2 -R 4) in a similar manner. These differences R 13 and R 24 take values that satisfy the following expressions (6) and (7).
R 13 = R 1 −R 3 = ΔR · sin 2θ (6)
R 24 = R 2 −R 4 = ΔR · cos 2θ (7)

図4に示すように、差分R13,R24の特性波形S13,S24は、振幅の範囲が「−1」〜「+1」の交流波形をとっており、互いに位相が45度ずれた波形となる。即ち、差分R13の特性波形S13が正弦波をとり、差分R24の特性波形S24が余弦波をとっている。 As shown in FIG. 4, the characteristic waveforms S 13 and S 24 of the differences R 13 and R 24 are AC waveforms having amplitude ranges of “−1” to “+1”, and their phases are shifted by 45 degrees from each other. It becomes a waveform. That is, characteristics waveform S 13 of the differential R 13 takes the sine wave characteristic waveform S 24 of the differential R 24 is taking the cosine wave.

続いて、差分R13,R24の各特性波形S13,S24において直線性部分を切り出す。まず、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形Sが交わる際の特性波形S13上の点(−90,0)と、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形S(特性波形S及び特性波形S)が交わる際の特性波形S13上の点(−67.5,−21/2/2)との2点を結ぶ直線式EQを算出する。直線式EQは、次式(8) を満たす式となる。 Subsequently, a linear portion is cut out in the characteristic waveforms S 13 and S 24 of the differences R 13 and R 24 . First, the point (−90, 0) on the characteristic waveform S 13 when the characteristic waveform S 1 and the characteristic waveform S 3 intersect under the condition that the resistance value satisfies R 4 > R 2 and the resistance value is R 3 > R. The point (−67.5, −2 1/2 / 2) on the characteristic waveform S 13 when the characteristic waveform S 1 and the characteristic waveform S 2 (characteristic waveform S 3 and characteristic waveform S 4 ) intersect under the condition satisfying 1 ) And the linear equation EQ 1 connecting the two points is calculated. The linear equation EQ 1 is an equation that satisfies the following equation (8).

Figure 2007057500
この直線式EQは、特性波形S13を1周期で見た場合、振幅が「0」以下の領域において波形の傾きが負となる区間の直線性部分に相当する式であり、抵抗値がR>R>R>Rの関係を満たす際には、この直線式EQを使用して操作角度Rθを算出する。
Figure 2007057500
The linear equation EQ 1 is an equation corresponding to a linear portion of a section where the slope of the waveform is negative in a region where the amplitude is “0” or less when the characteristic waveform S 13 is viewed in one cycle. When satisfying the relationship of R 4 > R 3 > R 1 > R 2 , the operation angle R θ is calculated using this linear equation EQ 1 .

また、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形S(特性波形S及び特性波形S)が交わる際の特性波形S24上の点(−67.5,−21/2/2)と、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形S(特性波形S及び特性波形S)が交わる際の特性波形S24上の点(−22.5,21/2/2)との2点を結ぶ直線式EQを算出する。直線式EQは、次式(9) を満たす式となる。 A point (−67.) On the characteristic waveform S 24 when the characteristic waveform S 1 and the characteristic waveform S 2 (characteristic waveform S 3 and characteristic waveform S 4 ) intersect under the condition that the resistance value satisfies R 3 > R 1 . 5−2 1/2 / 2) and the characteristic when the characteristic waveform S 1 and the characteristic waveform S 4 (characteristic waveform S 2 and characteristic waveform S 3 ) intersect under the condition that the resistance value satisfies R 2 > R 1. calculating the linear equation EQ 2 that connects the two points of a point on the waveform S 24 (-22.5,2 1/2 / 2) . The linear equation EQ 1 is an equation that satisfies the following equation (9).

Figure 2007057500
この直線式EQは、特性波形S24を1周期で見た場合、波形の傾きが正となる区間の直線性部分に相当する式であり、抵抗値がR>R及びR>Rの関係を満たす際には、この直線式EQを使用して操作角度Rθを算出する。
Figure 2007057500
The linear equation EQ 2, when viewed characteristic waveform S 24 in one cycle, an expression corresponding to the linear portion of the section gradient of the waveform is positive, the resistance value R 3> R 4 and R 2> When satisfying the relationship of R 1 , the operation angle R θ is calculated using the linear equation EQ 2 .

同様に、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形S(特性波形S及び特性波形S)が交わる際の特性波形S13上の点(−22.5,−21/2/2)と、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形S(特性波形S及び特性波形S)が交わる際の特性波形S13上の点(22.5,21/2/2)との2点を結ぶ直線式EQを算出する。直線式EQは、次式(10)を満たす式となる。 Similarly, a point (−22) on the characteristic waveform S 13 when the characteristic waveform S 1 and the characteristic waveform S 4 (characteristic waveform S 2 and characteristic waveform S 3 ) intersect under the condition that the resistance value satisfies R 2 > R 1. ., -2 1/2 / 2) and the characteristic waveform S 1 and the characteristic waveform S 2 (characteristic waveform S 3 and characteristic waveform S 4 ) meet under the condition that the resistance value satisfies R 1 > R 3 . A linear equation EQ 3 connecting two points with the point (22.5, 2 1/2 / 2) on the characteristic waveform S 13 is calculated. The linear equation EQ 1 is an equation that satisfies the following equation (10).

Figure 2007057500
この直線式EQは、特性波形S13を1周期で見た場合、波形の傾きが正となる区間の直線性部分に相当する式であり、抵抗値がR>R及びR>Rの関係を満たす際には、この直線式EQを使用して操作角度Rθを算出する。
Figure 2007057500
This linear equation EQ 3 is an equation corresponding to a linear portion of a section in which the waveform slope is positive when the characteristic waveform S 13 is viewed in one cycle, and the resistance values are R 2 > R 3 and R 1 > When satisfying the relationship of R 4 , the operation angle R θ is calculated using this linear equation EQ 3 .

また、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形S(特性波形S及び特性波形S)が交わる際の特性波形S24上の点(22.5,21/2/2)と、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形S(特性波形S及び特性波形S)が交わる際の特性波形S24上の点(67.5,−21/2/2)との2点を結ぶ直線式EQを算出する。直線式EQは、次式(11)を満たす式となる。 A point (22.5) on the characteristic waveform S 24 when the characteristic waveform S 1 and the characteristic waveform S 2 (characteristic waveform S 3 and characteristic waveform S 4 ) intersect under the condition that the resistance value satisfies R 1 > R 3. , 2 1/2 / 2), and the characteristic waveform S when the characteristic waveform S 1 and the characteristic waveform S 4 (characteristic waveform S 2 and characteristic waveform S 3 ) intersect under the condition that the resistance value satisfies R 1 > R 2. A linear equation EQ 4 connecting the two points with the point (67.5, -2 1/2 / 2) on 24 is calculated. The linear equation EQ 4 is an equation that satisfies the following equation (11).

Figure 2007057500
この直線式EQは、特性波形S24を1周期で見た場合、波形の傾きが負となる区間の直線性部分に相当する式であり、抵抗値がR>R及びR>Rの関係を満たす際には、この直線式EQを使用して操作角度Rθを算出する。
Figure 2007057500
This linear equation EQ 4 is an equation corresponding to a linear portion of a section in which the slope of the waveform is negative when the characteristic waveform S 24 is viewed in one cycle, and the resistance values are R 1 > R 2 and R 4 > When satisfying the relationship of R 3 , the operation angle R θ is calculated using this linear equation EQ 4 .

更に、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形S(特性波形S及び特性波形S)が交わる際の特性波形S24上の点(67.5,21/2/2)と、抵抗値がR>Rを満たす条件下において特性波形S及び特性波形Sが交わる際の特性波形S13上の点(90,0)との2点を結ぶ直線式EQを算出する。直線式EQは、次式(12)を満たす式となる。 Further, a point (67.5) on the characteristic waveform S 24 when the characteristic waveform S 1 and the characteristic waveform S 4 (characteristic waveform S 2 and characteristic waveform S 3 ) intersect under the condition that the resistance value satisfies R 1 > R 2. , 2 1/2 / 2) and a point (90, 0) on the characteristic waveform S 13 when the characteristic waveform S 1 and the characteristic waveform S 3 intersect under the condition that the resistance value satisfies R 4 > R 2 A linear equation EQ 5 connecting the two points is calculated. The linear equation EQ 5 is an equation that satisfies the following equation (12).

Figure 2007057500
この直線式EQは、特性波形S13を1周期で見た場合、振幅が「0」以上の領域において波形の傾きが負となる区間の直線性部分に相当する式であり、抵抗値がR>R>R>Rの関係を満たす際には、この直線式EQを使用して操作角度Rθを算出する。
Figure 2007057500
The linear equation EQ 5 is an equation corresponding to a linear portion of a section where the slope of the waveform is negative in a region where the amplitude is “0” or more when the characteristic waveform S 13 is viewed in one cycle. When satisfying the relationship of R 4 > R 1 > R 3 > R 2 , the operation angle R θ is calculated using the linear equation EQ 5 .

従って、本例のように4つの磁気抵抗素子6a〜6dを45度の配置間隔で並べ、磁気抵抗素子6a,6cの差分R13と磁気抵抗素子6b,6dの差分R24とを算出し、これら差分R13,R24の特性波形S13,S24を直線性のよい部分で切り取って、その部分の直線式EQ〜EQを近似式として角度算出を行う。よって、180度の範囲で直線性のよい特性を得ることが可能となるため、180度の範囲を高精度に角度検出することが可能となる。 Therefore, arranged in 45 ° arrangement interval four magnetoresistive elements 6a~6d as in this example, calculated magnetoresistive element 6a, the difference R 13 and the magnetoresistive element 6b of 6c, 6d and the difference R 24 of, The characteristic waveforms S 13 and S 24 of these differences R 13 and R 24 are cut out at a portion having good linearity, and the angle calculation is performed using the linear equations EQ 1 to EQ 5 of the portion as approximate equations. Therefore, since it is possible to obtain a characteristic with good linearity in the range of 180 degrees, it is possible to detect the angle in the range of 180 degrees with high accuracy.

次に、直線式EQ〜EQを用いて算出した操作角度Rθの誤差について検証するが、ここでは説明を簡単に行なうために直線式EQを用いた例で述べることにする。
図5に示すように、特性波形S13及び直線式EQが同じ値の抵抗値を出力する場合、この際に特性波形S13によって正確な値として算出される磁界向きをθ、直線式EQによって近似値として算出される磁界向きをθaとすると、次式(13)が成立する。
Next, to verify the error of the operation angle R theta calculated using the linear equation EQ 1 ~EQ 5, here it will be described an example using a linear equation EQ 3 to perform easily described.
As shown in FIG. 5, when the characteristic waveform S 13 and the linear equation EQ 3 output the same resistance value, the magnetic field direction calculated as an accurate value by the characteristic waveform S 13 at this time is θ and the linear equation EQ. When the magnetic field direction calculated as an approximate value by 3 is θa, the following equation (13) is established.

Figure 2007057500
ここで、磁界向きθ,θaの間の誤差をΔθとすると、誤差Δθは次式(14)によって算出される。
Figure 2007057500
Here, if the error between the magnetic field directions θ and θa is Δθ, the error Δθ is calculated by the following equation (14).

Figure 2007057500
続いて、Δθの最大誤差は、Δθを微分してその微分式が「0」を満たすところに存在するので、誤差Δθが最大誤差Δθmaxをとる際には、次式(15)を満たすことになり、同式(15)を展開して磁界向きθを求めると、磁界向きθは次式(16)を満たす値をとる。
Figure 2007057500
Subsequently, since the maximum error of Δθ exists where Δθ is differentiated and the differential equation satisfies “0”, when the error Δθ takes the maximum error Δθmax, the following equation (15) is satisfied. Thus, when the magnetic field direction θ is obtained by developing the same expression (15), the magnetic field direction θ takes a value satisfying the following expression (16).

Figure 2007057500
Figure 2007057500

Figure 2007057500
そして、(16)式で得られた磁界向きθを(14)式に代入すると、最大誤差Δθmax は次式(17)を満たす値となる。
Figure 2007057500
Then, when the magnetic field direction θ obtained by the equation (16) is substituted into the equation (14), the maximum error Δθmax becomes a value satisfying the following equation (17).

Figure 2007057500
この(17)式を展開すると、最大誤差Δθmax は次式(18)に示す値で算出される。
Figure 2007057500
When this equation (17) is developed, the maximum error Δθmax is calculated by the value shown in the following equation (18).

Figure 2007057500
式(18)に示す最大誤差Δθmax を見ても分かるように、最大誤差Δθmax は「1度」以下の「0.95度」度なる。ところで、シフトレバー2の多くは分解能が1度以下のものを要求しているものはほとんどないため、最大誤差が「0.95度」であれば、近似式である本例の直線式EQ〜EQ用いて角度検出を行なっても、検出精度にはさほど影響を及ぼさずに済む。
Figure 2007057500
As can be seen from the maximum error Δθmax shown in Expression (18), the maximum error Δθmax is “0.95 degrees” which is “1 degree” or less. By the way, since most of the shift levers 2 do not require a resolution of 1 degree or less, if the maximum error is “0.95 degrees”, the linear expression EQ 1 of this example which is an approximate expression. Even if angle detection is performed using .about.EQ 5 , the detection accuracy is not significantly affected.

また、角度検出装置4の使用環境温度(周囲温度)が変化すると、磁気抵抗素子6a〜6bがその温度変化に影響を受けて、抵抗値R〜R(抵抗特性S〜S)が変化する。即ち、各磁気抵抗素子6a〜6dの各抵抗率rは、使用環境化の温度をT、rを0度の時の抵抗率、αを抵抗率の温度係数とすると、次式(19)の関係式を持って変化する。
r=r・(1+αT) … (19)
Moreover, the ambient temperature of the angle detection device 4 when (ambient temperature) changes under the influence magnetoresistive element 6a~6b within its temperature change, the resistance value R 1 to R 4 (resistance characteristics S 1 to S 4) Changes. That is, each resistivity r of each magnetoresistive element 6a~6d is the temperature of the use environment of T, resistivity when the r 0 0 degree, when a temperature coefficient of the α resistivity, the following equation (19) It changes with the relational expression.
r = r 0 · (1 + αT) (19)

ところで、式(8) 〜(12)に示す直線式EQ〜EQを見ても分かるように、これら直線式EQ〜EQの右辺及び左辺の両方に抵抗値のパラメータがあるため、周囲の使用環境温度が変化したとしても、計算過程で温度変化のパラメータが相殺されることになり、角度計算時の最終的な算出値は温度変化に影響されない値として算出される。従って、磁気抵抗素子6a〜6dを使用して角度検出を行えば、コンピュータ9の出力に温度補償がなされ、使用環境下で温度変化が生じても、コンピュータ9の算出値である操作角度Rθには温度誤差が生じ難くなる。 By the way, as can be seen from the linear equations EQ 1 to EQ 5 shown in the equations (8) to (12), both the right side and the left side of these linear equations EQ 1 to EQ 5 have resistance value parameters. Even if the ambient operating environment temperature changes, the temperature change parameter is canceled in the calculation process, and the final calculated value at the time of the angle calculation is calculated as a value that is not affected by the temperature change. Therefore, if the angle detection is performed using the magnetoresistive elements 6a to 6d, the temperature of the output of the computer 9 is compensated, and the operation angle R θ that is a calculated value of the computer 9 even if the temperature changes in the use environment. Temperature error is less likely to occur.

本実施形態の角度検出装置4によれば、以下に記載の効果を得ることができる。
(1)4つの磁気抵抗素子6a〜6dを45度の配置間隔で取り付け、互いに90度の配置間隔を成す磁気抵抗素子6a,6cと磁気抵抗素子6b,6dとの間でそれぞれ差分R13,R24をとり、これら差分R13,R24の特性波形S13,S24の直線性部分から求まる直線式EQ〜EQを用いて角度算出を行なう。よって、磁界向きθが−90度〜+90度の範囲において磁界向きθと抵抗値R〜Rとの間の関係式が、これら磁気抵抗素子6a〜6dの特性波形S〜Sにおける直線性部分の直線式に置き換えられる。従って、磁界向きθ(即ち、操作角度Rθ)が−90度〜+90度の範囲において特性波形S〜Sの直線性部分で算出可能となり、磁界向きθを180度の範囲で高精度に検出することができる。また、磁界を検出する素子として磁気抵抗素子6a〜6dを使用しているので、磁気抵抗素子6a〜6dには使用環境温度が変化しても出力が変化し難い特性があることから、本例のように磁気抵抗素子6a〜6dを用いて角度検出を行なえば、温度補償についても確保することができる。
According to the angle detection device 4 of the present embodiment, the following effects can be obtained.
(1) four mounting at arrangement intervals of 45 degrees magnetoresistive element 6 a to 6 d, the magnetoresistive element 6a, 6c and the magnetoresistive element 6b, respectively between 6d difference R 13 constituting the arrangement interval of 90 degrees from each other, Taking R 24 , angle calculation is performed using linear equations EQ 1 to EQ 5 obtained from the linear portions of the characteristic waveforms S 13 and S 24 of the differences R 13 and R 24 . Therefore, when the magnetic field direction θ is in the range of −90 degrees to +90 degrees, the relational expression between the magnetic field direction θ and the resistance values R 1 to R 4 is represented by the characteristic waveforms S 1 to S 4 of these magnetoresistive elements 6a to 6d. Replaced by the linear expression of the linear part. Therefore, the linearity portion of the characteristic waveforms S 1 to S 4 can be calculated in the magnetic field direction θ (that is, the operation angle R θ ) in the range of −90 degrees to +90 degrees, and the magnetic field direction θ is highly accurate in the range of 180 degrees. Can be detected. In addition, since the magnetoresistive elements 6a to 6d are used as the elements for detecting the magnetic field, the magnetoresistive elements 6a to 6d have characteristics that the output does not easily change even when the use environment temperature changes. If angle detection is performed using the magnetoresistive elements 6a to 6d as described above, temperature compensation can be ensured.

(2)磁気抵抗素子6a〜6dを直列接続し、これら磁気抵抗素子6a〜6dに定電圧回路8を介して電圧を印加することで、各磁気抵抗素子6a〜6dに電流を流している。従って、磁気抵抗素子群には一定値の電圧が供給されることになり、磁気抵抗素子6a〜6dの抵抗値R〜R(出力信号)が磁界向きθ以外の要因で変化するような状況になり難く、高い角度検出精度を確保することができる。 (2) The magnetoresistive elements 6a to 6d are connected in series, and a voltage is applied to the magnetoresistive elements 6a to 6d via the constant voltage circuit 8 so that current flows through the magnetoresistive elements 6a to 6d. Accordingly, a constant voltage is supplied to the magnetoresistive element group, and the resistance values R 1 to R 4 (output signals) of the magnetoresistive elements 6 a to 6 d change due to factors other than the magnetic field direction θ. It is difficult to become a situation, and high angle detection accuracy can be ensured.

(3)差分R13,R24の各特性波形S13,S24の直線性部分を切り出す際には、特性波形S13,S24のトップとボトムとの間の連続した区間をそれぞれ直線性部分として切り出している。ところで、特性波形S13,S24の直線性部分を細かく切り出し、これを用いて角度検出を行なえば、精度高く角度検出することは可能であるが、その分だけ直線式EQを多数用意する必要があるため、計算処理の煩雑化を招く。しかし、本例のように、特性波形S13,S24のトップ及びボトム間の連続区間を直線性部分として切り出し、この部分の直線式EQ〜EQを用いて角度検出を行なったとしても、その際に生じる最大誤差Δθmax は式(18)で示すように0.95度に収る。よって、この角度検出装置4をシフトレバー2の角度検出に用いた場合、最大誤差Δθmax がこの程度の誤差であれば、シフトレバー2の角度検出において必要な分解能の関係上、角度検出精度に大きな影響はない。従って、ROM11に用意しておく直線式EQをできる限り少なく抑えつつ、充分な角度検出の精度を確保することができる。 (3) When the linearity portions of the characteristic waveforms S 13 and S 24 of the differences R 13 and R 24 are cut out, the continuous sections between the top and bottom of the characteristic waveforms S 13 and S 24 are linearized respectively. Cut out as a part. By the way, if the linearity portions of the characteristic waveforms S 13 and S 24 are cut out finely and angle detection is performed using this, it is possible to detect the angle with high accuracy, but it is necessary to prepare a large number of linear EQs accordingly. Therefore, the calculation process becomes complicated. However, as in this example, even if the continuous section between the top and bottom of the characteristic waveforms S 13 and S 24 is cut out as a linear part and angle detection is performed using the linear equations EQ 1 to EQ 5 of this part. The maximum error Δθmax generated at that time falls within 0.95 degrees as shown in the equation (18). Therefore, when this angle detection device 4 is used for angle detection of the shift lever 2, if the maximum error Δθmax is such an error, the angle detection accuracy is large due to the resolution necessary for angle detection of the shift lever 2. There is no effect. Therefore, sufficient angle detection accuracy can be ensured while keeping the linear EQ prepared in the ROM 11 as small as possible.

(4)ROM11に記憶された複数の直線式EQ〜EQのうち使用する式を選択するに際しては、各磁気抵抗素子6a〜6dの抵抗値R〜Rをパラメータとして、角度算出に適するものを指定する。従って、直線式EQ〜EQを指定する際に別のパラメータを新たに入力する等の処理を必要としないため、計算処理の煩雑化を招かずに済む。 (4) When selecting an expression to be used from among the plurality of linear expressions EQ 1 to EQ 5 stored in the ROM 11, the angle values are calculated using the resistance values R 1 to R 4 of the magnetoresistive elements 6a to 6d as parameters. Specify the appropriate one. Therefore, when the linear equations EQ 1 to EQ 5 are designated, processing such as newly inputting another parameter is not required, so that the calculation process is not complicated.

なお、本実施形態は上記構成に限定されず、以下の態様に変更してもよい。
・ 磁気抵抗素子6の個数は、本例のように4つに限らず、例えば6つや8つ用いた構成でもよい。また、磁気抵抗素子6の配置間隔も45度に限らず、90度以上の範囲で角度検出が可能であれば、例えば30度や40度としてもよい。
In addition, this embodiment is not limited to the said structure, You may change into the following aspects.
The number of the magnetoresistive elements 6 is not limited to four as in the present example, and a configuration using, for example, six or eight may be used. Further, the arrangement interval of the magnetoresistive elements 6 is not limited to 45 degrees, and may be, for example, 30 degrees or 40 degrees as long as the angle can be detected in a range of 90 degrees or more.

・ 直線性部分として切り出す部分は、特性波形S13(特性波形S24)のトップからボトムの間の連続する区間であることに限定されない。例えば、図6に示すように今まで1本の直線性部分として切り出していた区間を、複数(図6は4本)の直線で切り出すようにしてもよい。 The portion cut out as the linear portion is not limited to a continuous section between the top and bottom of the characteristic waveform S 13 (characteristic waveform S 24 ). For example, as shown in FIG. 6, a section that has been cut out as one linear portion until now may be cut out by a plurality of (four in FIG. 6) straight lines.

・ 磁気抵抗素子6及び磁石7の取付箇所は、磁気抵抗素子6が車体3側、磁石7がシフトレバー2側であることに限定されず、この組み合わせが逆であってもよい。
・ 直線式EQの書き込み先はROM11に限定されず、例えば角度検出装置4にEEPROM(Electronically Erasable and Programmable ROM)が内蔵されるのであれば、これを直線式EQの書き込み先として使用してもよい。
The attachment location of the magnetoresistive element 6 and the magnet 7 is not limited to the magnetoresistive element 6 being on the vehicle body 3 side and the magnet 7 being on the shift lever 2 side, and this combination may be reversed.
The writing destination of the linear EQ is not limited to the ROM 11, and for example, if an EEPROM (Electronically Erasable and Programmable ROM) is built in the angle detection device 4, this may be used as the writing destination of the linear EQ. .

・ 磁界発生手段は磁石7に限らず、磁界を発生できるものであれば、特に限定されない。
・ 本例の角度検出装置4は搭載対象がシフトレバー2であることに限らず、例えばシートの背もたれの傾き量を検出するシート傾角検出装置等でもよく、角度検出装置4の搭載対象は特に限定されない。
The magnetic field generation means is not limited to the magnet 7 as long as it can generate a magnetic field.
The angle detection device 4 of this example is not limited to the shift lever 2 but may be a seat inclination detection device that detects the amount of inclination of the seat back, for example, and the installation target of the angle detection device 4 is particularly limited. Not.

次に、上記実施形態及び別例から把握できる技術的思想について、それらの効果とともに以下に追記する。
(1)請求項1〜4のいずれかにおいて、前記磁気抵抗素子は前記支持部品側に取り付けられている。この場合、操作部品に対して固定側となる支持部品に磁気抵抗素子が取り付けられるため、操作部品が操作されたとしても、それに伴って磁気抵抗素子が動くような状態とならずに済み、操作時の遠心力や振動等で磁気抵抗素子が取付場所から外れてしまうような状況になり難い。
Next, technical ideas that can be grasped from the above-described embodiment and other examples will be described below together with their effects.
(1) In any one of Claims 1-4, the said magnetoresistive element is attached to the said support component side. In this case, since the magnetoresistive element is attached to the support component on the fixed side with respect to the operation component, even if the operation component is operated, it is not necessary for the magnetoresistive element to move along with the operation component. It is difficult for the magnetoresistive element to be detached from the mounting location due to centrifugal force or vibration at the time.

(2)操作部品を操作した際に、該操作部品を相対移動可能に支持する支持部品に対して前記操作部品の成す角度を検出する角度検出装置において、磁界を発生すべく前記操作部品及び前記支持部品の一方に設けられた磁気発生手段と、前記操作部品及び前記支持部品の他方に設けられ、前記磁界を検出すべく45度の配置間隔で取付けられた複数の磁界抵抗素子と、互いに90度の配置間隔をなす前記磁気抵抗素子の特性値において、その差分をとった各特性波形から切り出される直線性部分の直線式を記憶した記憶手段と、前記磁気抵抗素子の特性値に基づき、前記直線式を用いて前記角度を算出する算出手段とを備えたことを特徴とする角度検出装置。   (2) In an angle detection device that detects an angle formed by the operation component with respect to a support component that supports the operation component so as to be relatively movable when the operation component is operated, the operation component and the A magnetism generating means provided on one of the support parts, and a plurality of magnetic field resistance elements provided on the other of the operation part and the support part and attached at an arrangement interval of 45 degrees to detect the magnetic field, and 90 Based on the characteristic value of the magnetoresistive element, the storage means storing the linear expression of the linearity portion cut out from each characteristic waveform obtained by taking the difference in the characteristic value of the magnetoresistive element forming the arrangement interval of the degree, An angle detection apparatus comprising: a calculation unit that calculates the angle using a linear equation.

一実施形態における車室内を示す斜視図。The perspective view which shows the vehicle interior in one Embodiment. 角度検出装置を構成する磁気抵抗素子及び磁石の取付状態を示す平面図。The top view which shows the attachment state of the magnetoresistive element and magnet which comprise an angle detection apparatus. 角度検出装置の電気構成を示すブロック図。The block diagram which shows the electric constitution of an angle detection apparatus. 磁気抵抗素子の特性波形を示す波形図。The wave form diagram which shows the characteristic waveform of a magnetoresistive element. 近似式である直線式を用いて算出した検出角度の最大誤差を計算する際の説明図。Explanatory drawing at the time of calculating the maximum error of the detection angle calculated using the linear formula which is an approximation formula. 別例における磁気抵抗素子の差分から導出した特性波形を示す波形図。The wave form diagram which shows the characteristic waveform derived | led-out from the difference of the magnetoresistive element in another example. 従来における磁気抵抗素子に所定向きの磁界がかかった状態を示す平面図。The top view which shows the state in which the magnetic field of the predetermined direction was applied to the conventional magnetoresistive element. 磁気抵抗素子の特性波形を示す波形図。The wave form diagram which shows the characteristic waveform of a magnetoresistive element.

符号の説明Explanation of symbols

2…操作部品としてのシフトレバー、3…支持部品としての車体、4…角度検出装置、6(6a〜6d)…磁気抵抗素子、7…磁界発生手段としての磁石、8…定電圧回路、10…算出手段としてのCPU、11…記憶手段としてのROM、H…磁界、Rθ…操作角度、R13、R24…差分、S13、S24…特性波形、EQ(EQ〜EQ)…直線式。 DESCRIPTION OF SYMBOLS 2 ... Shift lever as operation component, 3 ... Vehicle body as support component, 4 ... Angle detection device, 6 (6a-6d) ... Magnetoresistive element, 7 ... Magnet as magnetic field generation means, 8 ... Constant voltage circuit, 10 ... ROM as CPU, 11 ... storage means as calculation means, H ... field, R theta ... operating angle, R 13, R 24 ... difference, S 13, S 24 ... characteristic waveform, EQ (EQ 1 ~EQ 5) ... Linear type.

Claims (4)

操作部品を操作した際に、該操作部品を相対移動可能に支持する支持部品に対して前記操作部品の成す角度を検出する角度検出装置において、
磁界を発生すべく前記操作部品及び前記支持部品の一方に設けられた磁界発生手段と、
前記操作部品及び前記支持部品の他方に設けられ、前記磁界を検出すべく互いに一定角度の配置間隔を成した取付状態をとる複数の磁気抵抗素子と、
前記一定角度の定数倍の配置間隔を成す前記磁気抵抗素子の特性値の差分において、その特性波形から切り出した直線性部分の直線式を記憶した記憶手段と、
前記磁気抵抗素子の特性値に基づき、前記直線式を用いて前記角度を算出する算出手段と
を備えたことを特徴とする角度検出装置。
In an angle detection device that detects an angle formed by the operation component with respect to a support component that supports the operation component so as to be relatively movable when the operation component is operated,
Magnetic field generating means provided on one of the operating component and the support component to generate a magnetic field;
A plurality of magnetoresistive elements that are provided on the other of the operation component and the support component and have a mounting state at a certain angle from each other to detect the magnetic field;
Storage means for storing a linear expression of the linearity portion cut out from the characteristic waveform in the difference in characteristic value of the magnetoresistive element forming an arrangement interval of a constant multiple of the constant angle;
An angle detection apparatus comprising: a calculation unit that calculates the angle using the linear equation based on a characteristic value of the magnetoresistive element.
直列接続された複数の前記磁気抵抗素子に一定値の電圧を供給する定電圧回路を備えたことを特徴とする請求項1に記載の角度検出装置。   The angle detection device according to claim 1, further comprising a constant voltage circuit that supplies a constant voltage to the plurality of magnetoresistive elements connected in series. 前記直線性部分は、交流波形を成す前記差分の特性波形のトップとボトムとの間の連続した区間であることを特徴とする請求項1又は2に記載の角度検出装置。   The angle detection device according to claim 1, wherein the linear portion is a continuous section between a top and a bottom of the differential characteristic waveform forming an AC waveform. 前記算出手段は、前記角度を算出するに際して、各磁気抵抗素子から得られる前記特性値をパラメータとして、前記記憶手段に記憶された複数の前記直線式の中から使用する式を指定することを特徴とする請求項1〜3のうちいずれか一項に記載の角度検出装置。   The calculating means designates an expression to be used from among the plurality of linear expressions stored in the storage means, using the characteristic value obtained from each magnetoresistive element as a parameter when calculating the angle. The angle detection device according to any one of claims 1 to 3.
JP2005246555A 2005-08-26 2005-08-26 Angle detector Pending JP2007057500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005246555A JP2007057500A (en) 2005-08-26 2005-08-26 Angle detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005246555A JP2007057500A (en) 2005-08-26 2005-08-26 Angle detector

Publications (1)

Publication Number Publication Date
JP2007057500A true JP2007057500A (en) 2007-03-08

Family

ID=37921117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005246555A Pending JP2007057500A (en) 2005-08-26 2005-08-26 Angle detector

Country Status (1)

Country Link
JP (1) JP2007057500A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101746A (en) * 2008-10-23 2010-05-06 Asahi Kasei Electronics Co Ltd Method for detecting rotation angle and rotation angle sensor
JP2011033481A (en) * 2009-07-31 2011-02-17 Daido Steel Co Ltd Magnetic sensor signal processing program and magnetic sensor module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101746A (en) * 2008-10-23 2010-05-06 Asahi Kasei Electronics Co Ltd Method for detecting rotation angle and rotation angle sensor
JP2011033481A (en) * 2009-07-31 2011-02-17 Daido Steel Co Ltd Magnetic sensor signal processing program and magnetic sensor module

Similar Documents

Publication Publication Date Title
US8415946B2 (en) Arrangement and method for magnetic determination of a linear length or a rotary angle
JP6061317B2 (en) Displacement sensor that measures the position in a non-contact manner by a plurality of magnetic field sensors arranged in series
JP6331177B1 (en) Angle sensor system
US20090243598A1 (en) Position measurement using magnetic fields
US20120119729A1 (en) Rotating field sensor
JP6319601B1 (en) Angle sensor correction device and angle sensor
JP2000131006A (en) Relative straight line position measuring device
EP3627113B1 (en) Calibration and linearization of position sensor
JP5014968B2 (en) Position sensor
JPWO2013171977A1 (en) Bridge circuit and magnetic sensor having the same
JP2005321263A (en) Noncontact type liquid level sensor and noncontact type liquid level detection method
JP5085501B2 (en) Operation position calculation device
JP2007057500A (en) Angle detector
JP2009300262A (en) Displacement detector
JP6508381B1 (en) Magnetic sensor device
WO2016056136A1 (en) Current detection method, current detection device, signal correction method for current detection device, and signal correction device for current detection device
JP2015094607A (en) Strain gauge and strain analysis system
JP5096399B2 (en) Rotation angle detector
JP2006047004A (en) Temperature sensor and sensor using magnetoresistive element
JP5128416B2 (en) Magnetic sensor device
JP6619974B2 (en) Encoder
JP2006047228A (en) Rotation angle detecting device
JP2016223994A (en) Current sensor
JP4917522B2 (en) Position sensor
JP2016080408A (en) Rotation angle detection circuit