JP2006047228A - Rotation angle detecting device - Google Patents

Rotation angle detecting device Download PDF

Info

Publication number
JP2006047228A
JP2006047228A JP2004231644A JP2004231644A JP2006047228A JP 2006047228 A JP2006047228 A JP 2006047228A JP 2004231644 A JP2004231644 A JP 2004231644A JP 2004231644 A JP2004231644 A JP 2004231644A JP 2006047228 A JP2006047228 A JP 2006047228A
Authority
JP
Japan
Prior art keywords
value
rotation angle
sine
detection
cosine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004231644A
Other languages
Japanese (ja)
Inventor
Masakata Kanbe
正方 神戸
Tomoya Eguchi
智也 江口
Koichi Itoigawa
貢一 糸魚川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2004231644A priority Critical patent/JP2006047228A/en
Publication of JP2006047228A publication Critical patent/JP2006047228A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an angle-of-rotation sensitive device for securing precision of an angle-of-rotation calculation, even if sensitive sensitivity of a sensitive element is lowered and simplifying the angle-of-rotation calculations. <P>SOLUTION: When a vehicle is started with engine, the angle-of-rotation sensing device 1 is started, and a calculation circuit 12 inputs a sine value Y1 and a cosine value Y2 through an A/D converter 10 from magnetic sensors 6 and 7. The calculation circuit 12 calculates arctangent function, to calculate the arctangent value Vh and calculates the angle of rotation θ of a magnet 3 from the arctangent value Vh. In addition, the magnetic sensors 6 and 7 are used under the same bias conditions, namely, with the same impression voltage. Thus, since the amplitude A1 of a sine signal Sa output from the magnetic sensor 6 and an amplitude A2 of a cosine signal Sb output from the magnetic sensor 7 are the same value, the amplitude A1 of the sine value Y1 and the amplitude A2 of the cosine value Y2 are canceled, when the arctangent value Vh is calculated. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被検出体と検出素子との間の相対的な回転角度を演算する回転角度検出装置に関する。   The present invention relates to a rotation angle detection device that calculates a relative rotation angle between a detection object and a detection element.

従来、この種の回転角度検出装置としては、例えば磁気検出素子を用いた特許文献1に示す装置が開示されている。同文献1に示す回転角度検出装置は、スロットルバルブ等の回転軸に磁石を固着し、この磁石を検知可能な位置にホールICを配置した構成をとる。ホールICはホール素子やその他のデバイス等からなり、スロットルバルブの回転によって磁石が回転した際には、ホール素子の感磁面への磁束角度が変化するので、この磁束角度の変化に基づきスロットルバルブの回転角度が算出される。   Conventionally, as this type of rotation angle detection device, for example, a device disclosed in Patent Document 1 using a magnetic detection element has been disclosed. The rotation angle detection device shown in the document 1 has a configuration in which a magnet is fixed to a rotation shaft such as a throttle valve and a Hall IC is disposed at a position where the magnet can be detected. The Hall IC consists of a Hall element and other devices. When the magnet rotates due to the rotation of the throttle valve, the magnetic flux angle to the magnetic sensing surface of the Hall element changes. Based on this change in the magnetic flux angle, the throttle valve Is calculated.

ここで、ホール素子は正弦波の検出信号(電圧値)を出力するが、検出信号がリニア(直線的)に変化すれば簡単な演算処理で回転角度を演算できるので、検出信号がリニアに変化する範囲では回転角度を短時間で精度よく演算可能となる。しかし、検出信号が正弦波の場合には検出信号のリニア変化範囲が狭いので、回転角度の検出範囲を無理に広くとると回転角の演算精度が低下するという問題が生じる。また、検出信号の曲線部分を厳密に演算して回転角度を算出すると、複雑な演算処理が必要となり演算処理速度が遅くなる問題が生じる。   Here, the Hall element outputs a sine wave detection signal (voltage value), but if the detection signal changes linearly (linearly), the rotation angle can be calculated with a simple calculation process, so the detection signal changes linearly. In this range, the rotation angle can be calculated accurately in a short time. However, since the linear change range of the detection signal is narrow when the detection signal is a sine wave, there is a problem that the calculation accuracy of the rotation angle is lowered if the detection range of the rotation angle is forcibly widened. Further, if the rotation angle is calculated by strictly calculating the curved portion of the detection signal, a complicated calculation process is required, resulting in a problem that the calculation processing speed becomes slow.

そこで、同文献1では、ホール素子から検出信号として図8に示す正弦信号Sxaが出力される場合には、その正弦信号Sxaを逆正弦関数(arcsin)の信号Sxbに変換することで、正弦信号Sxaをリニアな信号に変換して回転角度を算出している。このようにすれば、リニアな信号で回転角度算出が可能となり、簡単な演算処理で回転角度を精度良く求めることが可能となる。
特開2001−124511号(第3−5頁、第1図)
Therefore, in the literature 1, when the sine signal Sxa shown in FIG. 8 is output as a detection signal from the Hall element, the sine signal Sxa is converted into a signal Sxb of an inverse sine function (arcsin), thereby obtaining a sine signal. The rotation angle is calculated by converting Sxa into a linear signal. In this way, the rotation angle can be calculated with a linear signal, and the rotation angle can be obtained with high accuracy by simple arithmetic processing.
JP 2001-124511 (page 3-5, FIG. 1)

ところで、長時間の使用や厳しい使用環境下等が原因で回転角度検出装置が温度上昇する場合がある。ホール素子には温度による影響を受けて出力に変化が生じる特性があるので、装置が温度上昇するとホール素子の検出感度が低下し、図8の二点差線で示すようにホールICの検出信号が低下し、逆正弦信号Sxbも同図の二点差線で示すようにずれが生じる。こうなると、逆正弦値(逆余弦値)と回転角度との相関関係にずれが生じ、正確な回転角度が算出できない問題が生じてしまう。   By the way, there are cases where the temperature of the rotation angle detection device rises due to long-time use or severe use environment. Since the Hall element has a characteristic that the output changes due to the influence of the temperature, the detection sensitivity of the Hall element decreases when the temperature of the device rises, and the detection signal of the Hall IC is displayed as shown by the two-dot difference line in FIG. The inverse sine signal Sxb also shifts as shown by the two-dot line in FIG. If this happens, a deviation occurs in the correlation between the inverse sine value (inverse cosine value) and the rotation angle, causing a problem that an accurate rotation angle cannot be calculated.

さらに、ホール素子から検出信号として余弦信号が出力された場合も、同様に余弦信号を逆余弦信号(arccos)の信号に変換し、リニアな信号で回転角度算出を行うことができるが、正弦信号Sxaと同様に温度による影響を受けて出力に変化が生じ、逆余弦信号も変動してしまう。また、回転角度の算出精度を確保するにしても、それを満たし得る回転角度算出プログラムは演算速度やメモリ量の観点から、回転角度算出を簡単にして演算プログラム量をなるべく減らしたい要望もあった。   Further, when a cosine signal is output as a detection signal from the hall element, the cosine signal can be similarly converted into an inverse cosine signal (arccos) signal, and the rotation angle can be calculated with a linear signal. As with Sxa, the output changes due to the influence of temperature, and the inverse cosine signal also fluctuates. Further, even if the calculation accuracy of the rotation angle is ensured, there is a demand for a rotation angle calculation program that can satisfy the calculation angle from the viewpoint of the calculation speed and the memory amount, and to simplify the rotation angle calculation and reduce the calculation program amount as much as possible. .

一方、別の考え方として、例えば温度センサ等を用いて使用環境下の温度を検出し、その温度値に基づき逆正弦信号(逆余弦信号)を補正することで回転角度を算出する方法も考えられる。しかし、この方法を用いると温度センサが別途必要となるので、装置のコストアップや大型化の観点から、この方法は採用できない現状があり、温度センサを用いない別の方法が望まれていた。   On the other hand, as another idea, for example, a temperature sensor is used to detect the temperature in the environment of use, and a rotation angle is calculated by correcting an inverse sine signal (inverse cosine signal) based on the temperature value. . However, when this method is used, a temperature sensor is separately required. Therefore, from the viewpoint of increasing the cost and size of the apparatus, there is a current situation in which this method cannot be adopted, and another method that does not use the temperature sensor has been desired.

本発明の目的は、検出素子の検出感度が低下しても回転角度算出の精度を確保でき、しかもその回転角度算出を簡素化することができる回転角度検出装置を提供することにある。   An object of the present invention is to provide a rotation angle detection device that can ensure the accuracy of rotation angle calculation even if the detection sensitivity of a detection element is reduced, and that can simplify the rotation angle calculation.

上記問題点を解決するために、請求項1に記載の発明では、被検出体との間の相対回転に応じた検出信号を各々異なる位相で出力する複数の検出素子と、前記検出素子の検出信号によって逆正接関数に準ずる逆正接値を求め、該逆正接値に基づき前記被検出体及び検出素子の間の回転角度を算出する算出手段とを備えた回転角度検出装置において、前記検出素子に供給される印加電圧を同一値としたことを要旨とする。   In order to solve the above-described problems, in the invention according to claim 1, a plurality of detection elements that output detection signals in different phases according to relative rotation with the detected object, and detection of the detection elements A rotation angle detecting device comprising: a calculating means for calculating an angle of rotation between the detected object and the detection element based on the arc tangent value by obtaining an arc tangent value according to an arc tangent function according to a signal; The gist is that the applied voltages to be supplied have the same value.

この発明によれば、算出手段が逆正接信号を求めるには、まず1つの検出素子の検出信号から正弦信号を入力するとともに他の1つの検出素子の検出信号から余弦信号を入力し、その正弦値及び余弦値に基づき算出する。このとき、正弦値を余弦値で除算する算出過程を経て逆正接値を求めれば、その計算により求まる正接値は正弦値及び余弦値の比率をとることになるので、例えば温度上昇が原因で検出素子の感度が低下して正弦値及び余弦値に変化が生じても、値に変化が生じない。従って、その逆正接値により回転角度が算出されるので、算出手段が求める回転角度には感度低下による影響が生じず、回転角度の検出精度が確保される。   According to this invention, in order to obtain the arc tangent signal, the calculating means first inputs a sine signal from the detection signal of one detection element and also inputs a cosine signal from the detection signal of the other detection element, Calculate based on value and cosine value. At this time, if the arc tangent value is obtained through a calculation process in which the sine value is divided by the cosine value, the tangent value obtained by the calculation takes the ratio of the sine value and the cosine value. Even if the sensitivity of the element decreases and the sine value and cosine value change, the value does not change. Therefore, since the rotation angle is calculated based on the arctangent value, the rotation angle obtained by the calculation means is not affected by the sensitivity reduction, and the detection accuracy of the rotation angle is ensured.

また、検出素子に供給される印加電圧を同一値としておくと、正弦信号及び余弦信の各振幅が同一値をとるので、正弦値を余弦値で除算した際に正弦値及び余弦値の各々に含まれる信号波形の振幅項が相殺される。従って、逆正接関数演算の簡素化が図られることになるので、検出素子に感度低下が生じても回転角度の検出精度の確保できる効果に加え、逆正接値を簡単に演算できる効果も奏する。なお、被検出体に対する検出素子の検出条件が同条件とは、条件の値に若干の誤差が含まれるものとする。   Also, if the applied voltage supplied to the detection element is set to the same value, the amplitudes of the sine signal and the cosine signal have the same value, so that when the sine value is divided by the cosine value, each of the sine value and the cosine value is obtained. The amplitude term of the included signal waveform is canceled. Accordingly, since the arc tangent function calculation is simplified, in addition to the effect of ensuring the detection accuracy of the rotation angle even when the sensitivity of the detection element is reduced, there is an effect that the arc tangent value can be easily calculated. It should be noted that the detection condition of the detection element with respect to the detection target is the same condition, where the value of the condition includes a slight error.

請求項2に記載の発明では、請求項1に記載の発明において、前記算出手段は、前記検出素子から入力した正弦関数に準ずる正弦値と余弦関数に準ずる余弦値とに基づき、前記正弦値を前記余弦値で除算することで正接値を算出し、その逆正接値を算出することによって前記回転角度を算出することを要旨とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the calculating means calculates the sine value based on a sine value according to the sine function and a cosine value according to the cosine function input from the detection element. The gist is to calculate a tangent value by dividing by the cosine value and to calculate the rotation angle by calculating the arc tangent value.

この発明によれば、請求項1に記載の発明の作用に加え、正弦値を余弦値で除算することで正接値が算出され、その逆正接値により回転角度が算出される。従って、検出素子の感度が低下して正弦値及び余弦値に変化が生じても、正接値を算出する際にその検出感度変化分が相殺され、逆正接値自体には変化が生じない。従って、その逆正接値により回転角度が算出されるので、算出手段が求める回転角度には感度低下による影響が生じず、回転角度の検出精度が確保される。   According to the present invention, in addition to the operation of the first aspect, the tangent value is calculated by dividing the sine value by the cosine value, and the rotation angle is calculated by the inverse tangent value. Therefore, even if the sensitivity of the detection element decreases and the sine value and the cosine value change, when the tangent value is calculated, the change in the detection sensitivity is canceled, and the arc tangent value itself does not change. Therefore, since the rotation angle is calculated based on the arctangent value, the rotation angle obtained by the calculation means is not affected by the sensitivity reduction, and the detection accuracy of the rotation angle is ensured.

請求項3に記載の発明では、請求項1又は2に記載の発明において、前記算出手段は、前記検出素子から入力した正弦関数に準ずる正弦値及び余弦関数に準ずる余弦値の少なくとも一方と、前記逆正接値とに基づき前記回転角度を算出することを要旨とする。   In the invention according to claim 3, in the invention according to claim 1 or 2, the calculation means includes at least one of a sine value according to a sine function and a cosine value according to a cosine function input from the detection element, and The gist is to calculate the rotation angle based on the arctangent value.

この発明によれば、請求項1又は2に記載の発明の作用に加え、逆正接信号は180度ごとに波形が繰り返される波形形状をとることから、0〜360度で回転角度を算出する場合、1つの逆正接値から1周期の間で2つの角度が得られてしまう。しかし、正弦値及び余弦値の少なくとも一方を用いれば、得られた2つの逆正接値がどの象限に存在するものかを判定することが可能となる。従って、1つの逆正接値から回転角度が一義的に導かれ、0〜360度の回転角度算出が可能となり、回転角度検出装置の用い先が広域に亘る。   According to this invention, in addition to the operation of the invention described in claim 1 or 2, the arc tangent signal takes a waveform shape in which the waveform is repeated every 180 degrees, and therefore the rotation angle is calculated from 0 to 360 degrees. Two angles are obtained in one cycle from one arctangent value. However, if at least one of the sine value and the cosine value is used, it is possible to determine in which quadrant the obtained two arc tangent values exist. Accordingly, the rotation angle is uniquely derived from one arctangent value, and the rotation angle can be calculated from 0 to 360 degrees.

本発明によれば、検出素子の検出感度が低下しても回転角度算出の精度を確保でき、しかもその回転角度算出を簡素化することができる。   According to the present invention, even when the detection sensitivity of the detection element is lowered, the accuracy of rotation angle calculation can be ensured, and the rotation angle calculation can be simplified.

以下、本発明を具体化した回転角度検出装置の一実施形態を図1〜図7に従って説明する。
図1は、回転角度検出装置1の概略構成を示す模式斜視図である。回転角度検出装置1は例えば車両のニュートラルスタートスイッチに用いられ、詳しくは自動変速機のギヤ位置変更時に操作されるシフトレバー(図示略)の操作位置を検出する検出装置である。回転角度検出装置1は中空状のケース2を備え、このケース2を車両ボディ(図示略)に固着することで車両に組み付けられる。
Hereinafter, an embodiment of a rotation angle detection apparatus embodying the present invention will be described with reference to FIGS.
FIG. 1 is a schematic perspective view showing a schematic configuration of the rotation angle detection device 1. The rotation angle detection device 1 is used for, for example, a neutral start switch of a vehicle, and more specifically, is a detection device that detects an operation position of a shift lever (not shown) that is operated when a gear position of an automatic transmission is changed. The rotation angle detection device 1 includes a hollow case 2 and is assembled to a vehicle by fixing the case 2 to a vehicle body (not shown).

ケース2の内部には、自身の周りに所定磁界を発生する磁石3が収容されている。磁石3は例えば円柱状の永久磁石(ネオジウム、サマリウム等)が用いられ、シフトレバーと連動して回動する回動軸4に固着されている。従って、シフトレバーが操作されると、それに応じた回転方向(図1の矢印A方向)に磁石3が回転する。また、回動軸4はケース2の上壁の挿通孔2aからにケース外に導出され、磁石3は回動軸4と軸心が一致するように固定されている。なお、磁石3が被検出体に相当する。   Inside the case 2 is housed a magnet 3 that generates a predetermined magnetic field around itself. The magnet 3 is, for example, a cylindrical permanent magnet (neodymium, samarium, etc.), and is fixed to a rotating shaft 4 that rotates in conjunction with a shift lever. Therefore, when the shift lever is operated, the magnet 3 rotates in the corresponding rotation direction (the direction of arrow A in FIG. 1). The rotating shaft 4 is led out of the case through an insertion hole 2a on the upper wall of the case 2, and the magnet 3 is fixed so that the axis of the rotating shaft 4 coincides with the axis. The magnet 3 corresponds to the detection target.

ケース2の内部底面には、各種素子を実装した基板5が取着されている。基板5には、磁石3の磁束を検出する複数(本例は2つ)の磁気センサ6,7が磁石3と対向する位置に実装されている。各磁気センサ6,7は磁気抵抗素子(MRE)を用いたセンサであり、図2(a)に示すように4つの抵抗素子R1〜R4をブリッジ状に接続した回路である。各抵抗素子R1〜R4は、それぞれ異方性磁気抵抗効果を有するNi−Co等の強磁性体からなり、その抵抗値は磁気センサ6(7)にかかる磁束の向きに応じて変化する。なお、磁気センサ6,7が検出素子に相当する。   A substrate 5 on which various elements are mounted is attached to the inner bottom surface of the case 2. A plurality (two in this example) of magnetic sensors 6 and 7 for detecting the magnetic flux of the magnet 3 are mounted on the substrate 5 at positions facing the magnet 3. Each of the magnetic sensors 6 and 7 is a sensor using a magnetoresistive element (MRE), and is a circuit in which four resistive elements R1 to R4 are connected in a bridge shape as shown in FIG. Each of the resistance elements R1 to R4 is made of a ferromagnetic material such as Ni—Co having an anisotropic magnetoresistance effect, and its resistance value changes according to the direction of the magnetic flux applied to the magnetic sensor 6 (7). The magnetic sensors 6 and 7 correspond to detection elements.

磁気センサ6,7は、ブリッジ回路の中点電位ΔVを磁束の検出信号として出力する。ここで、磁気センサ6,7を通過する磁束の方向は磁石3の回転位置、つまりシフトレバーの操作位置(操作角度)に応じて変化することから、中点電位ΔVもシフトレバーの操作位置に応じて変化する。このため、磁気センサ6,7は磁石3からの磁束をシフトレバーの操作位置(操作角度)に応じた向きで受けることになり、シフトレバーの操作位置に応じた電位で検出信号を出力する。   The magnetic sensors 6 and 7 output the midpoint potential ΔV of the bridge circuit as a magnetic flux detection signal. Here, since the direction of the magnetic flux passing through the magnetic sensors 6 and 7 changes according to the rotation position of the magnet 3, that is, the operation position (operation angle) of the shift lever, the midpoint potential ΔV is also set to the operation position of the shift lever. Will change accordingly. Therefore, the magnetic sensors 6 and 7 receive the magnetic flux from the magnet 3 in a direction corresponding to the operation position (operation angle) of the shift lever, and output a detection signal at a potential corresponding to the operation position of the shift lever.

図2(b)に示すように、磁気センサ6,7は各々が出力する検出信号の信号波形の位相が90度ずれるように抵抗素子R1〜R4の向きが設定されている。従って、本例において一方の磁気センサ6は正弦関数に準ずる信号を出力するセンサであり、磁石3の回転に応じて図4の一点鎖線で示す正弦信号Saで出力する。また、他方の磁気センサ7は余弦関数に準ずる信号を出力するセンサであり、磁石3の回転に応じて図4の二点差線で示す余弦信号Sbで出力する。   As shown in FIG. 2B, the directions of the resistance elements R1 to R4 are set so that the phases of the signal waveforms of the detection signals output from the magnetic sensors 6 and 7 are shifted by 90 degrees. Therefore, in this example, one of the magnetic sensors 6 is a sensor that outputs a signal according to a sine function, and outputs a sine signal Sa indicated by a one-dot chain line in FIG. The other magnetic sensor 7 is a sensor that outputs a signal corresponding to a cosine function, and outputs a cosine signal Sb indicated by a two-dot chain line in FIG.

磁気センサ6,7は、磁石3に対する磁場検出条件がほぼ同じ状態、つまり両者が磁石3からほぼ同じ磁場(磁束向き、磁界強度)の磁束を受けるように近接状態で配置されている。このように、磁気センサ6,7が近接状態で配置されれば、各磁気センサ6,7が出力する正弦信号Sa及び余弦信号Sbの出力特性が同期した状態、つまり振幅や周期等がほぼ同じ値で出力される状態となる。また、これら磁気センサ6,7は基板5にマスクパターンを転写する方式で基板5上に実装される。   The magnetic sensors 6 and 7 are arranged in close proximity so that the magnetic field detection conditions for the magnet 3 are substantially the same, that is, both receive magnetic fluxes having substantially the same magnetic field (magnetic flux direction, magnetic field strength) from the magnet 3. As described above, when the magnetic sensors 6 and 7 are arranged close to each other, the output characteristics of the sine signal Sa and the cosine signal Sb output from the magnetic sensors 6 and 7 are synchronized, that is, the amplitude, the period, and the like are substantially the same. It becomes the state output by value. The magnetic sensors 6 and 7 are mounted on the substrate 5 by transferring a mask pattern onto the substrate 5.

図3は、回転角度検出装置1の電気構成を示す電気構成図である。回転角度検出装置1は、同装置のメイン制御を司るマイクロコンピュータ8と、装置内の各種デバイス(素子)に安定した所定レベルの電圧を供給する電源回路9と、アナログ信号をデジタル信号に変換するA/Dコンバータ10と、デジタル信号をアナログ信号に変換するD/Aコンバータ11とを備えている。回転角度検出装置1は電源供給元として車両のバッテリBに接続され、バッテリBの電力に基づき稼働する。   FIG. 3 is an electrical configuration diagram showing an electrical configuration of the rotation angle detection device 1. The rotation angle detection apparatus 1 converts a analog signal into a digital signal, a microcomputer 8 that controls the main control of the apparatus, a power supply circuit 9 that supplies a predetermined level of voltage to various devices (elements) in the apparatus, and the like. An A / D converter 10 and a D / A converter 11 that converts a digital signal into an analog signal are provided. The rotation angle detection device 1 is connected to the battery B of the vehicle as a power supply source and operates based on the power of the battery B.

電源回路9は、バッテリBからバッテリ電圧を入力し、それを各種デバイス(素子)に応じた所定の電圧レベルに変換し、これら電圧を磁気センサ6,7やマイクロコンピュータ8等に出力する。磁気センサ6,7やマイクロコンピュータ8は、その安定した所定レベルの電圧を駆動電源として入力し、この電源によって動作する。   The power supply circuit 9 inputs the battery voltage from the battery B, converts it into a predetermined voltage level corresponding to various devices (elements), and outputs these voltages to the magnetic sensors 6 and 7 and the microcomputer 8 and the like. The magnetic sensors 6 and 7 and the microcomputer 8 are inputted with a stable predetermined level voltage as a driving power supply, and are operated by this power supply.

磁気センサ6,7の両者は、駆動電源として同一値の電圧を電源回路9から各々入力するので、同一バイアス条件つまり同一印加電圧で使用されることになる。磁気センサ6,7を同一バイアス条件で使用すると、磁気センサ6が出力する正弦信号Saの振幅A1と、磁気センサ7が出力する余弦信号Sbの振幅A2とが同一値をとった状態となる。磁気センサ6,7は同一バイアスで駆動し、磁石3の回転位置、つまりシフトレバーの操作位置に応じた正弦値Y1、余弦値Y2をA/Dコンバータ10に各々出力する。A/Dコンバータ10は磁気センサ6,7から入力した正弦値Y1(余弦値Y2)をデジタル変換し、デジタル変換後の正弦値Y1及び余弦値Y2をマイクロコンピュータ8に出力する。   Since both of the magnetic sensors 6 and 7 input the same voltage from the power supply circuit 9 as the drive power supply, they are used under the same bias condition, that is, the same applied voltage. When the magnetic sensors 6 and 7 are used under the same bias condition, the amplitude A1 of the sine signal Sa output from the magnetic sensor 6 and the amplitude A2 of the cosine signal Sb output from the magnetic sensor 7 have the same value. The magnetic sensors 6 and 7 are driven with the same bias, and output to the A / D converter 10 a sine value Y1 and a cosine value Y2 corresponding to the rotational position of the magnet 3, that is, the operation position of the shift lever. The A / D converter 10 digitally converts the sine value Y1 (cosine value Y2) input from the magnetic sensors 6 and 7, and outputs the sine value Y1 and cosine value Y2 after digital conversion to the microcomputer 8.

マイクロコンピュータ8は、正弦値Y1及び余弦値Y2に基づき磁石3の回転位置、つまりシフトレバーの操作位置として回転角度θを算出する算出回路12と、回転角度算出プログラムPを記憶したROM13と、回転角度演算時に作業領域として使用されるRAM14等を備えている。回転角度算出プログラムPは、正弦値Y1及び余弦値Y2に基づき正接関数に準じた正接値を算出し、その逆正接値Vhから磁石3の回転角度θを算出するプログラムである。算出回路12は回転角度算出プログラムPに基づき動作し、磁石3の回転角度θを算出する。このように、正弦値Y1と余弦値Y2とから正接値を算出し、その逆正接値Vhで回転角度θを算出するのは、外部環境の変化で正弦波と余弦波との検出感度が低下しても、正弦値を求める際にその検出感度変化が相殺されるので、安定した出力が得られるからである。なお、算出回路12及び回転角度算出プログラムPが算出手段に相当する。   The microcomputer 8 includes a calculation circuit 12 that calculates the rotation angle θ as the rotation position of the magnet 3, based on the sine value Y1 and the cosine value Y2, that is, the operation position of the shift lever, the ROM 13 that stores the rotation angle calculation program P, the rotation A RAM 14 and the like used as a work area at the time of angle calculation are provided. The rotation angle calculation program P is a program that calculates a tangent value according to a tangent function based on the sine value Y1 and the cosine value Y2, and calculates the rotation angle θ of the magnet 3 from the arc tangent value Vh. The calculation circuit 12 operates based on the rotation angle calculation program P and calculates the rotation angle θ of the magnet 3. As described above, the tangent value is calculated from the sine value Y1 and the cosine value Y2, and the rotation angle θ is calculated based on the arc tangent value Vh. The detection sensitivity of the sine wave and the cosine wave decreases due to a change in the external environment. Even when the sine value is obtained, the change in detection sensitivity is canceled out, so that a stable output can be obtained. The calculation circuit 12 and the rotation angle calculation program P correspond to calculation means.

回転角度θの演算方法を以下に説明する。まず、正弦信号Sa(図4及び図5の一点鎖線で示す信号)が次式(1) 、余弦信号Sb(図4及び図5の二点差線で示す信号)が次式(2) であるとする。また、これら式においてY1が正弦値、Y2が余弦値、A1が正弦信号Saの振幅、A2が余弦信号Sbの振幅であるとする。   A method for calculating the rotation angle θ will be described below. First, the sine signal Sa (the signal indicated by the one-dot chain line in FIGS. 4 and 5) is the following equation (1), and the cosine signal Sb (the signal indicated by the two-dot chain line in FIGS. 4 and 5) is the following equation (2). And In these equations, Y1 is a sine value, Y2 is a cosine value, A1 is an amplitude of a sine signal Sa, and A2 is an amplitude of a cosine signal Sb.

Y1=A1sinθ … (1)
Y2=A2cosθ … (2)
そして、算出回路12は逆正接関数を求めるべく、次式(3) を用いて逆正接値Vhを算出する。
Y1 = A1sin θ (1)
Y2 = A2 cos θ (2)
Then, the calculation circuit 12 calculates an arc tangent value Vh using the following equation (3) in order to obtain an arc tangent function.

Vh=arctan(Y1/Y2)=arctan(tanθ)=θ … (3)
ここで、逆正接値Vhは磁石3の回転角度θに対応していることから、算出回路12は逆正接値Vhを求めることで回転角度θを算出する。逆正接値Vhは、回転角度θの値に応じて図4の実線で示すリニア状(略直線状)の逆正接信号Scで出力される。即ち、逆正接信号Scは、磁石3の回転角度θに応じて出力値(電圧値)がリニアな値をとり、しかも信号波形が180度ごとに繰り返される信号である。
Vh = arctan (Y1 / Y2) = arctan (tan θ) = θ (3)
Here, since the arc tangent value Vh corresponds to the rotation angle θ of the magnet 3, the calculation circuit 12 calculates the rotation angle θ by obtaining the arc tangent value Vh. The inverse tangent value Vh is output as a linear (substantially linear) inverse tangent signal Sc indicated by a solid line in FIG. 4 according to the value of the rotation angle θ. That is, the arc tangent signal Sc is a signal in which the output value (voltage value) takes a linear value according to the rotation angle θ of the magnet 3 and the signal waveform is repeated every 180 degrees.

ここで、回転角度θを0〜360度の範囲で検出しようとしても、逆正接信号Scの信号波形は180度ごとに同じ波形をとるので、同一の逆正接値Vhからは0〜180度と180〜360度との各領域で回転角度θがそれぞれ導出されてしまう。従って、逆正接値Vhだけで回転角度θを求めようとしても、1つの逆正接値で1つの回転角度θが一義的に決まらず、0〜180度であれば回転角度検出が行えるものの、0〜360度の間で回転角度検出を行うことはできない現状がある。   Here, even if an attempt is made to detect the rotation angle θ in the range of 0 to 360 degrees, the signal waveform of the arctangent signal Sc takes the same waveform every 180 degrees, so that the same arctangent value Vh is 0 to 180 degrees. The rotation angle θ is derived in each region of 180 to 360 degrees. Therefore, even if an attempt is made to obtain the rotation angle θ using only the arctangent value Vh, one rotation angle θ is not uniquely determined by one arctangent value, and if it is 0 to 180 degrees, the rotation angle can be detected. There is a current situation in which rotation angle detection cannot be performed between ˜360 degrees.

そこで、算出回路12は0〜360度の範囲で回転角度検出可能となるように、正弦信号Saの信号波形も考慮に入れて回転角度検出を行っている。これを具体的に述べると、図6(a)及び図7に示すように、正弦値Y1は回転角度θが0〜90度(第1象限)及び90〜180度(第2象限)のときに正の値を取り、回転角度θが180〜270度(第3象限)及び270〜360度(第4象限)のときに負の値を取る。一方、図6(b)及び図7に示すように、正接値は第1象限及び第3象限と第2象限及び第4象限とで各々同一値を取る。従って、逆正接値Vhを算出した際に、そのときの正弦値Y1が何処の象限に位置しているかを見れば、1つの逆正接値Vhから求め得る2つの回転角度θが、それぞれどの象限にあるものを判断することが可能となり、逆正接値Vhから一義的に回転角度θを算出することが可能となる。   Therefore, the calculation circuit 12 detects the rotation angle in consideration of the signal waveform of the sine signal Sa so that the rotation angle can be detected in the range of 0 to 360 degrees. Specifically, as shown in FIGS. 6A and 7, the sine value Y1 is when the rotation angle θ is 0 to 90 degrees (first quadrant) and 90 to 180 degrees (second quadrant). And a negative value when the rotation angle θ is 180 to 270 degrees (third quadrant) and 270 to 360 degrees (fourth quadrant). On the other hand, as shown in FIGS. 6B and 7, the tangent value takes the same value in the first quadrant, the third quadrant, the second quadrant, and the fourth quadrant. Therefore, when the arctangent value Vh is calculated, if the quadrant where the sine value Y1 at that time is located, the two rotation angles θ that can be obtained from one arctangent value Vh are respectively in which quadrant. Therefore, the rotation angle θ can be calculated uniquely from the arctangent value Vh.

例えば、図4に示すように逆正接値Vh1(>0)が算出された場合には、その逆正接値Vh1からは0〜90度の間の回転角度θ1か、若しくは180〜270度の間の回転角度θ2が算出され得る。このとき、正弦値Y1の値を考えると、例えば回転角度θが0〜90度であれば正弦値Y1が正の値をとり、回転角度θが180〜270度であれば正弦値Y1が負の値をとる。従って、正弦値Y1が正の値をとっていれば回転角度θがθ1として算出され、正弦値Y1が負の値をとっていれば回転角度θがθ2として算出される。   For example, when the arctangent value Vh1 (> 0) is calculated as shown in FIG. 4, the rotation angle θ1 between 0 and 90 degrees or 180 to 270 degrees from the arctangent value Vh1. Can be calculated. At this time, considering the value of the sine value Y1, for example, if the rotation angle θ is 0 to 90 degrees, the sine value Y1 takes a positive value, and if the rotation angle θ is 180 to 270 degrees, the sine value Y1 is negative. Takes the value of Therefore, if the sine value Y1 is a positive value, the rotation angle θ is calculated as θ1, and if the sine value Y1 is a negative value, the rotation angle θ is calculated as θ2.

図3に示すように、算出回路12は逆正接値Vhつまり回転角度θを算出すると、それに応じたデジタルの出力信号をD/Aコンバータ11に出力する。D/Aコンバータ11は算出回路12から入力した出力信号をアナログ変換し、アナログ変換後の出力信号を車両の各種制御装置(各種ECU)に供給する。   As shown in FIG. 3, when calculating the arctangent value Vh, that is, the rotation angle θ, the calculation circuit 12 outputs a digital output signal corresponding to the calculated value to the D / A converter 11. The D / A converter 11 analog-converts the output signal input from the calculation circuit 12 and supplies the output signal after analog conversion to various control devices (various ECUs) of the vehicle.

次に、本例の回転角度検出装置1の作用を説明する。
車両にエンジンがかけられると回転角度検出装置1が起動し、算出回路12は磁気センサ6,7からA/Dコンバータ10を介して正弦値Y1及び余弦値Y2を入力する。算出回路12は、上述した式(3) 、つまり逆正接関数を用いて逆正接値Vhを算出し、その逆正接値Vhから磁石3の回転角度θを算出する。これにより、回転角度検出装置1の用い先が車両のエンジンニュートラルスイッチであれば、車両の自動変速機のギヤを変えるシフトレバーの操作位置が検出される。
Next, the operation of the rotation angle detection device 1 of this example will be described.
When the engine is started on the vehicle, the rotation angle detection device 1 is activated, and the calculation circuit 12 inputs the sine value Y1 and the cosine value Y2 from the magnetic sensors 6 and 7 via the A / D converter 10. The calculation circuit 12 calculates the arc tangent value Vh using the above-described equation (3), that is, the arc tangent function, and calculates the rotation angle θ of the magnet 3 from the arc tangent value Vh. Thus, when the rotation angle detection device 1 is used in an engine neutral switch of the vehicle, the operation position of the shift lever that changes the gear of the automatic transmission of the vehicle is detected.

ここで、例えば回転角度検出装置1の周りで温度上昇が生じ、磁気センサ6,7の検出感度が下がったとする。このとき、図4に示す状態を通常時の状態とすると、この感度低下が原因で各磁気センサ6,7の出力(即ち、正弦値Y1及び余弦値Y2)に影響が出て、正弦信号Sa及び余弦信号Sbは振幅A1,A2が低下した図5に示す出力波形となる。ここで、もし正弦信号Saや余弦信号Sbを用いて回転角度検出を行うのであれば、感度低下を受けて回転角度θの算出に誤差が出てきてしまう。   Here, for example, it is assumed that a temperature rise occurs around the rotation angle detection device 1 and the detection sensitivity of the magnetic sensors 6 and 7 is lowered. At this time, if the state shown in FIG. 4 is a normal state, the output of each of the magnetic sensors 6 and 7 (that is, the sine value Y1 and the cosine value Y2) is affected due to this sensitivity reduction, and the sine signal Sa. The cosine signal Sb has an output waveform shown in FIG. 5 in which the amplitudes A1 and A2 are reduced. Here, if the rotation angle is detected using the sine signal Sa or the cosine signal Sb, an error will occur in the calculation of the rotation angle θ due to a decrease in sensitivity.

しかし、本例の回転角度θの算出は、正弦値Y1を余弦値Y2で除算して正接値を求め、その逆正接値Vhにより回転角度θを算出している。従って、正弦値Y1及び余弦値Y2が外部環境変化により値が低下しても、正接値は正弦値Y1を余弦値Y2で除算する計算手順を経る、つまり正弦値Y1及び余弦値Y2の比率をとるので、正弦値Y1と余弦値Y2の検出感度変化分が相殺される。このため、磁気センサ6,7に感度低下が生じて振幅A1,A2の値が低くなっても、その正接値の逆関数である逆正接値Vhについては何ら変化が生じない。よって、逆正接関数を用いて回転角度検出を行うのであれば、回転角度θにはその感度低下の影響が及ばず、回転角度θの検出精度が確保された状態となる。   However, in the calculation of the rotation angle θ in this example, the tangent value is obtained by dividing the sine value Y1 by the cosine value Y2, and the rotation angle θ is calculated from the inverse tangent value Vh. Therefore, even if the sine value Y1 and the cosine value Y2 are decreased due to a change in the external environment, the tangent value undergoes a calculation procedure for dividing the sine value Y1 by the cosine value Y2, that is, the ratio of the sine value Y1 and the cosine value Y2 is obtained. Therefore, the change in detection sensitivity between the sine value Y1 and the cosine value Y2 is canceled out. For this reason, even if the sensitivity of the magnetic sensors 6 and 7 is reduced and the values of the amplitudes A1 and A2 are lowered, no change occurs in the arctangent value Vh that is an inverse function of the tangent value. Therefore, if the rotation angle is detected using the arctangent function, the sensitivity of the rotation angle θ is not affected and the detection accuracy of the rotation angle θ is ensured.

また、磁気センサ6,7が磁石3からほぼ同じ磁場を検出するように、これら磁気センサ6,7が近接状態で配置される。従って、磁気センサ6,7の出力特性(即ち、正弦信号Sa、余弦信号Sbの振幅、周期等)が同期した状態となる。ここで、磁気センサ6と磁気センサ7との間で出力特性に誤差が生じると、精度良く回転角度θを導くためにはこれらの間で出力特性を合わせ込む補正処理等が必要となるが、そのような補正処理をせずに済み、簡単な計算処理で精度よく回転角度θを求めることが可能となる。   Further, the magnetic sensors 6 and 7 are arranged in proximity so that the magnetic sensors 6 and 7 detect substantially the same magnetic field from the magnet 3. Therefore, the output characteristics of the magnetic sensors 6 and 7 (that is, the amplitude and period of the sine signal Sa and cosine signal Sb) are synchronized. Here, if an error occurs in the output characteristics between the magnetic sensor 6 and the magnetic sensor 7, a correction process for matching the output characteristics between them is necessary to accurately derive the rotation angle θ. It is not necessary to perform such correction processing, and the rotation angle θ can be obtained with high accuracy by simple calculation processing.

さらに、磁気センサ6,7を同一バイアス条件(同一印加電圧)で使用しているので、正弦信号Saの振幅A1と、余弦信号Sbの振幅A2とが同じ値(A1=A2)をとった状態となる。よって、逆正接値Vhは正弦値Y1を余弦値Y2で除算する計算過程を経るので、逆正接値算出の際には正弦値Y1に含まれる振幅A1の項と、余弦値Y2に含まれる振幅A2の項とが相殺される。従って、逆正接値Vhの計算が簡単になり、逆正接値算出の計算が複雑化せずに済み、逆正接値Vhの算出速度向上や算出プログラムのプログラム量抑制に効果がある。   Further, since the magnetic sensors 6 and 7 are used under the same bias condition (same applied voltage), the amplitude A1 of the sine signal Sa and the amplitude A2 of the cosine signal Sb have the same value (A1 = A2). It becomes. Therefore, the arc tangent value Vh undergoes a calculation process in which the sine value Y1 is divided by the cosine value Y2. Therefore, when calculating the arc tangent value, the term of the amplitude A1 included in the sine value Y1 and the amplitude included in the cosine value Y2. The term A2 is offset. Accordingly, the calculation of the arc tangent value Vh is simplified, the calculation of the arc tangent value is not complicated, and the calculation speed of the arc tangent value Vh is improved and the program amount of the calculation program is suppressed.

また、上述したように逆正接信号Scは180度ごとに波形が繰り返される波形形状をとるので、逆正接値Vhのみでは回転角度θを360度の範囲で算出することはできない。しかし、逆正接値Vhの算出に加え、正弦値Y1の符号を組み合わせて回転角度θを算出すれば、1つの逆正接値Vhから回転角度θを一義的に算出することが可能となる。従って、本例では逆正接値Vhと正弦値Y1とを用いて回転角度算出を行うので、0〜360度の範囲で回転角度θを算出することが可能となり、回転角度検出装置1の用い先が広域に亘ることになる。   Further, as described above, since the arctangent signal Sc has a waveform shape in which the waveform is repeated every 180 degrees, the rotation angle θ cannot be calculated in the range of 360 degrees only with the arctangent value Vh. However, if the rotation angle θ is calculated by combining the sign of the sine value Y1 in addition to the calculation of the arctangent value Vh, the rotation angle θ can be uniquely calculated from one arctangent value Vh. Therefore, in this example, since the rotation angle is calculated using the arctangent value Vh and the sine value Y1, the rotation angle θ can be calculated in the range of 0 to 360 degrees. Will cover a wide area.

上記実施形態の構成によれば、以下に記載の効果を得ることができる。
(1)磁石3の回転角度θの算出は、正弦値Y1と余弦値Y2とに基づき正接値を求め、その逆正接値Vhを求めることで行う。従って、磁気センサ6,7に感度低下が生じて例えば振幅A1,A2の値が低くなっても、逆正接値Vhを求める際の正接値演算のときにその低下分は相殺されるので、逆正接値Vhの値については変化が生じない。よって、磁気センサ6,7に感度低下が生じても、回転角度θの検出精度を確保することができる。また、磁気センサ6,7を近接した状態で配置するので、磁気センサ6,7の出力特性が同期した状態となるので、出力特性を合わせ込むような補正が不要となり、簡単な計算処理で精度よく回転角度θを算出することができる。
According to the configuration of the above embodiment, the following effects can be obtained.
(1) The rotation angle θ of the magnet 3 is calculated by obtaining a tangent value based on the sine value Y1 and the cosine value Y2, and obtaining its arc tangent value Vh. Therefore, even if the sensitivity decreases in the magnetic sensors 6 and 7 and the values of the amplitudes A1 and A2 decrease, for example, the decreased amount is canceled when calculating the tangent value Vh. There is no change in the value of the tangent value Vh. Therefore, even if the sensitivity of the magnetic sensors 6 and 7 is reduced, the detection accuracy of the rotation angle θ can be ensured. Further, since the magnetic sensors 6 and 7 are arranged close to each other, the output characteristics of the magnetic sensors 6 and 7 are in a synchronized state, so that correction to match the output characteristics is not necessary, and accuracy can be achieved by simple calculation processing. The rotation angle θ can be calculated well.

さらに、磁気センサ6,7を同一バイアス条件、つまり同一印加電圧で使用しているので、磁気センサ6から出力される正弦信号Saの振幅A1と、磁気センサ7から出力される余弦信号Sbの振幅A2とが同じ値をとった状態となる。逆正接値Vhは正弦値Y1を余弦値Y2で除算する計算過程を経るので、その計算の際には正弦値Y1に含まれる振幅A1の項と、余弦値Y2に含まれる振幅A2の項とが相殺され、これによって逆正接値Vhの計算を簡単に行うことができる。また、計算手順の簡単化に伴い、逆正接値Vhの計算速度の向上や、逆正接値Vhの算出プログラムのプログラム量抑制等にも効果を奏する。   Furthermore, since the magnetic sensors 6 and 7 are used under the same bias condition, that is, the same applied voltage, the amplitude A1 of the sine signal Sa output from the magnetic sensor 6 and the amplitude of the cosine signal Sb output from the magnetic sensor 7 A2 takes the same value. The arc tangent value Vh undergoes a calculation process in which the sine value Y1 is divided by the cosine value Y2. Therefore, in the calculation, the term of the amplitude A1 included in the sine value Y1, the term of the amplitude A2 included in the cosine value Y2, and Is canceled out, and the arctangent value Vh can be easily calculated. Further, with the simplification of the calculation procedure, it is effective in improving the calculation speed of the arc tangent value Vh and reducing the program amount of the calculation program of the arc tangent value Vh.

(2)逆正接値Vhだけでは半周期(0〜180度)の間でしか回転角度θを検出することができない。しかし、回転角度θを0〜360度の範囲で検出する場合、1つの逆正接値Vhで複数の回転角度θが導き出されることになっても、逆正接値Vhに加えて正弦値Y1の符号も見るようにすれば、1つの逆正接値Vhから回転角度θを一義的に算出することができ、1周期つまり0〜360度で回転角度θを算出することができる。   (2) The rotation angle θ can be detected only during a half cycle (0 to 180 degrees) with the arctangent value Vh alone. However, when the rotation angle θ is detected in the range of 0 to 360 degrees, the sign of the sine value Y1 in addition to the arc tangent value Vh even if a plurality of rotation angles θ are derived from one arc tangent value Vh. As can also be seen, the rotation angle θ can be uniquely calculated from one arctangent value Vh, and the rotation angle θ can be calculated in one cycle, that is, 0 to 360 degrees.

(3)磁気センサ6,7は基板5にマスクパターンを転写することで製造されるので、近接状態の磁気センサ6,7を寸法的に精度よく製造することができる。このように、近接状態の磁気センサ6,7を寸法的に精度よく製造できれば、磁気センサ6,7の間で磁気検出条件(例えば磁石3から受ける磁場等)の誤差を低く抑えることができ、回転角度θの検出精度の向上に一層寄与する。   (3) Since the magnetic sensors 6 and 7 are manufactured by transferring the mask pattern onto the substrate 5, the magnetic sensors 6 and 7 in the proximity state can be manufactured with high dimensional accuracy. As described above, if the magnetic sensors 6 and 7 in the proximity state can be manufactured with high dimensional accuracy, errors in magnetic detection conditions (for example, a magnetic field received from the magnet 3) between the magnetic sensors 6 and 7 can be suppressed low. This further contributes to improvement in the detection accuracy of the rotation angle θ.

(4)磁気センサ6,7に感度低下が生じた場合の対処方法としては、従来技術で述べた逆正弦値(逆余弦値)を算出する方法を用い、例えば基板5に温度センサを実装して、温度センサから求まる温度値に基づき逆正弦値(逆余弦値)を補正する方法も考えられる。しかし、この方法を用いると、温度センサが別途必要になり、装置のコストアップや大型化を招くことも考えられる。しかし、本例の構成を用いればこの種の温度センサが不要であるので、装置のコストアップや大型化を招く心配がない。   (4) As a coping method when the sensitivity drop occurs in the magnetic sensors 6 and 7, the method of calculating the inverse sine value (inverse cosine value) described in the prior art is used. For example, a temperature sensor is mounted on the substrate 5. A method of correcting the inverse sine value (inverse cosine value) based on the temperature value obtained from the temperature sensor is also conceivable. However, if this method is used, a temperature sensor is required separately, which may increase the cost and size of the apparatus. However, since this type of temperature sensor is unnecessary if the configuration of this example is used, there is no fear of increasing the cost and size of the apparatus.

なお、上記実施形態は前記構成に限らず、以下の態様に変更してもよい。
・ 磁気センサ6,7を同一バイアス条件で使用する場合、この際の同一バイアス条件とは同一電源を使用することに限らず、別々の電源であっても最終的に磁気センサ6,7に供給される電圧が同じであればよい。
In addition, you may change the said embodiment not only to the said structure but to the following aspects.
-When using the magnetic sensors 6 and 7 under the same bias condition, the same bias condition is not limited to using the same power supply, and even if different power supplies are used, the magnetic sensors 6 and 7 are finally supplied. It is only necessary that the applied voltages are the same.

・ 回転角度θを0〜360度の範囲で検出可能とする場合、逆正接値Vhの値に加えて正弦値Y1の符号を加味して逆正接値Vhから一義的に回転角度θを算出する方法に限定されず、例えば正弦値Y1に代えて余弦値Y2の符号で逆正接値Vhの回転角度θを特定してもよい。   When the rotation angle θ can be detected in the range of 0 to 360 degrees, the rotation angle θ is uniquely calculated from the arctangent value Vh by adding the sign of the sine value Y1 in addition to the arctangent value Vh. For example, the rotation angle θ of the arctangent value Vh may be specified by the sign of the cosine value Y2 instead of the sine value Y1.

・ 磁気センサ6,7は磁気抵抗素子(MRE)を用いたものに限らず、例えばホール素子を用いたものでもよい。また、検出素子は磁気式に限らず、例えば光式を採用してもよい。   The magnetic sensors 6 and 7 are not limited to those using magnetoresistive elements (MRE), but may be those using Hall elements, for example. Further, the detection element is not limited to the magnetic type, and may be an optical type, for example.

・ 回転角度検出装置1は、0〜360度の1回転の範囲内で回転角度θを検出することに限定されない。例えば、回転角度θが360度を超えるごとに算出回路12がそれをカウントすることによって、2回転以上を検出可能な構成としてもよい。   The rotation angle detection device 1 is not limited to detecting the rotation angle θ within a range of one rotation of 0 to 360 degrees. For example, the calculation circuit 12 may count each time the rotation angle θ exceeds 360 degrees so that two or more rotations can be detected.

・ 磁石3は形状が円柱状に限らず、例えば板状のものなどでもよく、要は回転角度検出装置1の取り付け先に合わせた形状であれば特に限定されない。
・ シフトレバー側に磁石3を取り付け、車体側に磁気センサ6,7を取り付けることに限定されず、この組み合わせを逆、つまりシフトレバー側に磁気センサ6,7を取り付け、車体側に磁石3を取り付けてもよい。
The magnet 3 is not limited to a columnar shape, and may be, for example, a plate-like shape, and is not particularly limited as long as it is a shape that matches the attachment destination of the rotation angle detection device 1.
The magnet 3 is attached to the shift lever side and the magnetic sensors 6 and 7 are not attached to the vehicle body side. This combination is reversed, that is, the magnetic sensors 6 and 7 are attached to the shift lever side and the magnet 3 is attached to the vehicle body side. It may be attached.

・ 回転角度検出装置1はニュートラルスタートスイッチ(インヒビタースイッチ)に採用されることに限定されず、例えばブレーキペダルの操作量検出、アクセルペダルの操作量検出、ステアリングの回転角度検出、モータのスロットル開度検出等に採用してもよい。   The rotation angle detection device 1 is not limited to being employed as a neutral start switch (inhibitor switch). For example, the brake pedal operation amount detection, the accelerator pedal operation amount detection, the steering rotation angle detection, and the motor throttle opening degree You may employ | adopt for a detection etc.

次に、上記実施形態及び別例から把握できる技術的思想について以下に追記する。
(1)請求項1〜3のいずれかにおいて、前記被検出体に対する前記検出素子の検出条件が同条件となり得るように前記検出素子を近接状態で配置した。
Next, the technical idea that can be grasped from the above embodiment and other examples will be described below.
(1) In any one of Claims 1-3, the said detection element was arrange | positioned in the proximity | contact state so that the detection conditions of the said detection element with respect to the said to-be-detected body may become the same conditions.

(2)請求項1〜3のいずれかにおいて、前記検出素子は前記被検出体から出力される磁界を検出する磁気検出素子である。
(3)請求項1〜3のいずれかにおいて、前記検出素子は、前記検出素子を基板にマスクパターンを転写することにより基板上に製造されている。
(2) In any one of Claims 1-3, the said detection element is a magnetic detection element which detects the magnetic field output from the said to-be-detected body.
(3) In any one of Claims 1-3, the said detection element is manufactured on the board | substrate by transferring the mask pattern to the board | substrate to the said detection element.

一実施形態における回転角度検出装置の概略構成を示す模式斜視図。The schematic perspective view which shows schematic structure of the rotation angle detection apparatus in one Embodiment. (a)は磁気センサの等価回路図、(b)は基板の平面図。(A) is an equivalent circuit schematic of a magnetic sensor, (b) is a top view of a board | substrate. 回転角度検出装置の電気構成を示す電気構成図。The electrical block diagram which shows the electrical structure of a rotation angle detection apparatus. 通常時の逆正接関数の波形を示す波形図。The wave form diagram which shows the waveform of the arc tangent function at the normal time. 感度低下時の逆正接関数の波形を示す波形図。The wave form diagram which shows the waveform of the arctangent function at the time of a sensitivity fall. (a)は正弦関数の波形を示す波形図、(b)は正接関数の波形を示す波形図。(A) is a wave form diagram which shows the waveform of a sine function, (b) is a wave form diagram which shows the waveform of a tangent function. 正弦値及び逆正接値の各象限での符号を示すモデル図。The model figure which shows the code | symbol in each quadrant of a sine value and an arctangent value. 従来における逆正弦関数の波形を示す波形図。The wave form diagram which shows the waveform of the conventional inverse sine function.

符号の説明Explanation of symbols

1…回転角度検出装置、3…被検出体としての磁石、6,7…検出素子としての磁気センサ、12…算出手段を構成する算出回路、θ(θ1,θ2)…回転角度、P…算出手段を構成する回転角度算出プログラム、Vh(Vh1)…逆正接値、Y1…正弦値、Y2…余弦値、Sa…正弦信号、Sb…余弦信号、Sc…逆正接信号。   DESCRIPTION OF SYMBOLS 1 ... Rotation angle detection apparatus, 3 ... Magnet as to-be-detected body, 6, 7 ... Magnetic sensor as detection element, 12 ... Calculation circuit which comprises calculation means, (theta) ((theta) 1, (theta) 2) ... Rotation angle, P ... Calculation Rotation angle calculation program constituting means, Vh (Vh1): arc tangent value, Y1: sine value, Y2: cosine value, Sa: sine signal, Sb: cosine signal, Sc: arc tangent signal.

Claims (3)

被検出体との間の相対回転に応じた検出信号を各々異なる位相で出力する複数の検出素子と、前記検出素子の検出信号によって逆正接関数に準ずる逆正接値を求め、該逆正接値に基づき前記被検出体及び検出素子の間の回転角度を算出する算出手段とを備えた回転角度検出装置において、
前記検出素子に供給される印加電圧を同一値としたことを特徴とする回転角度検出装置。
A plurality of detection elements that output detection signals corresponding to relative rotation with the detected object in different phases, and an arc tangent value according to an arc tangent function based on the detection signal of the detection element is obtained, and the arc tangent value is obtained. A rotation angle detection device comprising: a calculation means for calculating a rotation angle between the detection object and the detection element based on
The rotation angle detection device characterized in that the applied voltages supplied to the detection elements have the same value.
前記算出手段は、前記検出素子から入力した正弦関数に準ずる正弦値と余弦関数に準ずる余弦値と基づき、前記正弦値を前記余弦値で除算することで正接値を算出し、その逆正接値を算出することによって前記回転角度を算出することを特徴とする請求項1に記載の回転角度検出装置。   The calculation means calculates a tangent value by dividing the sine value by the cosine value based on a sine value according to the sine function and a cosine value according to the cosine function input from the detection element, and calculates the arc tangent value. The rotation angle detection device according to claim 1, wherein the rotation angle is calculated by calculation. 前記算出手段は、前記検出素子から入力した正弦関数に準ずる正弦値及び余弦関数に準ずる余弦値の少なくとも一方と、前記逆正接値とに基づき前記回転角度を算出することを特徴とする請求項1又は2に記載の回転角度検出装置。   The calculation means calculates the rotation angle based on at least one of a sine value corresponding to a sine function and a cosine value corresponding to a cosine function input from the detection element, and the arctangent value. Or the rotation angle detection apparatus of 2.
JP2004231644A 2004-08-06 2004-08-06 Rotation angle detecting device Pending JP2006047228A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231644A JP2006047228A (en) 2004-08-06 2004-08-06 Rotation angle detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231644A JP2006047228A (en) 2004-08-06 2004-08-06 Rotation angle detecting device

Publications (1)

Publication Number Publication Date
JP2006047228A true JP2006047228A (en) 2006-02-16

Family

ID=36025927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231644A Pending JP2006047228A (en) 2004-08-06 2004-08-06 Rotation angle detecting device

Country Status (1)

Country Link
JP (1) JP2006047228A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925913A2 (en) 2006-11-24 2008-05-28 Alps Electric Co., Ltd. Absolute angle detecting apparatus
JP2009222594A (en) * 2008-03-17 2009-10-01 Tokai Rika Co Ltd Position detecting device
EP2468607A1 (en) * 2010-12-21 2012-06-27 LG Innotek Co., Ltd. Angle sensor
JP5964473B1 (en) * 2015-02-20 2016-08-03 株式会社緑測器 Phase modulation signal generation circuit and displacement amount detection apparatus using the generation circuit
JP2017009443A (en) * 2015-06-23 2017-01-12 キヤノン株式会社 Position detection device, control method, and program
WO2017187601A1 (en) * 2016-04-28 2017-11-02 三菱電機株式会社 Angle detection device and electric power steering control device
JP2018065569A (en) * 2018-02-05 2018-04-26 アスモ株式会社 Wiper device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000304570A (en) * 1999-04-21 2000-11-02 Sony Corp Phase adjusting circuit, scale signal generating circuit, and position measuring instrument
JP2002525588A (en) * 1998-08-29 2002-08-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotation angle capture device for rotatable elements
JP2002340619A (en) * 2001-05-16 2002-11-27 Matsushita Electric Ind Co Ltd Turning angle detecting device
JP2004518110A (en) * 2000-08-26 2004-06-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for angle measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525588A (en) * 1998-08-29 2002-08-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotation angle capture device for rotatable elements
JP2000304570A (en) * 1999-04-21 2000-11-02 Sony Corp Phase adjusting circuit, scale signal generating circuit, and position measuring instrument
JP2004518110A (en) * 2000-08-26 2004-06-17 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus and method for angle measurement
JP2002340619A (en) * 2001-05-16 2002-11-27 Matsushita Electric Ind Co Ltd Turning angle detecting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1925913A2 (en) 2006-11-24 2008-05-28 Alps Electric Co., Ltd. Absolute angle detecting apparatus
US7791333B2 (en) 2006-11-24 2010-09-07 Alps Electric Co. Ltd. Absolute angle detecting apparatus
JP2009222594A (en) * 2008-03-17 2009-10-01 Tokai Rika Co Ltd Position detecting device
EP2468607A1 (en) * 2010-12-21 2012-06-27 LG Innotek Co., Ltd. Angle sensor
JP5964473B1 (en) * 2015-02-20 2016-08-03 株式会社緑測器 Phase modulation signal generation circuit and displacement amount detection apparatus using the generation circuit
JP2017009443A (en) * 2015-06-23 2017-01-12 キヤノン株式会社 Position detection device, control method, and program
WO2017187601A1 (en) * 2016-04-28 2017-11-02 三菱電機株式会社 Angle detection device and electric power steering control device
JPWO2017187601A1 (en) * 2016-04-28 2018-07-19 三菱電機株式会社 Angle detection device and electric power steering control device
US11150075B2 (en) 2016-04-28 2021-10-19 Mitsubishi Electric Corporation Angle detection device and electric power steering control device
JP2018065569A (en) * 2018-02-05 2018-04-26 アスモ株式会社 Wiper device

Similar Documents

Publication Publication Date Title
JP4797721B2 (en) Rotation angle detector
JP6877170B2 (en) Rotary encoder and its absolute angle position detection method
US7436172B2 (en) Angular speed detecting device using dual angular position signals to reduce noise
US7675284B2 (en) Rotation angle detecting device
US20120119731A1 (en) Angle sensor
US10508897B2 (en) Magnet device and position sensing system
JP2005351849A (en) Rotational angle detecting device and rotational angle detection method
JP2006220529A (en) Detection device for absolute angle of rotation and torque
JP2006220530A (en) Device for detecting absolute angle of rotation
US20170183034A1 (en) Sensing device, sensing system and steering system
US20160041007A1 (en) Hall Sensor Insensitive to External Magnetic Fields
US20080143323A1 (en) Method of detecting rotational position by using hall element and hall element resolver
EP3151017B1 (en) Amr speed and direction sensor for use with magnetic targets
JP4673757B2 (en) Rotation angle detector
JP2006047228A (en) Rotation angle detecting device
US11493364B2 (en) Sensor system for determining at least one rotation characteristic of an element rotating around at least one rotation axis
KR100792668B1 (en) Detect method for absolute angular measure of wheel
EP1583977B1 (en) Use of a ring magnet to achieve a magnetic sensor pulse train output
JP2004198425A (en) Device for detecting rotational angle of rotatable element
JP2010181310A (en) Rotational angle/torque detection device
JP2010261738A (en) Angle detection device
JP3842115B2 (en) Rotation angle detection device and rotation angle detection method
JP6201910B2 (en) Rotation detection sensor and manufacturing method thereof
JP2004205370A (en) Rotation angle detection device
KR100460422B1 (en) detection apparatus for steering angle in vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A02 Decision of refusal

Effective date: 20110719

Free format text: JAPANESE INTERMEDIATE CODE: A02