JP2007054721A - Reforming catalyst for hydrogen production, and method of producing hydrogen using the same - Google Patents

Reforming catalyst for hydrogen production, and method of producing hydrogen using the same Download PDF

Info

Publication number
JP2007054721A
JP2007054721A JP2005241920A JP2005241920A JP2007054721A JP 2007054721 A JP2007054721 A JP 2007054721A JP 2005241920 A JP2005241920 A JP 2005241920A JP 2005241920 A JP2005241920 A JP 2005241920A JP 2007054721 A JP2007054721 A JP 2007054721A
Authority
JP
Japan
Prior art keywords
catalyst
group
hydrogen
rhodium
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005241920A
Other languages
Japanese (ja)
Other versions
JP4500943B2 (en
Inventor
Kazuhisa Murata
和久 村田
Isao Takahara
功 高原
Hitoshi Inaba
仁 稲葉
Masahiro Saito
昌弘 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005241920A priority Critical patent/JP4500943B2/en
Publication of JP2007054721A publication Critical patent/JP2007054721A/en
Application granted granted Critical
Publication of JP4500943B2 publication Critical patent/JP4500943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an improved nickel based reforming catalyst which is used for a reaction for producing hydrogen by the decomposition/reformation of gasoline or the like containing sulfurand is high in sulfur resistance, and to provide a method of industrially advantageously producing hydrogen from hydrocarbon by using the catalyst. <P>SOLUTION: The catalyst for hydrogen production for the reformation of hydrocarbon is obtained by supporting (i) a rhodium-containing material, (ii) a nickel-containing material, (iii) a material containing at least one kind selected from group VIB, VIIB and VIII metals in periodical table and (iv) a material containing group Ia metals or IIa metals in periodical table on a zirconia based or alumina based support. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭化水素の改質による水素製造用触媒及びそれを用いた水素の製造方法に関するものである。   The present invention relates to a catalyst for producing hydrogen by reforming hydrocarbons and a method for producing hydrogen using the same.

水素はアンモニアやメタノールの原料等として化学工業で広く使われており、今後は、燃料電池等のエネルギー源としても大量に使われる方向にある。とりわけ市販のガソリンや軽油等を原料として水素を製造する場合には、これらの中に含有する芳香族炭化水分、脂環式炭化水素、脂肪族炭化水素などを効率よく改質する必要がある。また微量存在する硫黄による炭素析出などを起こさない耐久性が要求される。   Hydrogen is widely used in the chemical industry as a raw material for ammonia and methanol, and in the future, it will be used in large quantities as an energy source for fuel cells and the like. In particular, when hydrogen is produced using commercially available gasoline, light oil or the like as a raw material, it is necessary to efficiently reform aromatic hydrocarbon water, alicyclic hydrocarbon, aliphatic hydrocarbon, and the like contained therein. Further, durability that does not cause carbon deposition due to a small amount of sulfur is required.

炭化水素からの水素製造を目的とした場合、(1)上記水蒸気改質(SR)、(2)酸素を用いた部分酸化(PO)、(3)水蒸気と酸素を併用した自熱的改質(ATR)、などの方法が通常用いられる。このような条件においてニッケル系触媒(非特許文献1、特許文献1参照)及びニッケル−パラジウム系触媒(非特許文献2参照)などが改質触媒として有効である。また炭化水素の部分酸化(2)では、ロジウム系など貴金属系触媒も用いられている(非特許文献3〜5、特許文献2〜3)。   For the purpose of hydrogen production from hydrocarbons, (1) Steam reforming (SR), (2) Partial oxidation (PO) using oxygen, (3) Autothermal reforming using steam and oxygen together A method such as (ATR) is usually used. Under such conditions, a nickel catalyst (see Non-Patent Document 1 and Patent Document 1), a nickel-palladium catalyst (see Non-Patent Document 2), and the like are effective as a reforming catalyst. In the partial oxidation (2) of hydrocarbons, noble metal catalysts such as rhodium are also used (Non-patent Documents 3 to 5, Patent Documents 2 to 3).

しかしながら、硫黄化合物を含む炭化水素混合物(例:市販のプレミアムガソリン)の場合には、用いる触媒金属の種類や酸素の有無にかかわらず含有する硫黄や芳香族化合物により触媒表面の硫化や炭素析出が起こり、活性が低下すると言う問題点があった。   However, in the case of a hydrocarbon mixture containing a sulfur compound (eg, commercially available premium gasoline), sulfur or aromatics contained on the catalyst surface may cause sulfurization or carbon deposition regardless of the type of catalyst metal used or oxygen. It occurred and there was a problem that activity decreased.

特願2004−065359Japanese Patent Application No. 2004-0665359 米国特許出願公開第2004229752号明細書U.S. Patent Application Publication No. 2004229752 米国特許出願公開第2004156778号明細書US Patent Application Publication No. 2004156778 D.J.Moon, K.Sreekumar,S.D.Lee, B.G.Lee, H.S.Kim, Appl.Catal.A: General,215, 1-9 (2001)D.J.Moon, K.Sreekumar, S.D.Lee, B.G.Lee, H.S.Kim, Appl.Catal.A: General, 215, 1-9 (2001) J.Zhang, Y.Wang, R.Ma,D.Wu, Appl.Catal. A: General, 243(2),251-259 (2003).J. Zhang, Y. Wang, R. Ma, D. Wu, Appl. Catal. A: General, 243 (2), 251-259 (2003). E. Newson, T.B.Truong, Int.J. Hydrogen Energy, 28, 1379-1386 (2003).E. Newson, T.B.Truong, Int.J.Hydrogen Energy, 28, 1379-1386 (2003). D.D. Schmidt, E.J.Klein, R.P. O’Connor, S. Tummala, Pre.Symp-ACS, Div.Fuel Chem., 46(2), 657-658(2001).D.D.Schmidt, E.J.Klein, R.P.O'Connor, S. Tummala, Pre.Symp-ACS, Div.Fuel Chem., 46 (2), 657-658 (2001). R. Subramanian,G.J.Panuccio, J.J.Krummenacher, I.C. Lee, L.D. Schmidt, Chem. Eng. Sci., 59, 5501-5507 (2004).R. Subramanian, G.J.Panuccio, J.J.Krummenacher, I.C. Lee, L.D. Schmidt, Chem. Eng. Sci., 59, 5501-5507 (2004).

本発明の目的は、硫黄を含むガソリン等の分解/改質により水素を製造する反応に用いるための、耐硫黄性を高めた改良型ニッケル系改質触媒、及び当該触媒系を用いて炭化水素から水素を工業的に有利に製造し得る方法を提供することにある。   An object of the present invention is to provide an improved nickel-based reforming catalyst with improved sulfur resistance for use in a reaction for producing hydrogen by cracking / reforming of sulfur-containing gasoline or the like, and a hydrocarbon using the catalyst system It is another object of the present invention to provide a method for producing hydrogen from an industrially advantageous point of view.

本発明者らは、上記課題を解決するために鋭意検討した結果、(i)ロジウム又はイリジウム含有物質、(ii)ニッケル含有物質、(iii)周期律表第6B族、7B族及び第8族金属から選ばれた少なくとも一種の金属を含む物質、及び(iv)周期律表第Ia族金属又はIIa族金属を含む物質を、ジルコニア系またはアルミナ系担体に担持させた改質触媒を用いると、(1)耐硫黄性が改善されること、(2)ロジウム使用量低減のためには、さらにランタノイド族金属から選ばれた金属を含む物質を添加することが有効であることも見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that (i) rhodium or iridium-containing material, (ii) nickel-containing material, (iii) Periodic Tables 6B, 7B and 8 When a reforming catalyst in which a substance containing at least one metal selected from metals and (iv) a substance containing a group Ia metal or a group IIa metal on the periodic table is supported on a zirconia-based or alumina-based carrier is used, It has also been found that it is effective to add a substance containing a metal selected from lanthanoid group metals in order to improve (1) sulfur resistance and (2) reduce the amount of rhodium used. It came to complete.

すなわち、この出願によれば、以下の発明が提供される。
(1)(i)ロジウム含有物質又はイリジウム含有物質、(ii)ニッケル含有物質、(iii)周期律表第6B族、7B族及び第8族金属から選ばれた少なくとも一種の金属を含む物質、及び(iv)周期律表第Ia族金属又はIIa族金属を含む物質を、ジルコニア系またはアルミナ系担体に担持させたことを特徴とする炭化水素の改質による水素製造用触媒。
(2)ランタノイド族金属から選ばれた物質をさらに添加することを特徴とする上記(1)に記載の水素製造用触媒。
(3)炭化水素が、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素から選ばれた少なくとも2種以上の混合油であることを特徴とする上記(1)又は(2)に記載の水素製造用触媒。
(4)炭化水素が、硫黄化合物を含むものであることを特徴とする上記(1)〜(3)何れかに記載の水素製造用触媒。
(5)炭化水素を改質触媒の存在下で加熱分解して水素を製造する方法において、改質触媒として上記(1)乃至(4)何れかに記載の改質触媒を用いることを特徴とする水素の製造方法。
That is, according to this application, the following invention is provided.
(1) (i) a rhodium-containing substance or iridium-containing substance, (ii) a nickel-containing substance, (iii) a substance containing at least one metal selected from Group 6B, Group 7B and Group 8 metal of the periodic table; And (iv) A catalyst for hydrogen production by reforming hydrocarbons, wherein a substance containing Group Ia metal or Group IIa metal of the periodic table is supported on a zirconia-based or alumina-based carrier.
(2) The hydrogen production catalyst as described in (1) above, wherein a substance selected from lanthanoid group metals is further added.
(3) The hydrocarbon according to (1) or (2) above, wherein the hydrocarbon is a mixed oil of at least two or more selected from aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons. Catalyst for hydrogen production.
(4) The catalyst for hydrogen production according to any one of (1) to (3) above, wherein the hydrocarbon contains a sulfur compound.
(5) In a method for producing hydrogen by thermally decomposing hydrocarbons in the presence of a reforming catalyst, the reforming catalyst according to any one of (1) to (4) above is used as the reforming catalyst. To produce hydrogen.

本発明のロジウム等修飾ニッケル系改質触媒では、ニッケル上に蓄積し、活性低下の原因となる炭素や硫黄を、酸化能に優れるロジウム等が酸化除去するので、市販ガソリン等を効率的/安定的に水素に変換することができる。また、周期律表第6B族、7B族、第8族及びランタノイド族金属から選ばれた少なくとも一種の金属特にレニウム等の添加により、低いロジウム添加量でも、十分な触媒耐久性を確保することができる。   In the modified nickel-based reforming catalyst such as rhodium of the present invention, carbon or sulfur that accumulates on nickel and causes a decrease in activity is oxidized and removed by rhodium or the like having an excellent oxidizing ability, so that commercially available gasoline and the like are efficiently / stable. Can be converted to hydrogen. In addition, by adding at least one metal selected from Group 6B, Group 7B, Group 8 and lanthanoid group metals, particularly rhenium, sufficient catalyst durability can be secured even with a low rhodium addition amount. it can.

本発明の水素製造に使用される改質触媒は、(i)ロジウム含有物質またはイリジウム含有物質、(ii)ニッケル含有物質、(iii)周期律表第6B族、7B族及び第8族金属から選ばれた少なくとも一種の金属を含む物質、及び(iv)周期律表第Ia族金属又はIIa族金属を含む物質と混合し、これらすべての成分を、ジルコニア系またはアルミナ系担体に担持させたものである。またランタノイド族金属から選ばれた物質をさらに添加したものである。   The reforming catalyst used for hydrogen production of the present invention comprises (i) a rhodium-containing material or iridium-containing material, (ii) a nickel-containing material, and (iii) a periodic table group 6B, group 7B and group 8 metal. A substance containing at least one selected metal and (iv) a substance containing a group Ia metal or a group IIa metal in the periodic table and all these components are supported on a zirconia or alumina carrier It is. Further, a substance selected from lanthanoid group metals is further added.

本発明の改質触媒の担体として用いるジルコニア系又はアルミナ系物質としては、これまで触媒担体として公知の各種ジルコニア又はゼオライト構造体及びそれらの前駆体が挙げられ、それらの製造法や原材料によっては何ら限定されるものではない。   As the zirconia-based or alumina-based material used as the carrier of the reforming catalyst of the present invention, various zirconia or zeolite structures known so far as catalyst carriers and their precursors can be mentioned. It is not limited.

このようなジルコニア系担体としては、アモルファスジルコニア、単斜晶ジルコニア、四方晶ジルコニアなどの酸化物が例示される。また焼成してジルコニアになる前駆体として、ジルコニウムイソプロポキシド、ジルコニウムアセチルアセトナートなどの有機ジルコニウム化合物、塩化ジルコニウム、硝酸ジルコニルなどの無機ジルコニウム塩などを用いることもできる。他方アルミナ系担体としては、α-アルミナ、β-アルミナ、γ-アルミナなどの酸化物が例示される。また焼成してアルミナになる前駆体として、アルミニウムイソプロポキシド、アルミニウムアセチルアセトナートなどの有機アルミニウム化合物、硝酸アルミニウム、塩化アルミニウムなどの無機アルミニウム塩が挙げられる。これらはそのまま焼成することもできるが、水やアンモニア等により加水分解して水酸化ジルコニアまたは水酸化アルミニウムとしてから、焼成することもできる。   Examples of such zirconia-based carriers include oxides such as amorphous zirconia, monoclinic zirconia, and tetragonal zirconia. Further, as a precursor that is calcined to become zirconia, organic zirconium compounds such as zirconium isopropoxide and zirconium acetylacetonate, and inorganic zirconium salts such as zirconium chloride and zirconyl nitrate can also be used. On the other hand, examples of the alumina carrier include oxides such as α-alumina, β-alumina, and γ-alumina. Examples of the precursor that is calcined into alumina include organic aluminum compounds such as aluminum isopropoxide and aluminum acetylacetonate, and inorganic aluminum salts such as aluminum nitrate and aluminum chloride. These can be calcined as they are, but can also be calcined after being hydrolyzed with water or ammonia to obtain zirconia hydroxide or aluminum hydroxide.

本発明で担体上に担持する触媒成分は、(i)ロジウムまたはイリジウム含有物質、(ii)ニッケル含有物質、(iii)周期律表第6B族、7B族及び第8族金属から選ばれた少なくとも一種の金属を含む物質および(iv)周期律表第Ia族金属又はIIa族金属である。
このうち(i)のロジウム含有物質としては,いかなる形態のものも含まれるが、水や有機溶媒に可溶なものが推奨され、硝酸ロジウム、硫酸ロジウムなどの無機酸ロジウム塩類、塩化ロジウム、臭化ロジウム、などのハロゲン化ロジウム類、四酢酸二ロジウムなどの有機酸ロジウム類、トリス(2.4-ペンタジオナト)ロジウム、ヘクサクロロロジウム酸ナトリウムなどのロジウム配位化合物、クロロトリス(トリフェニルフォスフィン)ロジウム、ドデカカルボニル四ロジウム、ヘキサカルボニル六ロジウム、ジ-μ-クロロ-ビス(1,5-シクロオクタジエン)二ロジウムなどの有機金属ロジウム類、などが例示される。
また(i)のイリジウム含有物質としては,いかなる形態のものも含まれるが、水や有機溶媒に可溶なものが推奨され、塩化イリジウム、臭化イリジウム、などのハロゲン化イリジウム類、ヘキサクロロイリジウム(III)酸カリウム、ヘキサクロロイリジウム酸アンモニウムなどの有機酸イリジウム類、ヘキサアンミンイリジウム(III)塩化物、クロロペンタアンミンイリジウム(III)塩化物、などのイリジウム配位化合物、クロロカルボニルビス(トリフェニルフォスフィン)イリジウム(I)、ジカルボニル(シクロペンタジエニル)イリジウム(I)、ドデカカルボニル四イリジウム(0)、などの有機金属イリジウム類などが例示される。ロジウムまたはイリジウム系物質の添加量は任意であるが、ジルコニア又はアルミナ系担体に対して、ロジウム又はイリジウム0.001wt%〜50wt%、好ましくは0.05wt%〜5wt%である。
The catalyst component supported on the support in the present invention is at least selected from (i) rhodium or iridium-containing material, (ii) nickel-containing material, and (iii) Group 6B, 7B and Group 8 metals of the periodic table Substances containing one kind of metal and (iv) Group Ia metal or Group IIa metal of the periodic table.
Of these, the rhodium-containing substance (i) includes any form, but those that are soluble in water or organic solvents are recommended, and include rhodium nitrate, rhodium sulfate and other inorganic acid rhodium salts, rhodium chloride, odor Rhodium halides, rhodium halides, organic acid rhodium such as dirhodium tetraacetate, rhodium coordination compounds such as tris (2.4-pentadionato) rhodium, sodium hexachlororhodate, chlorotris (triphenylphosphine) rhodium, Examples thereof include organometallic rhodiums such as dodecacarbonyl tetrarhodium, hexacarbonyl hexarhodium, and di-μ-chloro-bis (1,5-cyclooctadiene) dirhodium.
The iridium-containing substance (i) includes any form, but those that are soluble in water or organic solvents are recommended. Iridium halides such as iridium chloride and iridium bromide, hexachloroiridium ( III) Organic acid iridiums such as potassium acid and ammonium hexachloroiridate, iridium coordination compounds such as hexaammineiridium (III) chloride, chloropentammineiridium (III) chloride, chlorocarbonylbis (triphenylphosphine) Examples thereof include organometallic iridiums such as iridium (I), dicarbonyl (cyclopentadienyl) iridium (I), and dodecacarbonyltetrairidium (0). The addition amount of the rhodium or iridium material is arbitrary, but it is 0.001 wt% to 50 wt%, preferably 0.05 wt% to 5 wt%, rhodium or iridium with respect to the zirconia or alumina carrier.

(ii)のニッケル含有物質としては,いかなる形態のものも含まれるが、水や有機溶媒に可溶なものが推奨され、硝酸ニッケル、硫酸ニッケルなどの無機酸ニッケル塩類、塩化ニッケル、臭化ニッケルなどのハロゲン化ニッケル類、蓚酸ニッケル、ステアリン酸ニッケル、酢酸ニッケルなどの有機酸ニッケル類、ニッケロセン、ニッケルアセチルアセトネートなどの有機金属ニッケル類、などが例示される。ニッケル系物質の添加量は任意であるが、ジルコニア又はアルミナ系担体に対して、ニッケル0.01wt%〜100wt%、好ましくは1wt%〜70wt%である。   The nickel-containing substance (ii) includes any form, but those that are soluble in water or organic solvents are recommended. Nickel salts of inorganic acids such as nickel nitrate and nickel sulfate, nickel chloride, nickel bromide Examples thereof include nickel halides such as nickel oxalate, nickel stearate, nickel acetate, and other organic acid nickel, nickel metallocene, nickel metal acetylacetonate, and other organic metal nickel. The amount of the nickel-based substance added is arbitrary, but is 0.01 wt% to 100 wt% nickel, preferably 1 wt% to 70 wt% with respect to the zirconia or alumina support.

また、上記ニッケル含有物質と併用される、(iii)の周期律表第6B族、7B族及び第8族金属から選ばれた少なくとも一種の金属を含む物質としては、周期律表第6B族、7B族、第8族及びランタノイド族金属から選ばれた少なくとも一種の金属を含む物質が用いられる。   In addition, as the substance containing at least one metal selected from Group 6B, Group 7B and Group 8 metal of (iii) in the periodic table used in combination with the nickel-containing material, Group 6B of the Periodic Table, A substance containing at least one metal selected from Group 7B, Group 8 and lanthanoid group metals is used.

Figure 2007054721
Figure 2007054721

ニッケル系物質と同時に用いられる、(iv)の周期律表第Ia族金属又はIIa族金属、については、周期律表第Ia族金属又はIIa族金属(アルカリ又はアルカリ土類金属ともいう)を含む物質であり、この場合、第Ia族金属としては、リチウム、ナトリウム、カリウムが挙げられ、IIa族金属としては、マグネシウム、ストロンチウム、カルシウム、バリウムなどが挙げられる。これらの金属を含む物質としては、それらの硝酸塩、硫酸塩などの無機酸塩、塩化物、臭化物などのハロゲン化物、蓚酸塩、酢酸塩などの有機酸塩、クロム酸塩、バナジン酸塩などの遷移金属酸塩、テトラカルボニル鉄酸塩などの有機金属酸塩、シクロペンタジエニル化合物などの有機配位化合物、メチラートやエチラートなどのアルコラート類、などが例示される。これらの添加量は任意であるが、ジルコニアやアルミナ系担体に対して金属元素0.01wt%〜80wt%、好ましくは1wt%〜20wt%である。これらの添加物(II)は、単独もしくは2種以上の混合物として用いることができる。   The group (Ia) metal or group IIa metal of the periodic table (iv) used simultaneously with the nickel-based material includes the group Ia metal or group IIa metal (also referred to as alkali or alkaline earth metal) of the periodic table. In this case, the Group Ia metal includes lithium, sodium, and potassium, and the Group IIa metal includes magnesium, strontium, calcium, barium, and the like. Substances containing these metals include inorganic acid salts such as nitrates and sulfates, halides such as chlorides and bromides, organic acid salts such as oxalates and acetates, chromates and vanadates. Examples thereof include organic metal acid salts such as transition metal acid salts and tetracarbonyl ferrates, organic coordination compounds such as cyclopentadienyl compounds, alcoholates such as methylate and ethylate, and the like. Although these addition amounts are arbitrary, they are 0.01 wt%-80 wt%, preferably 1 wt%-20 wt% of a metal element with respect to a zirconia or an alumina type support | carrier. These additives (II) can be used alone or as a mixture of two or more.

また、ロジウムまたはイリジウム成分の低減のために添加されるランタノイド族金属から選ばれた金属を含む成分としては、ランタン、セリウム、ユーロピウム、サマリウム、ディスプロシウム、ガドリニウムなどの硝酸塩、硫酸塩などの無機酸塩、塩化物、臭化物などのハロゲン化物、蓚酸塩、酢酸塩などの有機酸塩、テトラキス(2,4-ペンタジオナト)セリウムなどの有機配位化合物などが例示される。ランタノイド系物質の添加量は任意であるが、ジルコニア又はアルミナ系担体に対して、ランタノイド金属0.01wt%〜100wt%、好ましくは0.5wt%〜50wt%である。   In addition, as a component containing a metal selected from lanthanoid group metals added for reducing rhodium or iridium components, inorganic materials such as nitrates and sulfates such as lanthanum, cerium, europium, samarium, dysprosium and gadolinium Examples thereof include halides such as acid salts, chlorides and bromides, organic acid salts such as oxalates and acetates, and organic coordination compounds such as tetrakis (2,4-pentadionato) cerium. The amount of the lanthanoid substance added is arbitrary, but is 0.01 wt% to 100 wt%, preferably 0.5 wt% to 50 wt%, of the lanthanoid metal with respect to the zirconia or alumina carrier.

本発明の予備改質触媒の調製方法としては,(イ)担体であるジルコニアまたはアルミナ系物質に、上記すべての成分を含む溶液を含浸させる方法,(ロ)ジルコニアまたはアルミナ系担体に、ロジウムまたはイリジウム成分とランタノイド成分を含浸させ、さらにニッケルなど残りの成分(ii)〜(iv)を沈殿させる方法,(ハ)ジルコニアまたはアルミナ系担体に、すべての成分を含む溶液を滴下する方法(incipient wetness法),(ニ)ジルコニアまたはアルミナ系担体と、すべての成分を混ねいする方法、(ホ)ゾルゲル法(ジルコニウムまたはアルミナ前駆有機化合物,すべての成分を水やアルコールなどの溶液にすべて溶かし、必要に応じて有機酸を添加して、蒸発乾固後、焼成する)、などが例示される。
(ロ)の場合,(ii)〜(iv)成分を沈殿させる沈殿剤として、アンモニア水,炭酸カリウム,炭酸ナトリウムなどが例示される.また(ホ)の有機酸としては、クエン酸、アルギン酸などの生物由来の多価酸が好ましく用いられる。(イ)〜(ホ)のいずれの方法でも、最終的に焼成を行うが、この時の温度は、300〜1500℃、好ましくは500〜900℃である。
The preparation method of the pre-reforming catalyst of the present invention includes (a) a method of impregnating a zirconia or alumina material as a support with a solution containing all the above components, and (b) a rhodium or zirconia or alumina carrier. A method of impregnating an iridium component and a lanthanoid component and further precipitating the remaining components (ii) to (iv) such as nickel; (c) a method of dropping a solution containing all the components on a zirconia or alumina carrier (incipient wetness) Method), (d) Method of mixing zirconia or alumina carrier and all components, (e) Sol-gel method (zirconium or alumina precursor organic compound, all components are dissolved in water or alcohol etc., all necessary Depending on the case, an organic acid is added, and after evaporation to dryness, firing is performed).
In the case of (b), examples of the precipitating agent for precipitating the components (ii) to (iv) include ammonia water, potassium carbonate, and sodium carbonate. As the organic acid (e), polyvalent acids derived from organisms such as citric acid and alginic acid are preferably used. Firing is finally carried out by any of the methods (a) to (e), and the temperature at this time is 300 to 1500 ° C., preferably 500 to 900 ° C.

本発明で水素製造原料として使用する炭化水素としては、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素の2種以上の組み合わせからなる炭化水素油たとえばガソリン、灯油などの混合油が代表例として例示される。この場合、硫黄分を含んでいてもよく、炭化水素混合物中に許容される硫黄濃度は、0〜1000ppm(硫黄の重量基準)、好ましくは0〜10ppmである。   The hydrocarbon used as a raw material for hydrogen production in the present invention is typically a hydrocarbon oil composed of a combination of two or more of aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, such as gasoline and kerosene mixed oils. Illustrated as an example. In this case, it may contain a sulfur content, and the allowable sulfur concentration in the hydrocarbon mixture is 0 to 1000 ppm (based on the weight of sulfur), preferably 0 to 10 ppm.

また通常、常温で気体又は液体の炭化水素を単独又は混合させて用いることもできる。具体的には、メタン、エタン、エチレン、プロパン等の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。また、パラフィンワックス等の常温で固体の炭化水素を使用することもできる。   Usually, gaseous or liquid hydrocarbons can be used alone or mixed at room temperature. Specific examples include aliphatic hydrocarbons such as methane, ethane, ethylene and propane; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane and cyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene. Also, hydrocarbons that are solid at room temperature, such as paraffin wax, can be used.

さらに硫黄を含む物質を任意に添加して用いることもできる。この時の物質として、チオフェン、ジベンゾチオフェンなどの芳香族チオフェン類、チオフェノール、プロピルスルフィドなどの脂肪族硫黄化合物などの有機硫黄物質、硫化水素、二硫化炭素、二酸化硫黄などの無機硫黄物質が例示される。炭化水素混合物中に許容される硫黄濃度は、上記ガソリン等の場合と同様に、0〜1000ppm(硫黄の重量基準)、好ましくは0〜10ppmである。   Further, a substance containing sulfur can be arbitrarily added and used. Examples of substances at this time include aromatic sulfur thiophenes such as thiophene and dibenzothiophene, organic sulfur substances such as aliphatic sulfur compounds such as thiophenol and propyl sulfide, and inorganic sulfur substances such as hydrogen sulfide, carbon disulfide, and sulfur dioxide. Is done. The sulfur concentration allowed in the hydrocarbon mixture is 0 to 100 ppm (based on the weight of sulfur), preferably 0 to 10 ppm, as in the case of gasoline and the like.

炭化水素は、そのまま純品で用いることもできるが、熱力学的に有利に効率良く熱分解させるためにアルゴン、窒素、ヘリウム等の不活性ガスで希釈して使うことも可能である。このときの希釈率は任意である。
反応温度は200〜1,200℃、好ましくは400〜800℃であり、また触媒表面と炭化水素ガスとの接触時間は0.01〜1000秒、好ましくは0.1〜10秒とするのが望ましい。
Hydrocarbons can be used pure as they are, but they can also be diluted with an inert gas such as argon, nitrogen, helium, etc. in order to thermally decompose efficiently and efficiently thermodynamically. The dilution rate at this time is arbitrary.
The reaction temperature is 200 to 1,200 ° C., preferably 400 to 800 ° C., and the contact time between the catalyst surface and the hydrocarbon gas is 0.01 to 1000 seconds, preferably 0.1 to 10 seconds. desirable.

また本反応は通常水の共存下で行われ、水(スチーム)量は任意であるが、原料炭化水素中に含まれる炭素1モルに対し0.001〜100モル、好ましくは0.01〜10モルの割合である。さらに、水に加えて酸素や二酸化炭素を共存させることも可能であり、加える量は任意であるが、水と同程度の範囲で用いられる。   Further, this reaction is usually carried out in the presence of water, and the amount of water (steam) is arbitrary, but 0.001 to 100 mol, preferably 0.01 to 10 mol per mol of carbon contained in the raw material hydrocarbon. The molar ratio. Furthermore, it is possible to coexist oxygen and carbon dioxide in addition to water, and the amount to be added is arbitrary, but it is used in the same range as water.

本発明の熱分解方法は、バッチ方式或いは流通方式のいずれも採用できるが、好ましくは流通方式で実施される。流通方式で行う場合には、固定床方式、移動床方式、循環流動層方式等を適宜採用できる。本発明の方法を固定床方式で実施する場合には、改質触媒を石英綿などで固定して充填する。また触媒を石英砂などで希釈することもできる。   The thermal decomposition method of the present invention can employ either a batch method or a distribution method, but is preferably carried out by a distribution method. In the case of performing the distribution method, a fixed bed method, a moving bed method, a circulating fluidized bed method, or the like can be appropriately employed. When the method of the present invention is carried out in a fixed bed system, the reforming catalyst is fixed and filled with quartz cotton or the like. The catalyst can be diluted with quartz sand or the like.

本発明のロジウム/セリウム等で修飾したニッケル系改質触媒は、従来公知のニッケル系触媒とは異なり、硫黄や芳香族物質などによりニッケル上に析出し活性低下の原因となる炭素やニッケルの硫化物を、共存するロジウム/セリウム等の効果により酸化除去するので、ガソリンや灯油などの硫黄を含む炭化水素混合油を用いたとしても、安定性良く長時間改質反応により水素を製造することが可能となる。   The nickel-based reforming catalyst modified with rhodium / cerium or the like of the present invention differs from the conventionally known nickel-based catalyst in that it precipitates on nickel due to sulfur or an aromatic substance and causes a decrease in activity, such as carbon or nickel sulfide. Since the product is oxidized and removed by the effect of coexisting rhodium / cerium, etc., hydrogen can be produced by a long-term reforming reaction with good stability even when using a hydrocarbon mixed oil containing sulfur such as gasoline and kerosene. It becomes possible.

次に、本発明を実施例によって更に詳細に説明する。   Next, the present invention will be described in further detail with reference to examples.

実施例1
[改質触媒の調製]
硝酸ジルコニル21gを蒸留水100gに溶かし、水で希釈したアンモニア水100ml(アンモニア水25ml/水75ml)を滴下して水酸化ジルコニウムの沈殿を得る。100℃で一晩乾燥後、ここで、300℃で3時間焼成してアモルファスジルコニア(AZ)を得た。硝酸ロジウム0.138g(ロジウムの担持率2wt%)、過レニウム酸アンモン0.180g(同5wt%)、硝酸ニッケル2.48g(同10wt%)と硝酸ストロンチウム0.604gを(同5wt%)を蒸留水40gに溶かし、その後溶液にAZ2.5gを懸濁させ、金属分をジルコニアに担持する。蒸留水を蒸発乾固し、100℃で一晩放置後,540℃で6時間焼成し,2.14gのRh/Re/NiSr/ZrO2触媒を得た。
[水素の製造]
こうして得た触媒0.2gをペレット化し、適度に分割した後、これを内径12mmのセラミクス製反応管の中央に充填して触媒層を形成した。この反応管を電気炉内に縦に装填し、反応管上部からガスを流通させた。触媒の予備処理は、水素600℃で2時間還元した。その後、市販のプレミアムガソリン(硫黄3.8ppm入り)/スチーム/酸素/窒素が3.33/75.33/14.23/7.11(モル比) (スチーム/炭素比=3.4(モル比)、酸素/炭素比=1.28(モル比))の混合ガスを234cm3/minの速度で通しながら、反応管の内温を5℃/minの速度で750℃まで昇温させて反応を開始した。この時ガソリンと水は液体ポンプにて注入した。5時間後及び175時間後のガス組成をガスクロマトグラフにて分析したところ、転化率、水素生成速度及び水素組成は表1のようになり、5時間後でMCH転化率100%、水素生成速度169.2μmol/s/g、組成60.03%が得られた。175時間後でMCH転化率100%、水素生成速度157.4μmol/s/g、組成57.48%が得られ、誤差範囲内で活性低下は見られなかった。副生物はメタン、CO、CO2であった。なお、ガソリン転化率(CHC%)、水素速度(F)、水素組成(Comp)は下式にて計算される。
(式)
CHC=(1- ([Fuel]out/[N2]out)/[Fuel]in/[N2]in)
[Fuel]out, [Fuel]inは、反応前後のガソリン由来の全ピーク面積(ガスクロマトグラフ(GC)より測定)、[N2]out、[N2]inは、標準窒素のGC分析値を示す。
FH2 = FTotal outlet×XH2 outlet = Fst×XH2 outlet /Xst outlet
ここでFH2 :H2ガス生成物の生成速度、FTotal outlet :出口ガス流速、XH2 outlet :H2成分の出口ガス組成、Fst :窒素の流速、Xst outlet :窒素の出口組成表す。
Comp.H2 = FH2 / SFi x100
Example 1
[Preparation of reforming catalyst]
Zirconyl nitrate (21 g) is dissolved in distilled water (100 g), and 100 ml of ammonia water diluted with water (ammonia water 25 ml / water 75 ml) is added dropwise to obtain zirconium hydroxide precipitate. After drying at 100 ° C. overnight, it was calcined at 300 ° C. for 3 hours to obtain amorphous zirconia (AZ). Rhodium nitrate 0.138g (rhodium loading 2wt%), ammonium perrhenate 0.180g (5wt%), nickel nitrate 2.48g (10wt%) and strontium nitrate 0.604g (5wt%) in 40g of distilled water Dissolve, then suspend 2.5 g of AZ in the solution, and support the metal in zirconia. Distilled water was evaporated to dryness, left at 100 ° C. overnight, and then calcined at 540 ° C. for 6 hours to obtain 2.14 g of Rh / Re / NiSr / ZrO 2 catalyst.
[Production of hydrogen]
After 0.2 g of the catalyst thus obtained was pelletized and appropriately divided, this was filled in the center of a ceramic reaction tube having an inner diameter of 12 mm to form a catalyst layer. The reaction tube was vertically loaded in an electric furnace, and gas was circulated from the upper part of the reaction tube. In the catalyst pretreatment, hydrogen was reduced at 600 ° C. for 2 hours. After that, commercially available premium gasoline (with 3.8 ppm sulfur) / steam / oxygen / nitrogen 3.33 / 75.33 / 14.23 / 7.11 (molar ratio) (steam / carbon ratio = 3.4 (molar ratio), oxygen / carbon ratio = 1.28 (molar) The reaction temperature was increased to 750 ° C. at a rate of 5 ° C./min while starting the reaction. At this time, gasoline and water were injected by a liquid pump. When the gas composition after 5 hours and 175 hours was analyzed by gas chromatography, the conversion rate, hydrogen production rate and hydrogen composition were as shown in Table 1. After 5 hours, the MCH conversion rate was 100% and the hydrogen production rate was 169.2. μmol / s / g, composition 60.3% was obtained. After 175 hours, an MCH conversion rate of 100%, a hydrogen production rate of 157.4 μmol / s / g, and a composition of 57.48% were obtained, and no decrease in activity was observed within the error range. By-products were methane, CO, and CO2. The gasoline conversion rate (C HC %), hydrogen velocity (F), and hydrogen composition (Comp) are calculated by the following formulas.
(formula)
C HC = (1- ([Fuel] out / [N 2 ] out ) / [Fuel] in / [N 2 ] in )
[Fuel] out , [Fuel] in is the total peak area derived from gasoline before and after the reaction (measured from gas chromatograph (GC)), [N 2 ] out , [N 2 ] in is the GC analysis value of standard nitrogen Show.
F H2 = F Total outlet × X H2 outlet = F st × X H2 outlet / X st outlet
Here, F H2 : H2 gas product production rate, F Total outlet : outlet gas flow rate, X H2 outlet : H2 component outlet gas composition, F st : nitrogen flow rate, X st outlet : nitrogen outlet composition.
Comp. H2 = F H2 / SFi x100

比較例1
Rh成分を用いない以外は実施例1と同様にして触媒を調製し、同様に反応させたところ、表1の比較例1のようになり、5時間後でガソリン転化率100%、水素生成速度295.3μmol/s/g、組成70.7%、わずか50時間後でも、ガソリン転化率63.6%、水素生成速度54.08μmol/s/g、組成48.42%となり、転化率が2/3、水素生成速度が約1/6に低下し、Ni上の炭素析出量も多かった。
Comparative Example 1
A catalyst was prepared in the same manner as in Example 1 except that the Rh component was not used, and reacted in the same manner as in Comparative Example 1 in Table 1. After 5 hours, the gasoline conversion rate was 100% and the hydrogen production rate. 295.3μmol / s / g, composition 70.7%, gasoline conversion 63.6% even after 50 hours, hydrogen production rate 54.08μmol / s / g, composition 48.42%, conversion rate 2/3, hydrogen production rate approx. It decreased to 1/6, and the amount of carbon deposition on Ni was also large.

実施例2
硝酸ロジウムの代わりに、6塩化イリジウム2アンモニウム0.1157gを用いて、2wt%Ir修飾Re/NiSr/ZrO2触媒を調製し、実施例1と同様にして反応させたところ、表2のような結果となり、ロジウムの場合と同様に活性低下は少なかった。
Example 2
A 2 wt% Ir-modified Re / NiSr / ZrO2 catalyst was prepared using 0.1157 g of iridium hexachloride iridium instead of rhodium nitrate and reacted in the same manner as in Example 1. The results shown in Table 2 were obtained. As in the case of rhodium, the decrease in activity was small.

比較例2〜3
硝酸ロジウムの代わりに、ジアミノ亜硝酸パラジウムおよびテトラアンミン硝酸白金を担持量が2wt%となるように用いた以外、実施例1と同様にして触媒を調製し、同様に反応を行ったところ、パラジウムでは、40時間後にガソリン転化率が3/4となり、炭素析出による反応管閉塞のため、反応を中止した。また白金では、80時間後に水素生成速度が1/2.5となり、やはり反応管閉塞のため、反応を中止した。
Comparative Examples 2-3
A catalyst was prepared in the same manner as in Example 1 except that diamino palladium nitrite and tetraammine platinum nitrate were used in place of rhodium nitrate so that the supported amount was 2 wt%. After 40 hours, the gasoline conversion rate became 3/4, and the reaction was stopped because the reaction tube was blocked by carbon deposition. For platinum, the hydrogen production rate became 1 / 2.5 after 80 hours, and the reaction was stopped because the reaction tube was blocked.

実施例3〜5
ロジウム担持量を、それぞれ1wt%、0.5wt%及び0.25wt%とした以外、実施例1と同様にして触媒を調製し、同様に反応させたところ、表1のような結果となり、用いたロジウム濃度の範囲では、175時間後の活性低下は少なく有効であった。
Examples 3-5
A catalyst was prepared and reacted in the same manner as in Example 1 except that the supported amounts of rhodium were 1 wt%, 0.5 wt% and 0.25 wt%, respectively. The results shown in Table 1 were obtained. Within the concentration range, the decrease in activity after 175 hours was small and effective.

実施例6〜7
ロジウム担持量を0.1wt%とし、さらに硝酸セリウム10wt%または5wt%添加した以外は実施例1と同様に触媒を調製し(0.1wt%Rh/10wt%または5wt%Ce/Re/NiSr/ZrO2触媒)、同様に反応させたところ、表1のような結果となり、175時間後でも顕著な活性低下は認められなかった。
Examples 6-7
A catalyst was prepared in the same manner as in Example 1 except that the amount of rhodium supported was 0.1 wt% and cerium nitrate was added at 10 wt% or 5 wt% (0.1 wt% Rh / 10wt% or 5wt% Ce / Re / NiSr / ZrO2 catalyst). ), The reaction was carried out in the same manner, and the results were as shown in Table 1. No significant decrease in activity was observed even after 175 hours.

比較例4
ロジウムを用いない以外、実施例6と同様にして触媒を調製し、反応させたところ、水素生成速度が1/4以下、水素組成も10%低下する結果であり、硝酸セリウムと低濃度のロジウムの併用が有効であった。
Comparative Example 4
A catalyst was prepared and reacted in the same manner as in Example 6 except that rhodium was not used. As a result, the hydrogen production rate was reduced to 1/4 or less, and the hydrogen composition was also reduced by 10%. The combined use was effective.

実施例8
硝酸セリウムの代わりに硝酸ランタン10wt%を用いた以外、実施例6と同様にして触媒調製とそれを用いた反応を行ったところ、セリウムの場合と同様に低濃度ロジウムとの併用が有効であった。
Example 8
Except for using 10 wt% lanthanum nitrate instead of cerium nitrate, the catalyst was prepared and reacted in the same manner as in Example 6. As in the case of cerium, the combined use with low-concentration rhodium was effective. It was.

実施例9
10wt%セリウム修飾Re/NiSr/ZrO2触媒をまず540℃で5時間焼成後、得られたセリウム修飾物質に硝酸ロジウムを担持し、再度540℃で3時間焼成した。こうして得た触媒を用いて実施例6と同様にして反応させたところ、175時間後でも顕著な活性低下は認められなかった。
Example 9
A 10 wt% cerium-modified Re / NiSr / ZrO2 catalyst was first calcined at 540 ° C. for 5 hours, and then the rhodium nitrate was supported on the obtained cerium-modified material and again calcined at 540 ° C. for 3 hours. When the catalyst thus obtained was reacted in the same manner as in Example 6, no significant reduction in activity was observed even after 175 hours.

実施例10
実施例6で175時間反応に使用した触媒を、air中800℃, 2時間焼成、さらに水素750℃で2時間還元して、触媒再生を行った。こうした触媒の再処理後にもう一度実施例6と同様にして反応させたところ、活性低下は認められなかった。

Example 10
The catalyst used in the reaction in Example 6 for 175 hours was calcined in air at 800 ° C. for 2 hours and further reduced at 750 ° C. for 2 hours to regenerate the catalyst. When the reaction was again carried out in the same manner as in Example 6 after reprocessing the catalyst, no decrease in activity was observed.

Figure 2007054721
Figure 2007054721

Claims (5)

(i)ロジウム含有物質又はイリジウム含有物質、(ii)ニッケル含有物質、(iii)周期律表第6B族、7B族及び第8族金属から選ばれた少なくとも一種の金属を含む物質、及び(iv)周期律表第Ia族金属又はIIa族金属を含む物質を、ジルコニア系またはアルミナ系担体に担持させたことを特徴とする炭化水素の改質による水素製造用触媒。 (I) a rhodium-containing material or iridium-containing material, (ii) a nickel-containing material, (iii) a material containing at least one metal selected from Group 6B, Group 7B and Group 8 metals of the periodic table, and (iv) A catalyst for hydrogen production by reforming hydrocarbons, characterized in that a substance containing Group Ia metal or Group IIa metal on the periodic table is supported on a zirconia-based or alumina-based carrier. ランタノイド族金属から選ばれた物質をさらに添加することを特徴とする請求項1に記載の水素製造用触媒。 2. The hydrogen production catalyst according to claim 1, further comprising a substance selected from lanthanoid group metals. 炭化水素が、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素から選ばれた少なくとも2種以上の混合油であることを特徴とする請求項1又は2に記載の水素製造用触媒。 The catalyst for hydrogen production according to claim 1 or 2, wherein the hydrocarbon is a mixed oil of at least two kinds selected from aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons. 炭化水素が、硫黄化合物を含むものであることを特徴とする請求項1〜3何れかに記載の水素製造用触媒。 The hydrocarbon for producing hydrogen according to any one of claims 1 to 3, wherein the hydrocarbon contains a sulfur compound. 炭化水素を改質触媒の存在下で加熱分解して水素を製造する方法において、改質触媒として請求項1乃至4何れかに記載の改質触媒を用いることを特徴とする水素の製造方法。

A method for producing hydrogen, wherein the reforming catalyst according to any one of claims 1 to 4 is used as the reforming catalyst in a method for producing hydrogen by thermally decomposing a hydrocarbon in the presence of the reforming catalyst.

JP2005241920A 2005-08-24 2005-08-24 Reforming catalyst for hydrogen production and method for producing hydrogen using the same Expired - Fee Related JP4500943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005241920A JP4500943B2 (en) 2005-08-24 2005-08-24 Reforming catalyst for hydrogen production and method for producing hydrogen using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005241920A JP4500943B2 (en) 2005-08-24 2005-08-24 Reforming catalyst for hydrogen production and method for producing hydrogen using the same

Publications (2)

Publication Number Publication Date
JP2007054721A true JP2007054721A (en) 2007-03-08
JP4500943B2 JP4500943B2 (en) 2010-07-14

Family

ID=37918657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005241920A Expired - Fee Related JP4500943B2 (en) 2005-08-24 2005-08-24 Reforming catalyst for hydrogen production and method for producing hydrogen using the same

Country Status (1)

Country Link
JP (1) JP4500943B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149900A1 (en) * 2007-06-07 2008-12-11 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production method, and reforming reactor
WO2014136279A1 (en) 2013-03-07 2014-09-12 大阪瓦斯株式会社 Reforming catalyst for hydrocarbon compounds, and production method therefor
JP2017176991A (en) * 2016-03-30 2017-10-05 株式会社 Acr Steam reforming catalyst and steam reforming method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078840A1 (en) * 2001-03-29 2002-10-10 Idemitsu Kosan Co., Ltd. Catalyst for reforming hydrocarbon and method for preparation thereof, and process for reforming hydrocarbon using said catalyst
JP2004057869A (en) * 2002-07-25 2004-02-26 Nissan Motor Co Ltd Fuel reforming catalyst and manufacturing method of hydrogen enriched gas
JP2005066525A (en) * 2003-08-26 2005-03-17 National Institute Of Advanced Industrial & Technology Catalyst for producing hydrogen and method for producing hydrogen using the same
JP2005169236A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Fuel reforming catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078840A1 (en) * 2001-03-29 2002-10-10 Idemitsu Kosan Co., Ltd. Catalyst for reforming hydrocarbon and method for preparation thereof, and process for reforming hydrocarbon using said catalyst
JP2004057869A (en) * 2002-07-25 2004-02-26 Nissan Motor Co Ltd Fuel reforming catalyst and manufacturing method of hydrogen enriched gas
JP2005066525A (en) * 2003-08-26 2005-03-17 National Institute Of Advanced Industrial & Technology Catalyst for producing hydrogen and method for producing hydrogen using the same
JP2005169236A (en) * 2003-12-10 2005-06-30 Nissan Motor Co Ltd Fuel reforming catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008149900A1 (en) * 2007-06-07 2008-12-11 Sumitomo Seika Chemicals Co., Ltd. Hydrogen production method, and reforming reactor
JPWO2008149900A1 (en) * 2007-06-07 2010-08-26 住友精化株式会社 Method for producing hydrogen and reforming reactor
WO2014136279A1 (en) 2013-03-07 2014-09-12 大阪瓦斯株式会社 Reforming catalyst for hydrocarbon compounds, and production method therefor
JP2017176991A (en) * 2016-03-30 2017-10-05 株式会社 Acr Steam reforming catalyst and steam reforming method

Also Published As

Publication number Publication date
JP4500943B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
Nie et al. Mechanistic understanding of alloy effect and water promotion for Pd-Cu bimetallic catalysts in CO2 hydrogenation to methanol
Montero et al. Origin and nature of coke in ethanol steam reforming and its role in deactivation of Ni/La2O3–αAl2O3 catalyst
Abatzoglou et al. Review of catalytic syngas production through steam or dry reforming and partial oxidation of studied liquid compounds
KR100825157B1 (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
EP1380341B1 (en) Catalytic process for reforming hydrocarbon using said catalyst
KR101298783B1 (en) Process for the preparation of fisher-tropsch catalysts
EP1513613A2 (en) Catalyst
US7771702B2 (en) Sulfur-tolerant catalysts and related precursors and processes
EA016492B1 (en) Catalytic hydrogenation of carbon dioxide into syngas mixture
JP2009254929A (en) Reforming catalyst for manufacturing hydrogen suitable for hydrogen manufacture at low temperature, and hydrogen manufacturing method using the catalyst
Chen et al. Highly Efficient CO2 to CO Transformation over Cu‐Based Catalyst Derived from a CuMgAl‐Layered Double Hydroxide (LDH)
JP2005046742A (en) Method for preparing catalyst for fischer-tropsch synthesis
JP4500943B2 (en) Reforming catalyst for hydrogen production and method for producing hydrogen using the same
JP2010155234A (en) Hydrocarbon reforming catalyst, manufacturing method thereof and fuel cell containing this catalyst
JP6293416B2 (en) Method for autothermal reforming of hydrocarbon compounds
JPWO2005037962A1 (en) Method for producing liquefied petroleum gas mainly composed of propane or butane
JP2011194340A (en) Catalyst for producing hydrogen and method for producing hydrogen-containing gas
JP4182220B2 (en) Pre-reforming catalyst for hydrogen production and method for producing hydrogen using the same
JP4174589B2 (en) Catalyst for producing hydrogen and method for producing hydrogen using the same
KR20190135799A (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
JP2008055252A (en) Steam modifying catalyst, hydrogen manufacturing apparatus and fuel cell system
JP2010069434A (en) Autothermal reforming catalyst
JP3742816B2 (en) Carbon monoxide hydrogenation using metal sulfide catalyst
JP4860226B2 (en) Partial oxidation reforming catalyst and partial oxidation reforming method
Zhao et al. Impact of doping ZrO2 with Sn on CO2 hydrogenation over dispersed Ru

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees