JP2007047043A - Multi-wavelength interferometer - Google Patents

Multi-wavelength interferometer Download PDF

Info

Publication number
JP2007047043A
JP2007047043A JP2005232396A JP2005232396A JP2007047043A JP 2007047043 A JP2007047043 A JP 2007047043A JP 2005232396 A JP2005232396 A JP 2005232396A JP 2005232396 A JP2005232396 A JP 2005232396A JP 2007047043 A JP2007047043 A JP 2007047043A
Authority
JP
Japan
Prior art keywords
light source
light
mirror
interference unit
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005232396A
Other languages
Japanese (ja)
Inventor
Shinji Kimura
伸司 木村
Shinji Sato
伸治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Pentax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pentax Corp filed Critical Pentax Corp
Priority to JP2005232396A priority Critical patent/JP2007047043A/en
Publication of JP2007047043A publication Critical patent/JP2007047043A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-wavelength interferometer capable of carrying out an interference measurement using multiple wavelengths without moving an optical element to be measured. <P>SOLUTION: The multi-wavelength interferometer comprises a plurality of laser light sources 11a-11c for emitting light beams having different wavelengths, a mirror and a half mirror for reflecting laser beams which are emitted by respective laser light sources 11a-11c, toward an interference measuring section, and a light source switching mechanism 17 which is disposed between the light sources and the interference section alternatively selects laser beams emitted by the respective laser light sources 11a-11c and brings the selected laser beam to enter the interference measuring section. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、異なる波長による測定が可能な多波長干渉計に関する。   The present invention relates to a multiwavelength interferometer capable of measuring at different wavelengths.

近年、種々の光記録媒体を単一の機器で記録、再生する光記録装置が開発されている。かかる光記録装置では、記録媒体に信号を書き込む際および書き込まれた信号を読み出す際に同一の集光レンズを使用し、さらに光記録媒体の方式毎に異なる波長のレーザ光を使用するが、対物レンズは同一の対物レンズを使用している。   In recent years, optical recording apparatuses that record and reproduce various optical recording media with a single device have been developed. In such an optical recording apparatus, the same condenser lens is used when writing a signal to the recording medium and when reading the written signal, and laser light having a different wavelength is used for each optical recording medium system. The lens uses the same objective lens.

かかる対物レンズの特性を測定する手段として、従来から干渉計が使用されている。従来の干渉計は、コヒーレント光を分割して被測定レンズを透過させた測定光と参照鏡で反射させた参照光を重ね合わせて干渉させる構成である。
特開平7‐181005号公報
Conventionally, an interferometer has been used as a means for measuring the characteristics of such an objective lens. A conventional interferometer has a configuration in which coherent light is divided and measurement light transmitted through a lens to be measured and reference light reflected by a reference mirror are overlapped to interfere with each other.
JP 7-181005 A

しかしながら従来の干渉計は、単一波長の光束による測定しかできなかったので、波長毎に干渉計を用意し、被測定レンズを各干渉計に移動して測定しなければならなかった。   However, since the conventional interferometer can only measure with a light beam having a single wavelength, an interferometer must be prepared for each wavelength, and the lens to be measured must be moved to each interferometer.

本願発明は、かかる課題に鑑みてなされ、被測定光学素子を移動することなく複数の波長による干渉測定が可能な多波長干渉計を得ることを目的とする。   The present invention has been made in view of such a problem, and an object of the present invention is to obtain a multi-wavelength interferometer capable of measuring interference with a plurality of wavelengths without moving the optical element to be measured.

かかる課題を解決する本発明は、光源から入射した光を分割し、被測定光学素子を透過または反射させた測定光と参照鏡で反射させた参照光を干渉させる干渉部を備えた干渉計であって、異なる波長の光を射出する複数の光源と、各光源から射出された光を前記干渉部方向に反射する反射光学素子と、前記各光源と前記干渉部との間に配置された、前記各光源から射出された光を択一的に前記干渉部に入射させる光源切り換え手段を備えたことに特徴を有する。   The present invention that solves such a problem is an interferometer that includes an interference unit that splits light incident from a light source and causes measurement light transmitted or reflected by a measured optical element to interfere with reference light reflected by a reference mirror. A plurality of light sources that emit light of different wavelengths, a reflective optical element that reflects the light emitted from each light source in the direction of the interference unit, and the light source disposed between the light source and the interference unit, There is provided a light source switching means for selectively making the light emitted from each of the light sources incident on the interference section.

好ましい実施形態では、前記複数の光源は、射出する光の進行方向と直交する方向に離反して配置され、前記反射光学素子は、該光源のうち、前記干渉部に最も遠い光源から射出された光を前記干渉部方向に反射するミラーと、前記最も遠い光源よりも前記干渉部に近い光源から射出された光をそれぞれ前記干渉部方向に反射するハーフミラーとを備え、前記干渉部に最も近い光源よりも遠方の光源から射出され、ハーフミラーまたはミラーで反射された光は、光路途中の前記他のハーフミラーを透過して前記干渉部に入射するように形成した。   In a preferred embodiment, the plurality of light sources are arranged away from each other in a direction orthogonal to the traveling direction of the emitted light, and the reflective optical element is emitted from a light source farthest from the interference unit among the light sources. A mirror that reflects light toward the interference unit, and a half mirror that reflects light emitted from a light source closer to the interference unit than the farthest light source toward the interference unit, and is closest to the interference unit The light emitted from the light source farther than the light source and reflected by the half mirror or mirror is formed so as to pass through the other half mirror in the optical path and enter the interference portion.

前記各光源、ミラーおよびハーフミラーは光軸または光学中心が同一平面上に位置するように配置され、前記光源切り換え手段は、前記各光源と前記ミラーおよびハーフミラーの間の光路に配置され、前記光源からの光を択一的に透過させることが好ましい。
前記光源切り換え手段は、前記ミラーおよびハーフミラーと前記光源との間に配置された、前記光源の配置方向に延びた遮光板および該遮光板に設けられた開口からなり、該開口は、前記いずれか1個の開口が対応する光源から射出された光の透過を可能にする光路に位置するときは他の開口が対応する光源の光路から外れるように設けられる。
前記光源は、波長の短い光源ほど前記干渉部近傍に配置することが好ましい。
Each of the light sources, the mirror and the half mirror is arranged so that an optical axis or an optical center is located on the same plane, and the light source switching means is arranged in an optical path between each of the light sources and the mirror and the half mirror, It is preferable to selectively transmit light from the light source.
The light source switching means includes a light shielding plate disposed between the mirror and the half mirror and the light source and extending in the light source arrangement direction, and an opening provided in the light shielding plate. When one opening is located in an optical path that allows transmission of light emitted from the corresponding light source, the other opening is provided so as to be out of the optical path of the corresponding light source.
It is preferable that the light source is arranged closer to the interference portion as the light source has a shorter wavelength.

本発明によれば、異なる波長の光を択一的に干渉部に導くことができるので、被測定光学素子を移動することなく、複数の波長の光による干渉測定が可能になる。しかも、光源からの光を導くための光学素子は移動しないので、移動による誤差の発生がない。さらに、単一の干渉部によって干渉測定ができるので、コスト軽減を図ることもできる。   According to the present invention, since light of different wavelengths can be selectively guided to the interference unit, interference measurement using light of a plurality of wavelengths can be performed without moving the measured optical element. In addition, since the optical element for guiding the light from the light source does not move, no error occurs due to the movement. Furthermore, since interference measurement can be performed by a single interference unit, cost reduction can be achieved.

本発明について、図示実施形態を参照して詳細に説明する。図1は、本発明を適用した多波長干渉計の実施形態の要部構成を示す正面図である。   The present invention will be described in detail with reference to the illustrated embodiments. FIG. 1 is a front view showing a main configuration of an embodiment of a multiwavelength interferometer to which the present invention is applied.

この実施形態では、それぞれが異なる波長のレーザ光を射出する3個のレーザ光源11a、11b、11cを備えている。第1レーザ光源11aは波長約405nm、第2レーザ光源11bは波長約660nm、第3レーザ光源11cは波長約780nmのレーザ光を射出する。つまり、第1レーザ光源11aはいわゆるブルーレイディスク装置用、第2レーザ光源11bはDVD装置用、第3レーザ光源11cはCD装置用のレーザ光を出す光源である。この実施形態では、波長の短い光源ほど光路長が短くなるように配置してある。波長の短いレーザ光ほど、減衰が大きく、経路中の光学素子の影響を受けやすいからである。   In this embodiment, three laser light sources 11a, 11b, and 11c that emit laser beams having different wavelengths are provided. The first laser light source 11a emits laser light having a wavelength of about 405 nm, the second laser light source 11b emits laser light having a wavelength of about 660 nm, and the third laser light source 11c emits laser light having a wavelength of about 780 nm. That is, the first laser light source 11a is a so-called Blu-ray disc device, the second laser light source 11b is a DVD device, and the third laser light source 11c is a light source that emits laser light for a CD device. In this embodiment, the light path length is shorter as the light source has a shorter wavelength. This is because the shorter the laser beam, the greater the attenuation and the more easily affected by the optical elements in the path.

レーザ光源11a乃至11cから射出したレーザ光は、発散レンズ13a、13b、13cで一旦絞られた後発散して、コリメートレンズ15a、15b、15cで平行光束にコリメートされる。コリメートレンズ15a、15b、15cから射出した平行なレーザ光は、光源切り換え手段としての光源切り換え機構17によって択一的に透過するように制御される。光源切り換え機構17は、コリメートレンズ15a、15b、15cから出射したレーザ光の中からいずれか一つを透過させる構造である。なお、各レーザ光源11a乃至11cは、波長、強度を安定させるために測定中は通常発光状態を維持する。   The laser light emitted from the laser light sources 11a to 11c is once diverged after being diverged by the diverging lenses 13a, 13b, and 13c, and then collimated into parallel light beams by the collimating lenses 15a, 15b, and 15c. The parallel laser beams emitted from the collimating lenses 15a, 15b, and 15c are controlled so as to be selectively transmitted by the light source switching mechanism 17 serving as a light source switching unit. The light source switching mechanism 17 has a structure that transmits any one of the laser beams emitted from the collimating lenses 15a, 15b, and 15c. Each of the laser light sources 11a to 11c maintains a normal light emission state during measurement in order to stabilize the wavelength and intensity.

第1のレーザ光源11aから射出され、光源切り換え機構17を透過したレーザ光は、ハーフミラー19aで測定部を構成する測定レンズ部23(被測定光学素子)方向に反射される。第2のレーザ光源11bから射出され、光源切り換え機構17を透過したレーザ光は、ハーフミラー19bで測定レンズ部23方向に反射され、ハーフミラー19aを透過する。第3のレーザ光源11cから射出され、光源切り換え機構17を透過したレーザ光は、ミラー19cで測定レンズ部23方向に反射され、ハーフミラー19b、19aを透過する。   The laser light emitted from the first laser light source 11a and transmitted through the light source switching mechanism 17 is reflected by the half mirror 19a toward the measurement lens unit 23 (measured optical element) constituting the measurement unit. The laser light emitted from the second laser light source 11b and transmitted through the light source switching mechanism 17 is reflected by the half mirror 19b toward the measurement lens unit 23 and passes through the half mirror 19a. The laser light emitted from the third laser light source 11c and transmitted through the light source switching mechanism 17 is reflected by the mirror 19c toward the measurement lens unit 23 and passes through the half mirrors 19b and 19a.

以上のレーザ光源11a乃至11c、発散レンズ13a乃至13c、コリメートレンズ15a乃至15cおよびミラー19a乃至19cは、それぞれの光軸Oa、Ob、Ocまたは光学中心が同一平面上に位置するように配置されている。   The laser light sources 11a to 11c, the diverging lenses 13a to 13c, the collimating lenses 15a to 15c, and the mirrors 19a to 19c are arranged such that their optical axes Oa, Ob, Oc, or optical centers are located on the same plane. Yes.

ハーフミラー19aで反射または透過したレーザ光は、ハーフミラー21に入射し、一部がハーフミラー21を透過して測定レンズ部23に入射する。測定レンズ部23は、反射基準凹面鏡24を備え、この反射基準凹面鏡24の前方に被測定レンズLが載置される。被測定レンズLは、その焦点FLが反射基準凹面鏡24の焦点Fと一致するように配置される。   The laser light reflected or transmitted by the half mirror 19 a is incident on the half mirror 21, and part of the laser light is transmitted through the half mirror 21 and is incident on the measurement lens unit 23. The measurement lens unit 23 includes a reflection reference concave mirror 24, and the lens L to be measured is placed in front of the reflection reference concave mirror 24. The lens L to be measured is arranged so that its focal point FL coincides with the focal point F of the reflective reference concave mirror 24.

さらにこの実施形態では、使用するレーザ光の波長に応じて変動する被測定レンズLの焦点位置(焦点距離)に応じて被測定レンズLの焦点FLが反射基準凹面鏡24の焦点Fと一致するように反射基準凹面鏡24の位置を調整する機構とその波長の仕様に合わせたカバーガラス25(例えば厚さ、ブルーレイディスクならば0.1mm、DVDならば0.6mm、CDならば1.2mm)を、被測定レンズLと反射基準凹面鏡24の間で切り換えができるよう配置されている。   Furthermore, in this embodiment, the focal point FL of the lens L to be measured coincides with the focal point F of the reflecting reference concave mirror 24 according to the focal position (focal length) of the lens L to be measured that varies according to the wavelength of the laser light to be used. A cover glass 25 (for example, thickness, 0.1 mm for Blu-ray Disc, 0.6 mm for DVD, 1.2 mm for CD) that adjusts the position of the reflective reference concave mirror 24 and its wavelength specification The lens L and the reflecting reference concave mirror 24 are arranged so as to be switched.

カバーガラス25、被測定レンズLを透過し、反射基準凹面鏡24で反射して再び被測定レンズL、カバーガラス25を透過したレーザ光はハーフミラー21に戻り、ハーフミラー21でハーフミラー29方向に反射され、ハーフミラー29で反射したレーザ光が、干渉縞観測部31に入射する。ハーフミラー21で反射されたレーザ光は、基準平面板27で反射されてハーフミラー21に戻り、ハーフミラー21を透過してハーフミラー27で反射されて、干渉縞観測部31に入射する。   The laser light that has passed through the cover glass 25 and the lens L to be measured, reflected by the reflection reference concave mirror 24, and again transmitted through the lens L and the cover glass 25 to be measured returns to the half mirror 21 and is directed toward the half mirror 29 by the half mirror 21. The laser beam reflected and reflected by the half mirror 29 enters the interference fringe observation unit 31. The laser beam reflected by the half mirror 21 is reflected by the reference plane plate 27 and returns to the half mirror 21, passes through the half mirror 21, is reflected by the half mirror 27, and enters the interference fringe observation unit 31.

干渉縞観測部31に入射した、反射基準凹面鏡24で反射した被測定レンズLを透過した測定レーザ光および基準平面板27で反射した参照レーザ光は、集光レンズ32で集光され、CCDカメラ33に入射する。CCDカメラ33の撮像面に入射した測定レーザ光および参照レーザ光が干渉して干渉縞を形成し、その干渉縞を撮像素子が撮像する。   The measurement laser light that has entered the interference fringe observation unit 31 and has passed through the lens L to be measured reflected by the reflection reference concave mirror 24 and the reference laser light reflected by the reference plane plate 27 are collected by the condenser lens 32 and are then collected by the CCD camera. 33 is incident. The measurement laser light and the reference laser light incident on the imaging surface of the CCD camera 33 interfere with each other to form an interference fringe, and the image sensor picks up the interference fringe.

さらにこの実施形態では、反射基準凹面鏡24で反射し、ハーフミラー21で反射し、ハーフミラー29を透過した測定レーザ光がCCDカメラ35に入射する。被測定レンズLの焦点FL位置に対応する点像がCCDカメラ35の撮像面に形成され、撮像される。   Further, in this embodiment, the measurement laser light reflected by the reflection reference concave mirror 24, reflected by the half mirror 21, and transmitted through the half mirror 29 enters the CCD camera 35. A point image corresponding to the focal point FL position of the lens L to be measured is formed on the imaging surface of the CCD camera 35 and imaged.

CCDカメラ33、35が撮像した映像は、モニタテレビに映し出される。CCDカメラ33で撮像した像は干渉縞を映し出し、CCDカメラ35で撮像した像は点像化した干渉縞を映し出す。モニタテレビに映し出された干渉縞によりコマ収差を測定する。一方、モニタテレビに映し出された点像の位置により、被測定レンズLの偏心、傾斜状態の測定ができる。   Images captured by the CCD cameras 33 and 35 are displayed on a monitor television. The image picked up by the CCD camera 33 shows interference fringes, and the image picked up by the CCD camera 35 shows dot fringes. The coma aberration is measured by the interference fringes projected on the monitor TV. On the other hand, the decentration and tilt state of the lens L to be measured can be measured by the position of the point image displayed on the monitor television.

図2には、測定レンズ部23の拡大図を示した。ハーフミラー21を透過したレーザ光が進む方向に沿って順に、被測定レンズL、カバーガラス(オプティカルフラット)25、反射基準凹面鏡24が配置されている。被測定レンズLに入射したレーザ光(平行光束)は、被測定レンズLで集束され、カバーガラス25を透過してから一旦収束した後に拡散し、反射基準凹面鏡24で反射されて、入射光路を逆光して、被測定レンズLから平行光束として射出する。   FIG. 2 shows an enlarged view of the measurement lens unit 23. A lens L to be measured, a cover glass (optical flat) 25, and a reflective reference concave mirror 24 are arranged in this order along the direction in which the laser light transmitted through the half mirror 21 travels. The laser light (parallel light beam) incident on the lens L to be measured is converged by the lens L to be measured, passes through the cover glass 25, and then converges and then diffuses and is reflected by the reflective reference concave mirror 24, and passes through the incident optical path. Backlit and emitted as a parallel light beam from the lens L to be measured.

さらにこの実施形態では、使用するレーザ光の波長に応じて変動する被測定レンズLの焦点位置(焦点距離)に応じて被測定レンズLの焦点FLが反射基準凹面鏡24の焦点Fと一致するように反射基準凹面鏡24の位置を調整する機構とその波長の仕様に合わせたカバーガラス25(例えば厚さ、ブルーレイディスクならば0.1mm、DVDならば0.6mm、CDならば1.2mm)を、被測定レンズLと反射基準凹面鏡24の間で切り換えができるよう配置されている。   Furthermore, in this embodiment, the focal point FL of the lens L to be measured coincides with the focal point F of the reflecting reference concave mirror 24 according to the focal position (focal length) of the lens L to be measured that varies according to the wavelength of the laser light to be used. A cover glass 25 (for example, thickness, 0.1 mm for Blu-ray Disc, 0.6 mm for DVD, 1.2 mm for CD) that adjusts the position of the reflective reference concave mirror 24 and its wavelength specification The lens L and the reflecting reference concave mirror 24 are arranged so as to be switched.

図3に、光源切り換え機構17の一実施例を示した。この実施例は、レーザ光源11a、11b、11cの配置方向に延びた遮光板171に、同配置方向に所定間隔で開口171a、171b、171cを設けてある。各開口171a、171b、171cの高さおよび幅は、コリメートレンズ15a、15b、15cから射出されたレーザ光のビーム径と同等乃至やや大きく設定される。さらに各開口171a、171b、171cの間隔Dは、レーザ光源11a、11b、11cの間隔、つまり光軸Oa、Ob、Ocの間隔(ピッチd1)および各開口171a、171b、171cの高さ(d2)の和よりもやや広い。つまり、D>(d1+d2)に設定してある。開口171a、171b、171cの形状は方形に限定されず、多角形、円形でもよい。   FIG. 3 shows an embodiment of the light source switching mechanism 17. In this embodiment, openings 171a, 171b and 171c are provided at predetermined intervals in a light shielding plate 171 extending in the arrangement direction of the laser light sources 11a, 11b and 11c. The height and width of each opening 171a, 171b, 171c are set to be equal to or slightly larger than the beam diameter of the laser light emitted from the collimating lenses 15a, 15b, 15c. Further, the distance D between the openings 171a, 171b, 171c is the distance between the laser light sources 11a, 11b, 11c, that is, the distance between the optical axes Oa, Ob, Oc (pitch d1) and the height (d2) of each opening 171a, 171b, 171c. A little wider than the sum of That is, D> (d1 + d2) is set. The shape of the openings 171a, 171b, and 171c is not limited to a square, and may be a polygon or a circle.

この遮光板171は、開口171aがレーザ光源11aの光路に合致してその光路開放した位置では、他のレーザ光源11b、11cの各光路を遮光している(図3(A))。遮光板171を図1において下方にピッチDだけ移動させると、開口171bがレーザ光源11bの光路に合致してその光路を開放する一方、他のレーザ光源11a、11cの光路は遮光板171で遮光する(図3(B))。遮光板171をさらに下方にピッチDだけ移動させると、開口171cがレーザ光源11cの光路に合致してその光路を開放する一方、他のレーザ光源11a、11cの光路は遮光板171で遮光される(図3(C))。   The light shielding plate 171 shields the optical paths of the other laser light sources 11b and 11c at a position where the opening 171a matches the optical path of the laser light source 11a and the optical path is opened (FIG. 3A). When the light shielding plate 171 is moved downward by a pitch D in FIG. 1, the opening 171b matches the optical path of the laser light source 11b and opens the optical path, while the optical paths of the other laser light sources 11a and 11c are shielded by the light shielding plate 171. (FIG. 3B). When the light shielding plate 171 is further moved downward by the pitch D, the opening 171c matches the optical path of the laser light source 11c and opens the optical path, while the optical paths of the other laser light sources 11a and 11c are shielded by the light shielding plate 171. (FIG. 3C).

この遮光板171を前記各位置に移動させる機構は公知の機構を利用して形成できる。例えば、遮光板171を縦方向に平行移動自在に支持し、ピッチD毎にクリックストップ機構等によって保持する機構、あるいは縦方向の縁部にラックを形成してこのラックにピニオンを噛合させて移動させるラック&ピニオン機構によって形成する。   A mechanism for moving the light shielding plate 171 to the respective positions can be formed using a known mechanism. For example, the light-shielding plate 171 is supported so as to be movable in parallel in the vertical direction, and a mechanism that holds it by a click stop mechanism or the like at every pitch D, or a rack is formed at the edge in the vertical direction, and a pinion is engaged with the rack and moved. It is formed by a rack and pinion mechanism.

以上の通り本発明の実施形態によれば、光源切り換え機構17を駆動するだけで複数のレーザ光源11a乃至11cを切り換えることができるので、異なる波長のレーザ光による測定を、被測定レンズを移動させることなく簡単に実行できる。しかもレーザ光の進路に影響するミラー、ハーフミラー等の光学素子は動かさないので、光路がずれる等のおそれがない。レーザ光源11a乃至11cを縦一列に配置したので設置面積が小さくてすむ。なお、選択したレーザ光源11a乃至11cに対応するカバーガラス25を光路内に挿入する。   As described above, according to the embodiment of the present invention, since the plurality of laser light sources 11a to 11c can be switched only by driving the light source switching mechanism 17, the lens to be measured is moved by the measurement using laser light of different wavelengths. It can be executed easily without any problems. In addition, since optical elements such as mirrors and half mirrors that affect the path of the laser beam are not moved, there is no risk of the optical path shifting. Since the laser light sources 11a to 11c are arranged in a vertical line, the installation area can be reduced. A cover glass 25 corresponding to the selected laser light sources 11a to 11c is inserted into the optical path.

図示実施形態は異なる波長の3台のレーザ光源11a乃至11cの切り換えが可能な構成であるが、本発明は2台あるいは4台以上のレーザ光源に対しても適用できる。   Although the illustrated embodiment has a configuration in which three laser light sources 11a to 11c having different wavelengths can be switched, the present invention can also be applied to two or four or more laser light sources.

図示光源切り換え機構は1枚の遮光板を縦方向に移動させる構成としたが、他の実施例では、各開口を横方向にずらせて形成し、遮光板を横方向に移動させる構成とする。また、各レーザ光源毎に可動の遮光板、絞りまたはシャッタを設け、これらを択一的に開放駆動させる構成でもよい。   Although the illustrated light source switching mechanism is configured to move one light shielding plate in the vertical direction, in another embodiment, each opening is formed by shifting in the horizontal direction, and the light shielding plate is moved in the horizontal direction. Further, a movable light shielding plate, a diaphragm or a shutter may be provided for each laser light source, and these may be selectively opened.

図示実施形態はレーザ光源11a乃至11cを縦一列に配置したが、別の実施形態では、平面視、ミラー、ハーフミラーを通る光路を中心として異なる位置に配置する。要するに、複数の光源からの光を択一的に透過させる機構によって干渉部に入射させる構成とする。以上の構成により、被測定光学素子を移動することなく、異なる波長の光毎に干渉測定が可能になり、測定時間の短縮および作業工程の削減を図ることができる。   In the illustrated embodiment, the laser light sources 11a to 11c are arranged in a vertical row. However, in another embodiment, the laser light sources 11a to 11c are arranged at different positions around the optical path passing through the plan view, the mirror, and the half mirror. In short, a configuration is adopted in which light from a plurality of light sources is incident on the interference unit by a mechanism that selectively transmits light. With the above configuration, it is possible to perform interference measurement for each light of different wavelengths without moving the optical element to be measured, and it is possible to shorten the measurement time and the work process.

本発明を適用した多波長干渉計の実施形態の全体概要を示す図である。It is a figure which shows the whole outline | summary of embodiment of the multiwavelength interferometer to which this invention is applied. 被測定レンズを保持する部材およびその周辺の構造を拡大して示す図である。It is a figure which expands and shows the member holding a to-be-measured lens, and the structure of the periphery. 同実施形態の光源切り換え機構の一実施例を、異なるレーザ光源からのレーザ光を透過させる状態を示す図である。It is a figure which shows the state which permeate | transmits the laser beam from a different laser light source for one Example of the light source switching mechanism of the embodiment.

符号の説明Explanation of symbols

11a 11b 11c レーザ光源
13a 13b 13c 発散レンズ
15a 15b 15c コリメートレンズ
17 光源切り換え機構
19a 19b ハーフミラー
21 ハーフミラー
23 測定レンズ部
24 反射基準凹面鏡
25 カバーガラス
27 基準平面板
29 ハーフミラー
31 干渉縞観測部
33 CCDカメラ

11a 11b 11c Laser light source 13a 13b 13c Diverging lens 15a 15b 15c Collimating lens 17 Light source switching mechanism 19a 19b Half mirror 21 Half mirror 23 Measuring lens unit 24 Reflection reference concave mirror 25 Cover glass 27 Reference plane plate 29 Half mirror 31 Interference fringe observation unit 33 CCD camera

Claims (5)

光源から入射した光を分割し、被測定光学素子を透過または反射させた測定光と参照鏡で反射させた参照光を干渉させる干渉部を備えた干渉計であって、
異なる波長の光を射出する複数の光源と、
各光源から射出された光を前記干渉部方向に反射する反射光学素子と、
前記各光源と前記干渉部との間に配置された、前記各光源から射出された光を択一的に前記干渉部に入射させる光源切り換え手段を備えたことを特徴とする多波長干渉計。
An interferometer comprising an interference unit that splits light incident from a light source and causes measurement light transmitted or reflected by a measured optical element to interfere with reference light reflected by a reference mirror,
A plurality of light sources that emit light of different wavelengths;
A reflective optical element that reflects the light emitted from each light source toward the interference portion;
A multi-wavelength interferometer, comprising: a light source switching unit that is disposed between each light source and the interference unit and selectively makes light emitted from each light source enter the interference unit.
請求項1記載の多波長干渉計において、前記複数の光源は、射出する光の進行方向と直交する方向に離反して配置され、前記反射光学素子は、該光源のうち、前記干渉部に最も遠い光源から射出された光を前記干渉部方向に反射するミラーと、前記最も遠い光源よりも前記干渉部に近い光源から射出された光をそれぞれ前記干渉部方向に反射するハーフミラーとを備え、前記干渉部に最も近い光源よりも遠方の光源から射出され、ハーフミラーまたはミラーで反射された光は、光路途中の前記他のハーフミラーを透過して前記干渉部に入射する多波長干渉計。 2. The multiwavelength interferometer according to claim 1, wherein the plurality of light sources are arranged apart from each other in a direction orthogonal to a traveling direction of the emitted light, and the reflective optical element is closest to the interference unit among the light sources. A mirror that reflects light emitted from a distant light source in the direction of the interference unit, and a half mirror that reflects light emitted from a light source closer to the interference unit than the farthest light source in the direction of the interference unit, A multiwavelength interferometer in which light emitted from a light source farther than the light source closest to the interference unit and reflected by a half mirror or mirror passes through the other half mirror in the middle of the optical path and enters the interference unit. 請求項2記載の多波長干渉計において、前記各光源、ミラーおよびハーフミラーは光軸または光学中心が同一平面上に位置するように配置され、前記光源切り換え手段は、前記各光源と前記ミラーおよびハーフミラーの間の光路に配置され、前記光源からの光を択一的に透過させる多波長干渉計。 3. The multi-wavelength interferometer according to claim 2, wherein each of the light sources, the mirror, and the half mirror is disposed such that an optical axis or an optical center is located on the same plane, and the light source switching means includes the light sources, the mirror, A multi-wavelength interferometer that is disposed in an optical path between the half mirrors and selectively transmits light from the light source. 請求項2または3記載の多波長干渉計において、前記光源切り換え手段は、前記ミラーおよびハーフミラーと前記光源との間に配置された、前記光源の配置方向に延びた遮光板および該遮光板に設けられた開口からなり、該開口は、前記いずれか1個の開口が対応する光源から射出された光の透過を可能にする光路に位置するときは他の開口が対応する光源の光路から外れるように設けられている多波長干渉計。 4. The multi-wavelength interferometer according to claim 2, wherein the light source switching unit is disposed between the mirror and the half mirror and the light source, and extends to the light source arrangement direction and the light shielding plate. When one of the openings is located in an optical path that allows transmission of light emitted from the corresponding light source, the other opening deviates from the optical path of the corresponding light source. A multi-wavelength interferometer provided. 請求項1乃至4のいずれか一項記載の多波長干渉計において、前記光源は、波長の短い光源ほど前記干渉部近傍に配置した多波長干渉計。

5. The multi-wavelength interferometer according to claim 1, wherein a light source having a shorter wavelength is arranged near the interference unit. 6.

JP2005232396A 2005-08-10 2005-08-10 Multi-wavelength interferometer Pending JP2007047043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232396A JP2007047043A (en) 2005-08-10 2005-08-10 Multi-wavelength interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232396A JP2007047043A (en) 2005-08-10 2005-08-10 Multi-wavelength interferometer

Publications (1)

Publication Number Publication Date
JP2007047043A true JP2007047043A (en) 2007-02-22

Family

ID=37849978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232396A Pending JP2007047043A (en) 2005-08-10 2005-08-10 Multi-wavelength interferometer

Country Status (1)

Country Link
JP (1) JP2007047043A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033942B3 (en) * 2008-07-18 2010-04-08 Luphos Gmbh Fiber-optic multi-wavelength interferometer (MWLI) for the absolute measurement of distances and topologies of surfaces at a large working distance
CN102721529A (en) * 2012-05-27 2012-10-10 中国科学院光电技术研究所 High-reflectivity scanning and measuring multi-wavelength integrated method of large-aperture reflection optical element
CN103616164A (en) * 2013-11-28 2014-03-05 中国科学院光电技术研究所 Reflectivity and transmittance comprehensive measurement method based on pulse laser light source
CN113155058A (en) * 2021-04-29 2021-07-23 范金坪 Multi-wavelength dynamic phase measurement device and method based on spatial domain carrier frequency phase shift

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008033942B3 (en) * 2008-07-18 2010-04-08 Luphos Gmbh Fiber-optic multi-wavelength interferometer (MWLI) for the absolute measurement of distances and topologies of surfaces at a large working distance
CN102721529A (en) * 2012-05-27 2012-10-10 中国科学院光电技术研究所 High-reflectivity scanning and measuring multi-wavelength integrated method of large-aperture reflection optical element
CN103616164A (en) * 2013-11-28 2014-03-05 中国科学院光电技术研究所 Reflectivity and transmittance comprehensive measurement method based on pulse laser light source
CN113155058A (en) * 2021-04-29 2021-07-23 范金坪 Multi-wavelength dynamic phase measurement device and method based on spatial domain carrier frequency phase shift

Similar Documents

Publication Publication Date Title
US8134765B2 (en) Hologram recording and reconstruction apparatus
US10520594B2 (en) Method and fibre-optical system for illuminating and detecting an object by means of light
TW201937229A (en) Systems and methods for improved focus tracking using a light source configuration
US20110221879A1 (en) Objective for a dental camera and method for creating an image
JP2009162539A (en) Light wave interferometer apparatus
JP2007047043A (en) Multi-wavelength interferometer
JP3730831B2 (en) Aberration measuring device and adjusting device
JP5107547B2 (en) Interferometric surface shape measuring device
JP2007101730A (en) Image exposure device
JP2012212018A (en) Focal point maintenance device and microscope device
JP2002286409A (en) Interferometer
JP4682115B2 (en) Optical axis adjustment device and optical axis adjustment method for optical pickup
JP3441670B2 (en) Lens inspection system and lens inspection device
JP2007093288A (en) Light measuring instrument and light measuring method
KR20080112570A (en) Holographic recording/reproducing apparatus
JP4513544B2 (en) Hologram reproduction apparatus and hologram reproduction method
JP4830837B2 (en) Lens measuring device
JP5233643B2 (en) Shape measuring device
US20080267038A1 (en) Optical device for holographic recording or reading and method for controlling the same
US20100199393A1 (en) Probe microscope
US11402474B2 (en) Compensation device for a biaxial LIDAR system
JP5093243B2 (en) Objective lens for hologram recording and hologram recording apparatus
JP2008209365A (en) Interference measuring device and interference measurement method
JP4814583B2 (en) Wavefront aberration measuring device
SU848996A1 (en) Interferometer for surface quality control, large optical element aberration determination and transparent non-uniformity investigation

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20070619

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080501