JP2007051918A - Flaw detection method of rolling material - Google Patents

Flaw detection method of rolling material Download PDF

Info

Publication number
JP2007051918A
JP2007051918A JP2005236941A JP2005236941A JP2007051918A JP 2007051918 A JP2007051918 A JP 2007051918A JP 2005236941 A JP2005236941 A JP 2005236941A JP 2005236941 A JP2005236941 A JP 2005236941A JP 2007051918 A JP2007051918 A JP 2007051918A
Authority
JP
Japan
Prior art keywords
flaw detection
time
rolled material
rolling mill
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005236941A
Other languages
Japanese (ja)
Other versions
JP4597006B2 (en
Inventor
Katsuya Takaoka
克也 高岡
Kazuhiko Kirihara
和彦 桐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005236941A priority Critical patent/JP4597006B2/en
Publication of JP2007051918A publication Critical patent/JP2007051918A/en
Application granted granted Critical
Publication of JP4597006B2 publication Critical patent/JP4597006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flaw detection method of a rolling material for accurately calculating the arrival time of the end part of the rolling material that arrives at a flaw detector, to accurately start or complete flaw detection. <P>SOLUTION: The average material passing speed Vave of the rolling material 3 that passes through a rolling machine 6 is calculated from the inlet side cross-sectional area Sin, outlet-side cross-sectional area Sout and outlet-side material passing speed Vout of the rolling material 3 in the rolling machine 6, the passing time Tio of the rolling material 3 that passes through the rolling machine 6 is calculated from the average material passing speed Vave and the distance Die from the inlet side of the rolling machine 6 to the outlet side thereof and the arrival time Tie of the rolling material 3, arriving at the flaw detector 12 after the end part of the rolling material 3, is detected on the upstream side of the rolling machine 6 is calculated, on the basis of the passing time Tio and the flaw detection due to the flaw detector 12 is started or completed after the arrival time Tie. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、圧延機で圧延された圧延材の探傷方法に関する。   The present invention relates to a flaw detection method for a rolled material rolled by, for example, a rolling mill.

従来より、線材などの圧延材の圧延工程では、仕上げ圧延機の下流側に探傷装置を配置し、この探傷装置の下流側に冷却装置及び巻き取り装置を配置し、圧延材が巻き取り装置で巻き取られる前に前記探傷装置で圧延材の表面などの探傷検査を行っている。
このような圧延材の探傷検査では、探傷の対象物(圧延材)の温度がキュリー点よりも低く当該圧延材が強磁性状態であるときに探傷を行うと磁気ノイズが発生して圧延材の探傷が安定的に行えなかったり又、冷却装置で冷却して圧延材が蛇行した状態で圧延材の探傷を行っていては正常な探傷が行えないことから、通常、圧延材の探傷は圧延後の直後で且つ冷却装置で冷却する前に行っている。
Conventionally, in the rolling process of rolled material such as wire rods, a flaw detection device is arranged downstream of the finish rolling mill, a cooling device and a winding device are arranged downstream of the flaw detection device, and the rolling material is a winding device. Before being wound up, the flaw detection apparatus performs a flaw detection inspection on the surface of the rolled material.
In such a flaw detection inspection of a rolled material, if flaw detection is performed when the temperature of the object to be flawed (rolled material) is lower than the Curie point and the rolled material is in a ferromagnetic state, magnetic noise is generated and Usually, flaw detection of rolled material is not possible after rolling, because normal flaw detection is not possible if flaw detection cannot be performed stably or rolling material flaw detection is performed with the rolled material meandering after cooling with a cooling device. This is performed immediately after and before cooling with the cooling device.

前記探傷装置は、例えば、図10に示すように、2つのコイル内に圧延材を通過させて圧延材の表面に渦電流を誘起させ、当該渦電流が圧延材の表面の割れ等によって変化する現象を利用したものである。
探傷装置では、渦電流の変化によってコイルのインピーダンスが変化し、これにより端子間でアンバランスな電圧が出力するため、この電圧の変化によって圧延材の探傷を行う。
さて、かかる探傷装置で圧延材の探傷を開始するタイミングを考えてみると、圧延した直後に探傷を行うので、圧延材の先端部が探傷装置に入ったことを突入信号等で検知してから探傷を開始すれば、圧延材の先端部から順に後端部まで探傷を行うことができると考えられる。
For example, as shown in FIG. 10, the flaw detection apparatus causes a rolling material to pass through two coils to induce eddy currents on the surface of the rolling material, and the eddy current changes due to cracks on the surface of the rolling material. This is a phenomenon.
In the flaw detection apparatus, the impedance of the coil changes due to a change in eddy current, which causes an unbalanced voltage to be output between the terminals.
Now, considering the timing of starting the flaw detection of the rolled material with such a flaw detector, since flaw detection is performed immediately after rolling, the fact that the tip of the rolled material has entered the flaw detector is detected by an inrush signal etc. If flaw detection is started, it is considered that flaw detection can be performed from the front end portion of the rolled material to the rear end portion in order.

しかしながら、線材の圧延では圧延速度が80m/secと非常に高速であるため、突入信号を検知してから探傷を開始していては探傷検知処理が間に間に合わなかったり、たとえ探傷検知処理が間に合ったとしても探傷装置が圧延材の先端部を大きなきずとして認識してしまうために、圧延材の突入信号と探傷信号との信号との区別をするのが非常に困難であることから、圧延材の先端部が探傷装置に入ったことを突入信号で検知してから圧延材の探傷を開始することはできないという問題がある。
そこで、探傷装置よりも上流側に先端検知センサを配置し、先端検知センサが圧延材の先端部を検知してから一定時間後に延材の探傷を開始するような方法が考えられている(例えば、特許文献1)。
However, the rolling speed of the wire rod is very high at 80 m / sec. Therefore, if the flaw detection is started after the rush signal is detected, the flaw detection processing is not in time, or the flaw detection processing is in time. Even if the flaw detection device recognizes the tip of the rolled material as a large flaw, it is very difficult to distinguish between the rolling material entry signal and the flaw detection signal. There is a problem that it is not possible to start the flaw detection of the rolled material after detecting that the front end of the flaw has entered the flaw detection device by the rush signal.
Therefore, a method has been considered in which a tip detection sensor is arranged on the upstream side of the flaw detection apparatus, and the flaw detection of the rolled material is started after a predetermined time after the tip detection sensor detects the tip of the rolled material (for example, Patent Document 1).

特許文献1は、圧延材が探傷装置に到達する前に、先端検知センサで圧延材の先端部を検知しておき、検知してから一定時間後に先端部が探傷装置へ到達するという考えの基に、圧延材の探傷を開始するタイミングを決定したものであるが、先端検知センサで検知してから探傷装置へ到達する時間を算出する際は、圧延機での圧延材の圧延速度が一定であることが条件となる。
特開2001−305108号公報
Patent Document 1 is based on the idea that the tip of the rolled material is detected by a tip detection sensor before the rolled material reaches the flaw detection device, and the tip reaches the flaw detection device after a certain period of time has been detected. In addition, the timing for starting the flaw detection of the rolled material is determined, but when calculating the time to reach the flaw detection device after detection by the tip detection sensor, the rolling speed of the rolled material in the rolling mill is constant. It must be a condition.
JP 2001-305108 A

通常、複数の圧延スタンドを有する圧延機で圧延材の圧延を行う場合、例えば各圧延スタンド毎に圧延材の厚みが小さくなることから圧延速度は各スタンド毎に変化する。
したがって、特許文献1のように圧延速度を一定として圧延材の先端部が探傷装置に到達する時間を算出しても、実情に合わず正確なタイミングで探傷の開始をすることができないという問題がある。
この問題を解決する方法として、マスフロー一定則(圧延材の断面積と圧延速度とをかけたものが一定)の考えを基に、各スタンド間における圧延速度を算出し、各スタンド間の経過時間をそれぞれ足し合わせることによって圧延材が圧延機内を通過する通過時間を求めることで、圧延速度変化も考慮したものが得られる。
Usually, when rolling a rolling material with a rolling mill having a plurality of rolling stands, for example, the thickness of the rolling material is reduced for each rolling stand, so that the rolling speed changes for each stand.
Therefore, even if the time for the tip of the rolled material to reach the flaw detector is calculated with a constant rolling speed as in Patent Document 1, flaw detection cannot be started at an accurate timing that does not match the actual situation. is there.
As a method to solve this problem, the rolling speed between each stand is calculated based on the idea of the constant mass flow (the product obtained by multiplying the cross-sectional area of the rolled material by the rolling speed), and the elapsed time between each stand. By adding each of the above, by determining the passing time for the rolled material to pass through the rolling mill, it is possible to obtain a material that also considers the rolling speed change.

しかしながら、マスフロー一定則で通過時間を求める場合は、すべてのスタンドについての圧延速度を算出する必要があり、又計算するためのファクタが多く計算式が複雑になる。これに加え、圧延速度が80m/secと非常に高速であり上記計算処理を非常に高速にしなければならないことを考慮すると、マスフロー一定則を用いて通過時間を算出することは非常に困難である。
そこで、本発明は、上記問題点に鑑み、圧延材の端部が探傷装置へ到達する到達時間を正確に算出して、探傷を正確に開始又は終了させることができる圧延材の探傷方法を提供することを目的とする。
However, when the passage time is obtained according to the constant mass flow rule, it is necessary to calculate the rolling speed for all the stands, and there are many factors for calculation, and the calculation formula becomes complicated. In addition to this, considering that the rolling speed is as high as 80 m / sec and the above calculation process has to be very high, it is very difficult to calculate the passage time using the constant mass flow rule. .
Therefore, in view of the above problems, the present invention provides a rolled material flaw detection method capable of accurately calculating the arrival time at which the end of the rolled material reaches the flaw detection apparatus and accurately starting or ending flaw detection. The purpose is to do.

前記目的を達成するために、本発明は、次の手段を講じた。即ち、本発明における課題解決のための技術的手段は、複数の圧延スタンドを有する圧延機の下流側に探傷装置を配置し、この探傷装置で圧延機で圧延した圧延材の探傷を行う圧延材の探傷方法において、
前記圧延機での圧延材の入側断面積と出側断面積と出側通材速度とから、圧延機内を通過する圧延材の平均通材速度を算出し、この平均速度と圧延機の入側から出側までの距離とから前記圧延材が圧延機内を通過する通過時間を算出し、この通過時間に基づいて前記圧延機の上流側で圧延材の端部が検出されてから探傷装置に到達するまでの到達時間を算出しておき、前記到達時間後に探傷装置の探傷を開始又は終了する点にある。
In order to achieve the above object, the present invention has taken the following measures. That is, the technical means for solving the problems in the present invention is a rolling material in which a flaw detection device is arranged on the downstream side of a rolling mill having a plurality of rolling stands and the rolled material rolled by the rolling mill is detected by this flaw detection device. In the flaw detection method of
The average passing speed of the rolled material passing through the rolling mill is calculated from the inlet side sectional area, the outlet side sectional area, and the outlet side passing speed of the rolled material in the rolling mill. From the distance from the side to the exit side, the passing time for the rolled material to pass through the rolling mill is calculated, and based on this passing time, the end of the rolled material is detected on the upstream side of the rolling mill and then the flaw detection device. The arrival time until it reaches is calculated, and the flaw detection device starts or ends after the arrival time.

発明者は、出来る限り簡単な計算でしかも正確に圧延材の端部が探傷装置に到達する時間を設定することについて様々な角度から検証した。その結果、圧延材の入側断面積、出側断面積、出側速度は圧延材が探傷装置に達する前、又は、圧延前に、情報が得られることが可能であることからこれらを用いて通過時間を求め、この通過時間で到達時間を算出することを見いだした。なお、圧延材の入側断面積、出側断面積、出側速度は、実測値であっても予測値であっても、目標値であってもよい。
したがって、探傷装置に到達するまでの到達時間を正確に且つ素早く算出でき、圧延材の探傷をタイミング良く開始又は終了することができる。
The inventor has verified from various angles about setting the time for the end of the rolled material to reach the flaw detector with the simplest possible calculation. As a result, the entry side cross-sectional area, the exit side cross-sectional area, and the exit side speed of the rolled material can be obtained before the rolled material reaches the flaw detection apparatus or before rolling. We found the passage time and calculated the arrival time by this passage time. In addition, the entrance side cross-sectional area, the exit side cross-sectional area, and the exit side speed of the rolled material may be measured values, predicted values, or target values.
Therefore, it is possible to accurately and quickly calculate the arrival time until reaching the flaw detection apparatus, and to start or end the flaw detection of the rolled material with good timing.

前記通過時間は[式1]及び[式2]から算出している。   The passing time is calculated from [Expression 1] and [Expression 2].

Figure 2007051918
Figure 2007051918

上記[式1]は、様々な実験により導き出したもので、圧延材が圧延機内を通過する平均通材速度は、圧延材の圧延後の断面積を圧延前の断面積で割った断面積比の1/2乗に比例することを見いだした。平均通材速度及び圧延機の入側から出側までの距離が分かると、[式2]により通過時間を算出することができる。
これによって、圧延材の端部が圧延機に投入されてから排出されるまでの通過時間を算出でき、正確に圧延材の探傷を開始できると共に、正確に圧延材の探傷を終了することができる。
The above [Equation 1] is derived from various experiments, and the average passing speed at which the rolled material passes through the rolling mill is the cross-sectional area ratio obtained by dividing the cross-sectional area after rolling the rolled material by the cross-sectional area before rolling. We found that it is proportional to the power of 1/2. When the average material passing speed and the distance from the entry side to the exit side of the rolling mill are known, the passing time can be calculated by [Equation 2].
As a result, it is possible to calculate the passage time from when the end portion of the rolled material is put into the rolling mill to when it is discharged, and to accurately start the flaw detection of the rolled material, and to accurately end the flaw detection of the rolled material. .

本発明の他の技術的手段は、前記圧延材の先端部に前記探傷装置で探傷を行わない先端非探傷部を有しており、前記先端非探傷部の長さと前記出側通材速度とから、先端非探傷部に対する非探傷時間を算出しておき、圧延材の先端部が圧延機に入ってから前記通過時間と非探傷時間とを加算した時間後に探傷装置の探傷を開始する点にある。
これによれば、圧延材の先端部で探傷を行わない先端非探傷部があったとしても、正確に圧延材の探傷を開始できる。
本発明の他の技術的手段は、前記圧延材の後端部に前記探傷装置で探傷を行わない後端非探傷部を有しており、前記後端非探傷部の長さと前記出側通材速度とから、後端探傷部に対する非探傷時間を算出しておき、圧延材の後端部が圧延機に入ってから、前記通過時間から非探傷時間を減算した時間後に探傷装置の探傷を終了する点にある。
Another technical means of the present invention has a tip non-flaw detection portion that does not perform flaw detection by the flaw detection device at the tip portion of the rolled material, and the length of the tip non-flaw detection portion and the delivery-side material passing speed From this point, the non-defect detection time for the tip non-defect detection portion is calculated, and the flaw detection device starts flaw detection after the passage time and the non-defect detection time are added after the rolling material has entered the rolling mill. is there.
According to this, even if there is a tip non-flaw detection portion that does not perform flaw detection at the tip portion of the rolled material, the flaw detection of the rolled material can be started accurately.
According to another technical means of the present invention, a rear end non-flaw detection unit that does not perform flaw detection by the flaw detection device is provided at the rear end of the rolled material. From the material speed, the non-flaw detection time for the rear end flaw detection part is calculated, and after the rear end part of the rolled material enters the rolling mill, the flaw detection apparatus performs flaw detection after the time obtained by subtracting the non-flaw detection time from the passage time. The point is to end.

これによれば、圧延材の後端部で探傷を行わない後端非探傷部があったとしても、正確に圧延材の探傷を終了できる。   According to this, even if there is a rear end non-flaw detection portion that does not perform flaw detection at the rear end portion of the rolled material, the flaw detection of the rolled material can be completed accurately.

本発明によれば、圧延材の端部が探傷装置へ到達する到達時間を正確に算出して、探傷を正確に開始又は終了させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the arrival time when the edge part of a rolling material reaches | attains a flaw detection apparatus can be calculated correctly, and flaw detection can be started or ended correctly.

以下、本発明の実施の形態を、図面に基づき説明する。
図1〜3は本発明の圧延材の探傷方法を実施する圧延装置の全体図を示している。
を示している。
図1,2に示すように、この圧延装置1は加熱炉2から移送された圧延材3を線材(条鋼線材)に圧延するもので、粗圧延機4、中間圧延機5、仕上げ圧延機6、冷却帯7(冷却機)、巻き取り機8、これらを制御する制御装置9とを備えている。
加熱炉2の下流側には粗圧延機4が配置されており、粗圧延機4から下流側に向けて順に中間圧延機5、仕上げ圧延機6、冷却帯7、巻き取り機8が配置されている。中間圧延機5と仕上げ圧延機6との間には、第1端部検知センサ10と第2端部検知センサ11(端部検出手段)とが配置されており、仕上げ圧延機6と冷却帯7との間には線材3の探傷を行うための探傷装置12が配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1-3 has shown the whole rolling apparatus which implements the flaw detection method of the rolling material of this invention.
Is shown.
As shown in FIGS. 1 and 2, this rolling device 1 is for rolling a rolled material 3 transferred from a heating furnace 2 into a wire rod (strip bar), a rough rolling mill 4, an intermediate rolling mill 5, and a finish rolling mill 6. A cooling zone 7 (cooling machine), a winder 8, and a control device 9 for controlling them.
A rough rolling mill 4 is disposed on the downstream side of the heating furnace 2, and an intermediate rolling mill 5, a finishing rolling mill 6, a cooling zone 7, and a winder 8 are sequentially disposed from the rough rolling mill 4 toward the downstream side. ing. A first end detection sensor 10 and a second end detection sensor 11 (end detection means) are disposed between the intermediate rolling mill 5 and the finish rolling mill 6, and the finish rolling mill 6 and the cooling zone are arranged. A flaw detection device 12 for flaw detection of the wire 3 is disposed between the two.

第1端部検知センサ10及び第2端部検知センサ11は、線材3からの赤外線を検知することで当該線材の先端や後端の検知を行うことができるHMD(ホットメタルディテクタ)から構成されている。
即ち、第1端部検知センサ10及び第2端部検知センサ11は高温物体を検知できるもので、例えば、約1000℃の高温の線材3が当該センサ上を通過しているときは、検知信号(ON信号)を出力し、線材3が通過しないときは検知信号を出力しない(OFF信号)ような構成になっている。
The first end detection sensor 10 and the second end detection sensor 11 are configured by an HMD (hot metal detector) that can detect the front end and the rear end of the wire rod by detecting infrared rays from the wire rod 3. ing.
That is, the first end detection sensor 10 and the second end detection sensor 11 can detect a high-temperature object. For example, when a high-temperature wire 3 of about 1000 ° C. passes through the sensor, the detection signal (ON signal) is output, and when the wire 3 does not pass, the detection signal is not output (OFF signal).

第1端部検知センサ10は、第2端部検知センサ11よりも上流側に配置され、線材3の端部を検知するとその検知信号を制御装置9に出力する。第2端部検知センサ11は、仕上げ圧延機6の入側に配置されていて、線材3の先端部が仕上げ圧延機6に突入するとその検知信号を制御装置9や探傷装置12に出力する。
前記各圧延機4,5,6は複数の圧延スタンド13(ワークロール)を有する多段圧延機であり、圧延スタンド13によって線材3を所定の大きさに圧延するようになっている。実施形態での圧延装置1ではφ4.0mm〜φ20mmまでの線材3を約φ0.1mm刻みで製造することができる。
The first end detection sensor 10 is arranged on the upstream side of the second end detection sensor 11, and outputs a detection signal to the control device 9 when detecting the end of the wire 3. The second end detection sensor 11 is disposed on the entry side of the finish rolling mill 6, and outputs a detection signal to the control device 9 and the flaw detection device 12 when the tip of the wire 3 enters the finish rolling mill 6.
Each of the rolling mills 4, 5, 6 is a multi-stage rolling mill having a plurality of rolling stands 13 (work rolls), and the wire rod 3 is rolled to a predetermined size by the rolling stand 13. In the rolling apparatus 1 according to the embodiment, the wire 3 having a diameter of φ4.0 mm to φ20 mm can be manufactured in steps of about φ0.1 mm.

仕上げ圧延機6の出側には、仕上げ圧延機6での最終圧延スタンド13aにおけるロール周速度を計測して回転数に変換する速度変換器14が配置され、この速度変換器14で変換された回転数は探傷装置12へ出力されるようになっている。
前記探傷装置12は、主に線材3の表面の物理的な傷や金属組織的な傷を検知するもので、仕上げ圧延機6の出側直後に配置されている。この探傷装置12は、熱間貫通型であって、探傷制御部15と、線材3の探傷をおこなうヘッド部16(プローブ部)とを有しており、探傷制御部15から出力された探傷開始及び探傷終了信号に基づいて、ヘッド部16が線材3の探傷を開始したり終了するようになっている。
On the exit side of the finish rolling mill 6, a speed converter 14 that measures the roll peripheral speed in the final rolling stand 13 a in the finish rolling mill 6 and converts it into a rotation speed is arranged. The number of rotations is output to the flaw detector 12.
The flaw detection device 12 mainly detects a physical flaw or a metal flaw on the surface of the wire 3 and is arranged immediately after the exit side of the finish rolling mill 6. The flaw detection apparatus 12 is a hot-penetrating type, and includes a flaw detection control unit 15 and a head unit 16 (probe unit) that performs flaw detection of the wire 3, and a flaw detection start output from the flaw detection control unit 15. Based on the flaw detection end signal, the head unit 16 starts or ends flaw detection of the wire 3.

制御装置9(プロセスコンピュータ)は、例えば、圧延スタンド13の圧延荷重やロール周速度を制御したり、冷却帯7での冷却速度等を制御したりするもので、圧延する線材3が所定の大きさになるように各圧延機4,5,6及び冷却帯7を制御する。
次に、圧延装置1及び探傷装置12の動作について図2〜4を用いて説明する。
まず、加熱炉2から移送された線材3は、粗圧延機4、中間圧延機5を経て所定の大きさの線材3に圧延され、中間圧延機5から仕上げ圧延機6へ移送される。
図2〜4に示すように、線材3が仕上げ圧延機6に入る前に第1端部検知センサ10が線材3の先端を検知し、その検知信号が制御装置9に入力されると、制御装置9は圧延する線材3の圧延データに基づいて仕上げ圧延機6へ移送される線材3の入側断面積Sinと出側断面積Soutとを探傷装置12の探傷制御部15へ送信する。
The control device 9 (process computer) controls, for example, the rolling load and roll peripheral speed of the rolling stand 13 or the cooling speed in the cooling zone 7, and the wire 3 to be rolled has a predetermined size. Each rolling mill 4, 5, 6 and the cooling zone 7 are controlled so that it may become.
Next, operation | movement of the rolling apparatus 1 and the flaw detection apparatus 12 is demonstrated using FIGS.
First, the wire 3 transferred from the heating furnace 2 is rolled into a wire 3 having a predetermined size via a rough rolling mill 4 and an intermediate rolling mill 5, and is transferred from the intermediate rolling mill 5 to the finish rolling mill 6.
As shown in FIGS. 2 to 4, the first end detection sensor 10 detects the tip of the wire 3 before the wire 3 enters the finish rolling mill 6, and when the detection signal is input to the control device 9, the control is performed. The apparatus 9 transmits the entry side sectional area Sin and the exit side sectional area Sout of the wire 3 transferred to the finish rolling mill 6 to the flaw detection control unit 15 of the flaw detection apparatus 12 based on the rolling data of the wire 3 to be rolled.

このとき、探傷制御部15には圧延する線材3の圧延データに基づいて決められた最終スタンド13aの回転数も入力される。
探傷制御部15は、最終圧延スタンド13における回転数に基づいて最終圧延スタンド13における線材3の通材速度、即ち、出側通材速度Voutを求め、この出側通材速度Voutと入側断面積Sinと出側断面積Soutとから仕上げ圧延機6内(線材3が仕上げ圧延機6に入ってから出るまで)を通過する線材3の平均通材速度Vaveを算出する。
また、探傷制御部15は、平均通材速度Vaveを基に線材3が仕上げ圧延機6内を通過する通過時間Tioを算出し、通過時間Tioに基づいて第2端部検知センサ11が線材3の端部を検知してから探傷装置12に到達するまでの到達時間Tieを算出して、その到達時間Tieを記憶する。
At this time, the number of rotations of the final stand 13a determined based on the rolling data of the wire 3 to be rolled is also input to the flaw detection control unit 15.
The flaw detection control unit 15 obtains the threading speed of the wire 3 in the final rolling stand 13 based on the number of revolutions in the final rolling stand 13, that is, the outgoing side passing speed Vout, and the outgoing side passing speed Vout and the incoming side interruption. From the area Sin and the exit cross-sectional area Sout, the average passing speed Vave of the wire 3 passing through the finish rolling mill 6 (until the wire 3 enters and exits the finish rolling mill 6) is calculated.
Further, the flaw detection control unit 15 calculates a passing time Tio for the wire 3 to pass through the finishing mill 6 based on the average material passing speed Vave, and the second end detection sensor 11 is used for the wire 3 based on the passing time Tio. The arrival time Tie from the detection of the edge portion to the flaw detection device 12 is calculated, and the arrival time Tie is stored.

この実施の形態では、第2先端検出センサは仕上げ圧延機6の入側に配置されているため、前記到達時間Tieは、線材3の先端が仕上げ圧延機6に入ってから探傷装置12に入るまでの時間となる。
そして、第2端部検知センサ11が線材3の先端部を検知しその検知信号が探傷制御部15へ入力されると、探傷制御部15は、線材3の先端部が検知されてから到達時間Tie後にヘッド部16へ探傷開始信号を送信し、ヘッド部16は探傷開始信号が入力されると線材3の探傷を開始する。
In this embodiment, since the second tip detection sensor is disposed on the entry side of the finish rolling mill 6, the arrival time Tie enters the flaw detection device 12 after the tip of the wire rod 3 enters the finish rolling mill 6. It will be time until.
Then, when the second end detection sensor 11 detects the tip of the wire 3 and the detection signal is input to the flaw detection control unit 15, the flaw detection control unit 15 reaches the arrival time after the tip of the wire 3 is detected. After the tie, a flaw detection start signal is transmitted to the head unit 16. When the flaw detection start signal is input, the head unit 16 starts flaw detection of the wire 3.

なお、第2端部検知センサ11が線材3の後端部を検知して検知信号がOFFになると、探傷制御部15は、線材3の後端部が検知されてから到達時間Tie後にヘッド部16へ探傷終了信号を送信し、ヘッド部16は探傷終了信号が入力されると線材3の探傷を終了することとなる。この場合、前記到達時間Tieは線材3の後端が仕上げ圧延機6に入ってから探傷装置12に入るまでの時間となり、到達時間後に探傷装置の探傷を終了することが可能である。
図3に示すように、前記入側断面積Sinは、線材3が仕上げ圧延機6に入る前、即ち、線材3が中間圧延機5を出たときの断面積であり、当該断面積は予め計算した予測値を用いても良いし、センサ等で実際の断面積を測定してその断面積を用いても良い。
When the second end detection sensor 11 detects the rear end of the wire 3 and the detection signal is turned OFF, the flaw detection control unit 15 detects the head portion after the arrival time Tie after the rear end of the wire 3 is detected. When the flaw detection end signal is transmitted to 16 and the flaw detection end signal is input, the head unit 16 ends the flaw detection of the wire 3. In this case, the arrival time Tie is a time from when the rear end of the wire 3 enters the finish rolling mill 6 until it enters the flaw detection apparatus 12, and the flaw detection of the flaw detection apparatus can be terminated after the arrival time.
As shown in FIG. 3, the entry-side cross-sectional area Sin is a cross-sectional area before the wire rod 3 enters the finish rolling mill 6, that is, when the wire rod 3 leaves the intermediate rolling mill 5, The calculated predicted value may be used, or the actual cross-sectional area may be measured with a sensor or the like and the cross-sectional area may be used.

前記出側断面積Soutは、線材3が仕上げ圧延機6から出たときの断面積であり、当該断面積は予め計算した予測値を用いても良いし、センサ等で実際の断面積を測定してその断面積を用いても良い。
前記出側通材速度Voutは、最終圧延スタンド13aの回転数から求めたものである。即ち、仕上げ圧延機6の最終圧延スタンド13a側にレーザードップラー式などの速度計を配置し、最終圧延スタンド13aを通過する線材3の通材速度を実測し、最終圧延スタンド13aの回転数と前記通材速度との関係を予め調べておくことによって、最終圧延スタンド13aの回転数から出側通材速度Voutを求めることができる。
The exit-side cross-sectional area Sout is a cross-sectional area when the wire 3 comes out of the finish rolling mill 6, and the cross-sectional area may be a predicted value calculated in advance, or an actual cross-sectional area is measured with a sensor or the like. Then, the cross-sectional area may be used.
The delivery-side material passing speed Vout is obtained from the rotational speed of the final rolling stand 13a. That is, a speed meter such as a laser Doppler type is disposed on the final rolling stand 13a side of the finish rolling mill 6, the passing speed of the wire 3 passing through the final rolling stand 13a is measured, and the rotation speed of the final rolling stand 13a By examining the relationship with the material passing speed in advance, the delivery side material passing speed Vout can be obtained from the rotation speed of the final rolling stand 13a.

前記平均通材速度Vave及び通過時間Tioは、[式1]及び[式2]から算出している。   The average material passing speed Vave and the passage time Tio are calculated from [Formula 1] and [Formula 2].

Figure 2007051918
Figure 2007051918

前記[式1]は後述するように様々な実験により導き出したもので、平均通材速度Vaveは線材3の圧延後の断面積(出側断面積Sout)を圧延前の断面積(入側断面積Sin)で割った断面積比の1/2乗に比例することを示している。
次に[式1]を導出した過程を説明する。
発明者は、圧延スタンド13の数がそれぞれ異なる2段仕上げ圧延機6,6段仕上げ圧延機6,10段仕上げ圧延機6をそれぞれ用いて、φ5.5mm〜φ20mmまでの線材3を製造し、圧延の際における通過時間Tio,出側通材速度Vout,仕上げ圧延機6の入側から出側までの距離Dio、出側断面積Sout,入側断面積Sinの圧延データを実測した。
The above [Formula 1] is derived by various experiments as will be described later, and the average passing speed Vave is the cross-sectional area after the rolling of the wire 3 (exit-side cross-sectional area Sout). It is proportional to the 1/2 power of the cross-sectional area ratio divided by the area (Sin).
Next, the process of deriving [Equation 1] will be described.
The inventor uses the two-stage finish rolling mill 6, the six-stage finish rolling mill 6, and the ten-stage finish rolling mill 6, each having a different number of rolling stands 13, to manufacture the wire 3 having a diameter of φ5.5 mm to φ20 mm, The rolling data of the passing time Tio, the exit side material speed Vout, the distance Dio from the entry side to the exit side of the finish rolling mill 6, the exit side sectional area Sout, and the entry side sectional area Sin were measured.

次に、実験から得られた圧延データを基に、各仕上げ圧延機6について、下記[式3]に示すように、仕上げ圧延機6の入側から出側までの距離Dioを通過時間Tioと出側通材速度Voutとの積で割ったy値を算出すると共に、下記[式4]に示すように、出側断面積Soutを入側断面積Sinで割ったX値、即ち、断面積比の値を算出した。そして、図5に示すように、[式3]で算出したy値を縦軸にとり、[式4]で算出したx値(断面積比)を横軸にとって、これらの値をプロットした。   Next, based on the rolling data obtained from the experiment, for each finish rolling mill 6, the distance Dio from the entry side to the exit side of the finish rolling mill 6 is expressed as the passage time Tio as shown in [Equation 3] below. The y value divided by the product of the delivery-side material feed speed Vout is calculated, and the X value obtained by dividing the delivery-side sectional area Sout by the entry-side sectional area Sin, that is, the sectional area, as shown in [Formula 4] below. Ratio values were calculated. Then, as shown in FIG. 5, these values were plotted with the y value calculated by [Expression 3] on the vertical axis and the x value (cross-sectional area ratio) calculated by [Expression 4] on the horizontal axis.

Figure 2007051918
Figure 2007051918

なお、前記[式3]での通過時間Tioと出側通材速度Voutとの積は線材3が仕上げ圧延機6内を通過した長さを示しており、したがって、[式3]のy値は線材3の実際の通過長さと仕上げ圧延機6の入側から出側までの距離Dioとの比を示したものである。
ここで、[式4]のx値(断面積)を1/1乗、1/2乗、1/3乗した3パターンの数値を計算し、これら3パターンの数値と前記y値とを図6(a)〜(c)に示すようにプロットした。そして、図6(a)〜(c)に示す各図において、前記プロット値の回帰線を最小二乗法を用いて求めるために、下記[式5]〜[式7]を用意した。
In addition, the product of the passage time Tio and the delivery-side material speed Vout in [Formula 3] indicates the length of the wire 3 that has passed through the finish rolling mill 6, and accordingly, the y value of [Formula 3] Indicates the ratio between the actual passing length of the wire 3 and the distance Dio from the entry side to the exit side of the finish rolling mill 6.
Here, the numerical values of three patterns obtained by calculating the x value (cross-sectional area) of [Expression 4] to the 1/1, 1/2, and 1/3 powers are calculated, and the numerical values of these three patterns and the y value are plotted. Plots were made as shown in 6 (a)-(c). And in each figure shown to Fig.6 (a)-(c), in order to obtain | require the regression line of the said plot value using the least squares method, the following [Formula 5]-[Formula 7] were prepared.

Figure 2007051918
Figure 2007051918

[式5]は図6(a)における一次近似式で、[式6]は図6(b)における一次近似式で、[式7]は図6(c)における一次近似式である。また、回帰計算の結果、各式における一次近似係数は、A1=1.788,A2=1.029,A3=0.800となった。
次に、[式3]を下記[式8]に変形し、[式5]〜[式7]から得られるy値を[式8]に代入し、[式5]〜[式7]及び[式8]から予測の通過時間Tioを求めた。また、実際の線材3の通過時間Tioを計測し、各[式5]〜[式7]のy値から得られる予測の通過時間Tioと、実際の通過時間Tioとを図7(a)〜(c)に示すようにプロットした。
[Equation 5] is the primary approximation in FIG. 6A, [Equation 6] is the primary approximation in FIG. 6B, and [Equation 7] is the primary approximation in FIG. 6C. Further, as a result of the regression calculation, the primary approximation coefficients in the respective equations were A1 = 1.788, A2 = 1.030, A3 = 0.800.
Next, [Expression 3] is transformed into [Expression 8] below, and the y value obtained from [Expression 5] to [Expression 7] is substituted into [Expression 8], and [Expression 5] to [Expression 7] and The predicted transit time Tio was obtained from [Equation 8]. Further, the actual passing time Tio of the wire rod 3 is measured, and the predicted passing time Tio obtained from the y value of each of [Expression 5] to [Expression 7] and the actual passing time Tio are shown in FIG. Plotted as shown in (c).

Figure 2007051918
Figure 2007051918

図7(a)は、[式5]のy値を用いて予測の通過時間Tioを求めたものであり、 図7(b)は[式6]のy値を用いて予測の通過時間Tioを求めたものであり、図7(c)は[式7]のy値を用いて予測の通過時間Tioを求めたものである。
図7から分かるように、他の式で求めたものよりも[式6]のy値で予測の通過時間Tioを求めたものが実際の通過時間Tioに一番近いことが分かった。
各式において求めた各式での予測精度、即ち、通過時間Tioの実績値(実測値)と、各式との相関係数を求めたところ表1のようになった。
FIG. 7A shows the predicted passing time Tio using the y value of [Expression 5], and FIG. 7B shows the predicted passing time Tio using the y value of [Expression 6]. FIG. 7C shows the predicted transit time Tio using the y value of [Equation 7].
As can be seen from FIG. 7, it is found that the predicted passage time Tio obtained with the y value of [Formula 6] is closest to the actual passage time Tio than that obtained by other equations.
Table 1 shows the prediction accuracy in each equation obtained, that is, the actual value (actual measurement value) of the passage time Tio and the correlation coefficient between each equation.

Figure 2007051918
Figure 2007051918

表1から分かるように、通過時間Tioの実績値と各式との相関係数を見てみると、[式6]に対する相関係数が最も1.0に近く、[式6]で通過時間Tioを予測するものが一番信頼性が高いことが分かった。
次に、線材3が仕上げ圧延機6内を通過した長さzは下記[式9]で表すことができることから、[式5]〜[式7]から得られるy値を[式8]に代入し、[式5]〜[式7]及び[式8]から線材3の先端が仕上げ圧延機6内を通過する予測長さを求めた。また、実際の線材3の先端が仕上げ圧延機6内を通過した実際の長さを計測した。そして、実際の長さと予測長さとの差を計算し、この実際の長さと予測長さとの差と、x値(断面積比)とを図8に示すようにプロットした。
As can be seen from Table 1, when looking at the correlation coefficient between the actual value of the passage time Tio and each expression, the correlation coefficient for [Expression 6] is closest to 1.0, and [Expression 6] It turns out that what predicts Tio is the most reliable.
Next, since the length z that the wire rod 3 has passed through the finish rolling mill 6 can be expressed by the following [Expression 9], the y value obtained from [Expression 5] to [Expression 7] is expressed as [Expression 8]. By substituting, the predicted length that the tip of the wire rod 3 passes through the finish rolling mill 6 was obtained from [Formula 5] to [Formula 7] and [Formula 8]. Further, the actual length of the actual wire 3 passing through the finish rolling mill 6 was measured. Then, the difference between the actual length and the predicted length was calculated, and the difference between the actual length and the predicted length and the x value (cross-sectional area ratio) were plotted as shown in FIG.

Figure 2007051918
Figure 2007051918

また、各式で予測した予測長さと実際の長さ(測定長さ)との標準偏差を求めたところ表2のようになった。これから分かるように、[式6]のy値で予測した場合が最も標準偏差が小さいことが確認できる。この[式6]のy値で予測した予測長さと実際の長さ(測定長さ)との差は標準偏差の3倍(3σ)以下であって線材3の長さに換算すると1m以下になる。   Further, when the standard deviation between the predicted length predicted by each formula and the actual length (measured length) was obtained, it was as shown in Table 2. As can be seen from this, it can be confirmed that the standard deviation is the smallest when predicted by the y value of [Expression 6]. The difference between the predicted length predicted by the y value of [Equation 6] and the actual length (measured length) is three times the standard deviation (3σ) or less, and when converted to the length of the wire 3, it is 1 m or less. Become.

Figure 2007051918
Figure 2007051918

図8及び表2から分かるように、断面積比が1/2乗で予測長さを予測したものが実際の長さと最も近いものとなった。
以上のように前記y値とx値は、[式6]で表したものが最も実際の値に近く、[式6]に[式4]及び[式3]を代入しすると、下記[式10]にとなる。
As can be seen from FIG. 8 and Table 2, the predicted length when the cross-sectional area ratio is 1/2 power is the closest to the actual length.
As described above, the y value and the x value represented by [Expression 6] are closest to the actual values, and when [Expression 4] and [Expression 3] are substituted into [Expression 6], the following [Expression 6] 10].

Figure 2007051918
Figure 2007051918

ここで、前記[式10]を更に整理すると、下記[式11]になる。   Here, when the above [Formula 10] is further arranged, the following [Formula 11] is obtained.

Figure 2007051918
Figure 2007051918

[式11]に示すように、仕上げ圧延機6の入側と出側のみを考えたとき、仕上げ圧延機6の入側から出側までの距離Dioを通過時間Tioで割ったものが平均通材時間Vaveと考えられるため、当該平均通材時間Vaveを出側断面積Soutと,入側断面積Sinとで示すことができる。上記[式11]は前記[式1]と同じである。
本発明によれば、前記[式1]示すように、平均通材速度Vaveは出側断面積Soutを入側断面積Sinで割った前記断面比に平方根をとり係数Aをかけたものに出側通材速度Voutを掛けることによって求めることができる。
As shown in [Formula 11], when considering only the entry side and the exit side of the finish rolling mill 6, the average distance is obtained by dividing the distance Dio from the entry side to the exit side of the finish rolling mill 6 by the passage time Tio. Since it is considered that the material time is Vave, the average material passing time Vave can be represented by an exit side sectional area Sout and an entry side sectional area Sin. The above [Formula 11] is the same as the above [Formula 1].
According to the present invention, as shown in [Equation 1], the average material passing speed Vave is obtained by multiplying the sectional ratio obtained by dividing the exit-side sectional area Sout by the entrance-side sectional area Sin by multiplying the square root by the coefficient A. It can be obtained by multiplying the side material passing speed Vout.

この実施の形態では、仕上げ圧延機6の出側直後に探傷装置12が配置されていることから仕上げ圧延機6の出側から探傷装置12までの距離Dieを0と考え、通過時間Tioと到達時間Tieとが同じ、即ち、Tio=Tieとすることで、前記到達時間Tieを求めることができる。なお、探傷装置12を仕上げ圧延機6の出側直後ではなく、仕上げ圧延機6の出側から離れた所に配置し、仕上げ圧延機6の出側から探傷装置12までの距離Dieを有限とする場合は、その間の線材3の通材速度は出側通材速度Voutと同じと考え、下記[式12]で求めることができる。   In this embodiment, since the flaw detection device 12 is arranged immediately after the exit side of the finish rolling mill 6, the distance Die from the exit side of the finish rolling mill 6 to the flaw detection device 12 is considered as 0, and the passing time Tio is reached. When the time Tie is the same, that is, Tio = Tie, the arrival time Tie can be obtained. Note that the flaw detection device 12 is not located immediately after the exit side of the finish rolling mill 6 but at a position away from the exit side of the finish rolling mill 6, and the distance Die from the exit side of the finish rolling mill 6 to the flaw detection device 12 is limited. In this case, the wire passing speed of the wire 3 in the meantime is considered to be the same as the delivery-side passing speed Vout, and can be obtained by the following [Equation 12].

Figure 2007051918
Figure 2007051918

次に、線材3の先端部及び後端部において探傷を行わない非探傷部を予め設定し、その部分は探傷を行わないで切り捨ててしまう場合があることから線材3の先端部に探傷を行わない先端非探傷部が予め決められている場合を考える。
図9(a)に示すように、線材3の先端部に長さFhの先端非探傷部20があるとする。
線材3に先端非探傷部20がある場合は、当該先端非探傷部20が探傷装置12に到達したとしてもその長さFh分だけ探傷を行わないようにするので、先端非探傷部20が探傷装置12のヘッド部16を通過する時間、即ち、非探傷時間を算出する。この非探傷時間はFh/Voutで計算できる。
Next, since a non-flaw detection portion that does not perform flaw detection is set in advance at the front end portion and the rear end portion of the wire rod 3 and the portion may be discarded without performing flaw detection, flaw detection is performed on the front end portion of the wire rod 3. Consider a case where no tip non-defect detection part is determined in advance.
As shown in FIG. 9A, it is assumed that the tip non-defect detecting portion 20 having a length Fh is provided at the tip of the wire 3.
In the case where the wire 3 has the tip non-defect detecting portion 20, even if the tip non-defect detecting portion 20 reaches the flaw detection device 12, the tip non-defect detecting portion 20 does not perform the flaw detection by the length Fh. The time for passing through the head portion 16 of the apparatus 12, that is, the non-flaw detection time is calculated. This non-flaw detection time can be calculated by Fh / Vout.

線材3の先端部が仕上げ圧延機6に入ってから探傷を開始する時間Th(言い換えれば、第2端部検知センサ11が先端部を検知してから探傷を開始する時間)は、下記[式13]で求めることができる。   The time Th for starting the flaw detection after the front end portion of the wire 3 enters the finish rolling mill 6 (in other words, the time for starting the flaw detection after the second end detection sensor 11 detects the front end portion) is as follows: 13].

Figure 2007051918
Figure 2007051918

したがって、先端非探傷部20の長さ(Fh)と出側通材速度Voutとから、先端非探傷部20に対する非探傷時間を算出しておき、線材3の先端部が仕上げ圧延機6に入ってから通過時間(Tio+Toe)と非探傷時間とを加算した時間後に探傷装置12の探傷を開始すれば、線材3の探傷が必要な先端部から順に探傷を行うことができ、不必要な部分を探傷することなく探傷が必要な分だけその検査を行うことができる。
また、図9(b)に示すように、線材3の先端部に長さFtの後端非探傷部21ある場合、後端非探傷部21が探傷装置12に到達してもその長さFt分だけ探傷を行わないようにするので、後端非探傷部21の非探傷時間を算出する。この非探傷時間はFt/Voutで計算できる。
Therefore, the non-flaw detection time for the tip non-flaw detection part 20 is calculated from the length (Fh) of the tip non-flaw detection part 20 and the delivery-side material passing speed Vout, and the tip part of the wire 3 enters the finish rolling mill 6. If the flaw detection apparatus 12 starts flaw detection after a time obtained by adding the passage time (Tio + Toe) and the non-flaw detection time after that, the flaw detection can be performed in order from the tip portion where flaw detection of the wire 3 is necessary. The inspection can be performed as much as the inspection is necessary without detecting the portion.
In addition, as shown in FIG. 9B, when the rear end non-detecting portion 21 has a length Ft at the front end portion of the wire 3, the length Ft even if the rear end non-detecting portion 21 reaches the flaw detection device 12. Since the flaw detection is not performed as much as that, the non-flaw detection time of the rear end non-flaw detection portion 21 is calculated. This non-flaw detection time can be calculated by Ft / Vout.

線材3の先端部が仕上げ圧延機6に入ってから探傷を開始する時間Th(言い換えれば、第2端部検知センサ11が先端部を検知してから探傷を開始する時間)は、下記[式14]で求めることができる。   The time Th for starting the flaw detection after the front end portion of the wire 3 enters the finish rolling mill 6 (in other words, the time for starting the flaw detection after the second end detection sensor 11 detects the front end portion) is as follows: 14].

Figure 2007051918
Figure 2007051918

したがって、後端非探傷部21の長さと出側通材速度Voutとから、非後端探傷部21に対する非探傷時間を算出しておき、線材3の後端部が仕上げ圧延機6に入ってから、通過時間(Tio+Toe)から非探傷時間を減算した時間後に探傷装置12の探傷を終了すれば、不必要な部分を探傷することなく探傷が必要な分だけその検査を行うことができる。
以上のように、線材3の先端部及び後端部について、探傷を行う部分だけ正確に探傷を行うことが可能になったので、予め定められた非探傷部だけについて切り捨てればよく、非探傷部の他に本来探傷を行わなければならなかった部分まで余分に切り捨てる必要がなくなり、生産性を向上させることができる。
Therefore, the non-flaw detection time for the non-rear end flaw detection part 21 is calculated from the length of the rear end non-flaw detection part 21 and the delivery-side material passing speed Vout, and the rear end part of the wire 3 enters the finish rolling mill 6. Thus, if the flaw detection apparatus 12 ends the flaw detection after a time obtained by subtracting the non-flaw detection time from the passage time (Tio + Toe), the inspection can be performed as much as flaw detection is required without flaw detection. .
As described above, since it is possible to accurately perform the flaw detection only on the portion where flaw detection is performed on the front end portion and the rear end portion of the wire rod 3, it is only necessary to cut off only a predetermined non-flaw detection portion. In addition to the part, it is no longer necessary to cut off extra parts that originally had to be flawed, and productivity can be improved.

本発明は上記で示した圧延装置1に限定されるものではない。即ち、上記では線材3の圧延装置1で説明を行ったがこの他に、薄板などの圧延装置にも適用可能である。
また、探傷制御部15で平均通材速度Vave,通過時間Tio,到達時間Tieを算出していたが制御装置9でこれらの計算を行っても良い。
また、前記第2端部検出センサ(端部検出手段)で、線材3の先端部や後端部が仕上げ圧延機6に到達したことを検知していたが、これに限らず、例えば、線材3の先端部や後端部が仕上げ圧延機6に入ったことを圧延スタンド13で検知(例えば、圧延スタンド13にかかる荷重変化等)してもよいし、他の手段で検知してもよい。
The present invention is not limited to the rolling apparatus 1 shown above. That is, in the above description, the rolling device 1 for the wire 3 has been described, but the present invention can also be applied to a rolling device such as a thin plate.
Further, the flaw detection control unit 15 calculates the average material passing speed Vave, the passage time Tio, and the arrival time Tie, but the control device 9 may perform these calculations.
Moreover, although it has detected that the front-end | tip part and the rear-end part of the wire 3 reached | attained the finishing mill 6 with the said 2nd end detection sensor (end part detection means), it is not restricted to this, For example, a wire 3 may be detected by the rolling stand 13 (for example, load change applied to the rolling stand 13) or may be detected by other means. .

なお、この実施の形態では、第2先端検出センサは仕上げ圧延機6の入側に配置されているため前記到達時間Tieは線材3の先端が仕上げ圧延機6に入ってから探傷装置12に入るまでの時間又は、線材3の後端が仕上げ圧延機6に入ってから探傷装置12に入るまでの時間となる。   In this embodiment, since the second tip detection sensor is arranged on the entry side of the finish rolling mill 6, the arrival time Tie enters the flaw detection device 12 after the tip of the wire 3 enters the finish rolling mill 6. Or the time from when the rear end of the wire rod 3 enters the finish rolling mill 6 until it enters the flaw detector 12.

本発明の圧延材の探傷方法を用いる圧延装置の全体図である。1 is an overall view of a rolling apparatus using a rolled material flaw detection method of the present invention. 仕上げ圧延機付近の装置構成図である。It is an apparatus block diagram of a finish rolling mill vicinity. 仕上げ圧延機における各パラメータの説明図である。It is explanatory drawing of each parameter in a finish rolling mill. 探傷を行うタイムチャート図である。It is a time chart figure which performs a flaw detection. x値とy値とをプロットした図である。It is the figure which plotted x value and y value. x値を1/n乗した数値とy値とのをプロットした図である。It is the figure which plotted the numerical value which raised x value to the power of 1 / n, and y value. 実際の通過時間と予測通過時間との関係を示す図である。It is a figure which shows the relationship between an actual passage time and estimated passage time. 先端の長さの差と断面積との関係を示す図である。It is a figure which shows the relationship between the difference of the length of a front-end | tip, and sectional area. 線材の非探傷部を示す図である。It is a figure which shows the non-flaw detection part of a wire. 探傷装置の概略構成図である。It is a schematic block diagram of a flaw detection apparatus.

符号の説明Explanation of symbols

1 圧延装置
3 圧延材(線材)
6 仕上げ圧延機
12 探傷装置
1 Rolling device 3 Rolled material (wire material)
6 Finishing rolling mill 12 Flaw detector

Claims (4)

複数の圧延スタンドを有する圧延機の下流側に探傷装置を配置し、この探傷装置で圧延機で圧延した圧延材の探傷を行う圧延材の探傷方法において、
前記圧延機での圧延材の入側断面積と出側断面積と出側通材速度とから圧延機内を通過する圧延材の平均通材速度を算出し、この平均通材速度と圧延機の入側から出側までの距離とから前記圧延材が圧延機内を通過する通過時間を算出し、この通過時間に基づいて前記圧延機の上流側で圧延材の端部が検出されてから探傷装置に到達するまでの到達時間を算出しておき、前記到達時間後に探傷装置の探傷を開始又は終了するようにした圧延材の探傷方法。
In the flaw detection method for a rolled material, a flaw detection device is arranged on the downstream side of a rolling mill having a plurality of rolling stands, and flaw detection is performed on the rolled material rolled by the rolling mill with this flaw detection device.
The average material passing speed of the rolled material passing through the rolling mill is calculated from the inlet side sectional area, the outlet side sectional area, and the outlet side passing speed of the rolled material in the rolling mill. A flaw detection device after calculating the passing time for the rolled material to pass through the rolling mill from the distance from the entry side to the outlet side and detecting the end of the rolled material on the upstream side of the rolling mill based on the passing time. A method for flaw detection of a rolled material, in which an arrival time until reaching f is calculated and flaw detection of the flaw detection apparatus is started or ended after the arrival time.
前記通過時間は[式1]及び[式2]から算出するものであることを特徴とする請求項1に記載の圧延材の探傷方法。
Figure 2007051918
The method for flaw detection of a rolled material according to claim 1, wherein the passage time is calculated from [Expression 1] and [Expression 2].
Figure 2007051918
前記圧延材の先端部に前記探傷装置で探傷を行わない先端非探傷部を有しており、
前記先端非探傷部の長さと前記出側通材速度とから、先端非探傷部に対する探傷を行わない非探傷時間を算出しておき、圧延材の先端部が圧延機に入ってから前記通過時間と非探傷時間とを加算した時間後に探傷装置の探傷を開始するようにしたことを特徴とする請求項1又は2に記載の圧延材の探傷方法。
The tip of the rolled material has a tip non-flaw detection portion that does not perform flaw detection with the flaw detection device,
From the length of the tip non-defect detection part and the delivery-side material passing speed, a non-defect detection time during which no flaw detection is performed on the tip non-defect detection part is calculated, and the passage time after the tip of the rolled material enters the rolling mill. 3. The method for flaw detection of a rolled material according to claim 1, wherein flaw detection by the flaw detection apparatus is started after a time obtained by adding the time to the non-flaw detection time.
前記圧延材の後端部に前記探傷装置で探傷を行わない後端非探傷部を有しており、
前記後端非探傷部の長さと前記出側通材速度とから、後端探傷部に対する探傷を行わない非探傷時間を算出しておき、圧延材の後端部が圧延機に入ってから、前記通過時間から非探傷時間を減算した時間後に探傷装置の探傷を終了するようにしたことを特徴とする請求項1又は2に記載の圧延材の探傷方法。
The rear end portion of the rolled material has a rear end non-detection portion that does not perform flaw detection with the flaw detection device,
From the length of the rear end non-flaw detection part and the delivery-side material passing speed, calculate the non-flaw detection time without performing flaw detection on the rear end flaw detection part, and after the rear end part of the rolled material enters the rolling mill, 3. The method for flaw detection of a rolled material according to claim 1, wherein flaw detection of the flaw detection apparatus is terminated after a time obtained by subtracting the non-flaw detection time from the passage time.
JP2005236941A 2005-08-17 2005-08-17 Flaw detection method for rolled material Active JP4597006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236941A JP4597006B2 (en) 2005-08-17 2005-08-17 Flaw detection method for rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236941A JP4597006B2 (en) 2005-08-17 2005-08-17 Flaw detection method for rolled material

Publications (2)

Publication Number Publication Date
JP2007051918A true JP2007051918A (en) 2007-03-01
JP4597006B2 JP4597006B2 (en) 2010-12-15

Family

ID=37916463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236941A Active JP4597006B2 (en) 2005-08-17 2005-08-17 Flaw detection method for rolled material

Country Status (1)

Country Link
JP (1) JP4597006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292345A (en) * 2007-05-25 2008-12-04 Kobe Steel Ltd Surface scratch inspection method and surface scratch inspection device for rolled material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118910A (en) * 1985-10-09 1987-05-30 モルガン コンストラクシヨン カンパニ− Method of controlling tension of product in rolling mill
JPH06229703A (en) * 1993-02-03 1994-08-19 Kobe Steel Ltd Length measuring method for steel product in rolling of bar steel
JP2000210707A (en) * 1999-01-26 2000-08-02 Kobe Steel Ltd Method for controlling dimension in rolling of wire rod or steel bar and rolling device therefor
JP2001305108A (en) * 2000-04-21 2001-10-31 Daido Steel Co Ltd Eddy current flaw detector
JP2005034909A (en) * 2003-06-26 2005-02-10 Kobe Steel Ltd Rolling method and rolling equipment for steel wire rod

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62118910A (en) * 1985-10-09 1987-05-30 モルガン コンストラクシヨン カンパニ− Method of controlling tension of product in rolling mill
JPH06229703A (en) * 1993-02-03 1994-08-19 Kobe Steel Ltd Length measuring method for steel product in rolling of bar steel
JP2000210707A (en) * 1999-01-26 2000-08-02 Kobe Steel Ltd Method for controlling dimension in rolling of wire rod or steel bar and rolling device therefor
JP2001305108A (en) * 2000-04-21 2001-10-31 Daido Steel Co Ltd Eddy current flaw detector
JP2005034909A (en) * 2003-06-26 2005-02-10 Kobe Steel Ltd Rolling method and rolling equipment for steel wire rod

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292345A (en) * 2007-05-25 2008-12-04 Kobe Steel Ltd Surface scratch inspection method and surface scratch inspection device for rolled material

Also Published As

Publication number Publication date
JP4597006B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4597006B2 (en) Flaw detection method for rolled material
JP2007245215A (en) Continuous cold rolling equipment
EP3268142B1 (en) Method of operation of a rolling mill
JP6015033B2 (en) Mill pacing control device and mill pacing control method
JP2007144430A (en) Controller of width pressing equipment of sizing press of hot rolling mill
JP2016163893A (en) Control method of rolling mill, control device of rolling mill, and manufacturing method of steel plate
JP6493315B2 (en) Reduction leveling control device and reduction leveling control method
JP5780118B2 (en) Winding control method and device for hot rolled steel strip
JP2019209372A (en) Steel plate temperature control device in hot endless rolling line
JP6311627B2 (en) Rolling mill control method, rolling mill control apparatus, and steel plate manufacturing method
JP3109067B2 (en) Strip width control method in hot continuous rolling
KR102044978B1 (en) Apparatus for detect meandering strip of hot rolling process
JP3689967B2 (en) Method for measuring plate edge shape of rolled material in continuous hot rolling
JP7327675B2 (en) data collection device
JP3610338B2 (en) Method and apparatus for temper rolling of metal strip
JPH0685933B2 (en) Sheet thickness control method in hot finish rolling
KR100373681B1 (en) Length control method of uncooled part in continuous wire rolling
JP2017164758A (en) Method for controlling mill pacing of rolling line
JPH03221203A (en) Method for preventing necking of hot strip
JP7424335B2 (en) Heating control method and device, hot-rolled steel plate manufacturing method, and transportation prediction model generation method
KR101246313B1 (en) Rolling control method using temperature compensation
SU908452A1 (en) Strip rolling method
CN117340014A (en) Method and device for controlling quality of head of finish rolling strip steel
JP3679699B2 (en) Sheet width control method in hot rolling
KR101602874B1 (en) Apparatus and method for heating rolling material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

R150 Certificate of patent or registration of utility model

Ref document number: 4597006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3