JP2007047516A - 液晶表示装置とその製造方法 - Google Patents

液晶表示装置とその製造方法 Download PDF

Info

Publication number
JP2007047516A
JP2007047516A JP2005232701A JP2005232701A JP2007047516A JP 2007047516 A JP2007047516 A JP 2007047516A JP 2005232701 A JP2005232701 A JP 2005232701A JP 2005232701 A JP2005232701 A JP 2005232701A JP 2007047516 A JP2007047516 A JP 2007047516A
Authority
JP
Japan
Prior art keywords
electrode
layer
signal line
insulating layer
scanning line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005232701A
Other languages
English (en)
Other versions
JP4863667B2 (ja
Inventor
Kiyohiro Kawasaki
清弘 川崎
Kaso Ri
佳 宗 李
Jian-Hong Chen
建 宏 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanta Display Japan Inc
Quanta Display Inc
Original Assignee
Quanta Display Japan Inc
Quanta Display Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanta Display Japan Inc, Quanta Display Inc filed Critical Quanta Display Japan Inc
Priority to JP2005232701A priority Critical patent/JP4863667B2/ja
Publication of JP2007047516A publication Critical patent/JP2007047516A/ja
Application granted granted Critical
Publication of JP4863667B2 publication Critical patent/JP4863667B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】 TFT液晶表示装置の生産コストを低減するために4枚マスク・プロセスに続く3枚マスク・プロセスの開発を推進する。
【解決手段】低抵抗金属層と、パシベーション絶縁層と非晶質シリコン層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線を形成し、パシベーション絶縁層を付与した後、その断面形状が逆テーパ形状の感光性樹脂パターンを用いて、パシベーション絶縁層と非晶質シリコン層とゲート絶縁層とからなる積層に開口部を形成し、絵素電極用導電性薄膜層のリフトオフにより絵素電極の形成を行うことで、開口部形成工程と開口部形成工程に続く絵素電極形成工程を1枚のフォトマスクで処理する。半導体層の島化工程は、上記開口部内の第1の非晶質シリコン層のサイドエッチングまたは前記感光性樹脂パターンの形成にハーフトーン露光技術を併用して行うことで3枚マスク・プロセスを実現する。
【選択図】 図2

Description

本発明はカラー画像表示機能を有する液晶表示装置、とりわけ絵素毎にスイッチング素子を有するアクティブ型の液晶表示装置に関するものである。
近年の微細加工技術、液晶材料技術及び高密度実装技術等の進歩により、5〜75cm対角の液晶表示装置でテレビジョン画像や各種の画像表示機器が既に商用ベースで大量に提供されている。また、液晶パネルを構成する2枚のガラス基板の一方にRGBの着色層を形成しておくことによりカラー表示も容易に実現している。特にスイッチング素子を絵素毎に内蔵させた、いわゆるアクティブ型の液晶パネルではクロストークも少なく、応答速度も早く高いコントラスト比を有する画像が製品化の当初から保証されていた。
これらの液晶表示装置(液晶パネル)は走査線としては200〜1200本、信号線としては300〜1600本程度のマトリクス編成が一般的であるが、最近は表示容量の増大に対応すべく大画面化と高精細化とが同時に進行している。
図8は液晶パネルへの実装状態を示し、液晶パネル1を構成する一方の透明性絶縁基板、例えばガラス基板2上に形成された走査線の電極端子5に駆動信号を供給する半導体集積回路チップ3を導電性の接着剤を用いて接続するCOG(Chip−On−Glass)方式や、例えばポリイミド系樹脂薄膜をベースとし、金または半田メッキされた銅箔の端子を有するTCPフィルム4を信号線の電極端子6に導電性媒体を含む適当な接着剤で圧接して固定するTCP(Tape−Carrier−Package)方式などの実装手段によって電気信号が画像表示部に供給される。ここでは便宜上二つの実装方式を同時に図示しているが実際には何れかの方式が適宜選択される。
液晶パネル1のほぼ中央部に位置する画像表示部内の画素と、走査線及び信号線の電極端子5,6との間を接続する配線路が7、8で、必ずしも電極端子5,6と同一の導電材で構成される必要はない。9は全ての液晶セルに共通する透明導電性の対向電極を対向面上に有するもう1枚の透明性絶縁基板である対向ガラス基板またはカラーフィルタである。
図9はスイッチング素子として絶縁ゲート型トランジスタ10を絵素毎に配置したアクティブ型液晶表示装置の等価回路図を示し、11(図8では7)は走査線、12(図8では8)は信号線、13は液晶セルであって、液晶セル13は電気的には容量素子として扱われる。実線で描かれた素子類は液晶パネルを構成する一方のガラス基板2上に形成され、点線で描かれた全ての液晶セル13に共通な対向電極14はもう一方のガラス基板9の対向する主面上に形成されている。絶縁ゲート型トランジスタ10のOFF抵抗あるいは液晶セル13の抵抗が低い場合や表示画像の階調性を重視する場合には負荷としての液晶セル13の時定数を大きくするための補助の蓄積容量15を液晶セル13に並列に加える等の回路的工夫が加味される。なお16は蓄積容量15の共通母線となる蓄積容量線または共通電極である。
図10は液晶表示装置の画像表示部の要部断面図を示し、液晶パネル1を構成する2枚のガラス基板2,9は樹脂性のファイバ、ビーズあるいはカラーフィルタ9上に形成された柱状スペーサ等のスペーサ材(図示せず)によって数μm程度の所定の距離を隔てて形成され、その間隙(ギャップ)はガラス基板9の周縁部において有機性樹脂よりなるシール材と封口材(何れも図示せず)とで封止された閉空間になっており、この閉空間に液晶17が充填されている。
カラー表示を実現する場合には、ガラス基板9の閉空間側に着色層18と称する染料または顔料のいずれか一方もしくは両方を含む厚さ1〜2μm程度の有機薄膜が被着されて色表示機能が与えられるので、その場合にはガラス基板9は別名カラーフィルタ(Color Filter 略語はCF)と呼称される。そして液晶材料17の性質によってはガラス基板9の上面またはガラス基板2の下面の何れかもしくは両面上に偏光板19が貼付され、液晶パネル1は電気光学素子として機能する。現在、市販されている大部分の液晶パネルでは液晶材料にTN(ツイスト・ネマチック)系の物を用いており、偏光板19は通常2枚必要である。図示はしないが、透過型液晶パネルでは光源として裏面光源が配置され、下方より白色光が照射される。
液晶17に接して2枚のガラス基板2,9上に形成された例えば厚さ0.1μm程度のポリイミド系樹脂薄膜20は液晶分子を決められた方向に配向させるための配向膜である。21は絶縁ゲート型トランジスタ10のドレインと透明導電性の絵素電極22を接続するドレイン電極(配線)であり、信号線(ソース線)12と同時に形成されることが多い。ソース電極12とドレイン電極21との間に位置するのは半導体層23であり詳細は後述する。カラーフィルタ9上で隣り合った着色層18の境界に形成された厚さ0.1μm程度のCr薄膜層24は半導体層23と走査線11及び信号線12に外部光が入射するのを防止するための光遮蔽部材で、所謂ブラックマトリクス(Black Matrix 略語はBM)として定着化した技術である。
走査線、信号線、スイッチング素子としての絶縁ゲート型トランジスタ、及び絵素電極を形成されたアクティブ基板(ガラス基板)2の作製には半導体集積回路のようにフォトマスクを用いた複数回のフォトリソグラフィ(写真食刻)工程が不可欠である。詳細な経緯は省略するが、半導体層の島化工程の合理化と走査線へのコンタクト形成工程が削減された結果、当初は7〜8枚程度必要であったフォトマスクもドライエッチ技術の導入により現時点では5枚に減少してプロセスコストの削減に大きく寄与している。液晶表示装置の生産コストを下げるためにはアクティブ基板の作製工程ではプロセスコストを、またパネル組立工程とモジュール実装工程では部材コストを下げることが有効であることは周知の開発目標であり、写真食刻工程を含めて製造工程数を削減する事が液晶表示装置の生産性向上とコストダウンに大きく寄与することは自明である。
既に述べたようにアクティブ基板2の作製において5回の写真食刻工程を必要とする製造方法が一般的であり、さらなる製造コスト低減のために提案されている先行例の中から一部で既に量産されており、特許文献1の特開2002−206571号公報で開示されている4枚マスク・プロセスを従来例として紹介する。この4枚マスク・プロセスは下記に説明するようにハーフトーン露光技術を用いてチャネルを含む半導体層の島化工程とソース・ドレイン配線工程を1枚のフォトマスクで形成する工程削減技術あるいは合理化技術である。図11は4枚マスク・プロセスに対応したアクティブ基板の単位絵素の平面図で、図11(f)のA−A’(絶縁ゲート型トランジスタ領域)、B−B’(走査線の電極端子領域)及びC−C’線(信号線の電極端子領域)上の製造工程断面図を図12に示す。現在、絶縁ゲート型トランジスタには2種類のものが多用されているが、ここではチャネルエッチ型の絶縁ゲート型トランジスタを採用している。
先ず図11(a)と図12(a)に示したように耐熱性と耐薬品性と透明性が高い絶縁性基板として厚さ0.5〜1.1mm程度のガラス基板2、例えばコーニング社製の商品名1737の一主面上にSPT(スパッタ)等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層を被着し、微細加工技術によりゲート電極11Aも兼ねる走査線11と蓄積容量線16を選択的に形成する。走査線の材質は耐熱性、耐薬品性、耐弗酸性及び導電性を総合的に勘案して選択するが一般的にはCr,Ta等の耐熱性の高い金属薄膜層またはMoW合金等の耐熱性の高い合金薄膜層が使用される。
液晶パネルの大画面化や高精細化に対応して走査線の抵抗値を下げるためには走査線の材料としてAL(アルミニウム)を用いるのが合理的であるが、ALは単体では耐熱性が低いので上記した耐熱金属であるCr,Ta,Moまたはそれらのシリサイドと積層化する構成が現在では一般的である。すなわち走査線11は1層以上の金属層で構成される。
次にガラス基板2の全面にPCVD(プラズマ・シーブイディ)装置を用いてゲート絶縁層となる第1のシリコン窒化(SiNx)層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン(a−Si)層31、及び不純物として燐を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層(n+a−Si)33と3種類の薄膜層を、例えば0.3−0.2−0.05μm程度の膜厚で順次被着する。引き続き、図11(b)と図12(b)に示したようにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばTi薄膜層34と、膜厚0.3μm程度の低抵抗金属層としてAL薄膜層35と、さらに膜厚0.1μm程度の中間導電層として例えばTi薄膜層36を、すなわちソース・ドレイン配線材を順次被着する。
そして微細加工技術によりゲート電極11Aと一部重なるように耐熱金属層34A、低抵抗金属層35A及び中間導電層36Aとの積層よりなり絶縁ゲート型トランジスタのソース電極も兼ねる信号線12と、同じくゲート電極11Aと一部重なるように耐熱金属層34B、低抵抗金属層35B及び中間導電層36Bとの積層よりなる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成するのであるが、この選択的パターン形成に当たりハーフトーン露光技術により図11(c)と図12(c)に示したようにソース・ドレイン間のチャネル形成領域80B(斜線部)の膜厚が例えば1.5μmで、ソース・ドレイン配線形成領域80A(12),80A(21)の膜厚が3μmであるような感光性樹脂パターン80A,80Bを形成する点が合理化された4枚マスク・プロセスの大きな特徴である。
アクティブ基板2の作製には通常ポジ型の感光性樹脂を用いるので、このような感光性樹脂パターン80A,80Bは、ソース・ドレイン配線形成領域80Aが黒、すなわちCr薄膜が形成されており、チャネル形成領域80Bは灰色(中間調)でフォトマスク通過光を低減させるようなたとえば幅0.5〜1.5μm程度のラインアンドスペースのCrパターンが形成されており、その他の領域は白、すなわちCr薄膜が除去されているようなフォトマスクを用いれば良い。灰色領域は露光機の解像力が不足しているためにラインアンドスペースが解像されることはなく、ランプ光源からのフォトマスク照射光を半分程度透過させることが可能であるので、ポジ型感光性樹脂の残膜特性に応じて図12(c)に示したような凹型の断面形状を有する感光性樹脂パターン80A,80Bを得ることができる。なお、灰色領域はスリットに変えて膜厚や透過率の異なった金属層、例えばMoSi2の薄膜で構成することも可能である。
上記感光性樹脂パターン80A,80Bをマスクとして図11(c)と図12(c)に示したようにTi薄膜層36、AL薄膜層35、Ti薄膜層34、第2の非晶質シリコン層33及び第1の非晶質シリコン層31を順次食刻してゲート絶縁層30を露出した後、酸素プラズマ等の灰化手段により感光性樹脂パターン80A,80Bを1.5μm以上膜減りさせると感光性樹脂パターン80Bが消失してチャネル形成領域のTi薄膜層36A(図示せず)が露出するとともに、ソース・ドレイン配線形成領域にのみ膜減りした感光性樹脂パターン80C(12),80C(21)を残すことができる。
そこで膜減りした感光性樹脂パターン80C(12),80C(21)をマスクとして図11(d)と図12(d)に示したように、再びソース・ドレイン配線間(チャネル形成領域)のTi薄膜層,AL薄膜層,Ti薄膜層,第2の非晶質シリコン層33A及び第1の非晶質シリコン層31Aを順次食刻し、第1の非晶質シリコン層31Aは0.05〜0.1μm程度残して食刻する。この時点で第2の非晶質シリコン層よりなるソース33Sとドレイン33Dの分離がなされる。ソース・ドレイン配線12,21の形成が金属層をエッチングした後に第1の非晶質シリコン層31Aを0.05〜0.1μm程度残して食刻することによりなされるので、このような製法で得られる絶縁ゲート型トランジスタはチャネルエッチと呼称されている。なお上記酸素プラズマ処理において感光性樹脂パターン80Aは膜減りした感光性樹脂パターン80Cに変換されるのでパターン寸法の変化を抑制するため異方性を強めることが望ましく、具体的にはRIE(Reactive Ion Etching)方式、さらに高密度のプラズマ源を有するICP(Inductive Coupled Plasma)方式やTCP(Transfer Coupled Plasma)方式の酸素プラズマ処理がより望ましい。
さらに上記感光性樹脂パターン80C(12),80C(21)を除去した後はガラス基板2の全面に透明性の絶縁層として0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とし、図11(e)と図12(e)に示したようにドレイン電極21上と、画像表示部外の領域で走査線11と信号線12の電極端子が形成される領域に夫々開口部62,63,64を形成し、開口部63内のパシベーション絶縁層37とゲート絶縁層30を除去して開口部63内に走査線の一部5を露出するとともに、開口部62,64内のパシベーション絶縁層37を除去してドレイン電極21の一部と信号線の一部6を露出する。同様に蓄積容量線16上には開口部65を形成して蓄積容量線16の一部を露出する。
最後にSPT等の真空製膜装置を用いて膜厚0.1〜0.2μm程度の透明導電層として例えばITO(Indium−Tin−Oxide)またはIZO(Indium−Zinc−Oxide)あるいはこれらの混晶体を被着し、図11(f)と図12(f)に示したように微細加工技術によりパシベーション絶縁層37上に開口部62を含んで透明導電性の絵素電極22を選択的に形成してアクティブ基板2として完成する。図11(e)と図12(e)に示したように微細加工技術によりパシベーション絶縁層37上に開口部62を含んで透明導電性の絵素電極22を選択的に形成してアクティブ基板2として完成する。蓄積容量15の構成に関しては、図11(e)と図12(e)に示したようにドレイン電極21と蓄積容量線16とがゲート絶縁層30と第1の非晶質シリコン層31Aと第2の非晶質シリコン層33Dを介して平面的に重なることで構成している例(右下がり斜線部50)を例示している。また電極端子に関しては開口部63,64を含んでパシベーション絶縁層37上に透明導電性の電極端子5A,6Aを選択的に形成している。
上記したようにソース・ドレイン配線12,21にALを用いようとすると、第2の非晶質シリコン33との間の電気的な接続を確保するために耐熱金属層34が必要であり、さらに透明導電層との間にはアルカリ液中での電池効果を回避するために中間導電層36が必要であり、結果的にソース・ドレイン配線は3層構成とならざるを得ないが、ソース・ドレイン配線の抵抗値の制約が厳しくなる大画面あるいは高精細の液晶パネルでは低抵抗金属層の使用を回避することは困難である。さらに耐熱金属層34と中間導電層36にTiを用いると、その食刻には塩素系のガスを用いたドライエッチ処理が必要であり、自動的にALの食刻も塩素系のガスを用いたドライエッチ処理となり、材料面のみならず生産設備上の負担も大きくなる。Tiに換えて耐熱金属層34と中間導電層36にMoを用いた場合には、適量の硝酸を添加した燐酸溶液でMo/AL/Moの3層構成を1回の薬液処理で行うことが可能であり、生産設備の投資負担も低減するがソース・ドレイン配線の簡素化も生産コスト低減には有効である事は説明を要しない。
このように4枚マスク・プロセスにおいてはドレイン電極21と走査線11へのコンタクト形成工程が同時になされるため、それらに対応した開口部62,63内の絶縁層の厚さと種類が異なっている。パシベーション絶縁層37はゲート絶縁層30に比べると製膜温度が低く膜質が劣悪で、弗酸系のエッチング液による食刻では食刻速度が夫々数1000Å/分、数100Å/分と1桁も異なり、ドレイン電極21上の開口部62の断面形状は上部に余りにも過食刻が生じて穴径が制御できない理由から弗素系のガスを用いた乾式食刻(ドライエッチ)を採用している。
しかしながらドライエッチを採用してもドレイン電極21上の開口部62はパシベーション絶縁層37のみであるので、走査線11上の開口部63と比較して過食刻になるのは避けられず、材質によってはドレイン電極21(中間導電層36B)が食刻ガスによって膜減りすることがある。また食刻終了後の感光性樹脂パターンの除去に当たり、まずは弗素化された表面のポリマー除去のために酸素プラズマ灰化で感光性樹脂パターンの表面を0.1〜0.3μm程度削り、その後に有機剥離液、例えば東京応化社製の剥離液106等を用いた薬液処理がなされるのが一般的であるが、中間導電層36Bが膜減りして下地のアルミニウム層35Bが露出した状態になっていると、酸素プラズマ灰化処理でアルミニウム層35Bの表面に絶縁体であるAL2O3が形成されて、ドレイン電極36Bと絵素電極22との間でオーミック接触が得られなくなることも稀ではない。
そこで中間導電層36Bが膜減りしても良いようにその膜厚を例えば0.2μmと厚く設定することでこの問題から逃れようとしている。あるいは開口部62〜65の形成時、アルミニウム層35Bを除去して下地の耐熱金属層であるTi薄膜層34Bを露出してから絵素電極22を形成する回避策も可能であり、この場合には当初から中間導電層36は不要となるメリットもある。
しかしながら前者の対策ではこれら薄膜の膜厚の面内均一性が良好でないとこの取組も必ずしも有効に作用するわけではなく、また食刻速度の面内均一性が良好でない場合にも全く同様である。後者の対策では中間導電層36Bは不要となるが、アルミニウム層35Bの除去工程が増加し、また開口部62の断面制御が不十分であると絵素電極22が段切れを起こす恐れがあった。
また4枚マスク・プロセスにおいて適用されているチャネル形成工程はソース・ドレイン配線12,21間のソース・ドレイン配線材と不純物を含む半導体層を同時に除去するので、絶縁ゲート型トランジスタのON特性を大きく左右するチャネルの長さ(現在の量産品で4〜6μm)を決定する工程である。このチャネル長の変動は絶縁ゲート型トランジスタのON電流値を大きく変化させるので、通常は厳しい製造管理を要求されるが、チャネル長、すなわちハーフトーン露光領域のパターン寸法は露光量(光源強度とフォマスクのパターン精度、特にライン&スペース寸法)、感光性樹脂の塗布厚、感光性樹脂の現象処理条件、および当該のエッチング工程における感光性樹脂の膜減り量等多くのパラメータに左右され、加えてこれら諸量の面内均一性もあいまって必ずしも歩留高く安定して生産できるわけではなく、従来の製造管理よりも一段と厳しい製造管理が必要となり、決して高度に完成したレベルにあるとは言えないのが現状である。特にチャネル長が6μm以下では感光性樹脂パターン80A(12),80A(21)の膜厚減少に伴って発生するパターン寸法の影響が大きくその傾向が顕著となる。
フォトマスクの寸法を前もって太くしておき、前記感光性樹脂パターンの膜厚減少に伴って発生するパターン寸法の細りを回避することは比較的容易であるが、チャネル領域である感光性樹脂パターン80C(12)と80C(21)との間隙は露光機の解像力(最小3μm程度)よりも細くすることは出来ないので、結局、チャネル長は感光性樹脂パターンの横方向の膜減り量の2倍分だけ長くなり、しかもその膜減り量のガラス基板面内における変動も大きく、現存するガラス基板サイズが1m以上の生産ラインに4枚マスク・プロセスの導入が遅れている原因の一つと考えられる。
本発明はかかる現状に鑑みなされたもので、厳しいパターン精度管理を必要としないだけでなく、信号線12の構成を簡素化し、かつ絵素電極形成工程の合理化により製造工程の削減を推進するものである。
特開2002−206571号公報 特願2005−88866号公報
本発明は、絵素電極をドレイン電極に接続するための開口部形成工程において、絵素電極形成領域の絶縁層を除去してガラス基板を露出し、露出したドレイン電極を含んでガラス基板上に絵素電極をリフトオフで形成することで製造工程の削減を達成している。リフトオフによる絵素電極形成を容易ならしめるために、上記絶縁層の除去工程ではその断面形状が逆テーパ状である感光性樹脂パターンを用いる点と、絵素電極がドレイン電極と段切れする事なく良好な電気接続が得られるように低抵抗金属層と耐熱金属層との積層よりなるドレイン電極の上層部の低抵抗金属層を除去して下層部の耐熱金属層を露出する工程が付加されている点が本発明の重要な着眼点である。
また、上記の感光性樹脂パターンを用いたサイドエッチング、あるいは上記の感光性樹脂パターンの形成にハーフトーン露光技術を付加することで、半導体層の選択的パターン形成のための写真食刻工程を削減する技術ともあいまって特許文献2で開示したものとは異なった内容の工程削減が実現し、3枚のフォトマスクを用いてアクティブ基板を作製することが可能となる。
請求項1に記載の液晶表示装置はスイッチング素子である絶縁ゲート型トランジスタがチャネルエッチ型であり、
第1の透明性絶縁基板の一主面上にその一部をゲート電極とする走査線が形成され、
ゲート絶縁層とその一部がチャネルである不純物を含まない第1の半導体層を介して低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線が形成され、
前記ドレイン配線は走査線と直交し、
絶縁ゲート型トランジスタを保護するためのパシベーション絶縁層を最上層に有し、
画像表示部では一方のドレイン配線の端部を含む絵素電極形成領域と、他方のドレイン配線の端部を含む擬似絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域、及び信号線の一部を含む信号線の電極端子形成領域に開口部が形成され、前記開口部内のパシベーション絶縁層と第1の半導体層とゲート絶縁層が除去されて夫々前記耐熱金属層よりなる一方のドレイン配線の端部と前記第1の透明性絶縁基板、他方のドレイン配線の端部と前記第1の透明性絶縁基板、走査線の一部、及び前記耐熱金属層よりなる信号線の一部が露出し、
前記ソース・ドレイン配線間のチャネル領域の第1の半導体層はゲート電極よりも幅細く形成され、
同一の導電性薄膜よりなり、前記一方のドレイン配線の端部を含んで絵素電極形成領域に絵素電極と、前記他方のドレイン配線の端部を含んで擬似絵素電極形成領域に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする。
この構成により耐熱金属層よりなるドレイン電極の一部と絵素電極、同じく耐熱金属層よりなる信号線の一部と信号線の電極端子との電気的な接続は確保され、さらにソース・ドレイン配線が低抵抗金属層と耐熱金属層との2層構成で良く信号線の構成が簡素化される。そしてアクティブ基板はパシベーション絶縁層によって保護されている。また絶縁ゲート型トランジスタのチャネルを構成し、走査線の一部であるゲート電極上の不純物を含まない第1の非晶質シリコン層はゲート電極よりも幅細く形成されているため、裏面光源からの照射光で絶縁ゲート型トランジスタのOFF電流が増大する不具合は回避されている。
請求項2に記載の液晶表示装置はスイッチング素子である絶縁ゲート型トランジスタがチャネルエッチ型であり、
第1の透明性絶縁基板の一主面上に分岐されたゲート電極を有する走査線が形成され、
ゲート絶縁層とその一部がチャネルである不純物を含まない第1の半導体層を介して低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線が前記ゲート電極と一部重なるように形成され、
絶縁ゲート型トランジスタを保護するためのパシベーション絶縁層を最上層に有し、
画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域、及び信号線の一部を含む信号線の電極端子形成領域に開口部が形成され、前記開口部内のパシベーション絶縁層と第1の半導体層とゲート絶縁層が除去されて夫々前記耐熱金属層よりなるドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び前記耐熱金属層よりなる信号線の一部が露出し、
前記絵素電極形成領域と連続してゲート電極の端部を含んで開口部と、ゲート電極の分岐部上に独立した開口部が形成され、前記開口部内のパシベーション絶縁層と第1の半導体層が除去されて開口部内にゲート絶縁層が露出し、
同一の導電性薄膜よりなり、前記ゲート電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする。
この構成により絵素電極の一部はゲート電極の端部上のゲート絶縁層を含んで形成され、またゲート電極の分岐部上の開口部内にもゲート絶縁層が露出し、前記開口部内には電気的に浮遊している擬似絵素電極が形成されているので、ソース・ドレイン間のチャネル領域近傍に不純物を含まない第1の非晶質シリコン層は存在せず、請求項1に記載の液晶表示装置と同様に裏面光源からの照射光で絶縁ゲート型トランジスタのOFF電流が増大する不具合は回避されている。
請求項3に記載の液晶表示装置は、
第1の透明性絶縁基板の一主面上に分岐されたゲート電極と分離した光シールド電極が形成され、
前記絵素電極形成領域と連続して一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域に開口部が形成され、前記開口部内のパシベーション絶縁層と第1の半導体層が除去されて開口部内にゲート絶縁層が露出し、
同一の導電性薄膜よりなり、前記一方の光シールド電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上の開口部に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む開口部に第2の擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする請求項2に記載の液晶表示装置である。
この構成により絵素電極の一部は一方の光シールド電極の端部上のゲート絶縁層を含んで形成され、前記ゲート電極の分岐部上のゲート絶縁層上に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む領域のゲート絶縁層上に第2の擬似絵素電極が形成されている。前記第1と第2の擬似絵素電極は何れも電気的に浮遊しており、ソース・ドレイン間のチャネル領域近傍に不純物を含まない第1の非晶質シリコン層は存在せず、絵素電極と第2の擬似絵素電極間に存在する第1の非晶質シリコン層は光シールド電極によって光遮蔽されており、請求項1に記載の液晶表示装置と同様に裏面光源からの照射光で絶縁ゲート型トランジスタのOFF電流が増大する不具合は回避されている。
請求項4は請求項1に記載の液晶表示装置の製造方法であって、
第1の透明性絶縁基板の一主面上にその一部をゲート電極とする走査線を形成する工程と、
ゲート絶縁層、不純物を含まない第1の非晶質シリコン層、不純物を含む第2の非晶質シリコン層、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層、及び低抵抗金属層を順次被着する工程と、
前記低抵抗金属層、耐熱金属層、第2の非晶質シリコン層、及び第1の非晶質シリコン層の一部を選択的に除去し、走査線と直交するドレイン配線と信号線も兼ねるソース配線を形成する工程と、
前記第1の透明性絶縁基板上にパシベーション絶縁層を被着後、画像表示部では一方のドレイン配線の端部を含む絵素電極形成領域と他方のドレイン配線の端部を含む擬似絵素電極形成領域、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々前記一方のドレイン配線の端部と前記第1の透明性絶縁基板、他方のドレイン配線の端部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
前記第1の非晶質シリコン層をサイドエッチングする工程と、
前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなる一方のドレイン配線の端部と他方のドレイン配線の端部及び信号線の一部を露出する工程と、
前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
前記感光性樹脂パターンを除去し、前記一方のドレイン配線の端部を含んで絵素電極形成領域に絵素電極と、前記他方のドレイン配線の端部を含んで擬似絵素電極形成領域に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなることを特徴とする。
この構成により走査線の形成工程、ソース・ドレイン配線の形成工程、及び開口部と絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製することができる。そして半導体層の島化工程は開口部形成時に第1の非晶質シリコンのサイドエッチングによってなされる。
請求項5は請求項2に記載の液晶表示装置の製造方法であって、
第1の透明性絶縁基板の一主面上に分岐されたゲート電極を有する走査線を形成する工程と、
ゲート絶縁層、不純物を含まない第1の非晶質シリコン層、不純物を含む第2の非晶質シリコン層、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層、及び低抵抗金属層を順次被着する工程と、
前記低抵抗金属層、耐熱金属層、第2の非晶質シリコン層、及び第1の非晶質シリコン層の一部を選択的に除去し、ゲート電極と一部重なるようにソース(信号線)・ドレイン配線を形成する工程と、
前記第1の透明性絶縁基板上にパシベーション絶縁層を被着後、画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、前記絵素電極形成領域と連続してゲート電極の端部を含む領域とゲート電極の分岐部を含む領域の膜厚が他の領域よりも薄く、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々前記ドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
前記感光性樹脂パターンの膜厚を減じて前記ゲート電極の端部を含む領域とゲート電極の分岐部を含む領域のパシベーション絶縁層を露出する工程と、
前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記ゲート電極の端部を含む領域とゲート電極の分岐部を含む領域のパシベーション絶縁層と第1の非晶質シリコン層を除去してゲート絶縁層を露出する工程と、
前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、
前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
前記膜厚を減ぜられた感光性樹脂パターンを除去し、前記ドレイン配線の一部とゲート電極の端部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなることを特徴とする。
この構成により走査線の形成工程、ソース・ドレイン配線の形成工程、及びハーフトーン露光技術を用いた開口部と絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製することができる。半導体層の島化工程は開口部形成時にチャネル近傍の第1の非晶質シリコンを選択的に除去する事によってなされる。
請求項6は請求項3に記載の液晶表示装置の製造方法であって、
第1の透明性絶縁基板の一主面上にゲート電極と分離した光シールド電極が形成され、
画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、前記絵素電極形成領域と連続して一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上の膜厚が他の領域よりも薄く、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々ドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
前記感光性樹脂パターンの膜厚を減じて前記一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上のパシベーション絶縁層を露出する工程と、
前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上のパシベーション絶縁層と第1の非晶質シリコン層を除去してゲート絶縁層を露出する工程と、
前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、
前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
前記膜厚を減ぜられた感光性樹脂パターンを除去し、前記一方の光シールド電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部の開口部に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む開口部に第2の擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなることを特徴とする。
この構成により走査線の形成工程、ソース・ドレイン配線の形成工程、及びハーフトーン露光技術を用いた開口部と絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製することができる。半導体層の島化工程は開口部形成時に請求項2記載の液晶表示装置とは異なったチャネル近傍の第1の非晶質シリコンを選択的に除去する事によってなされる。
請求項7に記載の液晶表示装置は、
液晶が電圧無印加時に垂直配向する垂直配向型の液晶であり、
第1の透明性絶縁基板上に前記液晶に電圧を印加した時に液晶が配向する方向を規制する第1の配向制御手段が、第1の透明性絶縁基板上に形成された複数の透明導電層よりなる帯状の絵素電極間に位置するパシベーション絶縁層と第1の半導体層とゲート絶縁層絶縁層との積層よりなり、
第2の透明性絶縁基板上またはカラーフィルタ上に前記液晶に電圧を印加した時に液晶が配向する方向を規制する第2の配向制御手段を備えていることを特徴とする請求項1及び請求項2に記載の液晶表示装置である。
この構成により帯状の絵素電極間に存在するパシベーション絶縁層と第1の半導体層とゲート絶縁層絶縁層とからなる積層が垂直配向液晶の配向制御手段として機能して液晶セルが配向分割される結果、TN型液晶表示装置よりも視野角の優れたVA(Vertical−Align:垂直配向)方式の液晶表示装置を得ることができる。
以上述べたように本発明の中心に位置するのは、低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線を形成し、パシベーション絶縁層を付与した後、ドレイン電極の一部を含む絵素電極形成領域と走査線の一部を含む電極端子形成領域及び信号線の一部を含む電極端子形成領域に開口部を有するとともに、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の半導体層とゲート絶縁層を除去し、前記開口部内に夫々ドレイン配線の一部と第1の透明性絶縁基板、走査線の一部及び信号線の一部を露出する工程と、半導体層を選択的に除去する工程と、前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、前記第1の透明性絶縁基板上に絵素電極となる導電性薄膜層を被着する工程と、前記感光性樹脂パターンを除去し、前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程を有する液晶表示装置の製造方法であって、この構成によりゲート絶縁層への開口部形成工程と絵素電極形成工程を1枚のフォトマスクで処理する工程削減を実現している。
加えてソース・ドレイン配線が耐熱金属層と低抵抗金属層との積層で構成されるので信号線の低抵抗化が容易なだけでなく、中間導電層を含む従来の3層構成よりも簡素化されてさらなる低コスト化にも寄与する。
アクティブ基板の作製には、走査線の形成工程、ソース・ドレイン配線の形成工程、及び上記のゲート絶縁層への開口部形成工程と絵素電極形成工程の同時形成に加えて半導体層の選択的形成が必要である。
本発明における半導体層の選択的形成方法の一つは、絶縁ゲート型トランジスタを走査線上に配置し、チャネルと平行する絵素電極領域及び擬似絵素電極領域に開口部を形成し、ソース・ドレイン間の不純物を含まない第1の非晶質シリコン層をこれらの開口部からのサイドエッチングにより除去して、チャネル領域を走査線よりも幅細く形成することによってなされ、その結果3枚のフォトマスクを用いてアクティブ基板を作製することが可能となる。
本発明における半導体層の他の選択的形成方法は、その断面形状が逆テーパ形状の感光性樹脂パターンの形成に当たり、ハーフトーン露光技術を併用して半導体層の除去が必要な領域の膜厚を他の領域よりも薄く形成し、前記感光性樹脂パターンをマスクとして絵素電極形成領域、走査線の電極端子形成領域及び信号線の電極端子形成領域のパシベーション絶縁層と第1の半導体層とゲート絶縁層を除去した後、前記感光性樹脂パターンの膜厚を減じて半導体層の除去が必要な領域のパシベーション絶縁層を露出し、前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記領域のパシベーション絶縁層と第1の半導体層を除去してゲート絶縁層を露出することによってなされる。したがってここでも3枚のフォトマスクを用いてアクティブ基板を作製することが可能である。
絵素電極のリフトオフ形成の支障にならない膜質と膜厚であれば、絵素電極用導電性薄膜への制約は緩く、透明性の有無は問題にはならない。ただし、図示はしないが反射型液晶表示装置の絵素電極は鏡面反射を回避するため、その下地が平坦ではなく、深さが0.5〜1μm前後の凹凸面が必要である。多くの場合、このような凹凸面を有する下地の形成には感光性アクリル樹脂が用いられており、コスト的な課題はあるが、ゲート絶縁層の被着後、適切な時期に感光性アクリル樹脂層を用いて凹凸を形成しておき、本発明によるゲート絶縁層への開口部形成工程と、反射電極か透過電極の何れかの絵素電極形成工程を1枚のフォトマスクを用いてアクティブ基板を作製してもプロセス削減の目的は達せられる。
より合理的には透明導電層と(アルカリ反応抑制のためのMo薄膜層と)高反射率のAL薄膜層を被着した後、本発明による透明導電層と(Mo薄膜層と)AL薄膜層との積層よりなる擬似絵素電極形成を行い、微細加工技術により透明電極形成領域の(Mo薄膜層と)AL薄膜層を除去すると良いが、詳細な説明は別の機会に譲る。
本発明はこのように透過型だけでなく反射型や半透過型の液晶表示装置においても有効であり、さらに製造方法は同一であるが、透明導電性の絵素電極のパターン形状を変えることによりTN型液晶モードに限らず、垂直配向型の液晶モードに対しても有効であり、工程削減と視野角改善の2つの課題を同時に克服できる優れた技術である。
本発明の要件は上記の説明からも明らかなように低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線を形成し、絶縁ゲート型トランジスタを保護するパシベーション絶縁層を付与した後、その断面形状が逆テーパ形状の感光性樹脂パターンを用いて前記パシベーション絶縁層と非晶質シリコン層とゲート絶縁層を貫通する開口部を形成し、前記開口部内に露出する電極部位の低抵抗金属層を除去して前記電極の下地の耐熱金属層を露出した後、前記感光性樹脂パターンをリフトオフ材として絵素電極用導電性薄膜層のリフトオフにより絵素電極を形成することで、開口部形成工程と開口部形成工程に続く絵素電極形成工程を1枚のフォトマスクでハーフトーン露光技術を用いずに処理可能とした点と、さらに半導体層の選択的形成に当たりサイドエッチングあるいはハーフトーン露光技術の採用により3枚のフォトマスクでアクティブ基板の作製を可能とした点にある。したがって、それ以外の構成に関しては走査線、ゲート絶縁層等の材質や膜厚等が異なった液晶表示装置あるいはその製造方法の差異も本発明の範疇に属することは自明であり、本発明が透過型だけでなく反射型や半透過型の液晶表示装置においても有効であることも証明されている。また絶縁ゲート型トランジスタの半導体層も非晶質シリコン層に限定されないことも明らかである。
本発明の実施例を図1〜図7に基づいて説明する。図1に本発明の実施例1に係るアクティブ基板(表示装置用半導体装置)の平面図を示し、図2に図1(g)のA−A’(絶縁ゲート型トランジスタ領域)、B−B’(走査線の電極端子領域)及びC−C’(信号線の電極端子領域)、D−D’(チャネル領域)、及びE−E’(ドレイン電極)線上の製造工程の断面図を示す。同様に実施例2は図3と図4、実施例3は図5と図6、そして実施例4は図7で夫々アクティブ基板の平面図と(製造工程)の断面図を示す。なお従来例と同一の部位については同一の符号を付して詳細な説明は省略する。
実施例1では先ずガラス基板2の一主面上にSPT等の真空製膜装置を用いて膜厚0.1〜0.3μm程度の第1の金属層として例えばCr等の耐熱性の高い金属層を被着し、微細加工技術によりその一部をゲート電極とする走査線11を選択的に形成する。走査線の低抵抗化のためにALを用いるならば先述したように耐熱金属層でサンドイッチすると良い。あるいは本発明の信号線と同様に適当な耐熱金属層と、耐熱性を高めるためTa,Nd,Hf,Ni等の金属を添加したAL合金との積層も可能である。その理由は後述する。
次に従来例と同様にガラス基板2の全面にPCVD装置を用いてゲート絶縁層となる第1のSiNx層30、不純物をほとんど含まず絶縁ゲート型トランジスタのチャネルとなる第1の非晶質シリコン層31、及び不純物を含み絶縁ゲート型トランジスタのソース・ドレインとなる第2の非晶質シリコン層33と3種類の薄膜層を、例えば0.3−0.2−0.05μm程度の膜厚で順次被着する。さらに図1(a)と図2(a)に示したようにSPT等の真空製膜装置を用いて膜厚0.1μm程度の耐熱金属層として例えばMoSi2等の薄膜層34と、膜厚0.3μm程度の低抵抗金属層としてAL薄膜層35を順次被着する。本発明において、耐熱金属層34は後続の開口部形成工程で用いられる弗素系のガスで除去可能な性質が必要であり、例えばMo,W,Ta等の高融点金属とその合金、あるいはCr,Ti,Mo,W,Ta等の高融点金属のシリサイドが選ばれる。また低抵抗金属層としてCuを用いても良い。
引き続きソース・ドレイン配線の形成工程では図1(b)と図2(b)に示したように微細加工技術により感光性樹脂パターンを用いてこれらの薄膜層を順次食刻し、耐熱金属層34Aと低抵抗金属層35Aとの積層よりなり絶縁ゲート型トランジスタのソース配線も兼ねる信号線12と、走査線11と直交するように耐熱金属層34Bと低抵抗金属層35Bとの積層よりなる絶縁ゲート型トランジスタのドレイン電極21を選択的に形成するが、ここでは前記感光性樹脂パターンを用いて引き続き第2の非晶質シリコン層33及び第1の非晶質シリコン層31を順次食刻し、第1の非晶質シリコン層31は0.05〜0.1μm程度残して食刻する。この時点で第2の非晶質シリコン層よりなるソース33Aとドレイン33Bの分離がなされ、ソース33Aとドレイン33Bの下地の第1の非晶質シリコン31S,31Dを除いてガラス基板2上には膜厚を減ぜられた第1の非晶質シリコン層31Aが露出する。ドレイン電極21は図1(b)に示したように信号線12と平行して走査線11と交差しており、TFT on Gate構成としている。またソース・ドレイン配線12,21の形成と同時に前段の走査線11上に蓄積容量15を構成する蓄積電極72も形成する。
ソース・ドレイン配線12,21の形成後、ガラス基板2の全面に透明性の絶縁層として0.3μm程度の膜厚の第2のSiNx層を被着してパシベーション絶縁層37とした後、図1(c)と図2(c)に示したように微細加工技術により一方のドレイン電極21の端部と蓄積電極72の一部を含んで絵素電極形成領域と、他方のドレイン電極21の端部を含んで小さな面積の擬似絵素電極形成領域と、画像表示部外の領域で走査線11の一部5上及び信号線12の一部6上に夫々開口部38,39,63及び64を有するとともに、開口部の断面形状が逆テーパ状の感光性樹脂パターン88を形成する。開口部の断面形状が逆テーパ状となるような感光性樹脂としては、例えば東京応化社の製品名TELR−N101PMを用いると良い。その膜厚としては1μm以上あれば十分である。この製品は有機EL表示装置の製作にあたり有機EL発光層形成後の電極形成工程においてその逆テーパ状の断面形状のため、被着される電極用の導電性薄膜層を開口部内に分断して形成する用途で開発された化学増幅型のネガ型感光性樹脂であって、通常のポジ型感光性樹脂との差異は現像処理に先立ち、露光後に加熱処理(Post−Exposure−Bake)が必要な特質を有する。
そして感光性樹脂パターン88をマスクとして前記開口部内のパシベーション絶縁層37と第1の非晶質シリコン層31Aとゲート絶縁層30を選択的に除去してガラス基板2を露出するとともに上記の電極を露出する。通常、SiNxよりなるパシベーション絶縁層37とゲート絶縁層30の除去には弗素系のガス、例えばCF4またはSF6あるいはこれらの混合ガスを用いたドライエッチングが行われる。既に述べたように耐熱金属34A,34B,34Cと第1の非晶質シリコン層31S,31D,31Aも弗素系のガスでエッチングされるが、低抵抗金属層35A,35B,35CはALとCuの何れであっても弗素系のガスではエッチングされないので、図2(c)に示したように低抵抗金属層35A,35B(35B1と35B2),35Cがマスクとして機能し、これらの下層の耐熱金属層34A,34B(34B1と34B2),34Cと第1の非晶質シリコン層31S,31D,31Bとゲート絶縁層30Aが過食刻(オーバーエッチ)によりサイドエッチされる結果、開口部64,38,39内に露出している低抵抗金属層35A,35B,35Cの周囲には庇(オーバハング)が形成されてしまう。
さらにエッチングガスを塩素ガスに切り替えて図1(d)と図2(d)に示したように耐熱金属層34A,34B,34Cと第1の非晶質シリコン層31S,31D,31Bのサイドエッチングを行う。パシベーション絶縁層37Aとゲート絶縁層30A及び低抵抗金属層35においては塩素ガスによるエッチングレートが上記の耐熱金属層と第1の非晶質シリコン層とは1桁近く小さいことからこのサイドエッチングは可能である。ただし、低抵抗金属層35にALを採用した場合は、塩素ガスによるALのエッチングを防止するため塩素ガスによるエッチングに先立ち酸素プラズマ処理によりその表面に酸化アルミニウムを強制的に形成しておく必要がある。ソース・ドレイン配線12,21間のチャネル領域の第1の非晶質シリコン層31Cがゲート電極11Aよりも細くなるように、サイドエッチ量はマスク合せ精度の3ミクロン以上必要である。サイドエッチングを効果的に進行させるには塩素ガスプラズマが異方性を持たないように好ましくはこのエッチング工程はプラズマモードを使用すべきであり、RIEモードであれば10Pa以上の高圧での処理が望ましい。第1の非晶質シリコン層の31Bのサイドエッチングにより、通常の絶縁ゲート型トランジスタと同様にチャネル領域の第1の非晶質シリコン層31Cはゲート電極11Aよりも細くなり裏面光源からの照射光でリーク電流が増大する不具合は回避される。
低抵抗金属層35に銅を選択した場合には、弗酸に微量の硝酸を混入したエッチング液でMo,W,Taを除く耐熱金属層34A,34B,34Cと第1の非晶質シリコン層31S,31D,31Bのサイドエッチングを行うことも可能である。ただし、チャネル領域31C以外は第1の非晶質シリコン層31S,31Dの膜厚も厚く、さらに第2の非晶質シリコン層33A,33Bと、耐熱金属層34A,34B,34Cも積層されているのでサイドエッチング量が大きく、従って低抵抗金属層35Bと35C、すなわちドレイン電極21と蓄積電極72のパターンは開口部38内に露出する面積を多く形成しておく必要があるが、最終的には開口部38内の低抵抗金属層35Bと35Cは除去されるので開口率への影響は小さい。
耐熱金属層34A,34B,34Cと第1の非晶質シリコン層31S,31D,31Bのサイドエッチングによって低抵抗金属層35A,35B,35Cの周囲形成された庇(オーバハング)は当然大きくなる。このような庇(オーバハング)が存在していると後続の絵素電極形成工程で絵素電極が段切れを起こし、低抵抗金属層35Aと信号線の電極端子との接続、低抵抗金属層35B1と絵素電極との接続、及び低抵抗金属層35B2と擬似絵素電極との接続ができなくなる。さらに低抵抗金属層35A,35B,35CにALを選択した場合にはアルカリ性のレジスト剥離液を用いたレジスト剥離処理において透明導電層であるITO,IZOが還元されて消失しまう不具合も回避困難である。そこで、図1(e)と図2(e)に示したように開口部64,38,39内の低抵抗金属層35A,35B,35Cを除去して庇(オーバーハング)を消去するとともに、これらの電極の下地である耐熱金属層34A,34B,34Cを露出する工程が本発明の重要なポイントである。この低抵抗金属層35A〜34Cの除去には下地の熱金属層34A〜35Cとの選択比を高めるために、低抵抗金属層35にALを選択した場合には燐酸溶液、Cuを選択した場合には塩化第2鉄(FeCl3)または塩化第2銅(CuCl2)水溶液を用いる事が望ましい。さらに低抵抗金属層35にAL、耐熱金属層34にMoまたはWを選択した組合せでは、燐酸を用いたALの除去時にMoまたはWが消失しないように添加剤として硝酸を加えてはならないし、膜減りに対応してMoまたはWの膜厚を厚くする必要性もある。その点前記のシリサイドやTaではそのような制約が無く使い易い材料である。例えばMoシリサイド(MoSi2)は非晶質シリコン層31,33と同様に弗素系ガスのドライエッチ、または弗酸に少量の硝酸を混合した食刻液で食刻可能であり、初期のTFT型液晶表示装置には耐熱金属層として用いられていたが、現在のTFT液晶分野では余り知られていない材料である。
このようにして開口部64,38,39内に耐熱金属層34Aの一部と34Bの一部である34B1及び34B2を露出した後、図1(f)と図2(f)に示したようにSPT等の真空製膜装置を用いてガラス基板2上に透明導電層91として膜厚0.1μm程度のITO,IZOまたはこれらの混晶体を被着する。一般的にも透明導電層91の膜厚がこのように薄いことに加えて、断面形状が逆テーパ状であるので感光性樹脂パターン88の側面に被着される透明導電層91は極めて少ない。
したがってレジスト剥離液あるいは特定の有機溶剤を用いて感光性樹脂パターン88の除去を行うと、感光性樹脂パターン88の側面から溶融が始まり、感光性樹脂パターン88上の透明導電層91は容易に剥離してしまう。所謂エッチオフである。その結果、図1(g)と図2(g)に示したように一方のドレイン電極21の端部を構成する耐熱金属層34B1を含んで絵素電極形成領域である開口部38内のガラス基板2上には絵素電極22Aと、他方のドレイン電極21の端部を構成する耐熱金属層34B2を含んで擬似絵素電極形成領域である開口部39内のガラス基板2上には擬似絵素電極22Dと、走査線の一部5を含んで開口部63内には走査線の電極端子5Aと、信号線の一部である耐熱金属層34Aを含んで開口部64内には信号線の電極端子6Aが自己整合的に形成されるとともにガラス基板2上のパシベーション絶縁層37Aが露出し、アクティブ基板2の製造工程を終える。なお、透明導電層91の被着時に膜質改善のため基板加熱を行うならば、余り加熱温度が高いとリフトオフ工程で感光性樹脂パターン88が変質し、その除去が困難になるので、基板加熱温度は150℃以下が望ましい。
このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例1が完了する。ただし、擬似絵素電極22Dは隣接する上段絵素の絵素電極であるので、BMで覆って表示能力を失わせる必要がある。蓄積容量15の構成に関しては図1(g)に示したように低抵抗金属層35Cと耐熱金属層34Cとの積層よりなる蓄積電極72と前段の走査線11とがゲート絶縁層30Aと第1の非晶質シリコン層31E及び第2の非晶質シリコン層33E(何れも図示せず)を介して平面的に重なることで構成している例(右下がり斜線部52)を例示している。なお実施例1では従来例と同様にアクティブ基板2の外周部に開口部66を形成して透明導電性の短絡線40を得ており、透明導電性の電極端子5A,6Aと短絡線40との間を細長いストライプ状に形成することにより高抵抗化して静電気対策用の高抵抗としている。
開口部内のパシベーション絶縁層37と第1の非晶質シリコン層31Aとゲート絶縁層30を除去し終えた時点で開口部63内には走査線の一部5が露出するが、耐熱性の観点から走査線材料にALが単独で用いられる事はなく、通常Ti,Cr等の耐熱金属層との積層で構成されるため、これらの耐熱金属層を上層、ALを下層とする積層で走査線を構成し、開口部63の大きさを走査線の一部5よりも小さくしておけば開口部63内にはこれらの耐熱金属層が露出するので走査線の一部5がALよりなる低抵抗金属層35A〜35Cの除去時に除去されて消滅する事は無い。この場合には走査線の一部5の大きさが走査線の電極端子の大きさを決定する設計指針を与える。また耐熱性の高い、例えばTa,Nd等を数%含んだアルミニウム合金、AL(Ta)やAL(Nd)の単層で形成された走査線11では上記のAL層の除去時にこれらのAL合金が除去されて消滅するので、この場合にはソース・ドレイン配線12,21と同様に、適当な耐熱金属層を下層、前記AL合金を上層とする積層で走査線11を構成しておけば、走査線の電極端子は前記の耐熱金属層よりなる走査線の一部5を含んで形成されて電気的な接触は確保されるし、開口部63の大きさが走査線の一部5よりも大きくても構わない。このように走査線11の構成もソース・ドレイン配線12,21と同様に2層構成で良いので、従来例の3層構成の電極線と比較すると製膜材料が削減され、製膜装置も製膜室あるいは製膜装置台数を削減できるので生産コストも下がる。
実施例1ではこのようにハーフトーン露光技術を併用する事無く、走査線の形成工程、ソース・ドレイン配線の形成工程、及び本発明の主目的である開口部と絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製しており、半導体層の島化工程に相当する工程は開口部形成時のサイドエッチングによってなされている。従って各パターニング工程における寸法管理は通常のレベルで良いと言う副次的な効果も得られる。また走査線と信号線の積層構成も2層で良く、低コスト化に少なからず貢献するが、後者は本発明の全ての実施例において発揮される特徴でもある。
しかしながら、サイドエッチングを採用するに当たり低抵抗金属層35と耐熱金属層34への制約も多く、またサイドエッチでドライエッチングを採用すると処理時間が長くなる傾向は否定できない。そこで開口部形成時にハーフトーン露光技術を用いて開口部形成と半導体層の島化工程を1枚のフォトマスクで処理すれば、これらの制約を回避することが可能となるので、それを実施例2で説明する。
実施例2では図3(b)と図4(b)に示したソース・ドレイン配線12,21の形成工程と、それに続いてパシベーション絶縁層37を被着する工程までは実施例1と同一の製造工程を進行する。ただし、ここでは従来例と同様にゲート電極11Aを走査線11より分岐して形成している。
続いて図3(c)と図4(c)に示したようにハーフトーン露光技術を併用して微細加工技術によりドレイン電極21の一部と蓄積電極72の一部を含んで絵素電極形成領域と、画像表示部外の領域で走査線11の一部5上及び信号線12の一部6上に夫々開口部38,63及び64を有するとともに、前記絵素電極形成領域と隣接するゲート電極11Aの先端部を含む領域(88B1)上と、ゲート電極11Aの走査線11からの分岐部を含む領域(88B2)上の膜厚が例えば1μmでその他の領域の膜厚が2μmであり、開口部の断面形状が逆テーパ状の感光性樹脂パターン88A,88Bを形成する。そして感光性樹脂パターン88A,88Bをマスクとして開口部内のパシベーション絶縁層37と第1の非晶質シリコン層31Aとゲート絶縁層30を選択的に除去してガラス基板2を露出するとともにこれらの電極を露出する。この結果、実施例1と同様に低抵抗金属層35A〜35Cがマスクとして機能し、これらの下層の耐熱金属層34A〜34Cと第1の非晶質シリコン層31S,31D,31Bとゲート絶縁層30Aが過食刻(オーバーエッチ)によりサイドエッチされる結果、開口部64,39内に露出している低抵抗金属層35A〜35Cの周囲には庇(オーバハング)が形成されてしまう。
この後、酸素プラズマ等の灰化手段により感光性樹脂パターン88A,88Bの膜厚を1μm以上減ずると図3(d)と図4(d)に示したように感光性樹脂パターン88Bが消失してゲート電極11Aの先端部を含む領域のパシベーション絶縁層37Bと走査線11からの分岐部を含む領域のパシベーション絶縁層37Cが露出し、膜厚を減ぜられた感光性樹脂パターン88Aは88Cに変換される。そこで図3(e)と図4(e)に示したように膜減りした感光性樹脂パターン88Cをマスクとしてゲート電極11Aの先端部を含む領域のパシベーション絶縁層37Bと第1の非晶質シリコン層31B、及び走査線11からの分岐部を含む領域のパシベーション絶縁層37Cと第1の非晶質シリコン層31Bを選択的に除去してゲート絶縁層30B,30Cを露出する。この結果、ソース・ドレイン配線12,21間の第1の非晶質シリコン層の31Bが除去されて31Cとなり、チャネル領域の第1の非晶質シリコン31Cはゲート電極11Aよりも短くなるので裏面光源からの照射光でリーク電流が増大する不具合は回避される。
そして実施例1と同様に開口部内に露出している低抵抗金属層35A〜35Cを除去し、その庇(オーバーハング)を解消するとともに、図3(f)と図4(f)に示したようにこれらの電極の下地である耐熱金属層34A〜34Cを露出する。
このようにして開口部64,38内に耐熱金属層34A,34B及び34Cを露出した後、図3(g)と図4(g)に示したようにSPT等の真空製膜装置を用いてガラス基板2上に透明導電層91として膜厚0.1μm程度のITO,IZOまたはこれらの混晶体を被着する。
さらにレジスト剥離液等を用いて前記感光性樹脂パターン88を除去して、感光性樹脂パターン88上の透明導電層91のエッチオフを行う。そして、図3(h)と図4(h)に示したようにドレイン電極21の一部である耐熱金属層34Bと蓄積電極72の一部である耐熱金属層34Cを含んで絵素電極形成領域である開口部38内のガラス基板2上とゲート電極11Aの先端部を含む領域のゲート絶縁層30B上に絵素電極22Aと、ゲート電極11Aの走査線11からの分岐部を含む領域のゲート絶縁層30C上には擬似絵素電極22Bと、走査線の一部5を含んで開口部63内には走査線の電極端子5Aと、信号線の一部である耐熱金属層34Aを含んで開口部64内には信号線の電極端子6Aを自己整合的に形成するとともに、ガラス基板2上のパシベーション絶縁層37Aを露出してアクティブ基板2の製造工程を終える。
このようにして得られたアクティブ基板2とカラーフィルタ9を貼り合わせて液晶パネル化し、本発明の実施例2が完了する。蓄積容量15の構成に関しては図3(h)に示した通りで実施例1と略同一である。従来例と同様に走査線11と同時に蓄積容量線16を形成し、蓄積容量線16によって2分割された絵素電極22Aを得ることも可能であるが詳細は割愛する。静電気対策も実施例1と同一である。
実施例2ではこのように走査線の形成工程、ソース・ドレイン配線の同時形成、及び本発明の主目的である開口部及び絵素電極の同時形成と、3枚のフォトマスクを用いてアクティブ基板を作製することが可能となり、製造コストの低減が大きく前進する。半導体層の島化工程は開口部形成時においてハーフトーン露光技術を適用して半導体層を選択的に除去することで実現している。ただしハーフトーン露光技術を用いるので、パターン寸法の変化はゲート絶縁層30Bを介して絵素電極22Aとゲート電極11A及びゲート絶縁層30Cを介して擬似絵素電極22Bとゲート電極11Aとが構成する静電気容量値の変化をもたらす。擬似絵素電極22Bは電気的に浮遊しており表示画像への影響は皆無であるが、前者の静電容量値Cgsは寄生容量として作用するのでその値は小さいことが望ましく、さらに表示画面内で変動しないことが望まれる。そのため、上述した感光性樹脂パターン88A,88Bの膜減り手段としての酸素プラズマ処理においてはガラス基板2内の面内均一性の確保が重要である。
実施例3は上記のゲート絶縁層30Bを介して絵素電極22Aとゲート電極11Aが構成する静電容量値Cgsを小さくするパターン設計技術であり、アクティブ基板2の製造方法は実施例2と同一である。
そのパターン設計の差異は先ず図5(a)と図6(a)に示したように、ゲート電極11Aの近傍に隣接してゲート電極11Aと同じ方向に分離された光シールド電極11Bが形成されることである。
次に図5(c)と図6(c)に示したように、開口部の断面形状が逆テーパ状であり半導体層の島化工程と開口部形成のための感光性樹脂パターン88A,88Bの形成に当たり、膜厚が1μmのハーフトーン露光領域を、絵素電極形成領域と隣接し光シールド電極11Bのゲート電極11Aから遠い一方の先端部を含む領域(88B1)上と、ゲート電極11Aの走査線11からの分岐部を含む領域(88B2)上に加えて、光シールド電極11Bのゲート電極11Aに近い他方の先端部とゲート電極11Aの先端部及びこれらの間隙を含む領域(88B3)上に形成していることである。
最終的には図5(h)と図6(h)に示したように、ドレイン電極21の一部である耐熱金属層34Bと蓄積電極72の一部である耐熱金属層34Cを含んで絵素電極形成領域である開口部38内のガラス基板2上と光シールド電極11Bの一方の先端部を含む領域のゲート絶縁層30B上には絵素電極22Aと、走査線11からの分岐部を含む領域のゲート絶縁層30C上には擬似絵素電極22Bと、光シールド電極11Bの他方の先端部とゲート電極11Aの先端部及びこれらの間隙を含む領域上のゲート絶縁層30D上には擬似絵素電極22Cと、走査線の一部5を含んで開口部63内には走査線の電極端子5Aと、信号線の一部である耐熱金属層34Aを含んで開口部64内には信号線の電極端子6Aを自己整合的に形成するとともに、ガラス基板2上のパシベーション絶縁層37Aを露出してアクティブ基板2の製造工程を終える。蓄積容量15と静電気対策に関しては実施例2と同一である。
実施例3の構成によれば、絵素電極22Aはゲート絶縁層30Bを介して光シールド電極11Bと静電的に結合し、擬似絵素電極22Cはゲート絶縁層30Dを介して光シールド電極11B及びゲート電極11Aと静電的に結合している。これによって絵素電極22Aとゲート電極11Aとが構成する静電容量値Cgsは1/3程度にまで減少し、表示画質の維持が容易となる。しかしながらソース・ドレイン配線12,21に光シールド電極11B上の第1の非晶質シリコン層の31Cが並列に付加されるので、絶縁ゲート型トランジスタのリーク電流が増大する課題が新たに発生する。ただし、これは蓄積容量15を大きく設定することでその影響を抑制することは容易であり、開口率が若干低下するに過ぎない。
上記のように実施例1〜実施例3に記載のアクティブ基板2は、透明導電性の絵素電極22Aとカラーフィルタ9上の対向電極14を電極とする液晶モードを採用したTN型の液晶表示装置において用いられるアクティブ基板であった。本発明ではアクティブ基板2の製造方法を変えることなく、開口部(絵素電極)のパターンを変更することにより、視野角の広い液晶表示装置を得ることができるので、それを以下の実施例で説明する。
TN型液晶やIPS型液晶と異なり配向処理の不要な垂直配向型液晶では液晶セルを構成する2枚のガラス板の少なくとも一方、好ましくは双方のガラス基板に配向規制手段としての構成部材が必要である。垂直配向型液晶パネルでは商品化の開発当初は感光性樹脂を用いてアクティブ基板2とカラーフィルタ9の双方に幅10μm、高さ2〜3μm程度の突起と称する断面形状が蒲鉾型の構造物を作製していたが、突起の形成工程も液晶パネルの製造コストに反映するので、アクティブ基板2の構成を工夫して製造工程が増加しないように技術開発が進められている。
既に説明したように本発明によるアクティブ基板の製造方法では絵素電極をアクティブ基板上の絶縁層に設けた開口部内に自己整合的に形成することができる。そこで絵素電極に隣り合って存在する絶縁層を突起として利用することにより、実施例2で説明した3枚マスク・プロセスに対応して図7(a)と図7(b)に示したような垂直配向型液晶パネル向けのアクティブ基板2を得ることができる。ここでも72はソース・ドレイン配線12,21と同時に形成された蓄積電極で、蓄積容量線(共通電極)16とゲート絶縁層30Aを含む絶縁層を介して蓄積容量15を構成する。また複数本の帯状に形成された透明導電性の絵素電極22A−1〜22A−4も蓄積電極72を介して相互接続している。無論、実施例1と実施例3に記載のデバイスでも対応したアレイ設計をすることは容易である。多くの場合、帯状に分割された絵素電極22−1〜22−4のほぼ中央部分に対応して、アクティブ基板2と対向するカラーフィルタ9の一主面上に形成された透明導電性の対向電極14上にその断面形状が蒲鉾型の感光性樹脂よりなる突起60が形成されている。そして絵素電極22A−1と22A−3及び絵素電極22A−2と22A−4とは夫々略直交している。この結果、液晶セルに電圧が印加されて液晶分子が傾斜する方向を4方向に配向分割して視野角の拡大を実現している。配向規制力は低下するが、突起60に変えて対向電極14を部分的に除去してスリット(切れ目)とすることも可能である。
本発明に記載のプロセスに対応した構成では絵素電極22A−1と絵素電極22A−2との間隙は図7(b)に示したようにパシベーション絶縁層37Aと第1の非晶質シリコン31Cとゲート絶縁層30Aとの積層よりなる蒲鉾型の構造物となる。突起状の蒲鉾型の構造物の側面に沿って垂直配向型の液晶分子は垂直に配向するので、この側面が長い程、すなわち堤防状構造物の高さが高ければ高い程、あるいは堤防状構造物の傾斜が緩やかであればある程、液晶分子の規制力が強くなる。
パシベーション絶縁層37Aとゲート絶縁層30Aの間に位置する第1の非晶質シリコン31Cは既に述べたようにゲート絶縁層30Aよりわずかにパターン幅が細く、パシベーション絶縁層37Aが庇状に形成されているため、絵素電極22A−1と絵素電極22A−2はパシベーション絶縁層37Aとゲート絶縁層30Aの側面では分断して形成される。
垂直配向の液晶パネルにおいては突起の側面に絵素電極が形成されていると、電圧印加時に突起の配向規制力が絵素電極周辺の局所電界によって弱められて液晶パネルの応答速度が遅くなるが、本発明ではパシベーション絶縁層37Aの側面に形成された透明導電層は電気的に浮遊しており、応答速度の低下が抑制される副次的な効果も見逃せない。
以上述べたように本発明による3枚マスク・プロセスは単に製造工程を削減して製造コストの低減をもたらすだけでなく、製造管理が容易となる、あるいは応答速度が速くなる等の優れた副次効果も多く、またTN型液晶パネル及び垂直配向型液晶パネルと液晶デバイスの差異によらずアクティブ基板の製造プロセスを同一とすることができるので機種変更に伴う生産組換準備ロスが無く、量産規模の大きい生産ライン程、本発明のメリットを享受できる。
本発明の実施例1にかかるアクティブ基板の平面図 本発明の実施例1にかかるアクティブ基板の製造工程断面図 本発明の実施例2にかかるアクティブ基板の平面図 本発明の実施例2にかかるアクティブ基板の製造工程断面図 本発明の実施例3にかかるアクティブ基板の平面図 本発明の実施例3にかかるアクティブ基板の製造工程断面図 本発明の実施例4にかかるアクティブ基板の平面図と断面図 液晶パネルの実装状態を示す斜視図 液晶パネルの等価回路図 従来の液晶パネルの断面図 従来例の合理化されたアクティブ基板の平面図 従来例の合理化されたアクティブ基板の製造工程断面図
符号の説明
1:液晶パネル
2:アクティブ基板(ガラス基板)
3:半導体集積回路チップ
4:TCPフィルム
5:走査線の一部または電極端子
5A:透明導電性の走査線の電極端子
6:信号線の一部または電極端子
6A:透明導電性の信号線の電極端子
9:カラーフィルタ(対向するガラス基板)
10:絶縁ゲート型トランジスタ
11:走査線
11A:ゲート配線、ゲート電極
12:信号線(ソース配線、ソース電極)
14:対向電極
16:蓄積容量線、共通電極
17:液晶
21:ドレイン電極(ドレイン配線、ドレイン電極)
22,22A:(透明導電性の)絵素電極
22B,22C,22D:(透明導電性の)擬似絵素電極
30:ゲート絶縁層
31:不純物を含まない(第1の)非晶質シリコン層
33:不純物を含む(第2の)非晶質シリコン層
34:耐熱金属層(シリサイドも含む)
35:低抵抗金属層(AL薄膜層またはCu薄膜層)
36:中間導電層
37:パシベーション絶縁層
38:(絵素電極形成領域)の開口部
39:(擬似絵素電極形成領域)の開口部
50,52:蓄積容量形成領域
60:(カラーフィルタ9上の樹脂製の)突起
62:(ドレイン電極上の)開口部
63:(走査線の一部上または走査線の電極端子上の)開口部
64:(信号線の一部上または信号線の電極端子上の)開口部
65:(対向電極上の)開口部
72:蓄積電極
88:開口部の断面形状が逆テーパ状の感光性樹脂パターン
88A,88B:ハーフトーン露光で形成された開口部の断面形状が逆テーパ状の
感光性樹脂パターン

Claims (7)

  1. 一主面上に少なくともチャネルエッチ型の絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極を有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、アクティブ基板の構成は、
    第1の透明性絶縁基板の一主面上にその一部をゲート電極とする走査線が形成され、
    ゲート絶縁層とその一部がチャネルである不純物を含まない第1の半導体層を介して低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線が形成され、
    前記ドレイン配線は走査線と直交し、
    絶縁ゲート型トランジスタを保護するためのパシベーション絶縁層を最上層に有し、
    画像表示部では一方のドレイン配線の端部を含む絵素電極形成領域と、他方のドレイン配線の端部を含む擬似絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域、及び信号線の一部を含む信号線の電極端子形成領域に開口部が形成され、前記開口部内のパシベーション絶縁層と第1の半導体層とゲート絶縁層が除去されて夫々前記耐熱金属層よりなる一方のドレイン配線の端部と前記第1の透明性絶縁基板、他方のドレイン配線の端部と前記第1の透明性絶縁基板、走査線の一部、及び前記耐熱金属層よりなる信号線の一部が露出し、
    前記ソース・ドレイン配線間のチャネル領域の第1の半導体層はゲート電極よりも幅細く形成され、
    同一の導電性薄膜よりなり、前記一方のドレイン配線の端部を含んで絵素電極形成領域に絵素電極と、前記他方のドレイン配線の端部を含んで擬似絵素電極形成領域に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする液晶表示装置。
  2. 一主面上に少なくともチャネルエッチ型の絶縁ゲート型トランジスタと、前記絶縁ゲート型トランジスタのゲート電極も兼ねる走査線とソース配線も兼ねる信号線と、ドレイン配線に接続された絵素電極を有する単位絵素が二次元のマトリクスに配列された第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、アクティブ基板の構成は、
    第1の透明性絶縁基板の一主面上に分岐されたゲート電極を有する走査線が形成され、
    ゲート絶縁層とその一部がチャネルである不純物を含まない第1の半導体層を介して低抵抗金属層と、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層との積層よりなるソース・ドレイン配線が前記ゲート電極と一部重なるように形成され、
    絶縁ゲート型トランジスタを保護するためのパシベーション絶縁層を最上層に有し、
    画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域、及び信号線の一部を含む信号線の電極端子形成領域に開口部が形成され、前記開口部内のパシベーション絶縁層と第1の半導体層とゲート絶縁層が除去されて夫々前記耐熱金属層よりなるドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び前記耐熱金属層よりなる信号線の一部が露出し、
    前記絵素電極形成領域と連続してゲート電極の端部を含んで開口部と、ゲート電極の分岐部上に独立した開口部が形成され、前記開口部内のパシベーション絶縁層と第1の半導体層が除去されて開口部内にゲート絶縁層が露出し、
    同一の導電性薄膜よりなり、前記ゲート電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする液晶表示装置。
  3. 第1の透明性絶縁基板の一主面上に分岐されたゲート電極と分離した光シールド電極が形成され、
    前記絵素電極形成領域と連続して一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域に開口部が形成され、前記開口部内のパシベーション絶縁層と第1の半導体層が除去されて開口部内にゲート絶縁層が露出し、
    同一の導電性薄膜よりなり、前記一方の光シールド電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上の開口部に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む開口部に第2の擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子が形成されていることを特徴とする請求項2に記載の液晶表示装置。
  4. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、アクティブ基板の作製にあたり、
    第1の透明性絶縁基板の一主面上にその一部をゲート電極とする走査線を形成する工程と、
    ゲート絶縁層、不純物を含まない第1の非晶質シリコン層、不純物を含む第2の非晶質シリコン層、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層、及び低抵抗金属層を順次被着する工程と、
    前記低抵抗金属層、耐熱金属層、第2の非晶質シリコン層、及び第1の非晶質シリコン層の一部を選択的に除去し、走査線と直交するドレイン配線と信号線も兼ねるソース配線を形成する工程と、
    前記第1の透明性絶縁基板上にパシベーション絶縁層を被着後、画像表示部では一方のドレイン配線の端部を含む絵素電極形成領域と他方のドレイン配線の端部を含む擬似絵素電極形成領域、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
    前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々前記一方のドレイン配線の端部と前記第1の透明性絶縁基板、他方のドレイン配線の端部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
    前記第1の非晶質シリコン層をサイドエッチングする工程と、
    前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなる一方のドレイン配線の端部と他方のドレイン配線の端部及び信号線の一部を露出する工程と、
    前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
    前記感光性樹脂パターンを除去し、前記一方のドレイン配線の端部を含んで絵素電極形成領域に絵素電極と、前記他方のドレイン配線の端部を含んで擬似絵素電極形成領域に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなる液晶表示装置の製造方法。
  5. 第1の透明性絶縁基板(アクティブ基板)と、前記第1の透明性絶縁基板と対向する第2の透明性絶縁基板またはカラーフィルタとの間に液晶を充填してなる液晶表示装置において、アクティブ基板の作製にあたり、
    第1の透明性絶縁基板の一主面上に分岐されたゲート電極を有する走査線を形成する工程と、
    ゲート絶縁層、不純物を含まない第1の非晶質シリコン層、不純物を含む第2の非晶質シリコン層、パシベーション絶縁層とゲート絶縁層の食刻ガスで除去可能な耐熱金属層、及び低抵抗金属層を順次被着する工程と、
    前記低抵抗金属層、耐熱金属層、第2の非晶質シリコン層、及び第1の非晶質シリコン層の一部を選択的に除去し、ゲート電極と一部重なるようにソース(信号線)・ドレイン配線を形成する工程と、
    前記第1の透明性絶縁基板上にパシベーション絶縁層を被着後、画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、前記絵素電極形成領域と連続してゲート電極の端部を含む領域とゲート電極の分岐部を含む領域の膜厚が他の領域よりも薄く、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
    前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々前記ドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
    前記感光性樹脂パターンの膜厚を減じて前記ゲート電極の端部を含む領域とゲート電極の分岐部を含む領域のパシベーション絶縁層を露出する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記ゲート電極の端部を含む領域とゲート電極の分岐部を含む領域のパシベーション絶縁層と第1の非晶質シリコン層を除去してゲート絶縁層を露出する工程と、
    前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、
    前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンを除去し、前記ドレイン配線の一部とゲート電極の端部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部上に擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程とからなる液晶表示装置の製造方法。
  6. 第1の透明性絶縁基板の一主面上にゲート電極と分離した光シールド電極が形成され、
    画像表示部ではドレイン配線の一部を含む絵素電極形成領域と、画像表示部外の領域では走査線の一部を含む走査線の電極端子形成領域と信号線の一部を含む信号線の電極端子形成領域に開口部を有するとともに、前記絵素電極形成領域と連続して一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上の膜厚が他の領域よりも薄く、その断面形状が逆テーパ形状の感光性樹脂パターンを前記第1の透明性絶縁基板上に形成する工程と、
    前記感光性樹脂パターンをマスクとして前記開口部内のパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層を除去し、前記開口部内に夫々ドレイン配線の一部と前記第1の透明性絶縁基板、走査線の一部、及び信号線の一部を露出する工程と、
    前記感光性樹脂パターンの膜厚を減じて前記一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上のパシベーション絶縁層を露出する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンをマスクとして前記一方の光シールド電極の端部上と、ゲート電極の分岐部上と、他方の光シールド電極の端部とゲート電極の端部を含む領域上のパシベーション絶縁層と第1の非晶質シリコン層を除去してゲート絶縁層を露出する工程と、
    前記開口部内に露出している低抵抗金属層を除去して何れも耐熱金属層よりなるドレイン配線の一部と信号線の一部を露出する工程と、
    前記第1の透明性絶縁基板上に導電性薄膜層を被着する工程と、
    前記膜厚を減ぜられた感光性樹脂パターンを除去し、前記一方の光シールド電極の端部上と前記ドレイン配線の一部を含んで絵素電極形成領域に絵素電極と、前記ゲート電極の分岐部の開口部に第1の擬似絵素電極と、他方の光シールド電極の端部とゲート電極の端部を含む開口部に第2の擬似絵素電極と、前記走査線の一部を含んで走査線の電極端子形成領域に走査線の電極端子、及び前記信号線の一部を含んで信号線の電極端子形成領域に信号線の電極端子を形成する工程を有する請求項5に記載の液晶表示装置の製造方法。
  7. 液晶が電圧無印加時に垂直配向する垂直配向型の液晶であり、
    第1の透明性絶縁基板上に前記液晶に電圧を印加した時に液晶が配向する方向を規制する第1の配向制御手段が、第1の透明性絶縁基板上に形成された複数の透明導電層よりなる帯状の絵素電極間に位置するパシベーション絶縁層と第1の非晶質シリコン層とゲート絶縁層とからなる積層であり、
    第2の透明性絶縁基板上またはカラーフィルタ上に前記液晶に電圧を印加した時に液晶が配向する方向を規制する第2の配向制御手段を備えていることを特徴とする請求項1及び請求項2に記載の液晶表示装置。
JP2005232701A 2005-08-11 2005-08-11 液晶表示装置とその製造方法 Active JP4863667B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232701A JP4863667B2 (ja) 2005-08-11 2005-08-11 液晶表示装置とその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232701A JP4863667B2 (ja) 2005-08-11 2005-08-11 液晶表示装置とその製造方法

Publications (2)

Publication Number Publication Date
JP2007047516A true JP2007047516A (ja) 2007-02-22
JP4863667B2 JP4863667B2 (ja) 2012-01-25

Family

ID=37850382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232701A Active JP4863667B2 (ja) 2005-08-11 2005-08-11 液晶表示装置とその製造方法

Country Status (1)

Country Link
JP (1) JP4863667B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263700A (ja) * 1994-03-17 1995-10-13 Fujitsu Ltd 薄膜トランジスタの製造方法
JP2003043508A (ja) * 2001-07-27 2003-02-13 Hitachi Ltd 液晶表示装置
JP2003347314A (ja) * 2002-04-16 2003-12-05 Lg Phillips Lcd Co Ltd 液晶表示装置用アレー基板製造方法
JP2004163933A (ja) * 2002-11-11 2004-06-10 Lg Philips Lcd Co Ltd 液晶表示装置用アレイ基板及びその製造方法
JP2005157017A (ja) * 2003-11-27 2005-06-16 Quanta Display Japan Inc 液晶表示装置とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263700A (ja) * 1994-03-17 1995-10-13 Fujitsu Ltd 薄膜トランジスタの製造方法
JP2003043508A (ja) * 2001-07-27 2003-02-13 Hitachi Ltd 液晶表示装置
JP2003347314A (ja) * 2002-04-16 2003-12-05 Lg Phillips Lcd Co Ltd 液晶表示装置用アレー基板製造方法
JP2004163933A (ja) * 2002-11-11 2004-06-10 Lg Philips Lcd Co Ltd 液晶表示装置用アレイ基板及びその製造方法
JP2005157017A (ja) * 2003-11-27 2005-06-16 Quanta Display Japan Inc 液晶表示装置とその製造方法

Also Published As

Publication number Publication date
JP4863667B2 (ja) 2012-01-25

Similar Documents

Publication Publication Date Title
KR101085136B1 (ko) 수평 전계 박막 트랜지스터 기판 및 그 제조 방법
KR101225440B1 (ko) 액정 표시 장치 및 그 제조 방법
US9515028B2 (en) Array substrate, method of manufacturing the same and display device
US8854567B2 (en) Liquid crystal display device and method of manufacturing the same
WO2010071160A1 (ja) アクティブマトリクス基板の製造方法、および、液晶表示装置の製造方法
KR20070070382A (ko) 액정 표시 장치용 어레이 기판 및 그 제조 방법
JP4646539B2 (ja) 液晶表示装置とその製造方法
JP6497876B2 (ja) 液晶表示パネル、及びその製造方法
KR20070082157A (ko) 액정 표시 장치용 어레이 기판 및 그 제조 방법
JP2005108912A (ja) 液晶表示装置とその製造方法
JP2009133954A (ja) 液晶表示装置及びその製造方法
JP2004271989A (ja) 表示装置用基板及びその製造方法及びそれを備えた表示装置
US7781268B2 (en) Array substrate and display panel
JP2005283690A (ja) 液晶表示装置とその製造方法
JP5064124B2 (ja) 表示装置用基板及びその製造方法、並びに、液晶表示装置及びその製造方法
JP2005018082A (ja) 薄膜トランジスタ表示板の製造方法
JP5342731B2 (ja) 液晶表示装置とその製造方法
US9081243B2 (en) TFT substrate, method for producing same, and display device
KR20040086927A (ko) 수평 전계 인가형 박막 트랜지스터 어레이 기판 및 그제조 방법
JP2005049667A (ja) 液晶表示装置とその製造方法
JP2005017669A (ja) 液晶表示装置とその製造方法
JP2005106881A (ja) 液晶表示装置とその製造方法
JP4863667B2 (ja) 液晶表示装置とその製造方法
KR20120130983A (ko) 액정표시장치용 어레이 기판 및 그 제조 방법
JP4538218B2 (ja) 液晶表示装置とその製造方法

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20070710

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110309

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110511

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111018

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4863667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250