JP2007057129A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2007057129A
JP2007057129A JP2005240637A JP2005240637A JP2007057129A JP 2007057129 A JP2007057129 A JP 2007057129A JP 2005240637 A JP2005240637 A JP 2005240637A JP 2005240637 A JP2005240637 A JP 2005240637A JP 2007057129 A JP2007057129 A JP 2007057129A
Authority
JP
Japan
Prior art keywords
compressor
oil
refrigerator
suction pipe
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005240637A
Other languages
Japanese (ja)
Inventor
Nobuo Kamaike
信雄 蒲池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005240637A priority Critical patent/JP2007057129A/en
Publication of JP2007057129A publication Critical patent/JP2007057129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator preventing a reverse flow of refrigerating machine oil from a compressor arranged on a top face. <P>SOLUTION: In the refrigerator, a recessed part 27 is provided in a top face rear of a heat insulating box 1 to arrange the compressor 11 of an internal low pressure type, and an oil outflow preventing mechanism 36. It is provided with an evaporator 9 provided in a lower part near to the compressor 11, and a suction pipe arrangement 33 connecting the compressor 11 and the evaporator 9. The oil outflow preventing mechanism 36 is provided in the suction pipe arrangement 33. When tilting the refrigerator on its side to carry it in refrigerator transportation or transfer, the compressor 11 will also be tilted, but a reverse flow of the refrigerating machine oil 45 can be prevented by the oil outflow preventing mechanism. By this, oil supply to a compressor sliding part in the compressor 11 is secured, and risk such as damage of the compressor can be further reduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧縮機を断熱箱体の上方に配置した冷蔵庫に関するものである。   The present invention relates to a refrigerator in which a compressor is disposed above a heat insulating box.

近年、冷蔵庫は地球環境保護の観点から更なる省エネルギー化が進むとともに、その使用性や収納性の向上が求められている。   In recent years, refrigerators are required to be further energy-saving from the viewpoint of protecting the global environment and to be improved in usability and storage.

従来のこの種の冷蔵庫は、機械室を形成する圧縮機等を使い勝手の悪い冷蔵庫本体の天面や、もしくは冷蔵庫本体の背面上部に設置するという方法がとられていた(例えば、特許文献1参照)。   A conventional refrigerator of this type has been installed on the top of the refrigerator main body, or on the upper back of the refrigerator main body using a compressor or the like forming a machine room (see, for example, Patent Document 1). ).

図12は、特許文献1に記載された従来の冷蔵庫の構成を示すものである。   FIG. 12 shows a configuration of a conventional refrigerator described in Patent Document 1. As shown in FIG.

冷蔵庫本体1は、上から冷蔵室2、野菜室3、冷凍室4という構成からなり、冷蔵室2は回転扉5を有し、野菜室3は野菜室引出扉6、冷凍室4は冷凍室引出扉7を有している。この構成において、庫内ファン8と蒸発器9等からなる冷却ユニット10を、最下段の貯蔵室として収納部を形成する冷凍室4の開口部の高さ寸法と概ね同じ高さとして冷凍室4の背面後部に設置し、圧縮機11を、使い勝手の良くない冷蔵室2の天面、もしくは、冷蔵庫本体1の背面上部に設けた凹み部12に設置している。   The refrigerator main body 1 is composed of a refrigerator compartment 2, a vegetable compartment 3, and a freezer compartment 4 from above. The refrigerator compartment 2 has a rotary door 5, the vegetable compartment 3 is a vegetable compartment drawer door 6, and the freezer compartment 4 is a freezer compartment. A drawer door 7 is provided. In this configuration, the cooling unit 10 including the internal fan 8, the evaporator 9, and the like is set to a height that is substantially the same as the height of the opening of the freezing chamber 4 that forms a storage unit as the lowermost storage chamber. The compressor 11 is installed on the top surface of the refrigerator room 2 which is not easy to use, or on the recessed portion 12 provided on the upper back of the refrigerator main body 1.

圧縮機11の収納体積分が冷蔵室2と野菜室3を区画する区画壁の下側から上側に移動したことにより、各貯蔵室の内容積を一定とすると必然的に冷蔵室2と野菜室3の区画壁の位置を下方に下げることができ、野菜室3内の収納物の取り出しが容易となる。
特開平11−183014号公報
Since the storage volume of the compressor 11 has moved from the lower side to the upper side of the partition wall that partitions the refrigerator compartment 2 and the vegetable compartment 3, the refrigerator compartment 2 and the vegetable compartment inevitably have a constant internal volume of each storage compartment. The position of the partition wall of 3 can be lowered | hung below, and the taking-out of the storage thing in the vegetable compartment 3 becomes easy.
JP-A-11-183014

しかしながら、上記従来の構成では、圧縮機を冷蔵庫本体の天面に、蒸発器を冷蔵庫本体の底面近傍に配設することにより、圧縮機へと接続される吸入配管(図示せず)と蒸発器が圧縮機より下方に配置されることになる。したがって、客先はもとより配送から店頭までの物流を含めての冷蔵庫運搬や移設において、冷蔵庫を横倒しして持ち運びを行う際に圧縮機からオイルが逆流して、設置後もそのまま下方に滞留するといった問題があった。   However, in the above conventional configuration, the suction pipe (not shown) and the evaporator connected to the compressor are disposed by arranging the compressor on the top surface of the refrigerator body and the evaporator near the bottom surface of the refrigerator body. Is disposed below the compressor. Therefore, when transporting and moving refrigerators including logistics from delivery to store, as well as customers, oil flows backward from the compressor when the refrigerator is carried over on its side and stays down after installation. There was a problem.

オイルが逆流して流出すると、圧縮機内部のオイル量が減少する。吸入配管は圧力損失を低減するために6.35ミリから7.94ミリ程度の外径が大きく設計されており、仮に管肉厚が0.35ミリで長さを2000ミリとすると内容積は50mlから80ml程度となる。吸入配管長さはキャピラリと吸入配管との熱交換を行う長さを限定するので、高効率化を行うためには、吸入配管の長さを短くすることはできない。さらに蒸発器の配管内容積を加えると非常に大きな容積となる。さらに圧力損失を低減するために吸入配管の大径化を行うとますます配管内容積は大きくなる。   When oil flows backward and flows out, the amount of oil inside the compressor decreases. The suction pipe is designed to have a large outer diameter of about 6.35mm to 7.94mm in order to reduce pressure loss. If the pipe wall thickness is 0.35mm and the length is 2000mm, the internal volume will be From 50ml to 80ml. Since the length of the suction pipe limits the length of heat exchange between the capillary and the suction pipe, the length of the suction pipe cannot be shortened in order to achieve high efficiency. Furthermore, when the volume in the pipe of the evaporator is added, the volume becomes very large. Furthermore, if the diameter of the suction pipe is increased to reduce pressure loss, the volume of the pipe will increase.

一方で圧縮機のオイル貯留量に関しては、天面に配置するために小型の形状であるほど冷蔵庫の天面の無効容積を小型化できるので効果的であるが、小型にするとオイル貯留量の変動がオイル面高さを変化させる影響が大きくなる。わかりやすくするために圧縮機を140ミリと100ミリの四角柱形状とし、内部収納部品の容積を空とすると、14mlのオイル量変動で1ミリのオイル面高さが変化することになる。先ほどの50ミリから80ミリの流出だけでも3.5ミリから5.7ミリのオイル面高さが減少することとなる。実際には内部収納物の容積があり、オイル面高さが高いほど収納物容積が大きくなることから、これ以上のオイル面高さの減少が生じてしまうこととなる。   On the other hand, with regard to the amount of oil stored in the compressor, the smaller the shape, the more effective it is because the ineffective volume on the top of the refrigerator can be reduced. The effect of changing the oil surface height increases. For the sake of clarity, if the compressor is made into a quadrangular prism shape of 140 mm and 100 mm, and the volume of the internal storage component is emptied, the oil surface height will change by 1 mm with an oil amount fluctuation of 14 ml. The oil level height of 3.5 mm to 5.7 mm will be reduced even if the spill of 50 mm to 80 mm is used. Actually, there is a volume of the internal storage item, and the higher the oil surface height, the larger the storage item volume. Therefore, the oil surface height is further reduced.

ところで圧縮機は内部下方に貯留したオイルを差圧や遠心力を利用して摺動部へと供給しているので、オイル面高さの減少によって摺動部へのオイル供給量が減少し、摺動部の磨耗など信頼性確保する上で課題であった。   By the way, the compressor supplies the oil stored in the lower part to the sliding part using differential pressure and centrifugal force, so the oil supply amount to the sliding part decreases due to the decrease in the oil surface height, It was a problem in ensuring reliability such as wear of sliding parts.

また、配管中のオイルは冷却運転を行うと冷媒循環とともに徐々に圧縮機に戻されるが粘度の高いオイルが大量に流出すると重力に抗して圧縮機へと戻ることは瞬時には困難であり、信頼性確保の上で課題であった。   In addition, when the cooling operation is performed, the oil in the pipe is gradually returned to the compressor as the refrigerant circulates. However, if a large amount of high-viscosity oil flows out, it is difficult to instantaneously return to the compressor against gravity. It was a problem in ensuring reliability.

本発明は、上記従来の課題を解決するもので、圧縮機からオイルの流出を防止し圧縮機を蒸発器より上方に配設した冷凍サイクルを有する冷蔵庫を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object of the present invention is to provide a refrigerator having a refrigeration cycle in which oil is prevented from flowing out of the compressor and the compressor is disposed above the evaporator.

上記従来の課題を解決するために、本発明の冷蔵庫は、断熱箱体と、前記断熱箱体に備えられた圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルと、前記圧縮機は内部低圧型で封入されるオイルとを有し、前記蒸発器は前記圧縮機よりも下方に設けられ、前記圧縮機と前記蒸発器とを接続する吸入配管には前記圧縮機内部から前記蒸発器側への前記オイルの流出を防止するオイル流出防止機構が設けられ、前記断熱箱体は天面後方に凹み部を設け前記圧縮機と前記オイル流出防止機構とを配設されたことを特徴とする。   In order to solve the above-described conventional problems, a refrigerator according to the present invention includes a heat insulating box, a compressor, a condenser, a decompressor, and an evaporator provided in the heat insulating box in order. A refrigerating cycle formed in the compressor, and the compressor has oil sealed in an internal low-pressure type, the evaporator being provided below the compressor, and connecting the compressor and the evaporator The pipe is provided with an oil outflow prevention mechanism for preventing the oil from flowing out from the compressor to the evaporator side, and the heat insulating box is provided with a recess at the rear of the top surface to prevent the compressor and the oil outflow. And a mechanism.

これにより、客先はもとより配送から店頭までの物流を含めての冷蔵庫運搬や移設において、冷蔵庫を横倒しにして持ち運びを行う際に、圧縮機も横倒しとなり、圧縮機内部に開放された吸入配管の開口端にオイルが流入する。しかしながら吸入配管はオイル流出防止機構が設けられているので、吸入配管内奥部へと流出することがなく、さらに吸入配管から蒸発器へとオイルが逆流して流出することがない。これにより運搬などの後、冷蔵庫を起こして設置してもオイル流出防止機構により、圧縮機下方にある吸入配管および蒸発器にオイルが滞留することを防止できる。   As a result, when transporting and moving the refrigerator from the customer to the store, including the logistics from the delivery to the storefront, when the refrigerator is laid on its side, the compressor lies on its side, and the suction pipe opened inside the compressor Oil flows into the open end. However, since the suction pipe is provided with an oil outflow prevention mechanism, the suction pipe does not flow into the inner part of the suction pipe, and further, the oil does not flow backward from the suction pipe to the evaporator. As a result, the oil can be prevented from staying in the suction pipe and the evaporator below the compressor by the oil outflow prevention mechanism even if the refrigerator is raised and installed after transportation.

本発明の冷蔵庫は、冷蔵庫天面に圧縮機を配置した上で、下方に配置された吸入配管および蒸発器などに冷蔵庫横倒し時のオイル流出を防止するので、圧縮機内のオイル量を確保しオイル面高さを大幅に減少させることを防止でき、圧縮機摺動部へのオイル供給を確保し、圧縮機の損傷等の危険性をさらに低減できる。   In the refrigerator of the present invention, the compressor is arranged on the top of the refrigerator, and the oil is prevented from flowing out when the refrigerator is laid down on the suction pipe and the evaporator disposed below. It is possible to prevent the surface height from being greatly reduced, to secure oil supply to the compressor sliding portion, and to further reduce the risk of damage to the compressor.

請求項1に記載の発明は、断熱箱体と、前記断熱箱体に備えられた圧縮機と凝縮器と減圧器と蒸発器とを順に備えて一連の冷媒流路を形成した冷凍サイクルと、前記圧縮機は内部低圧型で封入されるオイルとを有し、前記蒸発器は前記圧縮機よりも下方に設けられ、前記圧縮機と前記蒸発器とを接続する吸入配管には前記圧縮機内部から前記蒸発器側への前記オイルの流出を防止するオイル流出防止機構が設けられ、前記断熱箱体は天面後方に凹み部を設け前記圧縮機と前記オイル流出防止機構とを配設されたことにより、客先はもとより配送から店頭までの物流を含めての冷蔵庫運搬や移設において、冷蔵庫を横倒しにして持ち運びを行う際に、圧縮機も横倒しとなり、圧縮機内部に開放された吸入配管の開口端にオイルが流入する。しかしながら吸入配管はオイル流出防止機構が設けられているので、吸入配管内奥部に流出することがなく、さらに吸入配管から蒸発器へとオイルが逆流して流出することがない。これにより運搬などの後、冷蔵庫を起こして設置してもオイル流出防止機構により、圧縮機より下方にある吸入配管および蒸発器にオイルが滞留することを防止できる。したがって、冷蔵庫天面に圧縮機を配置した上で、冷蔵庫横倒し時に、圧縮機下方に配置された吸入配管および蒸発器などにオイル流出を防止するので、圧縮機内のオイル量を確保しオイル面高さを大幅に減少させることを防止でき、圧縮機摺動部へのオイル供給を確保し、圧縮機の損傷等の危険性をさらに低減できる。   The invention according to claim 1 is a refrigeration cycle comprising a heat insulation box, a compressor, a condenser, a decompressor, and an evaporator provided in the heat insulation box in order to form a series of refrigerant flow paths, The compressor has oil enclosed in an internal low-pressure type, the evaporator is provided below the compressor, and a suction pipe connecting the compressor and the evaporator is provided inside the compressor. An oil outflow prevention mechanism for preventing the oil from flowing out from the evaporator to the evaporator side is provided, and the heat insulating box is provided with a recess at the rear of the top surface, and the compressor and the oil outflow prevention mechanism are provided. Therefore, when transporting and moving the refrigerator from the customer to the store, including the logistics from the delivery to the storefront, when the refrigerator is laid down and carried, the compressor also lies on its side, and the suction pipe opened inside the compressor Oil flows into the open end. However, since the suction pipe is provided with an oil outflow prevention mechanism, the suction pipe does not flow out into the inner part of the suction pipe, and further, oil does not flow backward from the suction pipe to the evaporator. As a result, even if the refrigerator is raised and installed after transportation or the like, the oil outflow prevention mechanism can prevent oil from staying in the suction pipe and the evaporator below the compressor. Therefore, when the compressor is placed on the top of the refrigerator and when the refrigerator is laid down, it prevents oil from flowing into the suction pipe and evaporator located below the compressor. Therefore, the oil supply to the compressor sliding portion can be secured, and the risk of damage to the compressor can be further reduced.

請求項2に記載の発明は、請求項1に記載の発明において、オイル流出防止機構は、逆止弁とするものであり、冷蔵庫の運搬や移設で冷蔵庫を横倒しにして持ち運びを行う際においても、簡単な前記逆止弁の機構により、圧縮機より下方にある吸入配管および蒸発器にオイルが滞留することを防止できる。   The invention according to claim 2 is the invention according to claim 1, wherein the oil spill prevention mechanism is a check valve, and even when the refrigerator is laid down by carrying or transferring the refrigerator, The simple check valve mechanism can prevent oil from staying in the suction pipe and the evaporator below the compressor.

請求項3に記載の発明は、請求項1に記載の発明において、オイル流出防止機構は、チャンバーとするものであり、冷蔵庫の運搬や移設で冷蔵庫を横倒しにして持ち運びを行う際においても、圧縮機からのオイル流出を防止できるとともに、運転時において、急激な液戻りなどをこれにより緩衝し、圧縮機の損傷を防止できる。   The invention according to claim 3 is the invention according to claim 1, wherein the oil spill prevention mechanism is a chamber, and is compressed even when the refrigerator is carried sideways by carrying or moving the refrigerator. Oil can be prevented from flowing out of the machine, and sudden liquid return can be buffered during operation to prevent damage to the compressor.

請求項4に記載の発明は、請求項1に記載の発明において、オイル流出防止機構は、電磁弁とするものであり、冷蔵庫の電源を停止して運搬や移設で冷蔵庫を状態で横倒しにして持ち運びを行う際においても、圧縮機からのオイル流出を防止できるとともに、電気信号で流体を任意に流したり止めたりできるため応答性、制御性に優れ、冷蔵庫の運転時に他の制御系との連動で液戻りの防止ができ圧縮機にとり優れた信頼性運転が可能である。   The invention according to claim 4 is the invention according to claim 1, wherein the oil spill prevention mechanism is a solenoid valve, and the refrigerator is laid down on its side by transportation or relocation by stopping the power supply of the refrigerator. Even when carrying around, the oil can be prevented from flowing out of the compressor, and the fluid can be flowed or stopped arbitrarily with an electrical signal, providing excellent responsiveness and controllability, and interlocking with other control systems during refrigerator operation Therefore, liquid return can be prevented and the compressor can be operated with excellent reliability.

請求項5に記載の発明は、請求項1に記載の発明において、オイル流出防止機構は、重力を利用したフラップとするものであり、冷蔵庫の運搬や移設で冷蔵庫を横倒しにして持ち運びを行う際においても、フラップでオイル流出を防ぎ、圧縮機より下方にある吸入配管および蒸発器にオイルが滞留することを防止でき、また機構が簡単なため圧力損失も小さく運転時、省エネ化が可能となる。   The invention according to claim 5 is the invention according to claim 1, wherein the oil spill prevention mechanism is a flap utilizing gravity, and when the refrigerator is laid down and carried by transporting or moving the refrigerator In addition, it is possible to prevent oil from flowing out with a flap, to prevent oil from staying in the suction pipe and the evaporator below the compressor, and because the mechanism is simple, pressure loss is small and energy saving can be achieved during operation. .

(実施の形態1)
図1は、本発明の実施の形態1における冷蔵庫の概略断面図を示すものであり、図2は同実施の形態における冷蔵庫の概略背面図を示しており、図3は同実施の形態における冷蔵庫の概略部品展開図を示しており、図4は同実施の形態における冷蔵庫の吸入配管要部概略斜視図を示しており、図5は同実施の形態における冷蔵庫に搭載する圧縮機の概略断面図を示しており、図6は同実施の形態における冷蔵庫の運搬状態の概略断面図を示しており、図7は同実施の形態における冷蔵庫運搬時の圧縮機の概略断面図を示しており、図8は同実施の形態における冷蔵庫のオイル流出防止機構の逆止弁の概略側面図を示しており、図9は同実施の形態における冷蔵庫のオイル流出防止機構のチャンバーの概略側面図を示しており、図10は同実施の形態における冷蔵庫のオイル流出防止機構の電磁弁の概略側面図を示しており、図11は同実施の形態における冷蔵庫のオイル流出防止機構のフラップの概略側面図を示している。なお、従来技術と同一構成については同一符号を付す。
(Embodiment 1)
FIG. 1 shows a schematic cross-sectional view of the refrigerator in Embodiment 1 of the present invention, FIG. 2 shows a schematic rear view of the refrigerator in the same embodiment, and FIG. 3 shows the refrigerator in the same embodiment. 4 is a schematic perspective view of the main part of the suction pipe of the refrigerator in the embodiment, and FIG. 5 is a schematic sectional view of the compressor mounted on the refrigerator in the embodiment. FIG. 6 shows a schematic cross-sectional view of the refrigerator transported state in the same embodiment, FIG. 7 shows a schematic cross-sectional view of the compressor during the refrigerator transport in the same embodiment, FIG. 8 shows a schematic side view of the check valve of the oil spill prevention mechanism of the refrigerator in the embodiment, and FIG. 9 shows a schematic side view of the chamber of the oil spill prevention mechanism of the refrigerator in the embodiment. Figure 10 shows the same Shows a schematic side view of a solenoid valve of the refrigerator oil outflow prevention mechanism in the form, FIG. 11 shows a schematic side view of the flap of the refrigerator oil outflow prevention mechanism in the same embodiment. In addition, the same code | symbol is attached | subjected about the same structure as a prior art.

図1から図4において断熱箱体1はABSなどの樹脂体を真空成型した内箱13とプリコート鋼板などの金属材料を用いた外箱14とで構成された空間に発泡充填する断熱体15を注入してなる断熱壁を備えている。断熱体15はたとえば硬質ウレタンフォームやフェノールフォームやスチレンフォームなどが用いられる。発泡材としてはハイドロカーボン系のシクロペンタンを用いると、温暖化防止の観点でさらによい。   In FIG. 1 to FIG. 4, the heat insulating box 1 includes a heat insulating body 15 that foams and fills a space formed by an inner box 13 in which a resin body such as ABS is vacuum-formed and an outer box 14 using a metal material such as a pre-coated steel plate. It has a heat insulating wall that is injected. As the heat insulator 15, for example, rigid urethane foam, phenol foam, styrene foam, or the like is used. Use of hydrocarbon-based cyclopentane as the foaming material is better from the viewpoint of preventing global warming.

断熱箱体1は複数の断熱区画に区分されており上部を回転扉式、下部を引出し式とする構成をとってある。上から冷蔵室2、並べて設けた引出し式の切替室16および製氷室17と、引出し式の野菜室3と引出し式の冷凍室4となっている。各断熱区画にはそれぞれ断熱扉がガスケット18を介して設けられている。上から冷蔵室回転扉5、切替室引出し扉19、製氷室引出し扉20、野菜室引出し扉6、冷凍室引出し扉7である。   The heat insulation box 1 is divided into a plurality of heat insulation sections, and has a structure in which the upper part is a revolving door type and the lower part is a drawer type. From the top, there are a refrigerator room 2, a drawer-type switching room 16 and an ice making room 17, a drawer-type vegetable room 3, and a drawer-type freezer room 4 arranged side by side. Each heat insulation section is provided with a heat insulation door via a gasket 18. From the top, they are the refrigerating room rotary door 5, the switching room drawer door 19, the ice making room drawer door 20, the vegetable room drawer door 6, and the freezer compartment drawer door 7.

冷蔵室回転扉5には扉ポケット21が収納スペースとして設けられており、庫内には複数の収納棚22が設けられてある。また冷蔵室2の最下部には貯蔵ケース23が設けてある。   The refrigerator compartment revolving door 5 is provided with a door pocket 21 as a storage space, and a plurality of storage shelves 22 are provided in the cabinet. A storage case 23 is provided at the bottom of the refrigerator compartment 2.

また、断熱箱体1の外箱14は、天面奥部が切りかかれた鋼板をU曲げしたシェル24と底面パネル25と背面パネル26と天面後方を窪ませた凹み部27を構成する機械室パネル28とをシール性を確保して組み付けられて構成されている。機械室パネル28は鋼板の絞り加工により成型されており、加工性の向上のためにコーナー部はR形状がとられている。このR形状により発泡充填する断熱体15の分岐もしくは合流部の流路が確保されて流動性が良化され、充填不足によるボイドの発生などを防止できる。   Moreover, the outer box 14 of the heat insulation box 1 is a machine that constitutes a shell 24 obtained by U-bending a steel plate whose top surface is cut off, a bottom panel 25, a back panel 26, and a recess 27 in which the back of the top surface is recessed. The chamber panel 28 is assembled to ensure sealing performance. The machine room panel 28 is formed by drawing a steel plate, and the corner portion has an R shape for improving workability. The R shape secures a flow path of the branching or merging portion of the heat insulating body 15 to be foam-filled to improve fluidity, and can prevent generation of voids due to insufficient filling.

なお、機械室パネル28は圧縮機11の配置部が最も深く、左右端に向かうに従って絞りが浅い形状とすることでも発泡充填する断熱体15の分岐もしくは合流部の流路が確保されて流動性が良化される。   The machine room panel 28 has the deepest arrangement portion of the compressor 11 and a shape in which the throttle is shallower toward the left and right ends. Is improved.

さらになお、機械室パネル28は絞り加工としたので発泡充填のためのシール部が少なくてすむので工数的に有利であるし、また、板金加工により同様の形状を構成するならば絞り金型費用が少なくて済むうえに、絞りしわのない仕上げと寸法精度を上げることが可能である。   Furthermore, since the machine room panel 28 is drawn, it is advantageous in terms of man-hours because it requires less sealing portions for foam filling, and if a similar shape is formed by sheet metal processing, the cost of the drawing die is reduced. In addition, the finish can be reduced and the dimensional accuracy can be improved.

また、機械室パネル28は複数の空気抜き穴(図示せず)が各面に設けられており、外観および内観を阻害することなく残留空気によるボイドの発生や変形を防止することができる。   In addition, the machine room panel 28 is provided with a plurality of air vent holes (not shown) on each surface, and can prevent the generation and deformation of voids due to residual air without impairing the appearance and the inside view.

また、底面パネル25と背面パネル26には指先を引っ掛けることが可能な窪みからなる取っ手が設けられている。底面取っ手29は底面前方から中央にかけての位置で、前方から指先をかけられるよう二箇所に所定の間隔を置いて設けられている。背面取っ手30は背面パネル26の最上部のなるべく高い場所で上向きに指先をかけられるよう二箇所に所定の間隔を置いて設けられている。   In addition, the bottom panel 25 and the back panel 26 are provided with handles formed of depressions that can be hooked with fingertips. The bottom handle 29 is provided at two positions at a predetermined interval so that a fingertip can be applied from the front at a position from the front to the center of the bottom. The rear handle 30 is provided at predetermined intervals at two positions so that the fingertip can be applied upward as high as possible at the top of the rear panel 26.

また、内箱13は外箱14より一回り小さく、背面奥部が内側に凹んだ構成となっており、外箱14の中に組み入れることで断熱体15が発泡充填される空間が断熱箱体1に形成される。したがって、機械室パネル28の左右部も断熱体15が発泡充填されて断熱壁が構成され、強度確保される。さらに底面取っ手29や背面取っ手30も発泡充填された断熱体15により強度が確保される。   In addition, the inner box 13 is slightly smaller than the outer box 14, and the back portion of the inner box 13 is recessed inward, and the space in which the heat insulating body 15 is foam-filled by being incorporated in the outer box 14 is a heat insulating box body. 1 is formed. Therefore, the left and right parts of the machine room panel 28 are also filled with the heat insulator 15 to form heat insulating walls, and the strength is ensured. Further, the strength of the bottom handle 29 and the back handle 30 is ensured by the heat insulating body 15 filled with foam.

また、冷凍サイクルは凹み部27に弾性支持して配設した圧縮機11と、圧縮機11の近傍に設けた機械室ファン31と、シェル24の天面や凹み部27や底面パネル25下部やシェル24の側面などに設けた凝縮器(図示せず)と、減圧器であるキャピラリ32と、水分除去を行うドライヤ(図示せず)と、野菜室3と冷凍室4の背面で冷却ファン8を近傍に配置して設けた蒸発器9と、吸入配管33とを環状に接続して構成されている。   The refrigeration cycle includes a compressor 11 elastically supported in the recess 27, a machine room fan 31 provided in the vicinity of the compressor 11, the top surface of the shell 24, the recess 27, the bottom panel 25, A condenser (not shown) provided on the side surface of the shell 24, a capillary 32 as a decompressor, a dryer (not shown) for removing moisture, and a cooling fan 8 on the back of the vegetable compartment 3 and the freezer compartment 4 Are arranged in the vicinity of the evaporator 9 and the suction pipe 33 connected in a ring shape.

凹み部27はビスなどで固定された天面カバー34が設けられており、凹み部27に設けられた圧縮機11や凝縮器(図示せず)や機械室ファンやドライヤや配管などを収納してある。   The recess 27 is provided with a top cover 34 fixed with screws or the like, and houses the compressor 11, condenser (not shown), machine room fan, dryer, piping, etc. provided in the recess 27. It is.

キャピラリ32と吸入配管33は、おおむね同等の長さの銅管であり、端部を残して熱交換可能にはんだ付けされている。キャピラリ32は減圧のため内部流動抵抗が大きい細径の銅管が用いられており、その内径は0.6ミリから1.0ミリ程度で長さとともに調節して減圧量を設計する。吸入配管33は圧力損失を低減するために大径の銅管が用いられており、その内径は6.35ミリから7.94ミリ程度で設計されている。また熱交換部35の長さを確保するために、蛇行させてコンパクトにまとめて、冷蔵室2の背面に蛇行部がくるようにして、内箱13と背面パネル26との中間に配置され断熱体15に埋設される。キャピラリ32と吸入配管33は、一方の端部を内箱13の野菜室3後方位置から突き出し蒸発器9と接続されており、他方の端部を機械室パネル28の淵に設けた切欠部(図示せず)から上方に突き出してドライヤ(図示せず)や凝縮器および圧縮機11と各々接続されている。   The capillary 32 and the suction pipe 33 are copper pipes having substantially the same length, and are soldered so as to be able to exchange heat, leaving the end portions. The capillary 32 is a small-diameter copper tube having a large internal flow resistance for pressure reduction, and the inner diameter is about 0.6 to 1.0 mm and is adjusted with the length to design the amount of pressure reduction. The suction pipe 33 uses a large-diameter copper pipe in order to reduce pressure loss, and its inner diameter is designed to be about 6.35 mm to 7.94 mm. Further, in order to ensure the length of the heat exchanging portion 35, it is meandered in a compact manner and arranged in the middle between the inner box 13 and the back panel 26 so that the meandering portion comes to the back of the refrigerator compartment 2 and is insulated. Embedded in the body 15. One end of the capillary 32 and the suction pipe 33 protrudes from the rear position of the vegetable compartment 3 of the inner box 13 and is connected to the evaporator 9, and the other end is provided in a notch ( It protrudes upward from an unshown) and is connected to a dryer (not shown), a condenser and a compressor 11 respectively.

なお、比較的温度の高い野菜室3の後方から配管を庫内に出し入れするので、配管出し入れによる侵入する熱量の増加影響が小さく手済み省エネに効果がある。   In addition, since piping is taken in and out from the back of the vegetable room 3 with comparatively high temperature, the increase influence of the heat | fever amount which penetrate | invades by piping putting in and out is small, and it is effective in hand-made energy saving.

また、吸入配管33はオイル流出防止機構36が圧縮機11との接続部近傍に設けられており、凹み部27に収納されている。組立て作業性やサービス作業性を向上させることを狙いに、配管の密集度を軽減し、後方から配管接続部を目視できるようにするために、圧縮機11の配管接続部は背面側に面して圧縮機の左右に振り分けて配置されている。   Further, the suction pipe 33 is provided with an oil outflow prevention mechanism 36 in the vicinity of the connection portion with the compressor 11 and is accommodated in the recess 27. With the aim of improving assembly workability and service workability, the pipe connection part of the compressor 11 faces the back side in order to reduce the density of the pipes and to make the pipe connection part visible from the rear. Are arranged separately on the left and right sides of the compressor.

吸入配管33は、略垂直方向に配設されて機械室パネル28の背面端部から断熱体15内に埋設されている。   The suction pipe 33 is arranged in a substantially vertical direction and is embedded in the heat insulator 15 from the rear end portion of the machine room panel 28.

また、圧縮機11内部の構造について説明する。   The internal structure of the compressor 11 will be described.

図5において、2ミリから4ミリの厚手の鋼板を深絞り成形してなる鉢形状の下シェル38と逆鉢形状の上シェル39を組み合わせて重なりあった部分であるシェル接合部40aの周囲を溶接接続した密閉構造の圧縮機シェル40の内部に弾性体41で弾性支持された回転駆動部42と圧縮部43とを備え、圧縮機シェル40内部に端部を開放した吸入配管33と、吐出配管44で冷凍サイクルを構成する他の機器と接続されており、所定量の冷凍機油であるオイル45と冷媒(図示せず)が封入されている。また、下シェル38の下方部には断熱箱体1との弾性支持するための支持部46が取り付けられている。なお、支持部46は弾性支持部材の厚みを確保するための逃がしが一段の段差により設けられている。   In FIG. 5, the periphery of the shell joint 40a, which is an overlapped portion obtained by combining a bowl-shaped lower shell 38 and an inverted bowl-shaped upper shell 39 formed by deep drawing a thick steel plate of 2 to 4 mm, is formed. A rotary drive unit 42 and a compression unit 43 elastically supported by an elastic body 41 are provided inside a compressor-type shell 40 having a hermetically sealed structure connected by welding, and a suction pipe 33 having an open end inside the compressor shell 40, and a discharge The pipe 44 is connected to other equipment constituting the refrigeration cycle, and a predetermined amount of oil 45 and refrigerant (not shown) are enclosed. Further, a support portion 46 for elastically supporting the heat insulating box 1 is attached to a lower portion of the lower shell 38. The support portion 46 is provided with a relief for securing the thickness of the elastic support member by one step.

回転駆動部42はモーター47と軸受け部48からなり、モーター47は電圧印加されて永久磁石との間に回転力を発生させる中空円柱状電磁コイルを有するステーター49と、ステーター49内部の中空部にあって微小隙間で相対させた永久磁石を有するローター50とからなり、軸受け部48は端部に偏芯シャフト51を備え、内部を両端開放中空とし、周囲に螺旋状の溝(図示せず)と内部連通する噴出穴を設けたシャフト52と、シャフト52を回転自在に保持する軸受け53で構成される。   The rotation drive unit 42 includes a motor 47 and a bearing unit 48. The motor 47 is provided with a stator 49 having a hollow cylindrical electromagnetic coil that generates a rotational force between a permanent magnet and a voltage applied thereto, and a hollow portion inside the stator 49. And a rotor 50 having permanent magnets opposed to each other by a minute gap. The bearing portion 48 is provided with an eccentric shaft 51 at the end, the inside is hollow at both ends, and a spiral groove (not shown) around the periphery. The shaft 52 is provided with a jet hole that communicates with the shaft 52, and the bearing 53 holds the shaft 52 rotatably.

圧縮部43は、先端にバルブ機構(図示せず)を備えたシリンダヘッド54を設けたシリンダ55と、ピストン56と、ピストン56と偏芯シャフト51とに揺動自在に取り付け回転動作を直線往復動作に変換するロッド57とで構成されている。圧縮された冷媒が直接圧縮機シェル40外部へと吐出されるようにシリンダヘッド54には吐出配管44がバルブ機構を介して接続されており、また吸入部はバルブ機構を介して圧縮機シェル40内部に開放されている。特に消音のために、吸入経路はシリンダヘッド54と機械室シェル40の吸入ガス経路間に消音マフラー(図示せず)が配設されている。   The compression portion 43 is attached to a cylinder 55 provided with a cylinder head 54 having a valve mechanism (not shown) at the tip, a piston 56, a piston 56, and an eccentric shaft 51 so as to be swingable and linearly reciprocating. It is comprised with the rod 57 converted into operation | movement. A discharge pipe 44 is connected to the cylinder head 54 via a valve mechanism so that the compressed refrigerant is directly discharged to the outside of the compressor shell 40, and the suction portion is connected to the compressor shell 40 via the valve mechanism. It is open inside. In order to mute the sound, a suction muffler (not shown) is provided between the cylinder head 54 and the suction chamber of the machine room shell 40 for the suction path.

なお、吸入配管33は圧縮機シェル40の内壁面に対して開口端が面一となるように配置されており、圧縮機11の小型化を行っている。   The suction pipe 33 is arranged so that the opening end thereof is flush with the inner wall surface of the compressor shell 40, and the compressor 11 is downsized.

以上のように構成された冷蔵庫について、以下その動作、作用を説明する。   About the refrigerator comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず各断熱区画の温度設定と冷却方式について説明する。冷蔵室2は冷蔵保存のために凍らない温度を下限に通常1〜5℃で設定されている。また、貯蔵ケース23は肉魚などの保鮮性向上のため比較的低めの温度、たとえば−3〜1℃で設定される。   First, the temperature setting and cooling method of each heat insulation section will be described. The refrigerator compartment 2 is normally set at 1 to 5 ° C. with the lower limit of the temperature at which it is not frozen for refrigerated storage. The storage case 23 is set at a relatively low temperature, for example, -3 to 1 ° C, for improving the freshness of meat fish and the like.

切替室16はユーザーの設定により温度設定を変更可能であり、冷凍室温度帯から冷蔵、野菜室温度帯まで所定の温度設定にすることができる。また、製氷室17は独立の氷保存室であり、自動製氷装置(図示せず)を備えて、氷を自動的に作製、貯留するものである。氷を保存するために冷凍温度帯であるが、氷の保存が目的であるために冷凍温度帯よりも比較的高い−18℃〜−10℃の冷凍温度で設定されることも可能である。   The switching chamber 16 can change a temperature setting by a user setting, and can be set to a predetermined temperature setting from the freezer compartment temperature zone to the refrigeration and vegetable compartment temperature zones. The ice making chamber 17 is an independent ice storage chamber and includes an automatic ice making device (not shown) to automatically produce and store ice. Although it is a freezing temperature zone for storing ice, it can also be set at a freezing temperature of −18 ° C. to −10 ° C., which is relatively higher than the freezing temperature zone for the purpose of storing ice.

野菜室3は冷蔵室2と同等もしくは若干高い温度設定の2℃〜7℃とすることが多い。凍らない程度で低温にするほど葉野菜の鮮度を長期間維持することが可能である。   The vegetable room 3 is often set to 2 ° C. to 7 ° C., which is equal to or slightly higher than the temperature of the refrigerator room 2. It is possible to maintain the freshness of leafy vegetables for a long period of time as the temperature is lowered so as not to freeze.

冷凍室4は冷凍保存のために通常−22〜−18℃で設定されているが、冷凍保存状態の向上のために、たとえば−30や−25℃の低温で設定されることもある。   The freezer compartment 4 is normally set at −22 to −18 ° C. for frozen storage, but may be set at a low temperature of −30 or −25 ° C., for example, to improve the frozen storage state.

各室は異なる温度設定を効率的に維持するために断熱壁によって区分されているが、低コストでかつ断熱性能を向上させる方法として断熱体15で一体に発泡充填することが可能である。発泡スチロールのような断熱部材を用いるのに比べて約2倍の断熱性能とすることができ、仕切りの薄型化による収納容積の拡大などができる。   Each chamber is divided by a heat insulating wall in order to efficiently maintain different temperature settings. However, as a method of improving the heat insulating performance at a low cost, it is possible to integrally foam and fill with the heat insulating body 15. Compared to the use of a heat insulating member such as polystyrene foam, the heat insulating performance can be increased by about twice, and the storage volume can be increased by thinning the partition.

次に冷凍サイクルの動作について説明する。庫内の設定された温度に応じて温度センサー(図示せず)および制御基板からの信号により冷却運転が開始および停止される。冷却運転の指示により圧縮機11内部では回転駆動部42のモーター47にターミナル(図示せず)から電線を通して電圧印加される。   Next, the operation of the refrigeration cycle will be described. The cooling operation is started and stopped by a signal from a temperature sensor (not shown) and the control board in accordance with the set temperature in the cabinet. A voltage is applied through a wire from a terminal (not shown) to the motor 47 of the rotation drive unit 42 in the compressor 11 in accordance with the instruction of the cooling operation.

モーター47が動作するとステーター49の電磁コイルが励磁して永久磁石を有するローター50との間に回転力を発生させる。ローター50の回転により、軸受部48ではローター50に固定されたシャフト52が同期回転し、偏芯シャフト51も偏芯回転する。偏芯シャフト51の回転により揺動自在に設けられたロッド57を通して、ピストン56はシリンダ55内を往復動作する。   When the motor 47 operates, the electromagnetic coil of the stator 49 is excited to generate a rotational force with the rotor 50 having a permanent magnet. The rotation of the rotor 50 causes the shaft 52 fixed to the rotor 50 to rotate synchronously in the bearing portion 48, and the eccentric shaft 51 also rotates eccentrically. The piston 56 reciprocates in the cylinder 55 through a rod 57 that is swingably provided by the rotation of the eccentric shaft 51.

これにより圧縮部43で冷媒ガスの圧縮動作が行われる。つまり、ピストン56がシリンダ55から最も離れた位置に移動するときに、シリンダ55内の圧力が低下し、シリンダヘッド54に設けられた吸入部のバルブ機構(図示せず)が開放となり、圧縮機シェル40内の冷媒ガスが消音マフラー(図示せず)を経由してシリンダ55内に吸入される。次にピストン56がシリンダ55と最も近づく位置に移動するときに、吸入された冷媒ガスが圧縮されて高温高圧の冷媒ガスとなってシリンダヘッド54の吐出部からバルブ機構を介して吐出される。吐出された冷媒ガスはシリンダヘッド54に直接接続された吐出配管44を通して圧縮機シェル40外へと送られる。   Thereby, the compression operation of the refrigerant gas is performed in the compression unit 43. That is, when the piston 56 moves to a position farthest from the cylinder 55, the pressure in the cylinder 55 is reduced, and the valve mechanism (not shown) of the suction portion provided in the cylinder head 54 is opened, so that the compressor The refrigerant gas in the shell 40 is sucked into the cylinder 55 via a muffler muffler (not shown). Next, when the piston 56 moves to a position closest to the cylinder 55, the sucked refrigerant gas is compressed and becomes a high-temperature and high-pressure refrigerant gas and is discharged from the discharge portion of the cylinder head 54 through the valve mechanism. The discharged refrigerant gas is sent out of the compressor shell 40 through a discharge pipe 44 directly connected to the cylinder head 54.

このように圧縮機シェル40内は低圧の冷媒ガスが存在する内部低圧型の構成となっており、吸入配管から戻ってくる冷媒ガスは圧縮機シェル40内へと放出されている。   Thus, the compressor shell 40 has an internal low-pressure type structure in which low-pressure refrigerant gas is present, and the refrigerant gas returning from the suction pipe is discharged into the compressor shell 40.

圧縮機11の軸受部48や圧縮部43に存在する摺動部58はオイル45により潤滑性を確保されている。さらにオイル45と冷媒ガスは相溶性のある組合せを選定してあり、オゾン破壊係数の低いR134aとエステルオイルの組合せや、特に地球温暖化係数も低く環境保護に良いハイドロカーボン系の冷媒であるHC600aと鉱油の組合せなどがある。   The sliding portion 58 existing in the bearing portion 48 and the compression portion 43 of the compressor 11 is ensured to be lubricated by the oil 45. Furthermore, a compatible combination of oil 45 and refrigerant gas is selected, and a combination of R134a and ester oil having a low ozone depletion coefficient, especially HC600a which is a hydrocarbon refrigerant having a low global warming coefficient and good for environmental protection. And mineral oil.

また、オイル45は圧縮機シェル40内に封入されており、下部に貯留されて所定のオイル面高さを確保するように封入量が決められている。摺動部58へのオイル45の供給はシャフト52の回転による遠心力でシャフト52の中空内部を伝わり行われる。シャフト52の下端がオイル45に完全につけられており、ここからシャフト52内部をさかのぼるオイル45が摺動部58の各部位に相対する位置に設けられた噴出穴(図示せず)から吹付けられている。さらに、シャフト52周囲の螺旋溝により摺動部58へのオイル45の供給を十分にいきわたらせることができる。   The oil 45 is enclosed in the compressor shell 40, and the amount of the oil 45 is determined so as to be stored in the lower part and to secure a predetermined oil surface height. Supply of the oil 45 to the sliding portion 58 is performed by being transmitted through the hollow interior of the shaft 52 by centrifugal force generated by the rotation of the shaft 52. The lower end of the shaft 52 is completely attached to the oil 45, and the oil 45 that goes back from the inside of the shaft 52 is sprayed from an ejection hole (not shown) provided at a position facing each part of the sliding portion 58. ing. Further, the supply of the oil 45 to the sliding portion 58 can be sufficiently spread by the spiral groove around the shaft 52.

以上のような圧縮機11の動作により吐出された高温高圧の冷媒は、凝縮器(図示せず)にて放熱して凝縮液化し、キャピラリ32で減圧されて低温低圧の液冷媒となり蒸発器9に至る。   The high-temperature and high-pressure refrigerant discharged by the operation of the compressor 11 as described above dissipates heat in a condenser (not shown) to be condensed and liquefied, and is reduced in pressure by the capillary 32 to become a low-temperature and low-pressure liquid refrigerant. To.

冷却ファン8の動作により、庫内の空気と熱交換されて蒸発器9内の冷媒は蒸発気化され、熱交換された低温の冷気をダンパ(図示せず)などで分配することで各室の冷却が行われる。   By the operation of the cooling fan 8, heat is exchanged with the air in the cabinet, the refrigerant in the evaporator 9 is evaporated, and the low-temperature cold air after the heat exchange is distributed by a damper (not shown) or the like. Cooling takes place.

蒸発器9を出た冷媒は吸入配管33を経て圧縮機11へと吸い込まれる。このとき吸入配管33はキャピラリ32と熱交換可能にはんだ付けされて断熱体15に埋設されているので、周囲に熱が逃げることなく低温の吸入配管33から高温のキャピラリ32へと伝熱する。キャピラリ32は冷媒の減圧過程において冷却されるので比エンタルピが低下し冷凍効果が増加する。吸入配管33は冷媒温度が上昇し出口部で周囲温度とほぼ同等以上とすることができる。吸入配管33の冷媒温度が上昇するので圧縮機11に吸入される過程における熱損失は小さくて済み効率が向上する。冷凍温度を生成する冷凍サイクルは蒸発器9での冷媒温度が−20度以下の非常に低温であるために、特に熱損失を低減する効果は大きいものとなる。   The refrigerant exiting the evaporator 9 is sucked into the compressor 11 through the suction pipe 33. At this time, since the suction pipe 33 is soldered to the capillary 32 so as to be capable of exchanging heat and is embedded in the heat insulator 15, heat is transferred from the low-temperature suction pipe 33 to the high-temperature capillary 32 without escaping from the surroundings. Since the capillary 32 is cooled in the process of depressurizing the refrigerant, the specific enthalpy is lowered and the refrigeration effect is increased. In the suction pipe 33, the refrigerant temperature rises and can be made substantially equal to or higher than the ambient temperature at the outlet. Since the refrigerant temperature in the suction pipe 33 rises, the heat loss in the process of being sucked into the compressor 11 is small, and the efficiency is improved. The refrigeration cycle that generates the refrigeration temperature is a very low refrigerant temperature of −20 ° C. or less in the evaporator 9, so that the effect of reducing heat loss is particularly great.

また、キャピラリ32は比較的高温であるために低温部位に配置すると吸入配管33との熱交換以外に放熱が生じ、冷凍サイクルの熱損失が生じるとともに庫内への熱負荷となり省エネ性を低下させてしまうが、庫内温度の高い冷蔵室2の背面にキャピラリ32と吸入配管33を配置したので熱損失や庫内への熱負荷が大きく増加することなく、省エネ性の確保が可能である。特に熱交換部35の長さを十分に確保し、かつ冷蔵室2の背面で蛇行させてコンパクトに収納するので省エネ化と吸入配管33の十分な温度上昇が得られ、加えて、蛇行部は昇り勾配を設け機構のない構成としてあるので、液冷媒や冷凍機油が滞留することがなく、圧力損失などの性能影響を引き起こすことがない。   In addition, since the capillary 32 is relatively hot, if it is placed in a low temperature region, heat is dissipated in addition to heat exchange with the suction pipe 33, resulting in heat loss in the refrigeration cycle and a heat load on the inside of the cabinet, reducing energy saving. However, since the capillary 32 and the suction pipe 33 are arranged on the back surface of the refrigerator compartment 2 having a high internal temperature, it is possible to ensure energy saving without greatly increasing heat loss and heat load on the internal storage. In particular, the heat exchanging portion 35 is sufficiently long and meandering on the back of the refrigerator compartment 2 to be stored compactly, so that energy saving and sufficient temperature rise of the suction pipe 33 can be obtained. Since the ascending gradient is provided and the mechanism is not provided, the liquid refrigerant and the refrigerating machine oil are not retained, and the performance influence such as pressure loss is not caused.

以上のような動作を行う冷蔵庫の運搬や移設時においては、図6に示すように底面パネル25及び背面パネル26に設けた底面取っ手29と背面取っ手30を使って4人など複数人数で運搬するようにしてある。   At the time of transporting or moving the refrigerator performing the above-described operation, it is transported by a plurality of persons such as four people using the bottom handle 29 and the back handle 30 provided on the bottom panel 25 and the back panel 26 as shown in FIG. It is like that.

冷蔵庫の重量は内容積の大型化や高機能化に伴う付加部品の増加や省エネ化のための密度の大きい真空断熱材使用量の増加などに伴いずいぶんと増加してきており、また冷蔵庫の外寸も高さは1800ミリ近くあるものが主流となり、幅や奥行も600ミリから750ミリ程あり、運搬の工夫は非常に重要なものとなってきている。   The weight of refrigerators has increased significantly with the increase in the amount of additional parts accompanying the increase in internal volume and high functionality, and the increase in the use of high-density vacuum insulation materials for energy savings. However, the height is nearly 1800mm, and the width and depth are about 600mm to 750mm, so the device for transportation has become very important.

客先までの冷蔵庫配送時には必ずといってよいほど横倒しでの運搬形態が必要となっており、そのため底面と背面上部に取っ手が設けてある。また、配送時だけでなく、引越しや模様替えなど、冷蔵庫は電源投入直前に横倒しして運搬されることが多い。   When the refrigerator is delivered to the customer, it is necessary to have a sideways transporting form. For this reason, handles are provided on the bottom and upper back. Also, refrigerators are often laid down and transported immediately before the power is turned on, such as during moving and redesigning as well as during delivery.

これらの取っ手構成により、冷蔵庫は扉面を上方に向けての運搬可能となり、運搬中に扉が不意に開放されて運搬者にとって不安全となったり、庫内部品や収納物が落下するなどの問題を防止することができる。   With these handle configurations, the refrigerator can be transported with the door surface facing upward, and the door will be opened unexpectedly during transportation, making it unsafe for the transporter, and dropping the internal parts and stored items. The problem can be prevented.

このとき天面の凹み部27に設けられている圧縮機11の内部は、図7に示すように、圧縮機シェル40内に開放された吸入配管33の開口端がオイル45中に没してしまうこととなり、吸入配管33から逆流流出が可能な状態となるが、運搬時のオイル45の滞留面に対して、オイル流出防止機構36が、接続されているのでオイル45が吸入配管33内と蒸発器9内に流出することがない。運搬後の再設置時にはオイル流出防止機構36内のオイル45は圧縮機シェル40内へと重力で戻り、吸入配管33内をオイル45で閉塞した状態のままにすることがない。   At this time, as shown in FIG. 7, the inside of the compressor 11 provided in the concave portion 27 on the top surface has the open end of the suction pipe 33 opened in the compressor shell 40 submerged in the oil 45. Thus, a backflow outflow is possible from the suction pipe 33. However, since the oil outflow prevention mechanism 36 is connected to the staying surface of the oil 45 during transportation, the oil 45 is connected to the inside of the suction pipe 33. There is no flow out into the evaporator 9. At the time of re-installation after transportation, the oil 45 in the oil outflow prevention mechanism 36 returns to the compressor shell 40 by gravity, and the suction pipe 33 is not left in a state of being closed with the oil 45.

このことから圧縮機シェル40内のオイル45が所定量確保されて摺動部58への給油不足や、特に圧縮機11のイニシャル始動となる電源投入時において摺動部58への給油不足を防止できるので、圧縮機11の損傷等の危険性をさらに低減できる信頼性の高い冷蔵庫を提供できる。   As a result, a predetermined amount of oil 45 in the compressor shell 40 is secured to prevent insufficient lubrication of the sliding portion 58, and in particular, insufficient lubrication of the sliding portion 58 when the power is turned on for the initial start of the compressor 11. Therefore, it is possible to provide a highly reliable refrigerator that can further reduce the risk of damage to the compressor 11 and the like.

なお、凹み部27の庫内でっぱりを最小限とするために、凝縮器を薄型とし天面に配置してもよいし、箱型の構成として凹み部27に圧縮機11と機械室ファン31とを順番に並列配置して、上下方向の内容積を確保してもよいし、また凝縮器はフィンチューブタイプやワイヤーチューブタイプやスパイラルフィンチューブタイプなど外表面積を拡大させ放熱能力を増加させると、凝縮器の小型化や能力増加による省エネ化などで効果がある。   In addition, in order to minimize pulling in the interior of the recessed portion 27, the condenser may be thin and disposed on the top surface, or as a box-shaped configuration, the compressor 11 and the machine room fan 31 are provided in the recessed portion 27. May be arranged in parallel to secure the internal volume in the vertical direction, and if the condenser increases the external surface area such as the fin tube type, wire tube type, spiral fin tube type, etc. It is effective in reducing the size of the condenser and saving energy by increasing its capacity.

また凝縮器は強制空冷タイプだけでなく、外箱23の内側に熱伝達よく貼り付けられた銅配管で構成される自然空冷タイプであってもよいし、各室断熱扉体間の仕切りに配設して防滴防止を行うための銅配管を組み合わせてもよい。   The condenser is not limited to the forced air cooling type, but may be a natural air cooling type composed of copper piping adhered to the inner side of the outer box 23 with good heat transfer, and is arranged in a partition between the heat insulating door bodies in each room. You may combine and combine the copper piping for performing drip-proof prevention.

なお、冷媒にはHC600aを用いると、さらに冷媒ガスの比容積が大きく、体積流量が増加するので熱交換部の流速も増加し、伝熱促進となり吸入配管33の温度上昇とキャピラリ32の冷却による冷凍効果の増加に対し効果が向上するとともに、冷媒との相溶性が大きく、ガス流速も大きいのでオイル45の循環性が良好となり信頼性確保の面で有利である。   When HC600a is used as the refrigerant, the specific volume of the refrigerant gas is larger and the volume flow rate is increased, so the flow rate of the heat exchanging portion is also increased, heat transfer is promoted, and the temperature rise of the suction pipe 33 and cooling of the capillary 32 The effect is improved with respect to the increase in the refrigeration effect, the compatibility with the refrigerant is large, and the gas flow rate is also large, so that the circulation of the oil 45 is good, which is advantageous in terms of ensuring reliability.

またなお、電動三方弁や電動膨張弁などの流路制御手段を用いて、区画構成や温度設定の構成に応じた複数の蒸発器を使い分けたり、複数のキャピラリを切り替えたり、減圧量を制御したり、圧縮機11の停止中にガスカットなどして更なる省エネ化を図ることができる。特に流路制御手段を断熱箱体1の天面にある凹み部27に設けることで庫内への熱負荷を低減することができ、さらに省エネ効果がある。   In addition, by using flow control means such as an electric three-way valve and an electric expansion valve, a plurality of evaporators are used properly according to the compartment configuration and temperature setting configuration, a plurality of capillaries are switched, and the pressure reduction amount is controlled. In addition, further energy saving can be achieved by cutting the gas while the compressor 11 is stopped. In particular, by providing the flow path control means in the recessed portion 27 on the top surface of the heat insulating box 1, the heat load on the inside of the box can be reduced, and further an energy saving effect is obtained.

またなお、冷蔵庫運搬用の背面取っ手30は強度が確保しやすい凹み部27の下方に設けたが、同位置で制御基板を中央にその両側に背面取っ手30を設けるならば、スペース効率よく配置でき内容積拡大の効果がある。また天面カバー34の上方左右に振り分けて背面取っ手30を設けると圧縮機11の設置空間を逃げて取っ手形状が構成できるのでスペース効率がよく、さらにもち運びにおいても、断熱箱体1のコーナー部を握ることとなるので持ちやすい効果がある。底面取っ手29においても底面前方端に設けることで、コーナー部を握ることとなり持ちやすさを向上させることができる。   In addition, the rear handle 30 for carrying the refrigerator is provided below the recessed portion 27 where strength is easily secured. However, if the rear handle 30 is provided in the center at the same position, the space can be arranged efficiently. There is an effect of expanding the internal volume. Further, if the rear handle 30 is provided so as to be distributed to the left and right above the top cover 34, the installation space of the compressor 11 can be escaped to form a handle shape. This is an easy-to-hold effect. By providing the bottom handle 29 also at the bottom front end, the corner portion is gripped and the ease of holding can be improved.

なお、断熱箱体1の凹み部27は左右壁面を断熱体15で構成したが、シェル24だけで側面を構成すると、圧縮機11の放熱性が向上し、さらに凹み部27に配置する部品スペースが大きくとることができる。   In addition, although the recessed part 27 of the heat insulation box 1 comprised the right and left wall surface with the heat insulating body 15, if the side surface is comprised only with the shell 24, the heat dissipation of the compressor 11 will improve and also the component space arrange | positioned in the recessed part 27 Can be taken big.

なお、本実施の形態では、圧縮機11は断熱箱体1の天面後方にある凹み部27に備えることとしたが、断熱箱体1の天面部に凹部等を設けずにほぼ平面状の天面部に圧縮機11を備えた場合でも、蒸発器9が圧縮機11より下方にあるタイプの冷蔵庫においては同様に、冷蔵庫の運搬等によって横倒しをした時に、圧縮機11下方に配置された吸入配管33および蒸発器9などにオイルが流出するのを防止するので、圧縮機11内のオイル量を確保しオイル面高さを大幅に減少させることを防止でき、圧縮機11の摺動部へのオイル供給を確保し、圧縮機11の損傷等の危険性を低減できる。   In the present embodiment, the compressor 11 is provided in the recess 27 at the rear of the top surface of the heat insulation box 1. However, the top surface portion of the heat insulation box 1 is not substantially provided with a recess or the like, but is substantially planar. Even in the case where the compressor 11 is provided on the top surface, in the refrigerator of the type in which the evaporator 9 is below the compressor 11, similarly, when it is laid down by transporting the refrigerator or the like, the suction disposed below the compressor 11 Since oil is prevented from flowing out into the pipe 33 and the evaporator 9, the amount of oil in the compressor 11 can be secured and the oil surface height can be prevented from being greatly reduced, and the sliding portion of the compressor 11 can be prevented. The oil supply can be secured, and the risk of damage to the compressor 11 can be reduced.

図8は、本発明の実施の形態1における冷蔵庫のオイル流出防止機構が逆止弁の概略側面図である。   FIG. 8 is a schematic side view of the check valve for the oil outflow prevention mechanism of the refrigerator according to Embodiment 1 of the present invention.

図8において、蒸発器9から接続される第一の吸入配管33aと圧縮機11と接続される第二の吸入配管33bと第一、第二の吸入配管33a、33bの間に接続した逆止弁59で構成される。   In FIG. 8, a check connected between the first suction pipe 33a connected from the evaporator 9, the second suction pipe 33b connected to the compressor 11, and the first and second suction pipes 33a and 33b. It consists of a valve 59.

これにより、冷蔵庫を横倒しにして持ち運びを行う際に、圧縮機11の横倒しによりオイル45が移動し、第二の吸入配管33bの開口端がオイル45内に没するとオイル45は一旦逆止弁59へと流出するも、第一の吸入配管33aへの流出は逆止弁59内の弁により防止されるので、再度冷蔵庫の設置時には運転起動時に圧縮機シェル40内へとオイル45が戻り、必要量が確保される。   As a result, when the refrigerator is laid down and carried, the oil 45 moves due to the compressor 11 being laid down, and when the opening end of the second suction pipe 33b is submerged in the oil 45, the oil 45 is temporarily turned to the check valve 59. However, when the refrigerator is installed again, the oil 45 is returned to the compressor shell 40 when the operation is started, and is necessary because the flow into the first suction pipe 33a is prevented by the valve in the check valve 59. The amount is secured.

したがって冷蔵庫天面に圧縮機11を配置した上で、下方に配置された第一の吸入配管33aおよび蒸発器9などに冷蔵庫横倒し時のオイル45の流出を防止するので、圧縮機シェル40内のオイル45が確保でき、摺動部58への十分なオイル供給が可能であり、圧縮機の損傷等の危険性をさらに低減できる。   Therefore, since the compressor 11 is disposed on the top of the refrigerator, the oil 45 is prevented from flowing out when the refrigerator is laid down on the first suction pipe 33a and the evaporator 9 disposed below. The oil 45 can be secured, and sufficient oil supply to the sliding portion 58 is possible, thereby further reducing the risk of damage to the compressor.

図9は、本発明の実施の形態1における冷蔵庫のオイル流出防止機構がチャンバーの概略側面図である。   FIG. 9 is a schematic side view of the chamber in which the oil outflow prevention mechanism of the refrigerator in the first embodiment of the present invention is provided.

図9において、蒸発器9から接続される第一の吸入配管33aと圧縮機11と接続される第二の吸入配管33bと第一、第二の吸入配管33a、33bの間に設けた各吸入配管33a、33bより管径が大きく、20ミリから40ミリの外形を有するチャンバー60で構成される。第一の吸入配管33aはチャンバー60下方から差し込まれており、内部に配管が上部間際まで突出して開口端が設けてあり、第二の吸入配管33bはチャンバー60下方から差し込まれており、配管開口端がチャンバー60内部の壁面と面一となるように配置されている。   In FIG. 9, each suction pipe provided between the first suction pipe 33a connected from the evaporator 9, the second suction pipe 33b connected to the compressor 11, and the first and second suction pipes 33a and 33b. The pipe diameter is larger than that of the pipes 33a and 33b, and the chamber 60 has an outer shape of 20 to 40 mm. The first suction pipe 33a is inserted from the lower side of the chamber 60, and the pipe projects into the inside just above the upper part to provide an open end. The second suction pipe 33b is inserted from the lower side of the chamber 60, and the pipe opening The end is arranged so as to be flush with the wall surface inside the chamber 60.

これにより、冷蔵庫を横倒しにして持ち運びを行う際に、圧縮機11の横倒しによりオイル45が移動し、第二の吸入配管33bの開口端がオイル45内に没するとオイル45は一旦チャンバー60内へと流出するも、第一の吸入配管33aへの流出はチャンバー60内の配管構成により防止されるので、再度冷蔵庫の設置時には圧縮機シェル40内へとオイル45が戻り、必要量が確保される。   As a result, when the refrigerator is laid down and carried, the oil 45 moves due to the compressor 11 lying down, and when the open end of the second suction pipe 33b is submerged in the oil 45, the oil 45 once enters the chamber 60. However, since the outflow to the first suction pipe 33a is prevented by the pipe configuration in the chamber 60, the oil 45 returns to the compressor shell 40 when the refrigerator is installed again, and the necessary amount is secured. .

したがって冷蔵庫天面に圧縮機11を配置した上で、下方に配置された第一の吸入配管33aおよび蒸発器9などに冷蔵庫横倒し時のオイル45の流出を防止するので、圧縮機シェル40内のオイル45が確保でき、摺動部58への十分なオイル供給が可能であり、圧縮機の損傷等の危険性をさらに低減できる。   Therefore, since the compressor 11 is disposed on the top of the refrigerator, the oil 45 is prevented from flowing out when the refrigerator is laid down on the first suction pipe 33a and the evaporator 9 disposed below. The oil 45 can be secured, and sufficient oil supply to the sliding portion 58 is possible, thereby further reducing the risk of damage to the compressor.

なお、下部から差し込まれた配管は内部に突出させて、チャンバー60の内面下端部近傍にオイル戻し穴を設けると、チャンバー60内へのオイル滞留を防止するとともに、液冷媒の過渡的な戻りに対して、一旦貯留し、圧縮機11への直接吸入を防止する緩衝機構とすることができ、圧縮機の液圧縮などを防止し、アキュムレータと同じ働きを有し、圧縮機の損傷等の危険性をさらに低減できる。   In addition, if the pipe inserted from the lower part protrudes inside and an oil return hole is provided in the vicinity of the lower end of the inner surface of the chamber 60, the oil stays in the chamber 60 and the liquid refrigerant returns to a transient state. On the other hand, it is possible to provide a buffer mechanism that temporarily stores and prevents direct suction into the compressor 11, prevents liquid compression of the compressor, has the same function as an accumulator, and is in danger of damage to the compressor. Can be further reduced.

図10は、本発明の実施の形態1における冷蔵庫のオイル流出防止機構が電磁弁の概略側面図である。   FIG. 10 is a schematic side view of the solenoid valve in which the oil outflow prevention mechanism of the refrigerator in the first embodiment of the present invention.

図10において、蒸発器9から接続される第一の吸入配管33aと圧縮機11と接続される第二の吸入配管33bと第一、第二の吸入配管33a、33bの間に接続した電磁弁61で構成される。   In FIG. 10, a solenoid valve connected between the first suction pipe 33a connected from the evaporator 9, the second suction pipe 33b connected to the compressor 11, and the first and second suction pipes 33a and 33b. 61.

これにより、冷蔵庫の電源を停止して横倒しにして持ち運びを行う際に、圧縮機11の横倒しによりオイル45が移動し、第二の吸入配管33bの開口端がオイル45内に没するとオイル45は一旦電磁弁61と流出するも、第一の吸入配管33aへの流出は電磁弁61が無通電時に弁を閉じる設定にすれば防止されるので、再度冷蔵庫の設置時には運転起動時、通電で電磁弁61開となり圧力差により圧縮機シェル40内へとオイル45が戻り、必要量が確保される。   As a result, when the refrigerator is turned off and carried sideways, the oil 45 moves due to the compressor 11 lying sideways, and when the opening end of the second suction pipe 33b is submerged in the oil 45, the oil 45 is Although it once flows out from the electromagnetic valve 61, the flow into the first suction pipe 33a can be prevented by setting the valve to be closed when the electromagnetic valve 61 is not energized. The valve 61 is opened, and the oil 45 returns to the compressor shell 40 due to the pressure difference, and the necessary amount is secured.

したがって冷蔵庫天面に圧縮機11を配置した上で、下方に配置された第一の吸入配管33aおよび蒸発器9などに冷蔵庫横倒し時のオイル45の流出を防止するので、圧縮機シェル40内のオイル45が確保でき、摺動部58への十分なオイル供給が可能であり、圧縮機の損傷等の危険性をさらに低減できる。   Therefore, since the compressor 11 is disposed on the top of the refrigerator, the oil 45 is prevented from flowing out when the refrigerator is laid down on the first suction pipe 33a and the evaporator 9 disposed below. The oil 45 can be secured, and sufficient oil supply to the sliding portion 58 is possible, thereby further reducing the risk of damage to the compressor.

また、電磁弁61は、電気信号により流体を任意に流したり止めたりできるため応答性、制御性に優れ、冷蔵庫の運転時、温度センサーによる蒸発器9温度や圧縮機11吐出温度の検知など他の制御系との連動で液戻りの防止ができ圧縮機にとり優れた信頼性運転が可能である。   In addition, the electromagnetic valve 61 is excellent in responsiveness and controllability because the fluid can be flowed or stopped arbitrarily by an electrical signal. During operation of the refrigerator, the temperature of the evaporator 9 and the discharge temperature of the compressor 11 are detected by a temperature sensor. In conjunction with this control system, liquid return can be prevented and excellent reliability operation is possible for the compressor.

なお、電磁弁61は、電源や圧縮機11停止時の弁前後の圧力差ゼロの場合にも開閉できる直動式が望ましい。   The solenoid valve 61 is preferably a direct acting type that can be opened and closed even when the pressure difference between the front and rear of the power supply and the compressor 11 is zero.

図11は、本発明の実施の形態1における冷蔵庫のオイル流出防止機構がフラップの概略側面図である。   FIG. 11 is a schematic side view of the flap of the oil outflow prevention mechanism of the refrigerator according to Embodiment 1 of the present invention.

図11において、蒸発器9から接続される第一の吸入配管33aと圧縮機11と接続される第二の吸入配管33bと第一、第二の吸入配管33a、33bの間に接続したフラップ62で構成される。   In FIG. 11, a flap 62 connected between the first suction pipe 33a connected from the evaporator 9, the second suction pipe 33b connected to the compressor 11, and the first and second suction pipes 33a and 33b. Consists of.

これにより、冷蔵庫の電源を停止して横倒しにして持ち運びを行う際に、圧縮機11の横倒しによりオイル45が移動し、第二の吸入配管33bの開口端がオイル45内に没するとオイル45は一旦フラップ62へ流出するも、オイル45の重力によりフラップ62は配管内で押され配管方向に対し水平方向に閉じるため、第一の吸入配管33aへの流出はフラップ62により防止されるので、再度冷蔵庫の設置時には運転起動時、圧縮機シェル40内へとオイル45が戻り、必要量が確保される。なお、フラップ62の材質は軽量かつ耐油性に優れる材料が望ましい。   As a result, when the refrigerator is turned off and carried sideways, the oil 45 moves due to the compressor 11 lying sideways, and when the opening end of the second suction pipe 33b is submerged in the oil 45, the oil 45 is Although it flows out to the flap 62 once, the flap 62 is pushed in the pipe by the gravity of the oil 45 and is closed in the horizontal direction with respect to the pipe direction, so the outflow to the first suction pipe 33a is prevented by the flap 62. When the refrigerator is installed, when the operation is started, the oil 45 returns to the compressor shell 40, and a necessary amount is secured. The material of the flap 62 is preferably a material that is lightweight and excellent in oil resistance.

また、運転時、圧縮機11の吸引により配管内は圧力差が生じて流れが起き、機構が簡単かつ軽量のフラップ62は容易に配管方向に対し平行に開く(矢印)ことができ、配管の圧力損失は低く保つことができるので効率的であり省エネ化が図れる。   Also, during operation, the suction of the compressor 11 causes a pressure difference in the pipe to cause a flow, and the flap 62 having a simple mechanism and light weight can be easily opened in parallel to the pipe direction (arrow). Since the pressure loss can be kept low, it is efficient and energy saving.

以上のように、本発明に係る冷蔵庫は、圧縮機を蒸発器より上方に配設した冷凍サイクルを有する場合の圧縮機外のオイルの流出を防止できるため、圧縮機内の冷凍機油が不足するといった危険性を低減でき、家庭用冷蔵庫のみならず業務用冷蔵庫、自動販売機、その他の冷却機器を備えた貯蔵庫の冷凍サイクル構成として有用である。   As described above, the refrigerator according to the present invention can prevent the oil outside the compressor from flowing out when the compressor has a refrigeration cycle arranged above the evaporator, so that the refrigerator oil in the compressor is insufficient. The risk can be reduced, and it is useful as a refrigeration cycle configuration of a storage room equipped with not only a home refrigerator but also a commercial refrigerator, a vending machine, and other cooling devices.

本発明の実施の形態1における冷蔵庫の概略断面図Schematic sectional view of the refrigerator in the first embodiment of the present invention. 本発明の実施の形態1における冷蔵庫の概略背面図Schematic rear view of the refrigerator in the first embodiment of the present invention 本発明の実施の形態1における冷蔵庫の概略部品展開図Schematic component development view of the refrigerator according to Embodiment 1 of the present invention. 本発明の実施の形態1における冷蔵庫の吸入配管要部概略斜視図Schematic perspective view of the main part of the suction pipe of the refrigerator according to Embodiment 1 of the present invention. 本発明の実施の形態1における冷蔵庫に搭載する圧縮機の概略断面図Schematic sectional view of the compressor mounted on the refrigerator in Embodiment 1 of the present invention. 本発明の実施の形態1における冷蔵庫の運搬状態の概略断面図Schematic sectional view of the state of transport of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫運搬時の圧縮機の概略断面図Schematic sectional view of the compressor during refrigerator transportation in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫のオイル流出防止機構の逆止弁の概略側面図Schematic side view of a check valve of the oil outflow prevention mechanism of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫のオイル流出防止機構のチャンバーの概略側面図Schematic side view of the chamber of the oil spill prevention mechanism of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫のオイル流出防止機構の電磁弁の概略側面図Schematic side view of the solenoid valve of the oil outflow prevention mechanism of the refrigerator in Embodiment 1 of the present invention 本発明の実施の形態1における冷蔵庫のオイル流出防止機構のフラップの概略側面図The schematic side view of the flap of the oil outflow prevention mechanism of the refrigerator in Embodiment 1 of this invention 従来の冷蔵庫の概略断面図Schematic sectional view of a conventional refrigerator

符号の説明Explanation of symbols

1 断熱箱体
9 蒸発器
11 圧縮機
27 凹み部
32 キャピラリ
33 吸入配管
36 オイル流出防止機構
45 オイル
59 逆止弁
60 チャンバー
61 電磁弁
62 フラップ
DESCRIPTION OF SYMBOLS 1 Heat insulation box 9 Evaporator 11 Compressor 27 Recessed part 32 Capillary 33 Intake piping 36 Oil outflow prevention mechanism 45 Oil 59 Check valve 60 Chamber 61 Electromagnetic valve 62 Flap

Claims (5)

断熱箱体と、前記断熱箱体に備えられた圧縮機と凝縮器と減圧器と蒸発器とを順に結んで一連の冷媒流路を形成した冷凍サイクルと、前記圧縮機は低圧型で内部に封入されるオイルとを有し、前記蒸発器は前記圧縮機よりも下方に設けられ、前記圧縮機と前記蒸発器とを接続する吸入配管には前記圧縮機内部から前記蒸発器側への前記オイルの流出を防止するオイル流出防止機構が設けられ、前記断熱箱体は天面後方に凹み部を設け前記圧縮機と前記オイル流出防止機構とを配設されたことを特徴とする冷蔵庫。   A heat insulation box, a refrigeration cycle in which a compressor, a condenser, a decompressor, and an evaporator provided in the heat insulation box are connected in order to form a series of refrigerant flow paths; and the compressor is a low-pressure type inside. The evaporator is provided below the compressor, and a suction pipe connecting the compressor and the evaporator is connected to the evaporator side from the compressor to the suction pipe. An oil outflow prevention mechanism for preventing oil outflow is provided, and the heat insulating box is provided with a recess at the rear of the top surface, and the compressor and the oil outflow prevention mechanism are provided. 前記オイル流出防止機構は、逆止弁である請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein the oil outflow prevention mechanism is a check valve. 前記オイル流出防止機構は、チャンバーである請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein the oil outflow prevention mechanism is a chamber. 前記オイル流出防止機構は、電磁弁である請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein the oil outflow prevention mechanism is a solenoid valve. 前記オイル流出防止機構は、重力を利用したフラップである請求項1に記載の冷蔵庫。   The refrigerator according to claim 1, wherein the oil outflow prevention mechanism is a flap using gravity.
JP2005240637A 2005-08-23 2005-08-23 Refrigerator Pending JP2007057129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005240637A JP2007057129A (en) 2005-08-23 2005-08-23 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005240637A JP2007057129A (en) 2005-08-23 2005-08-23 Refrigerator

Publications (1)

Publication Number Publication Date
JP2007057129A true JP2007057129A (en) 2007-03-08

Family

ID=37920773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005240637A Pending JP2007057129A (en) 2005-08-23 2005-08-23 Refrigerator

Country Status (1)

Country Link
JP (1) JP2007057129A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084181A1 (en) * 2007-12-27 2009-07-09 Panasonic Corporation Refrigerator
JP2009174842A (en) * 2007-12-27 2009-08-06 Panasonic Corp Refrigerator
CN106705526A (en) * 2016-12-01 2017-05-24 青岛海尔股份有限公司 Refrigerator with top-mounted oil press
CN106766478A (en) * 2016-12-01 2017-05-31 青岛海尔股份有限公司 There is the refrigerator of hydraulic press overhead
CN106766477A (en) * 2016-12-01 2017-05-31 青岛海尔股份有限公司 There is the refrigerator of hydraulic press overhead

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084181A1 (en) * 2007-12-27 2009-07-09 Panasonic Corporation Refrigerator
JP2009174842A (en) * 2007-12-27 2009-08-06 Panasonic Corp Refrigerator
CN101910763B (en) * 2007-12-27 2013-05-08 松下电器产业株式会社 Refrigerator
CN106705526A (en) * 2016-12-01 2017-05-24 青岛海尔股份有限公司 Refrigerator with top-mounted oil press
CN106766478A (en) * 2016-12-01 2017-05-31 青岛海尔股份有限公司 There is the refrigerator of hydraulic press overhead
CN106766477A (en) * 2016-12-01 2017-05-31 青岛海尔股份有限公司 There is the refrigerator of hydraulic press overhead
CN106705526B (en) * 2016-12-01 2019-12-06 青岛海尔股份有限公司 Refrigerator with top-mounted oil press

Similar Documents

Publication Publication Date Title
JP2007064597A (en) Refrigerator
JP2007057129A (en) Refrigerator
JP2006183655A (en) Compressor, refrigerating device and refrigerator
JP3824015B2 (en) refrigerator
JP5974282B2 (en) refrigerator
JP2007057126A (en) Refrigerator
JP3741141B1 (en) refrigerator
JP4496944B2 (en) refrigerator
JP3858936B2 (en) Compressor and refrigeration equipment
JP3915825B2 (en) Compressor and refrigeration equipment and refrigerator
JP2017161124A (en) refrigerator
JP3741142B1 (en) refrigerator
CN107166851B (en) Refrigerator
JP4396504B2 (en) refrigerator
JP2013142512A (en) Refrigerator
JP3824016B2 (en) refrigerator
JP2011191029A (en) Refrigerator
JP5682240B2 (en) refrigerator
JP2008095985A (en) Refrigerator
JP6552985B2 (en) refrigerator
JP3724503B1 (en) refrigerator
JP2008180443A (en) Cooling storage
JP2006183660A (en) Compressor and refrigerating device
JP4014569B2 (en) Stirling refrigerator
JP2008070022A (en) Refrigerator