JP2007053316A - Esd protection element - Google Patents

Esd protection element Download PDF

Info

Publication number
JP2007053316A
JP2007053316A JP2005239005A JP2005239005A JP2007053316A JP 2007053316 A JP2007053316 A JP 2007053316A JP 2005239005 A JP2005239005 A JP 2005239005A JP 2005239005 A JP2005239005 A JP 2005239005A JP 2007053316 A JP2007053316 A JP 2007053316A
Authority
JP
Japan
Prior art keywords
insulating film
gate electrode
gate insulating
esd protection
protection element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005239005A
Other languages
Japanese (ja)
Inventor
Atsuhiro Kinoshita
敦寛 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005239005A priority Critical patent/JP2007053316A/en
Publication of JP2007053316A publication Critical patent/JP2007053316A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ESD protection element which is optimal for an Fin FET. <P>SOLUTION: The ESD protection element has a semiconductor substrate, an insulating layer formed on the semiconductor substrate, a plate-like semiconductor layer provided vertically to one region on the insulating layer, a first gate electrode formed to cross and hold the plate-like semiconductor layer therebetween via the first gate insulating film, and a second gate electrode formed on the first gate electrode via a second gate insulating film. The plate-like semiconductor layer comprises a channel region in face to face with the first gate electrode via the first gate insulating film, and a pair of source/drain electrodes formed in both sides of the channel region. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体装置に係わり、特にLSI内部をサージ電流などから保護する、ESD保護素子に関する。   The present invention relates to a semiconductor device, and more particularly to an ESD protection element that protects the inside of an LSI from a surge current or the like.

半導体集積回路中の電界効果トランジスタは、その高性能化に伴ってスケーリングされているが、近年ではそのゲート絶縁膜の厚みは二酸化珪素に換算して1nm近くにまで薄膜化されているものも珍しくない。ゲート絶縁膜が薄膜化されると、電気的な絶縁破壊耐圧は膜厚に依存して著しく低下する。このような薄膜ゲート絶縁膜を持つ半導体装置においては、製造中や使用時などに機械や人間の持つ静電気が電子回路中に入ると、ゲート絶縁膜に高い電圧がかかって破壊されることがある。このような現象をESD(Electro- Static Discharge)破壊と呼ぶ。   Field effect transistors in semiconductor integrated circuits have been scaled as their performance has increased, but in recent years, the thickness of the gate insulating film has been reduced to nearly 1 nm in terms of silicon dioxide. Absent. When the gate insulating film is thinned, the electrical breakdown voltage is significantly reduced depending on the film thickness. In a semiconductor device having such a thin gate insulating film, when static electricity of a machine or a human enters into an electronic circuit during manufacturing or use, the gate insulating film may be damaged due to a high voltage applied. . Such a phenomenon is called ESD (Electro-Static Discharge) destruction.

そこで多くの半導体装置は、外部からのサージ電流の侵入を防ぐための、ESD保護素子と呼ばれる半導体装置及び回路を持っており、ゲート絶縁膜がESD破壊されるのを防いでいる。   Therefore, many semiconductor devices have a semiconductor device and a circuit called an ESD protection element for preventing a surge current from entering from the outside, and the gate insulating film is prevented from being destroyed by ESD.

一方、半導体装置の高性能化に伴い、電界効果トランジスタの構造を変えることで、これまで以上の高性能化を達成しようとする研究が進んでおり、立体構造トランジスタも将来の半導体基本素子として期待されている。その中で、現在最も期待されているものの一つがFinFETと呼ばれる、Fin型(板状)活性領域を有するトランジスタである(例えば、特許文献1参照)。   On the other hand, with the improvement in performance of semiconductor devices, research to achieve higher performance than before has been advanced by changing the structure of field effect transistors, and three-dimensional transistors are also expected as basic semiconductor elements in the future. Has been. Among them, one of the most promising at present is a transistor having a Fin-type (plate-like) active region called FinFET (see, for example, Patent Document 1).

FinFETで構成されるLSIの場合、ESD保護素子もFinFETで構成する事が実用上簡便であるが、FinFETは、使用できるゲート絶縁膜の厚みに構造上限界があり、ゲートにサージが入力されるタイプのESD保護素子をFinFETで構成すると耐圧が低くなってしまうという問題があった。
特開2003−243667号公報
In the case of an LSI composed of FinFETs, it is practically simple to construct an ESD protection element also using FinFETs. However, FinFET has a structural limit in the thickness of a gate insulating film that can be used, and a surge is input to the gate. When the type of ESD protection element is composed of FinFET, there is a problem that the breakdown voltage is lowered.
JP 2003-243667 A

このように従来、高性能なLSIを実現するにはFinFETを用いることが有効であるが、FinFETにおいてはゲートにサージが入るタイプのESD保護素子を実現することが難しいという問題があった。   Thus, conventionally, it is effective to use a FinFET to realize a high-performance LSI, but there is a problem that it is difficult to realize an ESD protection element of a type in which a surge enters the gate in the FinFET.

本発明は、上記事情を考慮して成されたもので、その目的とするところは、FinFETで構成されたLSI中に製造可能なESD保護素子を提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ESD protection element that can be manufactured in an LSI constituted by FinFETs.

上記課題を解決するために、本発明のESD保護素子の第1は、半導体基板と、前記半導体基板上に形成された絶縁層と、前記絶縁層上の1領域に垂直に設けられた板状半導体層と、前記板状半導体層の中央部において、第1のゲート絶縁膜を介して前記板状半導体層を跨ぎかつこれを挟むように形成された第1のゲート電極と、前記第1のゲート電極上に、第2のゲート絶縁膜を介して形成された第2のゲート電極とを具備し、前記板状半導体層は、前記第1のゲート絶縁膜を介して前記第1のゲート電極と対向するチャネル領域と、このチャネル領域の両側に形成された一対のソース・ドレイン電極とを含むことを特徴とする。   In order to solve the above problems, a first ESD protection element according to the present invention includes a semiconductor substrate, an insulating layer formed on the semiconductor substrate, and a plate-like shape provided perpendicular to one region on the insulating layer. A semiconductor layer; a first gate electrode formed so as to straddle and sandwich the plate-like semiconductor layer via a first gate insulating film in a central portion of the plate-like semiconductor layer; And a second gate electrode formed on the gate electrode via a second gate insulating film, and the plate-like semiconductor layer is formed on the first gate electrode via the first gate insulating film. And a pair of source / drain electrodes formed on both sides of the channel region.

また、本発明のESD保護素子の第2は、半導体基板と、前記半導体基板上に形成された絶縁層と、前記絶縁層上に垂直に設けられた板状半導体層と、前記板状半導体層の中央部において、第1のゲート絶縁膜を介して前記板状半導体層を跨ぎかつこれを挟むように形成された第1のゲート電極と、前記第1のゲート電極の引き出しパッドと、前記引出しパッド上に、第2のゲート絶縁膜を介して形成された第2のゲート電極とを具備し、前記板状半導体層は、前記第1のゲート絶縁膜を介して前記第1のゲート電極と対向するチャネル領域と、このチャネル領域を挟んで両側に形成された一対のソース・ドレイン電極とからなることを特徴とする。   The second ESD protection element of the present invention includes a semiconductor substrate, an insulating layer formed on the semiconductor substrate, a plate-like semiconductor layer provided vertically on the insulating layer, and the plate-like semiconductor layer. A first gate electrode formed so as to straddle and sandwich the plate-like semiconductor layer via a first gate insulating film, a lead pad for the first gate electrode, and the lead And a second gate electrode formed on the pad via a second gate insulating film, and the plate-like semiconductor layer is connected to the first gate electrode via the first gate insulating film. It is characterized by comprising a channel region facing each other and a pair of source / drain electrodes formed on both sides of the channel region.

本発明によれば、FinFETの本来の(第1の)ゲートに接続して、第2のゲート絶縁膜を介して第2のゲート電極を形成してESD保護素子としているので、FinFETの駆動力低下を最小限に抑えながら、総合的なゲート絶縁膜の耐圧を飛躍的に高めることができる。このことは、特にFinFETで構成されたLSIに組み込むESD保護素子として極めて有用である。   According to the present invention, since the second gate electrode is formed via the second gate insulating film by being connected to the original (first) gate of the FinFET, the ESD protection element is provided. The overall breakdown voltage of the gate insulating film can be dramatically increased while minimizing the decrease. This is extremely useful as an ESD protection element incorporated in an LSI composed of FinFETs.

以下、本発明の詳細を図示の実施形態によって説明する。   The details of the present invention will be described below with reference to the illustrated embodiments.

(第1の実施形態)
図1は、本発明の第1の実施形態に係わるESD保護素子100の素子構造を示す摸式的な斜視図、図2はESD保護素子100の等価回路図および応用回路、図3(a)は上面図、図3(b)は、図3(a)のB−B線に沿った断面図、図3(c)は正面図である。なお、図ではESD保護素子100が矩形の半導体基板110の上に形成されるように描かれているが、半導体基板110は図示しない半導体チップの1領域であり、ESD保護素子は半導体チップに組み込めるものであることを注記しておく。
(First embodiment)
FIG. 1 is a schematic perspective view showing an element structure of an ESD protection element 100 according to the first embodiment of the present invention, FIG. 2 is an equivalent circuit diagram and an application circuit of the ESD protection element 100, and FIG. 3 is a top view, FIG. 3B is a cross-sectional view taken along line BB in FIG. 3A, and FIG. 3C is a front view. In the figure, the ESD protection element 100 is depicted as being formed on a rectangular semiconductor substrate 110. However, the semiconductor substrate 110 is a region of a semiconductor chip (not shown), and the ESD protection element can be incorporated into the semiconductor chip. Note that it is.

より詳細には、シリコン基板110上に、シリコン酸化膜等からなる埋め込み絶縁膜111及びFin型(板状)半導体層112が形成されている。半導体層112の中央部はチャネル領域112cであり、チャネル領域112c上には、第1のゲート絶縁膜113を介して、これを跨ぎかつ挟むように第1のゲート電極114が形成されている。さらに、チャネル領域112cをチャネル長方向から挟んでソース・ドレイン領域(電極)115が形成されている。さらに、ゲート電極114と接して第2のゲート絶縁膜116が形成され、第2のゲート絶縁膜116上に第2のゲート電極117が形成されている。   More specifically, a buried insulating film 111 made of a silicon oxide film or the like and a Fin type (plate-like) semiconductor layer 112 are formed on the silicon substrate 110. A central portion of the semiconductor layer 112 is a channel region 112c, and a first gate electrode 114 is formed on the channel region 112c with a first gate insulating film 113 interposed between and sandwiching the first gate electrode 114. Further, source / drain regions (electrodes) 115 are formed with the channel region 112c sandwiched from the channel length direction. Further, a second gate insulating film 116 is formed in contact with the gate electrode 114, and a second gate electrode 117 is formed on the second gate insulating film 116.

本実施形態では、第2のゲート電極117に電圧をかけると、これと容量的に結合した第1のゲート電極114にも電圧がかかり、チャネルがONする。この第2のゲート電極117及び第2のゲート絶縁膜116を設けることで、ゲートに高電圧がかかった場合でも、第1のゲート絶縁膜が破壊されることが無い。すなわち、FinFETの高駆動電流であるという特徴を大幅に損なうことなく、飛躍的に絶縁破壊耐圧を向上させることができる。   In this embodiment, when a voltage is applied to the second gate electrode 117, a voltage is also applied to the first gate electrode 114 that is capacitively coupled thereto, and the channel is turned on. By providing the second gate electrode 117 and the second gate insulating film 116, even when a high voltage is applied to the gate, the first gate insulating film is not destroyed. That is, it is possible to dramatically improve the dielectric breakdown voltage without significantly impairing the feature of the FinFET having a high driving current.

本実施形態のESD保護素子は、例えば図2に示したようなESD保護回路中に用いることができる。即ち、ESD保護素子のソース・ドレイン電極の一方とゲート電極を短絡し、入出力パッド118と内部回路119の結線に接続し、ソース・ドレイン電極の他方を接地する。このように接続すると、入出力電極パッド118にサージ電流が流れ込んだ場合、本実施形態に係るESD保護素子(トランジスタ)100がON状態になり、サージ電流が内部回路119中に流れ込むのを阻止する。サージでなく、しきい値以下の電圧がパッド118に入力された場合には何も起こらないため、通常の信号に関しては内部回路119とのやり取りが可能である。   The ESD protection element of the present embodiment can be used in, for example, an ESD protection circuit as shown in FIG. That is, one of the source / drain electrodes and the gate electrode of the ESD protection element are short-circuited, connected to the connection between the input / output pad 118 and the internal circuit 119, and the other of the source / drain electrodes is grounded. With this connection, when a surge current flows into the input / output electrode pad 118, the ESD protection element (transistor) 100 according to the present embodiment is turned on to prevent the surge current from flowing into the internal circuit 119. . Since nothing happens when a voltage lower than the threshold value is input to the pad 118 instead of a surge, a normal signal can be exchanged with the internal circuit 119.

これらの構造に望ましい要件は次の通りである。第1のゲート絶縁膜は、駆動力を確保するためなるべく薄いほうが良く、具体的には2nm以下程度にするのが良い。逆に、第2のゲート絶縁膜は、耐圧を確保するためになるべく厚いほうが良く、具体的には、4nm以上にすることが望ましい。   Desirable requirements for these structures are as follows. The first gate insulating film should be as thin as possible in order to secure driving force, and specifically, it should be about 2 nm or less. On the contrary, the second gate insulating film is preferably as thick as possible in order to ensure a withstand voltage, and specifically, it is desirable that the thickness be 4 nm or more.

また、第1のゲート絶縁膜を、例えば通常のシリコン酸化膜で形成し、第2のゲート絶縁膜を高誘電率(high−K)絶縁膜で形成すれば、絶縁耐圧を上げ、駆動電流を大きくすることができる。   Further, if the first gate insulating film is formed of, for example, a normal silicon oxide film and the second gate insulating film is formed of a high dielectric constant (high-K) insulating film, the withstand voltage is increased and the drive current is increased. Can be bigger.

次に、第1の実施形態のESD保護素子の製造方法について説明する。図4〜7は、本実施形態に係わる半導体装置(ESD保護素子)の製造工程を段階的に示す断面図である。ここではn型チャネルデバイスの例を示すが、p型チャネルデバイスについても同様にして作製できる。   Next, a method for manufacturing the ESD protection element of the first embodiment will be described. 4 to 7 are cross-sectional views showing the manufacturing process of the semiconductor device (ESD protection element) according to this embodiment step by step. Although an example of an n-type channel device is shown here, a p-type channel device can be manufactured in the same manner.

まず、図4(a)、(b)、(c)に示すように、支持基板110上に絶縁膜111が形成され、絶縁膜111上にSOI層が形成されたSOI基板を準備する。このSOI基板上に、チャネルの保護膜として窒化シリコンをLPCVD(Low Pressure Chemical Vapor Deposition)などの方法で100nm程度堆積し、公知の素子分離技術によって、素子分離を行う。さらに、既存のパターニング技術により、SOI層126をパターニングし、チャネル112cが形成されるFin(板状半導体層112)を形成する。Finの幅は例えば10nmである。なお、図では複数のFinを形成するように描いているが、Finの数は本質ではなく、1枚であってもよい。   First, as shown in FIGS. 4A, 4 </ b> B, and 4 </ b> C, an SOI substrate in which an insulating film 111 is formed on a support substrate 110 and an SOI layer is formed on the insulating film 111 is prepared. On this SOI substrate, silicon nitride is deposited as a channel protective film to a thickness of about 100 nm by a method such as LPCVD (Low Pressure Chemical Vapor Deposition), and element isolation is performed by a known element isolation technique. Further, the SOI layer 126 is patterned by an existing patterning technique to form a Fin (plate-like semiconductor layer 112) in which the channel 112c is formed. The width of Fin is, for example, 10 nm. In the drawing, a plurality of Fins are formed. However, the number of Fins is not essential and may be one.

次に、図5(a)、(b)、(c)に示すように、第1のゲート絶縁膜113として、1nmほどの二酸化シリコンをRTO(Rapid Thermal Oxidation)などによって形成し、その後プラズマ窒化をして誘電率を大きくする。さらに、第1のゲート電極114となるポリシリコン膜をLPCVDなどで100nm程度堆積し、板状半導体層112を跨ぎかつ挟むように埋め込む。さらに、この上に5nmほどの第2のゲート絶縁膜116及び100nmほどの第2のゲート電極117をLDCVDによって堆積する。   Next, as shown in FIGS. 5A, 5B, and 5C, as the first gate insulating film 113, silicon dioxide of about 1 nm is formed by RTO (Rapid Thermal Oxidation) or the like, and then plasma nitridation is performed. To increase the dielectric constant. Further, a polysilicon film to be the first gate electrode 114 is deposited by about 100 nm by LPCVD or the like, and embedded so as to straddle and sandwich the plate-like semiconductor layer 112. Further, a second gate insulating film 116 of about 5 nm and a second gate electrode 117 of about 100 nm are deposited thereon by LDCVD.

その後、窒化シリコン膜からなるハードマスク層(図示せず)を堆積して、フォトリソグラフィー技術などを用いて上記ハードマスク層をパターニング、次いで、パターニングされたハードマスク層をマスクとしてRIE等でポリシリコン層をパターニングすると第1のゲート電極114、第2のゲート絶縁膜116、第2のゲート電極117が形成される(図5(a)、(b)、(c)参照)。ここで、さらにオフセットスペーサーなどを形成する場合もあるが図示していない。なお、図5(a)は平面図を、図5(b)は図5(a)のB−B線に沿った断面図を、図5(c)は正面図を示す。   Thereafter, a hard mask layer (not shown) made of a silicon nitride film is deposited, and the hard mask layer is patterned using a photolithography technique or the like, and then polysilicon is formed by RIE or the like using the patterned hard mask layer as a mask. When the layer is patterned, a first gate electrode 114, a second gate insulating film 116, and a second gate electrode 117 are formed (see FIGS. 5A, 5B, and 5C). Here, an offset spacer or the like may be further formed, but it is not shown. 5A is a plan view, FIG. 5B is a cross-sectional view taken along line BB in FIG. 5A, and FIG. 5C is a front view.

次に、図6(a)、(b)、(c)に示すように、p型の場合はボロンを1keVで1×1014cm-2、n型の場合は砒素を0.5keVで2×1015cm-2程度イオン注入し、ポケットまたはエクステンション領域を形成する。なお、図6(a)は平面図を、図6(b)は図6(a)のB−B線に沿った断面図を、図6(c)は正面図を示す。 Next, as shown in FIGS. 6A, 6B, and 6C, boron is 1 × 10 14 cm −2 at 1 keV for the p-type, and arsenic is 2 × 0.5 keV for the n-type. Ions are implanted at about × 10 15 cm −2 to form pockets or extension regions. 6A is a plan view, FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A, and FIG. 6C is a front view.

次に、図7(a)、(b)、(c)に示すように、二酸化シリコン10nm、窒化シリコン10nmからなる積層膜をLPCVD法によって堆積し、RIE(Reactive Ion Etching)などで上記積層膜をパターニングすることにより、ゲート側壁絶縁膜122を形成する。なお、図7(a)は平面図を、図7(b)は図7(a)のB−B線に沿った断面図、図7(c)は正面図を示す。   Next, as shown in FIGS. 7A, 7B, and 7C, a laminated film made of silicon dioxide 10 nm and silicon nitride 10 nm is deposited by LPCVD, and the laminated film is formed by RIE (Reactive Ion Etching) or the like. By patterning, a gate sidewall insulating film 122 is formed. 7A is a plan view, FIG. 7B is a cross-sectional view taken along line BB in FIG. 7A, and FIG. 7C is a front view.

次いでに、図示は省略するが、砒素を30keVで3×1015cm−2程度イオン注入してディープ拡散層領域を形成する。以降、コンタクト形成などを行うと図1に示したような構造を作製できるが、その前にホット燐酸処理をしてFin領域126上の保護膜を除去した後、CoやNiなどをスパッタし、熱処理することにより、セルフアラインシリサイド層をFin領域126およびゲート電極114上に形成してもよい。 Next, although not shown in the figure, arsenic is ion-implanted at 30 keV to about 3 × 10 15 cm −2 to form a deep diffusion layer region. Thereafter, when the contact formation or the like is performed, the structure as shown in FIG. 1 can be produced. Before that, after hot phosphoric acid treatment is performed and the protective film on the Fin region 126 is removed, Co or Ni is sputtered, A self-aligned silicide layer may be formed on the Fin region 126 and the gate electrode 114 by heat treatment.

なお、第1の実施形態ではSOI基板を使用したが、バルクの半導体基板上に絶縁層を介して半導体層を堆積し、板状半導体層に加工してもよい。   Although the SOI substrate is used in the first embodiment, a semiconductor layer may be deposited on a bulk semiconductor substrate via an insulating layer and processed into a plate-like semiconductor layer.

このように、第1の実施形態に依れば、FinFETの性能を損なうことなく、また、FinFETの高密度実装を生かしたESD保護素子を提供することができる。   Thus, according to the first embodiment, it is possible to provide an ESD protection element that does not impair the performance of the FinFET and makes use of the high density mounting of the FinFET.

(第2の実施形態)
第1の実施形態では、第2のゲート電極を第1のゲート電極の直上に積み重ねたが、本発明はこれに限るものではなく、第1のゲート電極の引き出し部のパッド上に、第2のゲート電極を設けてもよい。
(Second Embodiment)
In the first embodiment, the second gate electrode is stacked directly on the first gate electrode. However, the present invention is not limited to this, and the second gate electrode is formed on the pad of the lead portion of the first gate electrode. The gate electrode may be provided.

図8(a),(b)は、第2の実施形態に係るESD保護素子の、夫々上面図およびB−B線に沿った断面図である。第2の実施形態では、第2のゲート絶縁膜及び第2のゲート電極は、ゲート電極引き出しパッド130上に形成されている。上記以外のESD保護素子の構成は第1の実施形態と同じなので、重複する説明を省略する。このように構成しても、FinFETの駆動力低下を最小限に抑えながら、総合的なゲート絶縁膜の耐圧を飛躍的に高めることができる。   FIGS. 8A and 8B are a top view and a cross-sectional view taken along line B-B, respectively, of the ESD protection element according to the second embodiment. In the second embodiment, the second gate insulating film and the second gate electrode are formed on the gate electrode lead pad 130. Since the configuration of the ESD protection element other than the above is the same as that of the first embodiment, a duplicate description is omitted. Even with this configuration, the overall breakdown voltage of the gate insulating film can be dramatically increased while minimizing the decrease in the driving force of the FinFET.

また、第2の実施形態においても、第1のゲート絶縁膜は、駆動力を確保する為なるべく薄い方が良く、具体的には2nm以下程度にするのが良い。逆に、第2のゲート絶縁膜は、耐圧を確保する為なるべく厚い方が良く、具体的には、4nm以上にすることが望ましい。   Also in the second embodiment, the first gate insulating film is preferably as thin as possible in order to ensure the driving force, and specifically, should be about 2 nm or less. On the other hand, the second gate insulating film is preferably as thick as possible in order to ensure a withstand voltage, and specifically, it is desirable that the thickness be 4 nm or more.

また、第1のゲート絶縁膜を、例えば通常のシリコン酸化膜で形成し、第2のゲート絶縁膜を高誘電率(high−K)絶縁膜で形成すれば、絶縁耐圧を上げ、駆動電流を大きくすることができる。   Further, if the first gate insulating film is formed of, for example, a normal silicon oxide film and the second gate insulating film is formed of a high dielectric constant (high-K) insulating film, the withstand voltage is increased and the drive current is increased. Can be bigger.

このように、第2の実施形態に依れば、ゲート引き出しパッドを利用することにより、実装密度を損なうことなく、より自由度の大きいESD保護素子を提供することができる。   As described above, according to the second embodiment, by using the gate lead pad, it is possible to provide an ESD protection element with a higher degree of freedom without deteriorating the mounting density.

なお、上記実施の形態では、全てのデバイスをSOI基板上に作成しているが、バルクSi基板上に作製したFinFETにも全く同様に、本発明を適用できる。また、本発明の主旨を逸脱しない範囲で、種々変更して実施することは可能である。   In the above embodiment, all devices are formed on an SOI substrate. However, the present invention can be applied to a FinFET manufactured on a bulk Si substrate. Various modifications can be made without departing from the spirit of the present invention.

第1の実施形態に係るESD保護素子の斜視図。The perspective view of the ESD protection element which concerns on 1st Embodiment. 第1の実施形態に係るESD保護素子の等価回路図。FIG. 3 is an equivalent circuit diagram of the ESD protection element according to the first embodiment. 第1の実施形態に係るESD保護素子の、(a)は上面図、(b)は(a)中のB−B線に沿った断面図、(c)は側面図。BRIEF DESCRIPTION OF THE DRAWINGS (a) is a top view, (b) is sectional drawing along the BB line in (a), (c) is a side view of the ESD protection element which concerns on 1st Embodiment. 第1の実施形態に係るESD保護素子の製造工程を説明する図で、(a)は上面図、(b)は(a)中のB−B線に沿った断面図、(c)は(a)中のC−C線に沿った断面図。It is a figure explaining the manufacturing process of the ESD protection element which concerns on 1st Embodiment, (a) is a top view, (b) is sectional drawing along the BB line in (a), (c) is ( Sectional drawing along CC line in a). 図4に続く工程を説明する図で、(a)は上面図、(b)は(a)中のB−B線に沿った断面図、(c)は(a)中のC−C線に沿った断面図。FIGS. 5A and 5B are diagrams illustrating a process subsequent to FIG. 4, in which FIG. 4A is a top view, FIG. 4B is a cross-sectional view taken along the line B-B in FIG. FIG. 図5に続く工程を説明する図で、(a)は上面図、(b)は(a)中のB−B線に沿った断面図、(c)は側面図。FIGS. 6A and 6B are diagrams illustrating a process following FIG. 5, in which FIG. 5A is a top view, FIG. 5B is a cross-sectional view taken along line B-B in FIG. 図6に続く工程を説明する図で、(a)は上面図、(b)は(a)中のB−B線に沿った断面図、(c)は側面図。FIGS. 7A and 7B are diagrams illustrating a process following FIG. 6, in which FIG. 7A is a top view, FIG. 7B is a cross-sectional view taken along the line BB in FIG. 第2の実施形態に係るESD保護素子の、(a)は上面図、(b)は(a)中のB−B線に沿った断面図である。(A) is a top view of the ESD protection element which concerns on 2nd Embodiment, (b) is sectional drawing along the BB line in (a).

符号の説明Explanation of symbols

100…ESD保護素子
110…半導体基板
111…埋め込み絶縁層
112…板状半導体層(Fin)
112c…チャネル領域
113…第1のゲート絶縁膜
114…第1のゲート電極
115…ソース・ドレイン領域(電極)
116…第2のゲート絶縁膜
117…第2のゲート電極
118…入出力パッド
119…内部回路
126…SOI層
128…窒化シリコン膜
130…ゲート引出しパッド
DESCRIPTION OF SYMBOLS 100 ... ESD protection element 110 ... Semiconductor substrate 111 ... Embedded insulating layer 112 ... Plate-shaped semiconductor layer (Fin)
112c ... Channel region 113 ... First gate insulating film 114 ... First gate electrode 115 ... Source / drain region (electrode)
116 ... second gate insulating film 117 ... second gate electrode 118 ... input / output pad 119 ... internal circuit 126 ... SOI layer 128 ... silicon nitride film 130 ... gate lead pad

Claims (5)

半導体基板と、
前記半導体基板上に形成された絶縁層と、
前記絶縁層上の1領域に垂直に設けられた板状半導体層と、
前記板状半導体層の中央部において、第1のゲート絶縁膜を介して前記板状半導体層を跨ぎかつこれを挟むように形成された第1のゲート電極と、
前記第1のゲート電極上に、第2のゲート絶縁膜を介して形成された第2のゲート電極とを具備し、
前記板状半導体層は、前記第1のゲート絶縁膜を介して前記第1のゲート電極と対向するチャネル領域と、このチャネル領域の両側に形成された一対のソース・ドレイン電極とを含むことを特徴とするESD保護素子。
A semiconductor substrate;
An insulating layer formed on the semiconductor substrate;
A plate-like semiconductor layer provided perpendicular to one region on the insulating layer;
A first gate electrode formed so as to straddle and sandwich the plate-like semiconductor layer via a first gate insulating film at a central portion of the plate-like semiconductor layer;
A second gate electrode formed on the first gate electrode through a second gate insulating film;
The plate-like semiconductor layer includes a channel region facing the first gate electrode through the first gate insulating film, and a pair of source / drain electrodes formed on both sides of the channel region. A featured ESD protection element.
半導体基板と、
前記半導体基板上に形成された絶縁層と、
前記絶縁層上に垂直に設けられた板状半導体層と、
前記板状半導体層の中央部において、第1のゲート絶縁膜を介して前記板状半導体層を跨ぎかつこれを挟むように形成された第1のゲート電極と、
前記第1のゲート電極の引き出しパッドと、
前記引出しパッド上に、第2のゲート絶縁膜を介して形成された第2のゲート電極とを具備し、
前記板状半導体層は、前記第1のゲート絶縁膜を介して前記第1のゲート電極と対向するチャネル領域と、このチャネル領域を挟んで両側に形成された一対のソース・ドレイン電極とからなることを特徴とするESD保護素子。
A semiconductor substrate;
An insulating layer formed on the semiconductor substrate;
A plate-like semiconductor layer provided vertically on the insulating layer;
A first gate electrode formed so as to straddle and sandwich the plate-like semiconductor layer via a first gate insulating film at a central portion of the plate-like semiconductor layer;
A lead pad of the first gate electrode;
A second gate electrode formed on the lead pad through a second gate insulating film;
The plate-like semiconductor layer includes a channel region facing the first gate electrode through the first gate insulating film, and a pair of source / drain electrodes formed on both sides of the channel region. An ESD protection element characterized by the above.
前記板状半導体層がシリコンからなることを特徴とする請求項1あるいは2に記載のESD保護素子。   The ESD protection element according to claim 1, wherein the plate-like semiconductor layer is made of silicon. 前記第2のゲート絶縁膜の膜厚が、前記第1のゲート絶縁膜の膜厚より大であることを特徴とする請求項1〜3のいずれかに記載のESD保護素子。   4. The ESD protection element according to claim 1, wherein a film thickness of the second gate insulating film is larger than a film thickness of the first gate insulating film. 前記第2のゲート絶縁膜の誘電率は、前記第1のゲート絶縁膜の誘電率よりも高いことを特徴とする請求項1〜3のいずれかに記載のESD保護素子。   The ESD protection element according to claim 1, wherein a dielectric constant of the second gate insulating film is higher than a dielectric constant of the first gate insulating film.
JP2005239005A 2005-08-19 2005-08-19 Esd protection element Abandoned JP2007053316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239005A JP2007053316A (en) 2005-08-19 2005-08-19 Esd protection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239005A JP2007053316A (en) 2005-08-19 2005-08-19 Esd protection element

Publications (1)

Publication Number Publication Date
JP2007053316A true JP2007053316A (en) 2007-03-01

Family

ID=37917546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239005A Abandoned JP2007053316A (en) 2005-08-19 2005-08-19 Esd protection element

Country Status (1)

Country Link
JP (1) JP2007053316A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008244345A (en) * 2007-03-28 2008-10-09 Ricoh Co Ltd Semiconductor device
JP2009158711A (en) * 2007-12-26 2009-07-16 Toshiba Corp Semiconductor device
WO2009088622A1 (en) * 2008-01-09 2009-07-16 Freescale Semiconductor Inc. Migfet circuit with esd protection
JP2009283934A (en) * 2008-05-09 2009-12-03 Imec Design methodology for mugfet esd protection devices
JP2010067635A (en) * 2008-09-08 2010-03-25 Imec Electronic circuit and method of manufacturing the same
CN102637738A (en) * 2011-02-11 2012-08-15 立锜科技股份有限公司 High-voltage multiple-grid element and manufacturing method thereof
JP5404812B2 (en) * 2009-12-04 2014-02-05 株式会社東芝 Manufacturing method of semiconductor device
WO2014051760A1 (en) * 2012-09-28 2014-04-03 Intel Corporation Extended drain non-planar mosfets for electrostatic discharge (esd) protection
CN103811543A (en) * 2012-11-05 2014-05-21 中国科学院微电子研究所 Semiconductor device and manufacture method for the same
US11476350B2 (en) 2017-07-12 2022-10-18 Sony Semiconductor Solutions Corporation Transistor and electronic device

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123080A1 (en) * 2007-03-28 2008-10-16 Ricoh Company, Ltd. Semiconductor device
US7928445B2 (en) 2007-03-28 2011-04-19 Ricoh Company, Ltd. Semiconductor MOS transistor device
JP2008244345A (en) * 2007-03-28 2008-10-09 Ricoh Co Ltd Semiconductor device
US8823101B2 (en) 2007-12-26 2014-09-02 Kabushiki Kaisha Toshiba ESD protection semiconductor device having an insulated-gate field-effect transistor
JP2009158711A (en) * 2007-12-26 2009-07-16 Toshiba Corp Semiconductor device
WO2009088622A1 (en) * 2008-01-09 2009-07-16 Freescale Semiconductor Inc. Migfet circuit with esd protection
US7817387B2 (en) 2008-01-09 2010-10-19 Freescale Semiconductor, Inc. MIGFET circuit with ESD protection
JP2009283934A (en) * 2008-05-09 2009-12-03 Imec Design methodology for mugfet esd protection devices
JP2010067635A (en) * 2008-09-08 2010-03-25 Imec Electronic circuit and method of manufacturing the same
JP5404812B2 (en) * 2009-12-04 2014-02-05 株式会社東芝 Manufacturing method of semiconductor device
CN102637738A (en) * 2011-02-11 2012-08-15 立锜科技股份有限公司 High-voltage multiple-grid element and manufacturing method thereof
CN102637738B (en) * 2011-02-11 2015-01-07 立锜科技股份有限公司 High-voltage multiple-grid element and manufacturing method thereof
WO2014051760A1 (en) * 2012-09-28 2014-04-03 Intel Corporation Extended drain non-planar mosfets for electrostatic discharge (esd) protection
KR20150036287A (en) * 2012-09-28 2015-04-07 인텔 코포레이션 Extended drain non-planar mosfets for electrostatic discharge (esd) protection
CN104584216A (en) * 2012-09-28 2015-04-29 英特尔公司 Extended drain non-planar MOSFETs for electrostatic discharge (ESD) protection
US9087719B2 (en) 2012-09-28 2015-07-21 Intel Corporation Extended drain non-planar MOSFETs for electrostatic discharge (ESD) protection
US9502883B2 (en) 2012-09-28 2016-11-22 Intel Corporation Extended drain non-planar MOSFETs for electrostatic discharge (ESD) protection
KR101691994B1 (en) * 2012-09-28 2017-01-02 인텔 코포레이션 Extended drain non-planar mosfets for electrostatic discharge (esd) protection
US10103542B2 (en) 2012-09-28 2018-10-16 Intel Corporation Extended drain non-planar MOSFETs for electrostatic discharge (ESD) protection
CN103811543A (en) * 2012-11-05 2014-05-21 中国科学院微电子研究所 Semiconductor device and manufacture method for the same
CN103811543B (en) * 2012-11-05 2018-09-18 中国科学院微电子研究所 Semiconductor devices and its manufacturing method
US11476350B2 (en) 2017-07-12 2022-10-18 Sony Semiconductor Solutions Corporation Transistor and electronic device

Similar Documents

Publication Publication Date Title
JP4852694B2 (en) Semiconductor integrated circuit and manufacturing method thereof
US7164172B2 (en) Semiconductor device and method of manufacturing same
JP2007053316A (en) Esd protection element
JP4904815B2 (en) Semiconductor device and manufacturing method thereof
KR970004842B1 (en) Method of manufacturing semiconductor device
US7830703B2 (en) Semiconductor device and manufacturing method thereof
US8466026B2 (en) Semiconductor device and method for manufacturing the same
JP4783050B2 (en) Semiconductor device and manufacturing method thereof
JP2003101030A (en) Semiconductor device and method of manufacturing the same
CN101740568A (en) Integrated circuit
JP2007335887A (en) Semiconductor device and its manufacturing method
JP2010073869A (en) Semiconductor device and method of manufacturing the same
US20120315736A1 (en) Semiconductor device and method of manufacturing the semiconductor device
JP2008103579A (en) Semiconductor device, and manufacturing method thereof
JPH11126899A (en) Semiconductor device and manufacture thereof
KR20040100918A (en) Semiconductor device and method of manufacturing the same
US10937891B2 (en) Spacer structure and manufacturing method thereof
TW200826230A (en) Semiconductor device and method for manufacturing the same
JP5477291B2 (en) Semiconductor device
WO2001057930A1 (en) Semiconductor device and its manufacturing method
JP2000332255A (en) Thin-film transistor and manufacture thereof
US20070215933A1 (en) Semiconductor device
JP2004221344A (en) Semiconductor device and its manufacturing method
JP5280121B2 (en) Semiconductor device and manufacturing method thereof
JP2007335463A (en) Electrostatic discharging protective element, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061221

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20100108