JP2007053148A - Semiconductor module - Google Patents

Semiconductor module Download PDF

Info

Publication number
JP2007053148A
JP2007053148A JP2005235638A JP2005235638A JP2007053148A JP 2007053148 A JP2007053148 A JP 2007053148A JP 2005235638 A JP2005235638 A JP 2005235638A JP 2005235638 A JP2005235638 A JP 2005235638A JP 2007053148 A JP2007053148 A JP 2007053148A
Authority
JP
Japan
Prior art keywords
wiring
semiconductor
active region
semiconductor module
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005235638A
Other languages
Japanese (ja)
Inventor
Yasuo Osone
靖夫 大曽根
Tsuneo Endo
恒雄 遠藤
Satoshi Konishi
聡 小西
Koichi Nakajima
浩一 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP2005235638A priority Critical patent/JP2007053148A/en
Priority to US11/504,736 priority patent/US7554193B2/en
Publication of JP2007053148A publication Critical patent/JP2007053148A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides

Abstract

<P>PROBLEM TO BE SOLVED: To reduce thermal resistance of a semiconductor module of a flip-chip connection type. <P>SOLUTION: A joining member only for heat dissipation which does not exchange electric signals is formed in a range overlapping a MOSFET region. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体モジュールに関し、特に、高周波の信号を無線でやりとりする、いわゆる無線通信分野において用いられるパワーアンプ等の半導体モジュールに関するものである。   The present invention relates to a semiconductor module, and more particularly to a semiconductor module such as a power amplifier used in a so-called wireless communication field for exchanging high-frequency signals wirelessly.

携帯電話などに用いられるパワーアンプ等の半導体モジュールは、携帯電話の筐体寸法があまり大きく変化しないにもかかわらず、搭載する機能・部品数が大幅に増大しているため、占有面積を低減するという市場要求が常時働いている。このため、同じ仕事をする半導体モジュールの寸法は、日進月歩で小さくなり続けており、また、電気的な効率も改善されてきているが、一般に、寸法を小さくする傾向の方が効率を改善する傾向よりも早く進展しているため、同じ出力で電波を発信する半導体モジュールの発熱損失の値は同等かあるいは低減する傾向にあっても、その発熱密度は上昇してしまう傾向にある。   Semiconductor modules such as power amplifiers used in mobile phones, etc., reduce the occupied area because the number of functions and parts to be mounted is greatly increased despite the fact that the housing dimensions of mobile phones do not change much The market demand is always working. For this reason, the dimensions of semiconductor modules that perform the same work continue to decrease with time, and the electrical efficiency has also improved, but in general, the trend toward smaller dimensions tends to improve efficiency. Since the semiconductor modules that transmit radio waves with the same output tend to have the same or lower value, the heat generation density tends to increase.

例えば、占有面積を低減する一つの方法として、半導体チップの主面(素子形成面)に金属やはんだを用いた、バンプと呼ばれる接合部材を形成し、これを配線基板に直接接合して半導体チップを実装する、いわゆるフリップチップ接続方式のモジュールが増えてきた。フリップチップ接続は、半導体チップと配線基板との電気的な接続を半導体チップの占有面積内で行うことができるため、従来のワイヤボンディング接続型のモジュールと比較して、モジュールを小型化できるというメリットがある。   For example, as one method for reducing the occupied area, a semiconductor chip is formed by forming a bonding member called a bump using metal or solder on the main surface (element forming surface) of the semiconductor chip and directly bonding it to the wiring board. The number of so-called flip-chip connection type modules for mounting the IC has increased. In flip chip connection, the electrical connection between the semiconductor chip and the wiring board can be made within the area occupied by the semiconductor chip, so that the module can be downsized compared to conventional wire bonding connection type modules. There is.

一方、上記のようなフリップチップ接続をした場合、配線基板と半導体チップとを電気的・熱的に接続する部材はバンプだけになり、バンプの断面積の合計は半導体チップの面積よりはるかに小さいことが多くなる。このため、配線基板と半導体チップとの間において、仮にバンプのない範囲にアンダーフィルやチップ基板間レジンなどと呼称される充填材を充填したとしても、この充填材の熱伝導率はバンプである金属やはんだより1桁以上小さいことが多いので、効果的に熱を半導体チップから配線基板に伝える放熱経路としては、充填材はあまり有効ではなく、結果として、半導体チップの能動領域を含む面(素子形成面)を配線基板と対向しない側に向け、半導体チップの裏面全体を接合部材により配線基板と接合した、いわゆるフェースアップ実装の方式で実装した場合よりも放熱が困難になるという問題がある。   On the other hand, in the case of the flip chip connection as described above, the members that electrically and thermally connect the wiring board and the semiconductor chip are only bumps, and the total cross-sectional area of the bumps is much smaller than the area of the semiconductor chip. A lot of things. For this reason, even if a filling material called underfill or resin between chip substrates is filled in the area between the wiring board and the semiconductor chip without bumps, the thermal conductivity of the filling material is bumps. Since it is often an order of magnitude smaller than metal or solder, the filler is not very effective as a heat dissipation path for effectively transferring heat from the semiconductor chip to the wiring board. As a result, the surface including the active region of the semiconductor chip ( There is a problem that heat dissipation is more difficult than when mounting by the so-called face-up mounting method in which the element formation surface is directed to the side not facing the wiring substrate and the entire back surface of the semiconductor chip is bonded to the wiring substrate by a bonding member. .

このようなフリップチップ接続した半導体チップから配線基板への放熱経路を効率化する技術として、例えば特許文献1のような技術が公開されている。   As a technique for improving the efficiency of the heat dissipation path from the flip-chip connected semiconductor chip to the wiring board, for example, a technique such as Patent Document 1 is disclosed.

特開平11−26633号公報Japanese Patent Laid-Open No. 11-26633

図7は、従来のフリップチップ接続した半導体モジュールの概略構成を示す模式的断面図であり、図8は、図7の半導体チップの概略構成を示す模式的平面図である。   FIG. 7 is a schematic cross-sectional view showing a schematic configuration of a conventional flip chip-connected semiconductor module, and FIG. 8 is a schematic plan view showing a schematic configuration of the semiconductor chip of FIG.

なお、図7において、(a)は図8のc−c’線に沿う位置での模式的断面図であり、(b)は図8のd−d’線に沿う位置での模式的断面図である。また、図7及び図8に示す半導体チップ31は、パワートランジスタとして、例えば金属酸化膜半導体で作った電界効果型トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)が能動領域に搭載された半導体チップである。   7A is a schematic cross-sectional view at a position along the line cc ′ in FIG. 8, and FIG. 7B is a schematic cross-sectional view at a position along the line dd ′ in FIG. 8. FIG. 7 and 8 is a semiconductor chip in which a field effect transistor (MOSFET: Metal Oxide Semiconductor Field Effect Transistor) made of, for example, a metal oxide semiconductor is mounted in an active region as a power transistor. is there.

図7及び図8に示すように、従来のフリップチップ接続方式の半導体モジュールにおいては、半導体チップ31の能動領域2と、配線基板33との間を物理的に接続する材料は、上記の充填材32しか存在しない。電気的な信号は、能動領域2から若干離れた位置にある電極4まで内部の配線層により伝えられ、そこから信号用バンプ5(MOSFETの場合、ソース、ドレイン、ゲート)を介して配線基板3に伝えられる。この際、半導体チップ31がシリコン基板により形成されていれば、シリコンは熱伝導率が比較的高い材料であるため、半導体チップ31内でまず熱が図7の横方向に拡散し、その後、主に信号用バンプ5を介して配線基板3側に放熱される。充填材32も熱を伝える効果があるが、この効果の程度は、信号用バンプ5の数、高さ、断面積に影響を受け、バンプの断面積の合計が小さいほど、充填材32が放熱経路として重要性をまし、他方、バンプの断面積の合計が大きいと、充填材32は放熱経路としての重要性を失う。   As shown in FIGS. 7 and 8, in the conventional flip chip connection type semiconductor module, the material for physically connecting the active region 2 of the semiconductor chip 31 and the wiring substrate 33 is the above-mentioned filler. There are only 32. An electrical signal is transmitted to the electrode 4 located slightly away from the active region 2 by the internal wiring layer, and from there through the signal bump 5 (in the case of MOSFET, source, drain, gate), the wiring substrate 3. To be told. At this time, if the semiconductor chip 31 is formed of a silicon substrate, since silicon is a material having a relatively high thermal conductivity, heat is first diffused in the lateral direction in FIG. Then, heat is radiated to the wiring board 3 side through the signal bumps 5. The filler 32 also has an effect of transferring heat, but the degree of this effect is affected by the number, height, and cross-sectional area of the signal bumps 5. The smaller the total of the cross-sectional areas of the bumps, the more the filler 32 dissipates heat. On the other hand, if the total of the cross-sectional areas of the bumps is large, the filler 32 loses its importance as a heat dissipation path.

このような実装構造においては、いずれにしても、まず、半導体チップ31内で熱が拡散し、それから信号用バンプ5を経由して配線基板3に放熱するという、長い放熱経路を主たる放熱経路として形成するため、その放熱経路の熱抵抗が上昇してしまい、MOSFETのゲート電極近傍の発熱領域の温度が所定の範囲を逸脱して上昇し、素子が破壊されたり、あるいは保護回路が機能して素子の電源が遮断されてしまうという問題点があった。   In such a mounting structure, in any case, a long heat dissipation path in which heat is first diffused in the semiconductor chip 31 and then radiated to the wiring board 3 via the signal bumps 5 is used as a main heat dissipation path. As a result, the thermal resistance of the heat dissipation path rises, the temperature of the heat generation region near the gate electrode of the MOSFET rises beyond a predetermined range, the element is destroyed, or the protection circuit functions. There was a problem that the power supply of the element was cut off.

本発明は、このような、放熱経路が長いことによる素子の温度上昇を低減する方法を提供することを目的とする。   An object of the present invention is to provide a method for reducing an increase in temperature of an element due to such a long heat dissipation path.

上記のような課題は、半導体チップの能動領域形成範囲に、電気的な信号をやりとりしない、いわゆる放熱専用のバンプを形成することにより解決できる。   The above-described problems can be solved by forming so-called bumps dedicated to heat dissipation that do not exchange electrical signals in the active region forming range of the semiconductor chip.

本発明によれば、能動領域の発熱による温度上昇を所定の値以下に保つことができ、温度の異常な上昇による特性の悪化や、構成部材の熱による破壊を防止できるため、信頼性の高い半導体モジュールが得られる。   According to the present invention, the temperature increase due to heat generation in the active region can be kept below a predetermined value, and deterioration of characteristics due to abnormal temperature increase and destruction of components due to heat can be prevented. A semiconductor module is obtained.

以下、図面を参照して本発明の実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施例1では、パワートランジスタとしてMOSFETが搭載された半導体チップを配線基板にフリップチップ方式で実装した半導体モジュールに本発明を適用した例について説明する。   In the first embodiment, an example in which the present invention is applied to a semiconductor module in which a semiconductor chip on which a MOSFET is mounted as a power transistor is mounted on a wiring board by a flip chip method will be described.

図1乃至図4は、本発明の実施例1の半導体モジュールに係る図であり、
図1は、半導体モジュールの概略構成を示す図((a)は図2のa−a’線に沿う位置での模式的断面図,(b)は図2のb−b’線に沿う位置での模式的断面)、
図2は、図1の半導体チップの概略構成を示す模式的平面図、
図3は、図1(a)の一部を拡大した模式的断面図、
図4は、図2の半導体チップの内部構造を示す図((a)は能動領域における模式的断面図,(b)は非能動領域における模式的断面図)である。
1 to 4 are diagrams related to a semiconductor module according to Embodiment 1 of the present invention.
1A and 1B are diagrams showing a schematic configuration of a semiconductor module (FIG. 1A is a schematic cross-sectional view at a position along the line aa ′ in FIG. 2, and FIG. 1B is a position along the line bb ′ in FIG. Schematic cross section at)
FIG. 2 is a schematic plan view showing a schematic configuration of the semiconductor chip of FIG.
FIG. 3 is a schematic cross-sectional view enlarging a part of FIG.
4A and 4B are diagrams showing the internal structure of the semiconductor chip of FIG. 2 (a is a schematic cross-sectional view in an active region, and (b) is a schematic cross-sectional view in an inactive region).

図1((a),(b))に示すように、本実施例1の半導体モジュールは、配線基板3の主面にフェースダウン方式で半導体チップ1が実装された構成になっている。半導体チップ1は、図2に示すように、厚さ方向と交差する平面形状が方形状になっており、本実施例1では例えば長方形になっている。   As shown in FIGS. 1A and 1B, the semiconductor module of the first embodiment has a configuration in which the semiconductor chip 1 is mounted on the main surface of the wiring board 3 by the face-down method. As shown in FIG. 2, the semiconductor chip 1 has a rectangular planar shape that intersects the thickness direction. In the first embodiment, the semiconductor chip 1 is, for example, rectangular.

半導体チップ1は、主に、半導体基板と、この半導体基板の主面上に絶縁層、導電層の夫々を複数段積み重ねた薄膜積層体とを有する構成になっている。半導体基板の主面には、パワートランジスタとして、例えば金属酸化膜半導体で作った電界効果型トランジスタ(MOSFET)が形成されている。このMOSFETは、大電力を得るために、微細な複数のトランジスタセルを並列に接続した構成になっている。このようなパワートランジスタが形成される領域を能動領域(発熱領域)2と呼ぶ。本実施例1において、能動領域2は、例えば図2に示すように、半導体チップ1の主面側において中央部に配置されている。   The semiconductor chip 1 is mainly configured to have a semiconductor substrate and a thin film stack in which a plurality of insulating layers and conductive layers are stacked on the main surface of the semiconductor substrate. On the main surface of the semiconductor substrate, a field effect transistor (MOSFET) made of, for example, a metal oxide semiconductor is formed as a power transistor. This MOSFET has a configuration in which a plurality of fine transistor cells are connected in parallel in order to obtain high power. A region where such a power transistor is formed is called an active region (heat generation region) 2. In the first embodiment, the active region 2 is arranged in the center on the main surface side of the semiconductor chip 1 as shown in FIG.

半導体チップ1の主面(素子形成面)には、半導体チップ1の互いに向かい合う2つの辺(本実施例では長辺)側に夫々の辺に沿って複数の電極4が配置されている。この複数の電極4は、能動領域2と平面的に重ならない位置(半導体チップ1の辺と能動領域2との間)に配置されている。また、半導体チップ1の主面には、複数の接続用パッド4aが配置されている。この複数の接続用パッド4aは、能動領域2と平面的に重なる位置(能動領域2上)に配置され、電極4の配列方向と同じ方向に沿って配列されている。各々の電極4上には信号用バンプ5が配置され、各々の接続用パッド4a上には放熱専用バンプ6が配置されている。これらの信号用バンプ5及び放熱専用バンプ6は、半導体チップ1の実装工程において、図1((a),(b))に示すように、半導体チップ1の主面と配線基板3の主面との間に介在される。   On the main surface (element formation surface) of the semiconductor chip 1, a plurality of electrodes 4 are arranged along the two sides (long sides in this embodiment) of the semiconductor chip 1 facing each other. The plurality of electrodes 4 are disposed at a position (between the side of the semiconductor chip 1 and the active region 2) that does not overlap the active region 2 in plan view. A plurality of connection pads 4 a are disposed on the main surface of the semiconductor chip 1. The plurality of connection pads 4 a are arranged at a position (on the active region 2) that overlaps the active region 2 in a plane, and are arranged along the same direction as the arrangement direction of the electrodes 4. A signal bump 5 is disposed on each electrode 4, and a heat dissipation bump 6 is disposed on each connection pad 4 a. These signal bumps 5 and heat radiation dedicated bumps 6 are formed on the main surface of the semiconductor chip 1 and the main surface of the wiring board 3 in the mounting process of the semiconductor chip 1 as shown in FIG. 1 ((a), (b)). It is interposed between.

図1((a),(b))に示すように、半導体チップ1は、MOSFET等の能動領域(発熱領域)2を配線基板3側に対向して搭載する、いわゆるフェースダウン方式で実装されている。また、MOSFETの場合、ソース、ドレイン、ゲートの各電極4と配線基板3とを接続するのは信号用バンプ5である。この信号用バンプ5としては、金(Au)、銅(Cu)等の金属や合金を用いた金属バンプや、はんだ、或いはそれらを積層した構造により構成されるはんだバンプを用いる。なお、信号用バンプ5の融点については、本実施例1の半導体モジュールをさらにリフロー工程でさらに大きい基板に搭載する場合、リフロー温度よりも融点が高い材料を用いることが望ましい。   As shown in FIGS. 1A and 1B, the semiconductor chip 1 is mounted by a so-called face-down method in which an active region (heating region) 2 such as a MOSFET is mounted facing the wiring substrate 3 side. ing. In the case of a MOSFET, the signal bumps 5 connect the source, drain, and gate electrodes 4 to the wiring board 3. As the signal bump 5, a metal bump using a metal or an alloy such as gold (Au) or copper (Cu), a solder, or a solder bump configured by stacking them is used. As for the melting point of the signal bump 5, it is desirable to use a material having a melting point higher than the reflow temperature when the semiconductor module of the first embodiment is mounted on a larger substrate in the reflow process.

図1((a),(b))には示していないが、この信号用バンプ5と接続する配線基板3内には各種の導電性層間貫通孔や配線層が存在し、配線基板3の裏面(主面と反対側の面)にレイアウトされた配線パターンと、本実施例1の半導体モジュールを搭載するさらに大きい基板上の電極のパターンのレイアウトにより、電気的に接続され、半導体モジュールとしての機能を発揮する。能動領域2と電気的な信号をやり取りするための電極4の位置関係は、例えば図2に示すようになっており、能動領域2の占める範囲の外側に電極4が配置され、この電極4に物理的に接続する形で信号用バンプ5を形成する。なお、図1((a),(b))には示していないが、半導体チップ1と配線基板3との間には、アンダーフィルやチップ基板間レジンと呼称される充填材が充填されている場合がある。また、半導体チップ1全体は、他の搭載部品とあわせて、レジン等のモールド材によりモールド(封止)されている場合が多い。   Although not shown in FIG. 1 ((a), (b)), various conductive interlayer through-holes and wiring layers exist in the wiring board 3 connected to the signal bumps 5. The wiring pattern laid out on the back surface (the surface opposite to the main surface) and the layout of the electrode pattern on the larger substrate on which the semiconductor module of the first embodiment is mounted are electrically connected to form a semiconductor module. Demonstrate the function. The positional relationship of the electrode 4 for exchanging electrical signals with the active region 2 is as shown in FIG. 2, for example. The electrode 4 is arranged outside the range occupied by the active region 2, and the electrode 4 The signal bumps 5 are formed so as to be physically connected. Although not shown in FIG. 1 ((a), (b)), between the semiconductor chip 1 and the wiring substrate 3, a filler called an underfill or a resin between chip substrates is filled. There may be. In addition, the entire semiconductor chip 1 is often molded (sealed) with a molding material such as a resin together with other mounted components.

配線基板3は、図1((a),(b))ではビルドアップ基板等の多層配線基板であるとしているが、樹脂基板である必要はなく、ガラス系やアルミナ系のセラミック基板であっても構わないし、また、同じ樹脂基板でも、ビルドアップ基板でなくてももちろん構わない。この配線基板3には、半導体チップ1において損失として発生した熱(トランジスタ素子の駆動によって発生した熱)を基板裏面側に効率よく放熱するための放熱経路を形成する。以下、この放熱経路を放熱用ビア8と呼ぶ。放熱用ビア8の構造としては、基板3を形成したあとにドリルで貫通孔を形成し、側面に金属メッキを施し、さらに残る空間に充填材を充填する、貫通スルーホール方式や、基板の層ごとに放熱用ビアを形成していく、スタックドビア方式等の各種方法があるが、熱抵抗や信頼性上の仕様が満足できて、かつ、コスト的な目標仕様の範囲内で形成できるものであれば、どのような方式でも構わないが、図1((a),(b))では、このうち、貫通スルーホール方式の場合を代表して図示した。   In FIG. 1 ((a), (b)), the wiring board 3 is a multilayer wiring board such as a build-up board. However, the wiring board 3 is not necessarily a resin board, and is a glass-based or alumina-based ceramic substrate. Of course, the same resin substrate or a build-up substrate may be used. In the wiring substrate 3, a heat dissipation path for efficiently radiating heat generated as a loss in the semiconductor chip 1 (heat generated by driving the transistor element) to the back side of the substrate is formed. Hereinafter, this heat dissipation path is referred to as a heat dissipation via 8. The structure of the heat dissipation via 8 is that a through hole is formed by forming a through hole with a drill after the substrate 3 is formed, metal plating is applied to the side surface, and the remaining space is filled with a filler. There are various methods such as stacked vias that form heat-dissipating vias every time, but those that satisfy thermal resistance and reliability specifications and can be formed within the scope of cost target specifications. Any method may be used, however, in FIG. 1 ((a) and (b)), the through-hole method is shown as a representative.

図1に示す本発明の実施例においては、半導体チップ1内の能動領域2の占める範囲内に、電気的な信号をやり取りしない、放熱専用バンプ6を形成する。この放熱専用バンプ6は、好ましくは、信号専用バンプ5と同一材料、同一工程で形成することにより、材料や製造にかかるコストを低減できる。放熱専用バンプ6が接合される配線基板3側の表面(主面)には、放熱経路として、放熱用共通ベタ配線層7を配置することにより、離散的に配置された放熱専用バンプ6を伝わる熱を一旦放熱用共通ベタ配線層7で受け、それを放熱用ビア8に熱伝導で伝えることにより、放熱専用バンプ6と放熱用ビア8の位置が面内で一致していなくても(平面的に重なっていなくても)、温度差をあまり大きくすることなく、放熱用ビア8に熱をうまく伝えることができる。このような放熱用共通ベタ配線層の材料としては、信号用バンプ5を受ける配線基板3側の電極と同じ材料で構わない。また、配線基板3裏面側にも同様の放熱用共通ベタ配線層7を設けることで、本実施例1の半導体モジュールが実装されるさらに大きい基板への放熱もまた効率的に行うことが可能となるが、これらの放熱用共通ベタ配線層7は、複数の領域に分割されていても構わないし、放熱効果は若干低下するが、放熱用共通ベタ配線層7がない場合であっても、本発明の本質にはほとんど影響ないことは明らかである。   In the embodiment of the present invention shown in FIG. 1, a heat radiation exclusive bump 6 that does not exchange electrical signals is formed within the range occupied by the active region 2 in the semiconductor chip 1. Preferably, the heat-dissipating bumps 6 are formed by the same material and the same process as the signal-dedicated bumps 5, thereby reducing material and manufacturing costs. By disposing a heat radiation common solid wiring layer 7 as a heat radiation path on the surface (main surface) on the side of the wiring board 3 to which the heat radiation dedicated bump 6 is bonded, the heat radiation dedicated bumps 6 are transmitted discretely. The heat is once received by the heat radiation common solid wiring layer 7 and transferred to the heat radiation via 8 by heat conduction, so that the positions of the heat radiation dedicated bump 6 and the heat radiation via 8 do not coincide with each other in the plane (plane Even if they do not overlap, heat can be transferred well to the heat dissipation via 8 without increasing the temperature difference so much. The material for the heat radiation common solid wiring layer may be the same material as the electrode on the wiring board 3 side that receives the signal bump 5. Further, by providing the same heat radiation common solid wiring layer 7 on the back surface side of the wiring board 3 as well, it is possible to efficiently perform heat radiation to a larger board on which the semiconductor module of the first embodiment is mounted. However, these heat radiation common solid wiring layers 7 may be divided into a plurality of regions, and although the heat radiation effect is slightly reduced, even if there is no heat radiation common solid wiring layer 7, Obviously, it has little effect on the nature of the invention.

また、本発明の特徴として、放熱専用ビア6は電気的な信号を半導体チップ1と配線基板3との間でやり取りしない。このため、図3に示すように、能動領域2と放熱専用バンプ6との間には、絶縁層9があっても構わない。この絶縁層9の厚さは、半導体チップ1の面積とくらべて十分薄いため、絶縁層9があっても、信号用バンプ5まで熱を逃がすより、放熱専用バンプ6に熱を逃がす方が、能動領域2で発生する熱を配線基板3側に逃がすためには有効である。   Further, as a feature of the present invention, the heat dissipation dedicated via 6 does not exchange electrical signals between the semiconductor chip 1 and the wiring board 3. For this reason, as shown in FIG. 3, there may be an insulating layer 9 between the active region 2 and the heat-dissipating bump 6. Since the thickness of the insulating layer 9 is sufficiently thin compared to the area of the semiconductor chip 1, even if the insulating layer 9 is present, it is preferable to release heat to the heat radiation dedicated bump 6 rather than to release heat to the signal bump 5. This is effective for releasing heat generated in the active region 2 to the wiring board 3 side.

一方、放熱専用バンプ6と信号専用バンプ5について、その位置関係を図4((a),(b))を用いて説明する。図4((a),(b))は、MOSFETの場合を代表して示した図で、シリコン等の半導体基板10の上にエピタキシャル成長法等により半導体回路の層を形成する。図4((a),(b))では、この層をEpi−Si層11としたが、必ずしもシリコンだけで形成されているわけではなく、SiGe等の材料でも、化合物半導体の層でも構わない。この、Epi−Si層11の上にゲート電極12、ゲート配線12a、ソース電極13、ドレイン電極14を金属配線層等やポリシリコン等を用いて形成する。   On the other hand, the positional relationship of the heat-exclusive bump 6 and the signal-dedicated bump 5 will be described with reference to FIGS. 4 (a) and 4 (b). 4 (a) and 4 (b) are diagrams showing a case of MOSFET as a representative, and a semiconductor circuit layer is formed on a semiconductor substrate 10 such as silicon by an epitaxial growth method or the like. In FIG. 4 ((a), (b)), this layer is the Epi-Si layer 11, but it is not necessarily formed only of silicon, and may be a material such as SiGe or a compound semiconductor layer. . On this Epi-Si layer 11, a gate electrode 12, a gate wiring 12a, a source electrode 13, and a drain electrode 14 are formed using a metal wiring layer, polysilicon, or the like.

ソース・ドレイン間を流れる電流をゲート電圧により制御するのであるが、ミクロ的には、このゲート電極12のすぐ下のチャネル層と呼ばれる領域でMOSFETが発熱する。従って、本来能動領域2自体離散的なものであるが、マクロ的には、このような領域が多数繰り返し配置されて、全体として一つか、少ない数の能動領域2を形成するのである。ゲート電極12直下のチャネル層で発生した熱は、ゲート、ソース、ドレインの各電極やそれを半導体チップ1外部までつなぐ各配線、及び層間の絶縁膜15を介して、絶縁膜15や接続用パッド4aの表面まで伝えられる。従来の技術では、図8に示すように、信号用バンプ5を能動領域から離れた位置に接続されることが多かった。特許文献1に示す公知技術では、ソース電極を能動領域2の占める範囲内に形成し、これを専用の巨大なソース電極パッドを用いて実装する方式を示しているが、このように、複数のパッドを異なる厚さ・材料で形成してモジュール実装構造とするのは、仮に放熱の面では問題なくても、材料も異なり、工程も別となるため、製造コストの面では高額になってしまうという問題点があるが、本実施例では、放熱専用バンプ6と信号用バンプ5は同一材料・同一高さ・同一工程で形成することができるため、コストを低減できるというメリットがある。   Although the current flowing between the source and drain is controlled by the gate voltage, microscopically, the MOSFET generates heat in a region called a channel layer immediately below the gate electrode 12. Therefore, although the active region 2 itself is originally discrete, macroscopically, a large number of such regions are repeatedly arranged to form one or a small number of active regions 2 as a whole. The heat generated in the channel layer immediately below the gate electrode 12 is generated by the insulating film 15 and the connection pad via the gate, source and drain electrodes, the wirings connecting the electrodes to the outside of the semiconductor chip 1, and the insulating film 15 between the layers. It is transmitted to the surface of 4a. In the prior art, as shown in FIG. 8, the signal bumps 5 are often connected to positions away from the active region. The known technique shown in Patent Document 1 shows a method of forming a source electrode within a range occupied by the active region 2 and mounting it using a dedicated huge source electrode pad. Even if there is no problem in terms of heat dissipation, forming a pad with different thicknesses and materials to form a module mounting structure will be expensive in terms of manufacturing cost because the materials are different and the processes are different. However, in this embodiment, since the heat-dissipating bump 6 and the signal bump 5 can be formed by the same material, the same height, and the same process, there is an advantage that the cost can be reduced.

また、図4((a),(b))に示すように、放熱専用バンプ6は、絶縁膜15を介して半導体チップ1の表面(主面)に形成されるのに対し、信号用バンプ5は、絶縁膜15を貫通する導電性の貫通材料17により電気的に回路と接続されて形成される。もちろん、特許文献1のように、これらのゲート、ソース、ドレイン電極及びそれと接続される信号用バンプ5の全て、もしくは一部が能動領域2の占める範囲内に配置さても放熱という観点からは同様の効果を得ることができる。なお、図4((a),(b))は半導体基板10が下で、信号用バンプ5、放熱専用バンプ6が上になるように図示してるが、いわゆるフェースダウンのフリップチップ接続とする場合、この上下が逆転する形で配線基板3の上に半導体チップ1が搭載されているのである。   Further, as shown in FIGS. 4A and 4B, the heat dissipation bumps 6 are formed on the surface (main surface) of the semiconductor chip 1 via the insulating film 15, whereas the signal bumps are formed. 5 is formed by being electrically connected to a circuit by a conductive penetrating material 17 penetrating the insulating film 15. Of course, as in Patent Document 1, even if all or a part of these gate, source, and drain electrodes and signal bumps 5 connected to the gate, source, and drain electrodes are disposed within the range occupied by the active region 2, it is the same from the viewpoint of heat dissipation. The effect of can be obtained. 4 (a) and 4 (b) are illustrated with the semiconductor substrate 10 on the bottom and the signal bumps 5 and the heat dissipation bumps 6 on the top, so-called face-down flip chip connection is shown. In this case, the semiconductor chip 1 is mounted on the wiring board 3 so that the top and bottom are reversed.

図1((a),(b))には、半導体チップ1が1枚搭載されている場合を示しているが、半導体チップ1の上に他の半導体チップ1が何層かスタック上に積み上げられている場合は、発熱量の最も大きい半導体チップ1を配線基板3に一番近い側に配置し、上記発熱量の大きい半導体チップ1から生じる熱については、放熱専用バンプ6を用いて配線基板3に逃がしても、半導体チップ1の温度上昇を抑制する効果がある。   FIGS. 1A and 1B show the case where one semiconductor chip 1 is mounted. Several other semiconductor chips 1 are stacked on the stack on the semiconductor chip 1. In this case, the semiconductor chip 1 having the largest heat generation amount is arranged on the side closest to the wiring substrate 3, and the heat generated from the semiconductor chip 1 having the large heat generation amount is disposed on the wiring substrate by using the heat radiation dedicated bumps 6. 3 is effective in suppressing the temperature rise of the semiconductor chip 1.

なお、本実施例1では、半導体チップ1の主面の中央部に主たる能動領域(発熱領域)2が形成された例について説明したが、本発明はこれに限定されるものではなく、例えば、図9(実施例1の変形例である半導体チップの概略構成を示す模式的平面図)に示すように、主面の両端側に主たる能動領域2が形成された半導体チップ1aにおいても適用可能である。   In the first embodiment, the example in which the main active region (heat generation region) 2 is formed in the central portion of the main surface of the semiconductor chip 1 has been described. However, the present invention is not limited to this, for example, As shown in FIG. 9 (schematic plan view showing a schematic configuration of a semiconductor chip which is a modification of the first embodiment), the present invention can also be applied to a semiconductor chip 1a in which main active regions 2 are formed on both ends of the main surface. is there.

本実施例2では、ヘテロ接合バイポーラトランジスタ(HBT)が搭載された半導体チップを配線基板にフリップチップ方式で実装した半導体モジュールに本発明を適用した例について説明する。   In the second embodiment, an example in which the present invention is applied to a semiconductor module in which a semiconductor chip on which a heterojunction bipolar transistor (HBT) is mounted is mounted on a wiring board by a flip chip method will be described.

図5及び図6は、本発明の実施例2である半導体モジュールに係る図であり、
図5は、半導体モジュールの概略構成を示す模式的断面図、
図6は、図5の半導体チップの概略構成を示す図((a)はX方向に沿う模式的断面図,(b)はX方向と直交とするY方向に沿う模式的断面図)である。
5 and 6 are diagrams relating to a semiconductor module which is Embodiment 2 of the present invention.
FIG. 5 is a schematic cross-sectional view showing a schematic configuration of a semiconductor module;
6 is a diagram showing a schematic configuration of the semiconductor chip of FIG. 5 ((a) is a schematic sectional view along the X direction, and (b) is a schematic sectional view along the Y direction orthogonal to the X direction). .

図5に示す本発明の実施例2においては、配線基板3に放熱用ビア18a及び電極18bを形成する。この放熱用ビア18a及び電極18bは、表裏面が銅メッキ等の導電性・高熱伝導性材料で形成された配線層で、層間が貫通スルーホール方式等で電気的・熱的に接続されたものである。この放熱用ビア18a及び電極18bには、バイポーラトランジスタのコレクタ層内で発生した熱が、エミッタ配線19を経由してエミッタ兼放熱用バンプ20に伝えられ、最終的に放熱用ビア18a及び電極18bから配線基板3外部に放熱される。パワートランジスタとしてヘテロ接合バイポーラトランジスタを搭載した半導体チップ(以下、HBT素子と呼ぶ)21は、必ずしもシリコンである必要はなく砒化ガリウム(GaAs)等の化合物半導体であって構わない。特に、シリコンより熱伝導率が小さい砒化ガリウム等をHBT素子21として用いた場合、HBT素子21内の熱抵抗が大きくなりやすいため、効果的な放熱経路を作成することが重要である。本実施例においては、HBT素子21内で発生した熱を、エミッタ配線19を介して直接配線基板3に逃がすことができるため、バンプ5、20以外に有効な放熱経路のない、フリップチップ接続方式のHBT素子21であっても、熱抵抗を大きく上げることなく、効率的に放熱できる。   In the second embodiment of the present invention shown in FIG. 5, heat radiation vias 18 a and electrodes 18 b are formed on the wiring board 3. The heat dissipating vias 18a and the electrodes 18b are wiring layers in which the front and back surfaces are made of a conductive / high heat conductive material such as copper plating, and the layers are electrically and thermally connected by a through-hole method or the like. It is. The heat generated in the collector layer of the bipolar transistor is transmitted to the emitter / heat dissipation bump 20 via the emitter wiring 19 to the heat dissipation via 18a and the electrode 18b, and finally the heat dissipation via 18a and the electrode 18b. To the outside of the wiring board 3. A semiconductor chip (hereinafter referred to as an HBT element) 21 on which a heterojunction bipolar transistor is mounted as a power transistor is not necessarily made of silicon, and may be a compound semiconductor such as gallium arsenide (GaAs). In particular, when gallium arsenide or the like having a lower thermal conductivity than silicon is used as the HBT element 21, it is important to create an effective heat dissipation path because the thermal resistance in the HBT element 21 tends to increase. In the present embodiment, the heat generated in the HBT element 21 can be directly released to the wiring substrate 3 through the emitter wiring 19, so that there is no effective heat dissipation path other than the bumps 5 and 20, and the flip chip connection method Even the HBT element 21 can efficiently dissipate heat without greatly increasing the thermal resistance.

図6((a),(b))は、本実施例のHBT素子21の内部構造の一部を示す断面図であるが、図4((a),(b))と同様、配線基板3に搭載されるときには上下が逆転した実装構造となる。図6((a),(b))に示すように、本実施例においては、半導体基板(及びエミッタ・ベース・コレクタ層)22のコレクタ層で損失として熱が発生する。配線基板3搭載時にはエミッタ配線19の上側に配線基板3が来る構造になるため、この半導体基板22を拡散する熱は、最終的には図6((a),(b))の上方向に逃げ、図6((a),(b))のエミッタ兼放熱バンプ20や信号用バンプ5、及び、図に示されてないアンダーフィル等の充填材を介して配線基板3に放熱される。実際の構造としては、エミッタ電極26、エミッタ配線19以外に、コレクタ電極及び配線23、ベース電極及び配線24が存在するが、発熱するのは、エミッタ電極の直下にあるコレクタ領域で、この領域とコレクタ電極・コレクタ配線23までの距離はエミッタ電極26、エミッタ配線19までの距離よりはるかに大きいため、エミッタ配線19を介した放熱経路の設計がフリップチップ接続時には非常に重要である。なお、最も温度差が発生しやすい絶縁層25については、図6((a),(b))の構成の場合、エミッタ配線19だけが発熱する領域から厚さ方向に直接熱を逃がせる構造になっており、コレクタ及びベース配線は図の外にあり、放熱経路として長くなるため、やはりエミッタ配線19から直接熱を逃がすことが有効である。   6 (a) and 6 (b) are cross-sectional views showing a part of the internal structure of the HBT element 21 of the present embodiment. As in FIGS. 4 (a) and 4 (b), a wiring board is shown. When mounted on 3, the mounting structure is upside down. As shown in FIGS. 6A and 6B, in this embodiment, heat is generated as a loss in the collector layer of the semiconductor substrate (and the emitter / base / collector layer) 22. When the wiring board 3 is mounted, the wiring board 3 comes to be above the emitter wiring 19, so that the heat diffusing the semiconductor substrate 22 is finally upward in FIG. 6 ((a), (b)). The heat is radiated to the wiring substrate 3 through the emitter / heat dissipation bumps 20 and the signal bumps 5 of FIG. 6 ((a) and (b)) and a filler such as underfill not shown in the figure. As an actual structure, in addition to the emitter electrode 26 and the emitter wiring 19, there are a collector electrode and wiring 23, a base electrode and wiring 24, but heat is generated in the collector region immediately below the emitter electrode. Since the distance to the collector electrode / collector wiring 23 is much larger than the distance to the emitter electrode 26 and the emitter wiring 19, the design of the heat radiation path via the emitter wiring 19 is very important at the time of flip-chip connection. The insulating layer 25 that is most likely to generate a temperature difference has a structure in which heat can be directly released in the thickness direction from a region where only the emitter wiring 19 generates heat in the case of the configuration shown in FIGS. Since the collector and base wirings are not shown in the figure and become longer as a heat dissipation path, it is effective to directly release the heat from the emitter wiring 19 again.

以上、実施例1及び2において、本発明の効果を説明してきたが、能動領域2の占める範囲の中に放熱用のバンプ6もしくは20を配置することにより、能動領域2で発生した熱を効率よく配線基板3側に逃がすことができる。このため、本発明の半導体モジュールでは、能動領域2の発熱による温度上昇を所定の値以下に保つことができ、温度の異常な上昇による特性の悪化や、構成部材の熱による破壊を防止し、信頼性の高い半導体モジュールを提供できる。   As described above, the effects of the present invention have been described in the first and second embodiments. However, the heat generated in the active region 2 is efficiently generated by disposing the heat radiation bumps 6 or 20 in the range occupied by the active region 2. It can escape to the wiring board 3 side well. For this reason, in the semiconductor module of the present invention, the temperature increase due to heat generation in the active region 2 can be kept below a predetermined value, preventing deterioration of characteristics due to abnormal temperature increase and destruction of the component members due to heat, A highly reliable semiconductor module can be provided.

本発明の実施例1である半導体モジュールの概略構成を示す図((a)は図2のa−a’線に沿う位置での模式的断面図,(b)は図2のb−b’線に沿う位置での模式的断面図)である。The figure which shows schematic structure of the semiconductor module which is Example 1 of this invention ((a) is typical sectional drawing in the position in alignment with the aa 'line of FIG. 2, (b) is bb' of FIG. It is a typical sectional view in a position along a line. 図1の半導体チップの概略構成を示す模式的平面図である。FIG. 2 is a schematic plan view showing a schematic configuration of the semiconductor chip of FIG. 1. 図1(a)の一部を拡大した模式的断面図である。It is the typical sectional view which expanded a part of Drawing 1 (a). 図2の半導体チップの内部構造を示す図((a)は能動領域における模式的断面図,(b)は非能動領域における模式的断面図)である。2A and 2B are diagrams showing the internal structure of the semiconductor chip of FIG. 2 (a is a schematic cross-sectional view in an active region, and (b) is a schematic cross-sectional view in an inactive region). 本発明の実施例2である半導体モジュールの概略構成を示す模式的断面図である。It is typical sectional drawing which shows schematic structure of the semiconductor module which is Example 2 of this invention. 図5の半導体チップの概略構成を示す図((a)はX方向に沿う模式的断面図,(b)はY方向に沿う模式的断面図)である。FIG. 6A is a schematic cross-sectional view taken along the X direction, and FIG. 6B is a schematic cross-sectional view taken along the Y direction. 従来のフリップチップ接続した半導体モジュールの概略構成を示す図((a)は図8のc−c’線に沿う位置での模式的断面図,(b)は図8のd−d’線に沿う位置での模式的断面図)である。The figure which shows schematic structure of the conventional flip-chip-connected semiconductor module ((a) is typical sectional drawing in the position along the cc 'line of FIG. 8, (b) is the dd' line of FIG. It is typical sectional drawing in the position which follows. 図7の半導体チップの概略構成を示す模式的平面図である。FIG. 8 is a schematic plan view showing a schematic configuration of the semiconductor chip of FIG. 7. 本発明の実施例1の変形例である半導体チップの概略構成を示す模式的平面図である。It is a typical top view which shows schematic structure of the semiconductor chip which is a modification of Example 1 of this invention.

符号の説明Explanation of symbols

1…半導体チップ、2…能動領域、3…配線基板、4…電極、4a…接続用パッド、5…信号用バンプ、6…放熱専用バンプ、7…放熱用共通ベタ配線層、8…放熱用ビア、9…絶縁層、10…半導体基板、11…Epi−Si層、12…ゲート電極、12a…ゲート配線、13…ソース電極・配線、14…ドレイン電極・配線、15…絶縁膜、17…導電性貫通材、18a…放熱用ビア、18b…電極、19…エミッタ配線、20…エミッタ兼放熱用バンプ、21…HBT素子、22…半導体基板、23…コレクタ電極及び配線、24…ベース電極及び配線、25…絶縁層、26…エミッタ電極。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor chip, 2 ... Active area | region, 3 ... Wiring board, 4 ... Electrode, 4a ... Connection pad, 5 ... Signal bump, 6 ... Heat radiation exclusive bump, 7 ... Heat radiation common solid wiring layer, 8 ... Heat radiation Via ... 9 ... Insulating layer 10 ... Semiconductor substrate 11 ... Epi-Si layer 12 ... Gate electrode 12a ... Gate wiring 13 ... Source electrode / wiring 14 ... Drain electrode / wiring 15 ... Insulating film 17 ... Conductive penetrating material, 18a ... heat dissipation via, 18b ... electrode, 19 ... emitter wiring, 20 ... emitter / heat dissipation bump, 21 ... HBT element, 22 ... semiconductor substrate, 23 ... collector electrode and wiring, 24 ... base electrode and Wiring, 25 ... insulating layer, 26 ... emitter electrode.

Claims (5)

半導体基板の主たる表面に能動領域を形成し、上記能動領域を配線基板と相対する方向に接合部材により接合してなるフリップチップ接続方式の半導体モジュールにおいて、上記能動領域から信号配線を介して上記配線基板に電気的な信号経路を接続する接合部材と、能動領域が形成された面にその一部が含まれ、電気的な信号経路を形成しない接合部材とを備えたことを特徴とする半導体モジュール。   In a flip-chip connection type semiconductor module in which an active region is formed on a main surface of a semiconductor substrate and the active region is bonded to a wiring substrate by a bonding member, the wiring is connected from the active region via a signal wiring. A semiconductor module comprising: a joining member that connects an electrical signal path to a substrate; and a joining member that includes a part thereof on a surface on which an active region is formed and does not form an electrical signal path . 請求項1に記載の半導体モジュールにおいて、
上記半導体基板に形成された半導体素子は、金属酸化膜半導体で作った電界効果型トランジスタ、或いは横方向拡散金属酸化膜半導体であることを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
A semiconductor module, wherein the semiconductor element formed on the semiconductor substrate is a field effect transistor made of a metal oxide semiconductor or a lateral diffusion metal oxide semiconductor.
請求項1に記載の半導体モジュールにおいて、
上記信号経路を形成する接合部材と、信号経路を形成しない接合部材とが、同一の素材、工程を経て形成されたことを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
A semiconductor module, wherein the joining member that forms the signal path and the joining member that does not form the signal path are formed through the same material and process.
半導体基板の主たる表面に能動領域を形成し、上記能動領域を配線基板と相対する方向に接合部材により接合してなるフリップチップ接続方式の半導体モジュールにおいて、上記半導体基板はヘテロ接合バイポーラトランジスタであり、上記へテロ接合バイポーラトランジスタのエミッタフィンガーから伸びるエミッタ配線を、少なくとも2つ以上のトランジスタについて共通配線化し、上記共通配線化したエミッタ配線と上記配線基板側の配線用電極との間を接合部材により電気的・熱的に接合したことを特徴とする半導体モジュール。   In a flip-chip connection type semiconductor module in which an active region is formed on a main surface of a semiconductor substrate and the active region is bonded to a wiring substrate by a bonding member, the semiconductor substrate is a heterojunction bipolar transistor, Emitter wiring extending from the emitter fingers of the heterojunction bipolar transistor is made common to at least two or more transistors, and an electrical connection is made between the emitter wiring thus made common and the wiring electrode on the wiring board side by a joining member. Semiconductor module characterized by mechanical and thermal bonding. 請求項1に記載の半導体モジュールにおいて、
ソース、ドレイン、ゲート信号接続用の接合部材の他に、上記半導体基板と上記配線基板を接続する第四の接合部材を形成し、かつ、上記第四の接合部材は、半導体素子内部の能動領域と面内で少なくとも一部が重なる位置にあることを特徴とする半導体モジュール。
The semiconductor module according to claim 1,
In addition to the bonding member for connecting the source, drain, and gate signal, a fourth bonding member for connecting the semiconductor substrate and the wiring substrate is formed, and the fourth bonding member is an active region inside the semiconductor element. A semiconductor module characterized in that at least a part thereof overlaps in the plane.
JP2005235638A 2005-08-16 2005-08-16 Semiconductor module Pending JP2007053148A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005235638A JP2007053148A (en) 2005-08-16 2005-08-16 Semiconductor module
US11/504,736 US7554193B2 (en) 2005-08-16 2006-08-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235638A JP2007053148A (en) 2005-08-16 2005-08-16 Semiconductor module

Publications (1)

Publication Number Publication Date
JP2007053148A true JP2007053148A (en) 2007-03-01

Family

ID=37917410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235638A Pending JP2007053148A (en) 2005-08-16 2005-08-16 Semiconductor module

Country Status (1)

Country Link
JP (1) JP2007053148A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283718A (en) * 2008-05-22 2009-12-03 Panasonic Corp Semiconductor element and semiconductor device using the same
JP2012199314A (en) * 2011-03-18 2012-10-18 Seiko Epson Corp Semiconductor device, printing apparatus, and manufacturing method
JP2016103540A (en) * 2014-11-27 2016-06-02 株式会社村田製作所 Compound semiconductor device
US11631659B2 (en) 2019-02-04 2023-04-18 Murata Manufacturing Co., Ltd. High-frequency module and communication apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156430A (en) * 1998-11-19 2000-06-06 Hitachi Ltd Semiconductor device
JP2003338577A (en) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd Circuit board device
JP2004022651A (en) * 2002-06-13 2004-01-22 Denso Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156430A (en) * 1998-11-19 2000-06-06 Hitachi Ltd Semiconductor device
JP2003338577A (en) * 2002-05-21 2003-11-28 Murata Mfg Co Ltd Circuit board device
JP2004022651A (en) * 2002-06-13 2004-01-22 Denso Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009283718A (en) * 2008-05-22 2009-12-03 Panasonic Corp Semiconductor element and semiconductor device using the same
JP4639245B2 (en) * 2008-05-22 2011-02-23 パナソニック株式会社 Semiconductor element and semiconductor device using the same
JP2012199314A (en) * 2011-03-18 2012-10-18 Seiko Epson Corp Semiconductor device, printing apparatus, and manufacturing method
JP2016103540A (en) * 2014-11-27 2016-06-02 株式会社村田製作所 Compound semiconductor device
US11631659B2 (en) 2019-02-04 2023-04-18 Murata Manufacturing Co., Ltd. High-frequency module and communication apparatus

Similar Documents

Publication Publication Date Title
JP3745213B2 (en) Semiconductor device and manufacturing method thereof
US7816784B2 (en) Power quad flat no-lead semiconductor die packages with isolated heat sink for high-voltage, high-power applications, systems using the same, and methods of making the same
US7772692B2 (en) Semiconductor device with cooling member
JP4493121B2 (en) Semiconductor device and semiconductor chip packaging method
US7005734B2 (en) Double-sided cooling isolated packaged power semiconductor device
JP2019071412A (en) Chip package
US11081472B2 (en) Stacked die multichip module package
TWI306381B (en) Printed circuit board with improved thermal dissipating structure and electronic device with the same
JP2004040008A (en) Semiconductor device
TWI269414B (en) Package substrate with improved structure for thermal dissipation and electronic device using the same
JP4695484B2 (en) Semiconductor device
KR102586458B1 (en) semiconductor sub-assembly and semiconductor power module
KR20180116733A (en) Semiconductor package
JP2009176839A (en) Heat dissipation structure of semiconductor element
JP2007053148A (en) Semiconductor module
US11637052B2 (en) Semiconductor device and semiconductor device manufacturing method
JP2010251427A (en) Semiconductor module
TWI459512B (en) Vertically packaged mosfet and ic power devices as integrated module using 3d interconnected laminates
JP2017069253A (en) Semiconductor Power Module
TW201916279A (en) Chip package
CN113410185B (en) Power semiconductor device packaging structure and manufacturing method thereof
JP2016178163A (en) Semiconductor package
KR20210001495A (en) Semiconductor package
JP7236930B2 (en) Heat dissipation device
US20230107764A1 (en) Semiconductor device and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110510