JP2007056309A - Hydrogen storage alloy, its manufacturing method and nickel hydrogen secondary battery - Google Patents

Hydrogen storage alloy, its manufacturing method and nickel hydrogen secondary battery Download PDF

Info

Publication number
JP2007056309A
JP2007056309A JP2005242741A JP2005242741A JP2007056309A JP 2007056309 A JP2007056309 A JP 2007056309A JP 2005242741 A JP2005242741 A JP 2005242741A JP 2005242741 A JP2005242741 A JP 2005242741A JP 2007056309 A JP2007056309 A JP 2007056309A
Authority
JP
Japan
Prior art keywords
hydrogen storage
mass
storage alloy
alloy
main phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005242741A
Other languages
Japanese (ja)
Other versions
JP4634256B2 (en
Inventor
Naokatsu Terashita
尚克 寺下
Nobuo Ito
伸夫 伊藤
Masahito Osawa
雅人 大澤
Seiji Takahashi
誠司 高橋
Shigeru Tsunokake
繁 角掛
Kiyotaka Hamura
清孝 羽村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Metals and Chemical Co Ltd
Original Assignee
Japan Metals and Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Metals and Chemical Co Ltd filed Critical Japan Metals and Chemical Co Ltd
Priority to JP2005242741A priority Critical patent/JP4634256B2/en
Publication of JP2007056309A publication Critical patent/JP2007056309A/en
Application granted granted Critical
Publication of JP4634256B2 publication Critical patent/JP4634256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy by which, even in the case where Co content is decreased, pulverization can be suppressed and battery life can be prolonged while securing high electric-discharge capacity and also high rate discharge characteristics can be obtained, to provide its manufacturing method and also to provide a nickel hydrogen secondary battery using the hydrogen storage alloy. <P>SOLUTION: The hydrogen storage alloy is composed of a main phase having CaCu<SB>5</SB>type crystal structure and a secondary phase in which Mg is concentrated. In the hydrogen storage alloy, La constituting a Ca site of the main phase is contained in an amount of 1.5 to <24 mass% and 0.01 to <1 mass% Mg is contained in the alloy. It is preferable that Co constituting a Cu site of the main phase is further contained in an amount of <5 mass%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素吸蔵合金に関し、特に、二次電池の負極等に用いられる水素吸蔵合金とその製造方法、ならびにそれを用いたニッケル水素二次電池に関するものである。   The present invention relates to a hydrogen storage alloy, and more particularly to a hydrogen storage alloy used for a negative electrode or the like of a secondary battery, a manufacturing method thereof, and a nickel hydrogen secondary battery using the same.

近年、二酸化炭素による地球温暖化や排気ガスによる環境汚染などの環境問題とともに、石油資源の枯渇などのエネルギー問題が、人類が解決すべき課題として大きくクローズアップされてきている。この問題に対処するため、エネルギーを水素というエネルギー媒体に変換して貯蔵し、輸送し、利用するエネルギーシステムの開発が行われている。   In recent years, energy problems such as exhaustion of petroleum resources, as well as environmental problems such as global warming due to carbon dioxide and environmental pollution due to exhaust gas, have been greatly highlighted as issues to be solved by mankind. In order to deal with this problem, energy systems are being developed that convert energy into an energy medium called hydrogen, store it, transport it, and use it.

しかし、水素は、単位重量当たりのエネルギー密度が高い反面、軽量な気体であるため、輸送や貯蔵が容易ではなく、また、安全上も問題が多い。そこで、自分の体積の約1000倍もの水素を金属間化合物として、常温、常圧で安全に貯蔵できる水素吸蔵合金の開発が進められており、その一部は、携帯用電子機器やハイブリッド車、電気自動車等の電源(二次電池)用として実用化されている。   However, although hydrogen has a high energy density per unit weight, it is a light gas, so it is not easy to transport and store, and there are many safety problems. Therefore, the development of hydrogen storage alloys that can be safely stored at room temperature and pressure using hydrogen that is approximately 1000 times its volume as an intermetallic compound, some of which are portable electronic devices, hybrid vehicles, It has been put to practical use as a power source (secondary battery) for electric vehicles and the like.

ところで、ニッケル水素電池等の二次電池の負極に用いられる水素吸蔵合金としては、従来から、CaCu5型(AB5型)の結晶構造を有するLaNi5をベースとしたものが知られている。中でも、該結晶構造のCaサイトを、La,Ce,Pr,Nd等の希土類元素の混合物である安価なミッシュメタル(Mm)で構成し、該結晶構造のCuサイトを構成するNiの一部を、Co,Mn,Al等で置換したニッケル基の多元系合金(Mm(Ni,Co,Mn,Al)5)からなる水素吸蔵合金が広く用いられている。上記水素吸蔵合金を構成する各元素には、耐食性の向上や微粉化の抑制、電子伝導性の向上、解離圧の調整、表面層の拡大など多面的な役割があり、要求特性によって、それぞれの成分の量が好適範囲に調整されている。 By the way, as a hydrogen storage alloy used for a negative electrode of a secondary battery such as a nickel metal hydride battery, conventionally, an alloy based on LaNi 5 having a CaCu 5 type (AB 5 type) crystal structure is known. Among them, the Ca site of the crystal structure is composed of an inexpensive misch metal (Mm) that is a mixture of rare earth elements such as La, Ce, Pr, and Nd, and a part of Ni constituting the Cu site of the crystal structure. Hydrogen-absorbing alloys made of nickel-based multicomponent alloys (Mm (Ni, Co, Mn, Al) 5 ) substituted with Co, Mn, Al, etc. are widely used. Each element constituting the hydrogen storage alloy has multiple functions such as improvement of corrosion resistance, suppression of pulverization, improvement of electron conductivity, adjustment of dissociation pressure, and expansion of the surface layer. The amount of the component is adjusted to a suitable range.

例えば、上記Mm(Ni,Co,Mn,Al)5からなる水素吸蔵合金において、Coは、水素吸蔵量を増加させて電池の容量を高めると共に、水素を吸蔵・放出する際の体積変化に起因する微粉化を抑制したり、合金表面の腐食や溶出を抑制したりして、電池の寿命を向上する効果を有することが知られており、通常、10mass%程度が添加されている。しかし、高率放電特性の面からは、Coが少ない方が、微粉化が促進されて表面積が増大するため好ましい。また、Coは高価であるため、製造コストの面からも少ない方が好ましい。 For example, in the hydrogen storage alloy composed of Mm (Ni, Co, Mn, Al) 5 described above, Co increases the capacity of the battery by increasing the hydrogen storage capacity, and is caused by the volume change when storing and releasing hydrogen. It is known that it has an effect of improving the life of the battery by suppressing the pulverization to be performed or suppressing the corrosion and elution of the alloy surface, and about 10 mass% is usually added. However, from the viewpoint of high rate discharge characteristics, it is preferable that Co is less because pulverization is promoted and the surface area is increased. In addition, since Co is expensive, it is preferable that it be less in terms of manufacturing cost.

そこで、特許文献1には、合金中にMgまたはCaを0.1〜1.0wt%の範囲で含有させて、微粉化を抑制しながら高率放電特性を改善すると共に、La量を24〜33wt%と比較的高めとして水素吸蔵量を増加し、高容量化を図ることによって、合金中のCo含有量を9wt%以下に低減しても、高容量で微粉化が抑制され、しかも高率放電特性にも優れる水素吸蔵合金が得られることが開示されている。
特許第3603013号公報
Therefore, in Patent Document 1, Mg or Ca is contained in the alloy in the range of 0.1 to 1.0 wt% to improve high-rate discharge characteristics while suppressing pulverization, and the La amount is set to 24 to 33 wt%. By increasing the hydrogen storage capacity and increasing the capacity as a relatively high level, even if the Co content in the alloy is reduced to 9 wt% or less, pulverization is suppressed at a high capacity and high discharge characteristics are achieved. It is disclosed that an excellent hydrogen storage alloy can be obtained.
Japanese Patent No. 3603013

しかしながら、特許文献1の水素吸蔵合金は、水素吸蔵量を高めて高容量化を図ってはいるものの、Laの含有量を高めると、水素の吸蔵、放出に伴う膨張、収縮が大きくなり、合金粉末の微細化が促進されるほか、純Laは、分離精製を必要とするため高価であり、原料コストが上昇するという問題がある。また、Coは、上述したように、高価でありまた高率放電特性を害することから、さらに低減することが好ましい。また、特許文献1の水素吸蔵合金の製造方法では、合金溶解時にMgやCaの多くが蒸発して揮散するため、歩留まりが低下するという問題のほか、作業性や安全性を害するという問題がある。   However, although the hydrogen storage alloy of Patent Document 1 is intended to increase the capacity by increasing the hydrogen storage amount, if the La content is increased, the expansion and contraction associated with the storage and release of hydrogen increase, and the alloy In addition to promoting finer powder, pure La is expensive because it requires separation and purification, and there is a problem that raw material costs increase. Further, Co is preferably further reduced because it is expensive and impairs high rate discharge characteristics as described above. Moreover, in the manufacturing method of the hydrogen storage alloy of patent document 1, since much of Mg and Ca evaporate and volatilize at the time of alloy melting, in addition to the problem that a yield falls, there exist problems that workability and safety are impaired. .

そこで、本発明の目的は、高い放電容量を確保しつつ、Co含有量を低下した場合でも、微粉化を抑制して電池の長寿命化を達成すると共に、高率放電特性にも優れる水素吸蔵合金とその製造方法、ならびに、上記水素吸蔵合金を用いたニッケル水素二次電池を提供することにある。   Therefore, the object of the present invention is to achieve a long battery life by suppressing pulverization even when the Co content is reduced while ensuring a high discharge capacity, and also has a high-rate discharge characteristic and excellent hydrogen storage capacity. It is an object to provide a nickel-metal hydride secondary battery using the alloy, its manufacturing method, and the hydrogen storage alloy.

発明者らは、従来技術が抱える上記問題点を解決するために、水素吸蔵合金の成分組成と組織に着目し、鋭意検討を重ねた。その結果、CaCu5型の結晶構造を有する主相とその主相の粒界に沿って形成される第2相からなる水素吸蔵合金において、該主相の結晶構造のCaサイトを構成するLaの含有量を24mass%未満に低減するとともに、第2相に濃化する適量のMgを添加することによって、Co含有量を低下させた場合でも、高い放電容量を確保しながら、微粉化を抑制して電池の長寿命化を達成し、かつ高率放電特性にも優れる水素吸蔵合金を得ることができることを見出し、本発明を完成させた。 In order to solve the above-described problems of the prior art, the inventors focused on the component composition and structure of the hydrogen storage alloy and conducted extensive studies. As a result, in a hydrogen storage alloy consisting of a main phase having a CaCu 5 type crystal structure and a second phase formed along the grain boundary of the main phase, the La of the Ca site of the crystal structure of the main phase While reducing the content to less than 24 mass% and adding an appropriate amount of Mg to concentrate in the second phase, even when the Co content is reduced, the fine powder is suppressed while ensuring a high discharge capacity. As a result, it was found that a hydrogen storage alloy having a long battery life and excellent high-rate discharge characteristics can be obtained, and the present invention has been completed.

すなわち、本発明は、CaCu5型の結晶構造を有する主相とMgが濃化した第2相とからなる水素吸蔵合金であって、該主相のCaサイトを構成するLaを1.5mass%以上24mass%未満、合金中にMgを0.01mass%以上1mass%未満含有することを特徴とする水素吸蔵合金である。 That is, the present invention is a hydrogen storage alloy composed of a main phase having a CaCu 5 type crystal structure and a second phase enriched with Mg, wherein La constituting the Ca site of the main phase is 1.5 mass% or more. It is a hydrogen storage alloy characterized by containing less than 24 mass% and Mg in the alloy of 0.01 mass% or more and less than 1 mass%.

本発明の水素吸蔵合金は、上記主相のCuサイトを構成するCoを5mass%未満含有することを特徴とする。   The hydrogen storage alloy of the present invention is characterized by containing less than 5 mass% of Co constituting the Cu site of the main phase.

また、本発明の水素吸蔵合金は、上記主相の合金全体に占める体積分率が95%以上であることを特徴とする。   In addition, the hydrogen storage alloy of the present invention is characterized in that the volume fraction of the whole main phase alloy is 95% or more.

また、本発明は、合金原料を溶解し、鋳造して、Laを1.5mass%以上24mass%未満、Mgを0.01mass%以上1mass%未満含有する水素吸蔵合金を製造するに当たり、上記溶解、鋳造作業を、ヘリウムガスを10vol%以上含む不活性雰囲気中で行うことを特徴とする水素吸蔵合金の製造方法である。   Further, the present invention melts and casts the alloy raw material to produce a hydrogen storage alloy containing La in the range of 1.5 mass% to less than 24 mass% and Mg in the range of 0.01 mass% to less than 1 mass%. Is performed in an inert atmosphere containing 10 vol% or more of helium gas.

本発明の製造方法は、上記溶解作業におけるMgの添加は、Mgより高融点の合金原料を予め溶解してから行うことを特徴とする。   The production method of the present invention is characterized in that the addition of Mg in the melting operation is performed after previously melting an alloy raw material having a melting point higher than that of Mg.

また、本発明は、上記のいずれかに記載の水素吸蔵合金を負極に用いることを特徴とするニッケル水素二次電池である。   The present invention also provides a nickel-metal hydride secondary battery using any of the hydrogen storage alloys described above as a negative electrode.

本発明によれば、Laを24mass%未満、Coを5mass%未満に低減しても、高い放電容量を維持しながら、微粉化を抑制しつつ高率放電特性にも優れる水素吸蔵合金を安価に提供することができる。したがって、本発明の水素吸蔵合金を負極に用いることによって、高い放電容量と優れた高率放電特性を有すると共に、耐久性にも優れたニッケル水素二次電池を安価に提供することができる。   According to the present invention, even if La is reduced to less than 24 mass% and Co is reduced to less than 5 mass%, a hydrogen storage alloy that is excellent in high rate discharge characteristics while suppressing pulverization while maintaining a high discharge capacity at low cost. Can be provided. Therefore, by using the hydrogen storage alloy of the present invention for the negative electrode, it is possible to provide a nickel-metal hydride secondary battery having high discharge capacity, excellent high rate discharge characteristics and excellent durability at low cost.

本発明に係る水素吸蔵合金について説明する。
本発明の水素吸蔵合金は、CaCu5型の結晶構造を有する主相とMgが濃化した第2相とからなる。
ここで、上記主相のCaCu5型の結晶構造におけるCaサイトは、La,Ce,Pr,Nd等の希土類元素の混合物であるミッシュメタル(Mm)で構成されているが、本発明の水素吸蔵合金では、上記Laの含有量が全合金の24mass%未満であることが必要である。Laが24mass%以上では、水素の吸蔵、放出に伴う膨張、収縮が大きくなり、合金の微細化を促進されるため、電池寿命にとって好ましくない。また、Laは、高価であるため、コスト低減のためには少ないほうが好ましいからである。
The hydrogen storage alloy according to the present invention will be described.
The hydrogen storage alloy of the present invention comprises a main phase having a CaCu 5 type crystal structure and a second phase enriched in Mg.
Here, the Ca site in the CaCu 5 type crystal structure of the main phase is composed of misch metal (Mm) which is a mixture of rare earth elements such as La, Ce, Pr, and Nd. In the alloy, the content of La is required to be less than 24 mass% of the entire alloy. If La is 24 mass% or more, the expansion and contraction associated with the occlusion and release of hydrogen increase, and the refinement of the alloy is promoted, which is not preferable for the battery life. Further, since La is expensive, it is preferable to reduce it in order to reduce costs.

なお、Laの下限は、1.5mass%まで許容できる。しかし、ニッケル水素二次電池に使用した時の電池の内圧上昇を抑制する観点からは、15mass%以上が好ましく、さらに、高い放電容量を維持する観点からは、20mass%以上が好ましい。La以外のCaサイトを構成する成分組成については、特に制限されないが、上記の電池内圧に影響を与える水素吸蔵合金の平衡水素圧力を適正化する観点から、Ce:5〜15mass%、Pr:0.6〜3mass%、Nd:2〜8mass%の範囲が好ましい。   In addition, the minimum of La is accept | permitted to 1.5 mass%. However, from the viewpoint of suppressing an increase in the internal pressure of the battery when used in a nickel metal hydride secondary battery, 15 mass% or more is preferable, and from the viewpoint of maintaining a high discharge capacity, 20 mass% or more is preferable. The component composition constituting the Ca site other than La is not particularly limited, but from the viewpoint of optimizing the equilibrium hydrogen pressure of the hydrogen storage alloy that affects the battery internal pressure, Ce: 5 to 15 mass%, Pr: 0.6 The range of -3 mass% and Nd: 2-8 mass% is preferable.

一方、上記主相のCaCu5型の結晶構造におけるCuサイトは、主にNiで構成されており、その一部は、Co,Mn,Al等で置換されているものであるが、本発明の水素吸蔵合金においては、上記Coの含有量は、5mass%未満であることが必要である。というのは、Coは、従来、合金の微細化を抑制するために10mass%程度添加しているが、後述するように、本発明ではMgの添加によっても微細化を抑制できること、Coは電池の高率放電特性の向上に対して好ましくないこと、また、本発明の水素吸蔵合金を構成する元素の中で最も高価な金属であることなどから少ないほど好ましいからである。なお、Coの下限は、特に規定しないが、CaCu5型の結晶構造を維持する観点からは、1mass%以上であることが好ましい。 On the other hand, the Cu site in the CaCu 5 type crystal structure of the main phase is mainly composed of Ni, and a part thereof is substituted with Co, Mn, Al, etc. In the hydrogen storage alloy, the Co content needs to be less than 5 mass%. This is because Co is conventionally added about 10 mass% in order to suppress the miniaturization of the alloy. However, as described later, in the present invention, the addition of Mg can suppress the miniaturization, and Co This is because it is not preferable for improving the high-rate discharge characteristics, and it is preferable that it is less because it is the most expensive metal among the elements constituting the hydrogen storage alloy of the present invention. The lower limit of Co is not particularly defined, but is preferably 1 mass% or more from the viewpoint of maintaining a CaCu 5 type crystal structure.

本発明の水素吸蔵合金は、上記成分以外に、Mgを0.01mass%以上1mass%未満含有することが必要である。Mgは、0.01mass%含有することによって、合金の微細化を抑制するほか、高率放電特性をも改善する特異な元素である。しかし、1mass%を超えて添加すると、放電容量の低下を招くようになるほか、溶解時にMgが多量に蒸発するので好ましくない。なお、高い放電容量を確保する観点からは、Mgの添加量は0.1〜0.5mass%の範囲が好ましい。   The hydrogen storage alloy of this invention needs to contain Mg 0.01 mass% or more and less than 1 mass% other than the said component. Mg is a unique element that suppresses refinement of the alloy and improves high-rate discharge characteristics by containing 0.01 mass%. However, addition exceeding 1 mass% is not preferable because it causes a decrease in discharge capacity and a large amount of Mg evaporates during dissolution. From the viewpoint of securing a high discharge capacity, the amount of Mg added is preferably in the range of 0.1 to 0.5 mass%.

Mgの添加により上記のような効果が得られる原因については、まだ明確とはなっていないが、Mgは、主相のCaCu5型の結晶構造におけるCaサイトを構成する元素であると考えられているが、むしろ、上記主相と主相の間の粒界に沿って形成される第2相に濃化する傾向があり、このMgの濃化によって、水素の吸蔵、放出に伴う体積変化による微細化を抑制すると共に、高率放電特性の向上に寄与しているものと考えられる。 The reason why the above effect can be obtained by the addition of Mg has not been clarified yet, but Mg is considered to be an element constituting the Ca site in the CaCu 5 type crystal structure of the main phase. Rather, there is a tendency to concentrate in the second phase formed along the grain boundary between the main phase and the main phase, and this Mg concentration is caused by the volume change accompanying the occlusion and release of hydrogen. It is considered that miniaturization is suppressed and that high-rate discharge characteristics are improved.

なお、本発明の水素吸蔵合金は、電池の充放電特性の向上を図るため、主相のCaサイトに、La,Ce,Pr,Ndの外に、Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,LuおよびYのうち少なくとも一つの元素を3mass%以下の範囲で含ませてもよい。   In addition, in order to improve the charge / discharge characteristics of the battery, the hydrogen storage alloy of the present invention has Sm, Eu, Gd, Tb, Dy, Ho in addition to La, Ce, Pr, Nd in the Ca phase of the main phase. , Er, Tm, Yb, Lu, and Y may be included within a range of 3 mass% or less.

本発明の水素吸蔵合金は、上述したように、CaCu5型の結晶構造を有する主相と、該主相と主相の間の粒界に沿って形成される第2相からなるものであるが、上記主相が全合金中に占める割合は、体積分率にして95%以上99.9%以下であることが好ましい。95%未満では、高い放電容量を維持することが困難であり、また、99.9%を超えると、微細化を抑制する効果が得られないからである。なお、主相および第2相は、合金の断面を研摩し、SEM等で観察することにより容易に判別することができる。 As described above, the hydrogen storage alloy of the present invention comprises a main phase having a CaCu 5 type crystal structure and a second phase formed along a grain boundary between the main phase and the main phase. However, the proportion of the main phase in the total alloy is preferably 95% or more and 99.9% or less in terms of volume fraction. If it is less than 95%, it is difficult to maintain a high discharge capacity, and if it exceeds 99.9%, the effect of suppressing miniaturization cannot be obtained. The main phase and the second phase can be easily discriminated by polishing the cross section of the alloy and observing it with an SEM or the like.

次に、本発明の水素吸蔵合金の製造方法について説明する。
本発明の水素吸蔵合金は、合金の成分組成が上記範囲となるよう、各合金成分の原料を準備し、これを高周波溶解炉、アーク溶解炉等で溶解し、その後、鋳型に鋳込んで鋳塊(インゴット)とする鋳型鋳込み法、ターンテーブル上あるいはロール上に溶湯を注いで凝固させるテーブル鋳込み法やロール急冷法、あるいは、アトマイズ法など、公知の方法で鋳造、凝固させて製造することができる。
Next, the manufacturing method of the hydrogen storage alloy of this invention is demonstrated.
In the hydrogen storage alloy of the present invention, raw materials for each alloy component are prepared so that the alloy component composition falls within the above range, and this is melted in a high-frequency melting furnace, an arc melting furnace, etc., and then cast into a mold. It can be manufactured by casting and solidifying by a known method such as a mold casting method to make a lump (ingot), a table casting method in which a molten metal is poured onto a turntable or roll to solidify, a roll quenching method, or an atomizing method. it can.

この際、本発明の製造方法では、上記合金の溶解、鋳造作業を、ヘリウムガスを10vol%以上混合した不活性雰囲気下で行うことが必要である。というのは、従来、活性な水素吸蔵合金の溶解、鋳造作業は、アルゴンガスなどの不活性雰囲気下で行われてきた。しかし、Mgは、低融点で蒸気圧が高い元素である。そのため、アルゴンガスなどの不活性雰囲気下で溶解した場合には、溶解中に多量のMgが蒸発、揮散するため、組成の制御が難しくなったり、蒸発したMgが溶解炉の看視窓や炉壁等に付着して、炉内の看視を妨げたり、大気に触れた時に発火や爆発を起こすおそれがある。   At this time, in the production method of the present invention, it is necessary to perform melting and casting of the alloy in an inert atmosphere in which helium gas is mixed at 10 vol% or more. This is because conventionally, melting and casting of active hydrogen storage alloys have been performed under an inert atmosphere such as argon gas. However, Mg is an element having a low melting point and a high vapor pressure. Therefore, when melted in an inert atmosphere such as argon gas, a large amount of Mg evaporates and volatilizes during melting, making it difficult to control the composition, There is a risk of fire or explosion when attached to walls, etc., hindering observation in the furnace or touching the atmosphere.

上記のような現象を抑制するには、溶解雰囲気中にヘリウムガスを混合することが有効である。ヘリウムガスの混合によりMgの蒸発が抑制される理由は、ヘリウムガスは、他の不活性ガスと比較して、熱伝導率が高く、密度が低く、平均自由工程が長いことに起因したものと考えられる。なお、ヘリウムガスの混合量は、少なくとも10vol%混合する必要があり、より好ましくは30vol%以上、さらに好ましくは50vol%以上である。また、溶解、鋳造作業におけるヘリウムガス混合雰囲気の圧力は、0.01〜1MPaであることが好ましい。0.01MPa未満では、Mgの蒸発温度が低下して蒸発が促進されるため、また、1MPaを超えると、融点が上昇するため溶解が難しくなるためである。   In order to suppress the above phenomenon, it is effective to mix helium gas in the dissolution atmosphere. The reason why Mg evaporation is suppressed by mixing helium gas is that helium gas has higher thermal conductivity, lower density, and longer mean free path than other inert gases. Conceivable. The mixing amount of the helium gas needs to be mixed at least 10 vol%, more preferably 30 vol% or more, and further preferably 50 vol% or more. Moreover, it is preferable that the pressure of the helium gas mixed atmosphere in melt | dissolution and casting operation | work is 0.01-1MPa. If it is less than 0.01 MPa, the evaporation temperature of Mg is lowered and evaporation is promoted, and if it exceeds 1 MPa, the melting point rises and dissolution becomes difficult.

ヘリウムガスと混合する他の気体(不活性ガス)としては、アルゴンガスが最も好ましい。アルゴンガスは、ヘリウムガスと比較して安価であり、高温においても、MgやMm,Niなどと反応することがないからである。   Argon gas is most preferable as another gas (inert gas) mixed with helium gas. This is because argon gas is less expensive than helium gas and does not react with Mg, Mm, Ni, etc. even at high temperatures.

また、本発明の製造方法では、上記水素吸蔵合金の溶解作業におけるMgの添加は、金属Mgより高融点の合金原料を予め溶解し、その後、投入することが好ましい。というのは、上述したように、Mgは低融点で蒸気圧が高い元素であるため、他の合金原料と一緒に溶解した場合には、Mgが先に溶解して蒸発することとなり、上述した雰囲気制御だけでは、Mgの蒸発を完全に防止することはできないからである。したがって、Mgの添加は、できる限り溶解作業の後期に投入し、蒸発を抑制することが好ましい。なお、Mgの原料としては、金属Mgに限られるものではなく、他の合金構成元素と合金化して高融点化した、例えば、Mg−Ni合金などを用いてもよいことは勿論である。   Further, in the production method of the present invention, it is preferable that the addition of Mg in the melting operation of the hydrogen storage alloy is performed by previously melting an alloy raw material having a melting point higher than that of metal Mg and then adding it. This is because, as described above, Mg is an element having a low melting point and a high vapor pressure. Therefore, when it is dissolved together with other alloy raw materials, Mg is first dissolved and evaporated. This is because Mg evaporation cannot be completely prevented only by controlling the atmosphere. Therefore, it is preferable to add Mg as late as possible in the melting operation to suppress evaporation. The raw material of Mg is not limited to metal Mg, and it is of course possible to use, for example, an Mg—Ni alloy that has been alloyed with other alloy constituent elements to increase the melting point.

上記のようにして得た合金は、その後、必要に応じてアルゴンガス等の不活性雰囲気下(真空〜1MPa)で、600〜1200℃で0.5〜50時間の熱処理を施してから、ハンマーミル、ロールミル、ジョークラッシャー、ボールミル等通常公知の方法で粉砕して、平均粒径が10〜150μmの範囲の粒径を有する合金粉末とする。   The alloy obtained as described above is then subjected to heat treatment at 600 to 1200 ° C. for 0.5 to 50 hours in an inert atmosphere (vacuum to 1 MPa) as necessary, The powder is pulverized by a generally known method such as a roll mill, a jaw crusher, or a ball mill to obtain an alloy powder having an average particle size of 10 to 150 μm.

上記のようにして得た本発明の水素吸蔵合金は、通常公知の方法でニッケル水素二次電池の負極に用いることができる。例えば、上記合金の粉末に、PVA,PTFE,CMC,SBRなどのバインダーを適量混合し、さらに必要に応じてカーボングラファイト、NiやCu粉末等を添加し、混練して合金ペーストとし、この合金ペーストをニッケル発泡体、ニッケル繊維体等の三次元導電支持体に充填したり、パンチングプレート等の二次元導電支持体に塗布、乾燥し、ロールで加圧したりすることにより負極板とすることができる。
本発明の水素吸蔵合金を負極に用いたニッケル水素二次電池は、低Coかつ低Laであっても、放電容量が高くて高率放電特性に優れ、しかも長寿命であるという優れた特性を有する。
The hydrogen storage alloy of the present invention obtained as described above can be used for a negative electrode of a nickel metal hydride secondary battery by a generally known method. For example, an appropriate amount of a binder such as PVA, PTFE, CMC, or SBR is mixed with the above alloy powder, and carbon graphite, Ni, or Cu powder is added as necessary, and kneaded to obtain an alloy paste. Can be made into a negative electrode plate by filling a three-dimensional conductive support such as a nickel foam or nickel fiber body, or by applying to a two-dimensional conductive support such as a punching plate, drying, and pressing with a roll. .
The nickel-metal hydride secondary battery using the hydrogen storage alloy of the present invention for the negative electrode has excellent characteristics such as high discharge capacity, high rate discharge characteristics, and long life even at low Co and low La. Have.

以下、本発明について、発明例と比較例とを対比しながら説明する。
CaCu5型結晶構造を有する水素吸蔵合金のCaサイトを構成する元素であるLa,Ce,Pr,Ndと、Cuサイトを占める元素であるNi,Co,Mn,Al、および合金中に添加するMgのそれぞれの原料(純度99.9mass%以上)を用意し、製品としての成分組成が表1に示したものとなるよう歩留まり等を考慮しながら各原料を秤量し、それらの原料を、高周波溶解炉を用いて、ヘリウムガスを70vol%混合したアルゴンガス雰囲気下で溶解し、鉄製の鋳型に鋳込んでインゴットとし、その後、それらのインゴットを、Arガス雰囲気下で、約1000℃の温度で20時間の熱処理を施してから、ハンマーミル粉砕機を用いて粒径D50が35〜37μmの粉末状の水素吸蔵合金とした。ここで、上記粒径D50とは、粉体の粒度分布を測定した場合において、ある粒径より小さい粒子の累積質量が、全粉体質量の50%を占めるときの粒径を意味する。なお、本発明では、水素吸蔵合金の粒度分布の測定は、レーザー回折型粒度分布測定装置を用いて行った。
Hereinafter, the present invention will be described while comparing the inventive examples with the comparative examples.
La, Ce, Pr, Nd, which constitute the Ca site of hydrogen storage alloys with a CaCu 5- type crystal structure, Ni, Co, Mn, Al, which occupy the Cu site, and Mg added to the alloy Each raw material (purity 99.9 mass% or more) is prepared, each raw material is weighed in consideration of the yield, etc. so that the component composition as a product is shown in Table 1, and these raw materials are used in a high frequency melting furnace. Is melted in an argon gas atmosphere mixed with 70 vol% helium gas, cast into an iron mold to form ingots, and then the ingots are heated at a temperature of about 1000 ° C. for 20 hours under an Ar gas atmosphere. after subjected to heat treatment, the particle size D 50 with a hammer mill has a powdery hydrogen-absorbing alloy 35~37Myuemu. Here, the particle size D 50 means the particle size when the cumulative mass of particles smaller than a certain particle size occupies 50% of the total powder mass when the particle size distribution of the powder is measured. In the present invention, the particle size distribution of the hydrogen storage alloy was measured using a laser diffraction type particle size distribution measuring device.

上記のようにして得た水素吸蔵合金粉末に、バインダーとしてCMC,PTFEなどを加えた水溶液を混合し、さらに、導電剤としてカーボン粉を混合し、混練して合金ペーストとし、この合金ペーストをパンチングプレートに塗布し、乾燥し、ロールで加圧して、厚さが0.6〜0.8mmの負極板を作製した。また、正極板として、水酸化ニッケルを塗布したものを準備し、それぞれの極板にリード線を溶接し、6NのKOH電解液に浸漬して評価用ニッケル水素二次電池を作製した。   The hydrogen storage alloy powder obtained as described above is mixed with an aqueous solution containing CMC, PTFE or the like as a binder, carbon powder is mixed as a conductive agent, kneaded to obtain an alloy paste, and the alloy paste is punched. It apply | coated to the plate, it dried, and it pressurized with the roll, and produced the negative electrode plate whose thickness is 0.6-0.8 mm. Moreover, the thing which apply | coated nickel hydroxide as a positive electrode plate was prepared, the lead wire was welded to each electrode plate, and it immersed in 6N KOH electrolyte solution, and produced the nickel-hydrogen secondary battery for evaluation.

上記評価用電池を用いて、各水素吸蔵合金についての標準容量、高率放電容量、微粉化特性および電池寿命を下記の要領で評価した。
それぞれの電池に対して、20℃において、負極容量に対して0.2Cで120%充電し、30分間休止後、0.2Cで電池電圧が0.8Vになるまで放電する工程を1サイクルとする充放電試験を15サイクル繰り返して行い、その間に得られた最大の放電容量を標準容量とした。
その後、同様にして、20℃において、0.2Cで120%充電後、2.0Cで放電する試験を5回実施し、この際に得られた最大の容量を高率放電容量(ハイレート特性)とした。
さらにその後、上記合計20サイクル試験後の電池を解体して負極板から水素吸蔵合金を取出し、バインダーや導電剤を除去したのち、その合金の粒径D50を、上述したレーザー回折型粒度分布測定装置を用いて測定し、それぞれの水素吸蔵合金の微粉化特性(微粉化のし易さ)を評価した。
また、電池の寿命は、上述した評価用ニッケル水素二次電池の放電容量が、標準容量の80%に低下するまでのサイクル数で評価した。なお、電池の寿命の評価は、Mgを含まず、Coを5.60mass%含むNo.19の水素吸蔵合金の電池寿命を100%とする寿命指数(%)で相対的に評価した。
Using the evaluation battery, the standard capacity, high rate discharge capacity, pulverization characteristics, and battery life of each hydrogen storage alloy were evaluated in the following manner.
Charging / discharging each battery at 120 ° C with 120% charge at 0.2C relative to the negative electrode capacity, resting for 30 minutes, and then discharging until the battery voltage reaches 0.8V at 0.2C The test was repeated 15 cycles, and the maximum discharge capacity obtained during that period was taken as the standard capacity.
Thereafter, similarly, at 20 ° C., after 120% charge at 0.2 C, a test for discharging at 2.0 C was conducted five times, and the maximum capacity obtained at this time was defined as a high rate discharge capacity (high rate characteristic). .
Thereafter, remove the hydrogen storage alloy negative electrode plate disassembled battery after the total of 20 cycle test, after removing the binder and conductive agent, the particle size D 50 of the alloy, a laser diffraction type particle size distribution measurement described above It measured using the apparatus and evaluated the pulverization characteristic (easiness of pulverization) of each hydrogen storage alloy.
The battery life was evaluated by the number of cycles until the discharge capacity of the evaluation nickel-hydrogen secondary battery described above was reduced to 80% of the standard capacity. The battery life was evaluated relatively by a life index (%), in which the battery life of a No. 19 hydrogen storage alloy containing no Co and 5.60 mass% Co was 100%.

上記測定の結果を、表1に併記して示した。表1から、合金中に、Laを1.5mass%以上24mass%未満含有させ、Mgを0.01〜1mass%未満の範囲で添加し、さらに、主相の体積分率を95%以上とすることにより、Coの含有量を5mass%未満に低減しても、標準容量を維持しつつ、微粉化を抑制するとともに、高率放電特性にも優れた水素吸蔵合金が得られることがわかる。   The results of the above measurements are shown together in Table 1. From Table 1, by adding 1.5 mass% or more and less than 24 mass% of La in the alloy, adding Mg in the range of 0.01 to less than 1 mass%, and further setting the volume fraction of the main phase to 95% or more, It can be seen that even if the Co content is reduced to less than 5 mass%, it is possible to obtain a hydrogen storage alloy that suppresses pulverization while maintaining the standard capacity and is excellent in high rate discharge characteristics.

Figure 2007056309
Figure 2007056309

実施例1と同様の方法によって、表2に示した成分組成を有するとともに、CaCu5型の結晶構造を有する主相の体積分率を変化させた合金No.21〜25の水素吸蔵合金を溶解し、粉砕して、それらの合金の粉末を作製した。次いで、実施例1と同様の方法で、水素吸蔵合金の電池特性(標準容量)を評価し、結果を表2に併記して示した。表2から、CaCu5型の結晶構造を有する主相が、体積分率で合金全体の95%以上99.9%以下である水素吸蔵合金において、高い放電容量が得られることがわかる。 In the same manner as in Example 1, the hydrogen storage alloys Nos. 21 to 25 having the composition shown in Table 2 and the volume fraction of the main phase having a CaCu 5 type crystal structure were changed were dissolved. And pulverized to produce powders of these alloys. Next, the battery characteristics (standard capacity) of the hydrogen storage alloy were evaluated in the same manner as in Example 1, and the results are also shown in Table 2. Table 2 shows that a high discharge capacity can be obtained in a hydrogen storage alloy in which the main phase having a CaCu 5 type crystal structure has a volume fraction of 95% or more and 99.9% or less of the whole alloy.

Figure 2007056309
Figure 2007056309

本発明の水素吸蔵合金は、ニッケル水素電池等の二次電池の負極材料としてだけでなく、燃料電池あるいは燃料電池の付属構成部材にも好適に用いることができる。
The hydrogen storage alloy of the present invention can be suitably used not only as a negative electrode material of a secondary battery such as a nickel metal hydride battery, but also as a fuel cell or a fuel cell accessory component.

Claims (6)

CaCu5型の結晶構造を有する主相とMgが濃化した第2相とからなる水素吸蔵合金であって、該主相のCaサイトを構成するLaを1.5mass%以上24mass%未満、合金中にMgを0.01mass%以上1mass%未満含有することを特徴とする水素吸蔵合金。 A hydrogen storage alloy consisting of a main phase with a CaCu 5 type crystal structure and a second phase enriched with Mg, and the La constituting the Ca site of the main phase is 1.5 mass% or more and less than 24 mass%, in the alloy A hydrogen storage alloy characterized by containing Mg in an amount of 0.01 mass% to less than 1 mass%. 上記主相のCuサイトを構成するCoを5mass%未満含有することを特徴とする請求項1に記載の水素吸蔵合金。 The hydrogen storage alloy according to claim 1, comprising less than 5 mass% of Co constituting the Cu site of the main phase. 上記主相の合金全体に占める体積分率が95%以上であることを特徴とする請求項1または2に記載の水素吸蔵合金。 3. The hydrogen storage alloy according to claim 1, wherein a volume fraction of the main phase in the entire alloy is 95% or more. 合金原料を溶解し、鋳造して、Laを1.5mass%以上24mass%未満、Mgを0.01mass%以上1mass%未満含有する水素吸蔵合金を製造するに当たり、上記溶解、鋳造作業を、ヘリウムガスを10vol%以上含む不活性雰囲気中で行うことを特徴とする水素吸蔵合金の製造方法。 When the alloy material is melted and cast to produce a hydrogen storage alloy containing La in the range of 1.5 mass% to less than 24 mass% and Mg in the range of 0.01 mass% to less than 1 mass%, the above melting and casting operations are performed using 10 vol of helium gas. % Of hydrogen storage alloy manufacturing method characterized by performing in inert atmosphere containing more than%. 上記溶解作業におけるMgの添加は、Mgより高融点の合金原料を予め溶解してから行うことを特徴とする請求項4に記載の水素吸蔵合金の製造方法。 The method for producing a hydrogen storage alloy according to claim 4, wherein the addition of Mg in the melting operation is performed after previously melting an alloy material having a melting point higher than that of Mg. 請求項1〜5のいずれかに記載の水素吸蔵合金を負極に用いることを特徴とするニッケル水素二次電池。
A nickel metal hydride secondary battery using the hydrogen storage alloy according to claim 1 for a negative electrode.
JP2005242741A 2005-08-24 2005-08-24 Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery Active JP4634256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005242741A JP4634256B2 (en) 2005-08-24 2005-08-24 Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005242741A JP4634256B2 (en) 2005-08-24 2005-08-24 Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery

Publications (2)

Publication Number Publication Date
JP2007056309A true JP2007056309A (en) 2007-03-08
JP4634256B2 JP4634256B2 (en) 2011-02-16

Family

ID=37920041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005242741A Active JP4634256B2 (en) 2005-08-24 2005-08-24 Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery

Country Status (1)

Country Link
JP (1) JP4634256B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157669A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237054A (en) * 1987-11-09 1989-09-21 Hazelett Strip Casting Corp Direct continuous casting method of metallic product and flexible casting belt used for direct continuous casting of metallic product
JPH1025529A (en) * 1996-03-28 1998-01-27 Shin Etsu Chem Co Ltd Hydrogen storage alloy containing rare earth element, its production, alkali storage battery cathode using the alloy, and alkali storage battery
JP2001226722A (en) * 2000-02-14 2001-08-21 Toshiba Corp Method for producing hydrogen storage alloy
JP2002069511A (en) * 2000-08-29 2002-03-08 Shin Etsu Chem Co Ltd Method for producing hydrogen storage alloy and hydrogen storage alloy electrode
JP2002198045A (en) * 2000-12-27 2002-07-12 Yuasa Corp Negative electrode active substance for nickel - hydrogen storage battery, negative electrode for nickel - hydrogen storage battery and nickel - hydrogen storage battery
JP2004269929A (en) * 2003-03-06 2004-09-30 National Institute Of Advanced Industrial & Technology Hydrogen storage alloy, and electrode using the same
JP2005093297A (en) * 2003-09-18 2005-04-07 Yuasa Corp Hydrogen storage alloy powder and its manufacturing method, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237054A (en) * 1987-11-09 1989-09-21 Hazelett Strip Casting Corp Direct continuous casting method of metallic product and flexible casting belt used for direct continuous casting of metallic product
JPH1025529A (en) * 1996-03-28 1998-01-27 Shin Etsu Chem Co Ltd Hydrogen storage alloy containing rare earth element, its production, alkali storage battery cathode using the alloy, and alkali storage battery
JP2001226722A (en) * 2000-02-14 2001-08-21 Toshiba Corp Method for producing hydrogen storage alloy
JP2002069511A (en) * 2000-08-29 2002-03-08 Shin Etsu Chem Co Ltd Method for producing hydrogen storage alloy and hydrogen storage alloy electrode
JP2002198045A (en) * 2000-12-27 2002-07-12 Yuasa Corp Negative electrode active substance for nickel - hydrogen storage battery, negative electrode for nickel - hydrogen storage battery and nickel - hydrogen storage battery
JP2004269929A (en) * 2003-03-06 2004-09-30 National Institute Of Advanced Industrial & Technology Hydrogen storage alloy, and electrode using the same
JP2005093297A (en) * 2003-09-18 2005-04-07 Yuasa Corp Hydrogen storage alloy powder and its manufacturing method, hydrogen storage alloy electrode and nickel-hydrogen storage battery using the electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016157669A1 (en) * 2015-03-31 2016-10-06 パナソニックIpマネジメント株式会社 Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery
JPWO2016157669A1 (en) * 2015-03-31 2017-10-12 パナソニックIpマネジメント株式会社 Alloy powder for electrode, negative electrode for nickel metal hydride storage battery and nickel metal hydride storage battery using the same
EP3279348A4 (en) * 2015-03-31 2018-03-28 Panasonic Intellectual Property Management Co., Ltd. Alloy powder for electrodes, negative electrode for nickel-metal hydride storage batteries using same, and nickel-metal hydride storage battery

Also Published As

Publication number Publication date
JP4634256B2 (en) 2011-02-16

Similar Documents

Publication Publication Date Title
WO1997003213A1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
JP5092747B2 (en) Hydrogen storage alloy and manufacturing method thereof, hydrogen storage alloy electrode, and secondary battery
JP3965209B2 (en) Low Co hydrogen storage alloy
JP5856056B2 (en) Method for producing rare earth-Mg-Ni hydrogen storage alloy
JP3432873B2 (en) Hydrogen storage alloy for alkaline storage batteries
JP2020205192A (en) Nickel-hydrogen secondary battery negative electrode active material that needs no surface treatment, and nickel-hydrogen secondary battery
JP5681729B2 (en) Hydrogen storage alloy powder, negative electrode and nickel metal hydride secondary battery
WO2013118806A1 (en) Hydrogen absorption alloy powder, negative electrode, and nickel-hydrogen secondary cell
JP2017168362A (en) Negative electrode for alkali storage battery, method for manufacturing the same, and alkali storage battery
JP6736065B2 (en) Hydrogen storage alloy for alkaline storage battery and alkaline storage battery using the same
JP6726798B2 (en) Negative electrode for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
JP3603013B2 (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP4634256B2 (en) Hydrogen storage alloy, method for producing the same, and nickel metal hydride secondary battery
JP5851991B2 (en) Hydrogen storage alloy, negative electrode and nickel metal hydride secondary battery
JP2005133193A (en) LOW Co HYDROGEN STORAGE ALLOY
JP5179777B2 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
US6063524A (en) Hydrogen absorbing alloy for a negative electrode of an alkaline storage battery
JP7146710B2 (en) Negative electrode for alkaline storage battery, manufacturing method thereof, and alkaline storage battery
WO2021205749A1 (en) Hydrogen storage alloy for alkaline storage battery
JP2022138869A (en) Hydrogen-absorbing alloy, negative electrode for alkali storage batteries and alkali storage battery
JP2008258121A6 (en) Hydrogen storage alloy, negative electrode for nickel metal hydride secondary battery, nickel metal hydride secondary battery
CN117203791A (en) High-entropy hydrogen storage alloy, negative electrode for alkaline storage battery, and alkaline storage battery
JP2000345265A (en) Hydrogen storage alloy enabling high rate discharge of battery
JP2001200324A (en) Hydrogen storage alloy and nickel hydrogen secondary battery
JP2001216960A (en) Hydrogen absorbing alloys and secondary cell of nickel hydrogen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101118

R150 Certificate of patent or registration of utility model

Ref document number: 4634256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250