JP2007046944A - Remote visual inspection method, and self-travel type imaging device - Google Patents

Remote visual inspection method, and self-travel type imaging device Download PDF

Info

Publication number
JP2007046944A
JP2007046944A JP2005229467A JP2005229467A JP2007046944A JP 2007046944 A JP2007046944 A JP 2007046944A JP 2005229467 A JP2005229467 A JP 2005229467A JP 2005229467 A JP2005229467 A JP 2005229467A JP 2007046944 A JP2007046944 A JP 2007046944A
Authority
JP
Japan
Prior art keywords
self
visual inspection
imaging device
remote
propelled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005229467A
Other languages
Japanese (ja)
Inventor
Shihei Yamashita
司平 山下
Takeshi Aizawa
丈司 会沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005229467A priority Critical patent/JP2007046944A/en
Publication of JP2007046944A publication Critical patent/JP2007046944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide a remote visual inspection method and a self-travel type imaging device capable of facilitating visual inspection in a place difficult to be approached, such as an under part of a nuclear reactor pressure vessel. <P>SOLUTION: When inspecting visually a housing 2 for a control rod driving mechanism of the nuclear reactor pressure vessel 1, the self-travel type imaging device 10 mounted with a video camera is laid on a nuclear reactor pressure vessel lower part heat insulator 3, an image picked up by the self-travel type imaging device 10 is transmitted to a controller 21 of a visual inspection part 20 located in a position distant from the nuclear reactor pressure vessel 1 to be displayed in a monitor 22, the visual inspection is carried out therein by an operator P, and a self-travel position of the self-travel type imaging device 10 is controlled via the controller 21, based on the image displayed in the monitor 22. The self-travel type imaging device 10 is constituted of three wheels comprising two driving side wheels and one auxiliary side wheel to regulate shaft weight balance by a balance weight, and an obstacle can get over with a small driving source to secure mobility in a narrow part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ビデオカメラを用いた遠隔目視検査方法と、この方法に使用する自走式撮像装置に係り、特に原子炉圧力容器下部の遠隔目視検査に好適な方法と自走式撮像装置に関する。   The present invention relates to a remote visual inspection method using a video camera and a self-propelled imaging apparatus used for the method, and more particularly to a method suitable for remote visual inspection of a lower part of a reactor pressure vessel and a self-propelled imaging apparatus.

原子炉圧力容器の下部など環境的及び空間的に人間の接近が難しい場所の目視検査には、ビデオカメラを遠隔操作して検査対象に接近し、撮像した画像をモニタする方法が従来から用いられている。   For visual inspection of places where humans are difficult to approach environmentally and spatially, such as the lower part of the reactor pressure vessel, a method has been used in which a video camera is remotely operated to approach the inspection object and the captured image is monitored. ing.

このとき、或る従来技術では、ロッド(棒部材)の先端にCCDカメラを取付け、ロッドによる遠隔操作により撮像を行い、検査対象部位の確認と検査が得られるようにしている(例えば、非特許文献1参照。)。   At this time, in a certain prior art, a CCD camera is attached to the tip of a rod (rod member), and imaging is performed by remote control with the rod so that the inspection target part can be confirmed and inspected (for example, non-patent) Reference 1).

また、他の従来技術では、CCDカメラを自走式の移動台車に搭載して検査対象に接近させるようにした自走式カメラ装置が、配管内部などの目視検査に際して用いられていた(例えば、非特許文献2参照。)。
エベレストVIT株式会社製「CA−ZOOM PAN−TILT−ZOOMシステム」カタログ 株式会社キュー・アイ社製「管内検査用TVカメラ装置pv−2000」カタログ
In another conventional technique, a self-propelled camera device in which a CCD camera is mounted on a self-propelled movable carriage so as to be close to an inspection object has been used for visual inspection inside a pipe (for example, (Refer nonpatent literature 2.).
"CA-ZOOM PAN-TILT-ZOOM System" catalog made by Everest VIT Catalog of "TV camera device pv-2000 for in-pipe inspection" manufactured by Kew Eye Co.

上記従来技術は、ビデオカメラの操作性について配慮がされておらず、作業に多大の労力を要するという問題があった。   The above prior art has a problem that it does not consider the operability of the video camera and requires a lot of work.

上記ロッドを用いた従来技術の場合、カメラの遠隔操作による目視検査が可能になるが、ロッドの操作と検査に多くの労力と時間を要し、特にロッドが水平状態にあるときに多大の労力と時間が要してしまうという問題があった。   In the case of the prior art using the rod, visual inspection by remote control of the camera is possible, but it takes a lot of labor and time to operate and inspect the rod, especially when the rod is in a horizontal state. There was a problem that it took time.

また、自走式カメラ装置を用いた従来技術の場合は、自走装置がキャタピラ駆動式や多輪駆動式になっているので、構造が複雑になり、且つ大型になって狭隘部での小回りが難しいことに加え、軽量化が困難で、剛性に乏しい走行面では、装置自体の重量により走行面に損傷を与えてしまう虞があるなどの問題があった。   Also, in the case of the prior art using a self-propelled camera device, the self-propelled device is a caterpillar drive type or a multi-wheel drive type, so the structure becomes complicated, and the size becomes large and a small turn in a narrow part In addition to being difficult, it is difficult to reduce the weight, and there is a problem that the running surface with poor rigidity may damage the running surface due to the weight of the device itself.

本発明の目的は、原子炉圧力容器下部などの環境的及び空間的に接近が難しい場所での目視検査が容易に得られるようにした遠隔目視検査方法と自走式撮像装置を提供することにある。   An object of the present invention is to provide a remote visual inspection method and a self-propelled imaging device that can easily obtain a visual inspection in a place where environmental and spatial access is difficult such as a lower part of a reactor pressure vessel. is there.

上記目的は、移動手段に搭載したビデオカメラにより複数箇所にある被検査対象部位の画像を撮像し、前記ビデオカメラが撮像した画像の遠隔地でのモニタにより、前記複数箇所にある被検査対象部位の目視検査を行なうようにした遠隔目視検査方法において、前記移動手段として駆動側車輪が2輪で補助側車輪が1輪の3輪構成の自走手段を用い、前記自走手段に搭載されているビデオカメラにより撮像した画像を前記遠隔地でモニタすることにより、前記被検査部位の確認と前記自走手段の位置制御及び前記ビデオカメラによる撮像方向の制御の少なくとも一種と前記被検査部位の目視検査が、前記遠隔地において得られるようにして達成される。   The object is to take images of the inspected sites at a plurality of locations with a video camera mounted on the moving means, and to monitor the inspected sites at the plurality of locations with a monitor at a remote location of the image captured by the video camera. In the remote visual inspection method in which a visual inspection is performed, a three-wheeled self-propelled means having two driving wheels and one auxiliary wheel is used as the moving means and is mounted on the self-propelled means. By monitoring an image captured by a video camera at a remote location, at least one of confirmation of the region to be inspected, position control of the self-propelled means, and control of the imaging direction by the video camera, and visual inspection of the region to be inspected Inspection is accomplished as obtained at the remote location.

このとき、前記被検査対象部位の近傍に配置したマーカを用い、前記自走手段の位置確認が、前記マーカを撮像した画像のモニタから与えられるようにしてもよく、前記被検査対象部位の近傍に配置したICチップを用い、前記自走手段の位置確認が、前記ICチップに対する電波によるアクセスにより与えられるようにしてもよい。   At this time, using a marker arranged in the vicinity of the inspection target region, the position confirmation of the self-propelled means may be given from a monitor of an image obtained by imaging the marker. The position of the self-propelled means may be confirmed by radio wave access to the IC chip.

同じく上記目的は、2輪の駆動側車輪と1輪の補助側車輪が略三角形に配置された本体フレームと、前記2輪の駆動側車輪の車軸位置が全体の重心の直下に位置するようにして前記本体フレームに設けられているバランスウエイトと、前記2輪の駆動側車輪の車軸と直角な方向の一方の側で前記車軸と略平行な方向の一方の側と他方に位置するようにして前記本体フレームの下側に取付けられている前方転倒防止部材と、前記2輪の駆動側車輪の車軸と直角な方向の他方の側で前記車軸と略平行な方向の一方の側と他方に位置するようにして前記本体フレームの下側に取付けられている左右転倒防止部材と、前記2輪の駆動側車輪の回転方向と回転数を夫々独立に制御する遠隔制御手段とが設けられ、前記本体フレームに遠隔操作によるパン機能とチルト機能を備えたビデオカメラを搭載することにより達成される。   Similarly, the object is to make the main body frame in which the two driving wheels and one auxiliary wheel are arranged in a substantially triangular shape, and the axle position of the two driving wheels to be located directly below the overall center of gravity. The balance weight provided on the main body frame and one side in a direction perpendicular to the axle of the two driving wheels are positioned on one side and the other in a direction substantially parallel to the axle. A forward overturn prevention member attached to the lower side of the main body frame, and positioned on one side and the other in a direction substantially parallel to the axle on the other side perpendicular to the axle of the two driving wheels. A left-right fall prevention member attached to the lower side of the main body frame, and remote control means for independently controlling the rotation direction and the number of rotations of the two driving wheels. Pan by frame remote control It is achieved by mounting a video camera provided with a capability and tilt function.

本発明の遠隔目視検査方法によれば、狭隘な場所でも短時間で、且つ低コストで環境的及び空間的に人間の接近が難しい部位の確認及び検査を行うことが出来る。   According to the remote visual inspection method of the present invention, it is possible to confirm and inspect a site that is difficult for humans to approach environmentally and spatially in a short time and at a low cost even in a narrow place.

以下、本発明による遠隔目視検査方法と自走式撮像装置について、図示の実施の形態により詳細に説明する。   Hereinafter, a remote visual inspection method and a self-propelled imaging device according to the present invention will be described in detail with reference to embodiments shown in the drawings.

ここで、まず、図1は本発明に係る自走式撮像装置を用い、原子力発電所における原子力圧力容器下部の遠隔目視検査に本発明の方法を適用した場合の一実施形態であり、この図には、原子炉圧力容器1と制御棒駆動機構用ハウジング2、それに保温材(原子炉圧力容器下部保温材)3が示されている。   Here, FIG. 1 is an embodiment in which the method of the present invention is applied to the remote visual inspection of the lower part of the nuclear pressure vessel in a nuclear power plant using the self-propelled imaging apparatus according to the present invention. 1 shows a reactor pressure vessel 1, a control rod drive mechanism housing 2, and a heat insulating material (reactor pressure vessel lower heat insulating material) 3.

このとき、図2に更に詳細に示されているように、制御棒駆動機構用ハウジング2は原子炉圧力容器1の下鏡部に多数本、等間隔に配置されていて、保温材3は、これら制御棒駆動機構用ハウジング2の夫々を横断するようにして設置され、その上に、本発明の実施形態に係る自走式撮像装置10が載置されるようになっている。そして、この自走式撮像装置10にケーブル23が接続され、上にはビデオカメラ14が搭載されている。   At this time, as shown in more detail in FIG. 2, the control rod drive mechanism housing 2 is arranged in the lower mirror part of the reactor pressure vessel 1 at equal intervals. These control rod drive mechanism housings 2 are installed so as to cross each other, and the self-propelled imaging device 10 according to the embodiment of the present invention is placed thereon. A cable 23 is connected to the self-propelled imaging device 10, and a video camera 14 is mounted on the cable 23.

また、原子炉圧力容器1から離れた位置(遠隔地)には目視検査部20が設置されていて、そこにはコントローラ21とモニタ22が設けてある。そして、このコントローラ21からケーブル23が自走式撮像装置10に接続されており、これにより自走式撮像装置10は、このケーブル23を介してコントローラ21から制御され、自走式撮像装置10からコントローラ21に画像が伝送されることになる。   A visual inspection unit 20 is installed at a position (remote location) away from the reactor pressure vessel 1, and a controller 21 and a monitor 22 are provided there. A cable 23 is connected from the controller 21 to the self-propelled imaging device 10, whereby the self-propelled imaging device 10 is controlled from the controller 21 via the cable 23 and from the self-propelled imaging device 10. An image is transmitted to the controller 21.

そこで、モニタ22には、自走式撮像装置10に搭載されているビデオカメラ14で撮像した画像が映出され、これにより操作者(検査員)Pによる画像の監視と自走式撮像装置10の制御が得られるようになっている。なお、このときのケーブル23に代え、無線伝送手段を用い、ワイヤレスによる操作信号や映像信号の送受信が得られるようにしてもよい。   Therefore, the image captured by the video camera 14 mounted on the self-propelled imaging device 10 is displayed on the monitor 22, thereby monitoring the image by the operator (inspector) P and the self-propelled imaging device 10. Can be obtained. Note that, instead of the cable 23 at this time, wireless transmission means may be used to transmit / receive wireless operation signals and video signals.

このとき操作者Pは、自走式撮像装置10のビデオカメラによる被検査部位の撮像が可能になる位置まで、モニタ28に映出された映像を観察しながら制御棒駆動機構用ハウジング2の間を縫うようにして自走式撮像装置10を自走させ、モニタ28に映出された被検査部位の映像を観察して被検査部位の確認と検査を行う。   At this time, the operator P observes the image projected on the monitor 28 until the position where the video of the inspected part can be imaged by the video camera of the self-propelled imaging device 10 is between the control rod drive mechanism housing 2. The self-propelled imaging device 10 is self-propelled so as to sew, and the image of the region to be inspected displayed on the monitor 28 is observed to check and inspect the region to be inspected.

次に、本発明の一実施形態に係る自走式撮像装置10について説明すると、これは、図3と図4に示すように、本体フレーム11を備え、これに駆動能力を持った左右2個の駆動側車輪12A、12Bと、駆動能力を持たない補助側車輪13を設けて自走可能にし、これに撮像能力を持ったカメラ、すなわちビデオカメラ14を搭載したものである。   Next, a self-propelled imaging device 10 according to an embodiment of the present invention will be described. As shown in FIG. 3 and FIG. Driving side wheels 12A and 12B and auxiliary side wheels 13 having no driving capability are provided so as to be capable of self-running, and a camera having an imaging capability, that is, a video camera 14 is mounted thereon.

このとき、ビデオカメラ14は、遠隔操作によるパン機能とチルト機能を備えた台座、いわゆる自動雲台に据えられていて、コントローラ21により、撮像方向が左右上下の任意の方向にリモートコントロールできるようになっている。   At this time, the video camera 14 is placed on a pedestal having a pan function and a tilt function by remote operation, that is, a so-called automatic pan head, so that the controller 21 can remotely control the imaging direction in any direction left, right, up and down. It has become.

そして、本体フレーム11には、更に駆動源15A、15Bと動力伝達機構16A、16B、バランスウエイト17、左右対になった2個の前方転倒防止部材18A、18B、それに同じく左右対になった2個の横方転倒防止部材19A、19Bが設けられているものである。なお、これら図3と図4においては、左が自走式撮像装置10の前方で、右が後方である。   The main body frame 11 further includes drive sources 15A and 15B, power transmission mechanisms 16A and 16B, a balance weight 17, two front-to-back anti-falling members 18A and 18B, and two left-right pairs. The individual lateral fall prevention members 19A and 19B are provided. 3 and 4, the left is the front of the self-propelled imaging device 10 and the right is the rear.

そして、まず、駆動源15A、15Bは電動機で構成され、動力伝達機構16A、16Bを介して左右2個の駆動側車輪12A、12Bを夫々独立して回転駆動する。このための電力はケーブル23を介してコントローラ21から供給されるようになっている。なお、ケーブル23に代えて無線伝送手段を用いたワイヤレス方式の場合は、別途、電池などの電源装置の搭載を要する。   First, the drive sources 15A and 15B are constituted by electric motors, and rotate the left and right drive side wheels 12A and 12B independently through the power transmission mechanisms 16A and 16B. Electric power for this purpose is supplied from the controller 21 via the cable 23. In the case of a wireless system using wireless transmission means instead of the cable 23, it is necessary to separately mount a power supply device such as a battery.

次に補助側車輪13は、図示は省略してあるが、本体フレーム11に対して垂直軸により回動可能に支持してあり、しかも、このときの垂直軸の位置と車軸位置にオフセットが設けてあって、いわゆるキャスタとしての機能が備えられているものである。   Next, although not shown, the auxiliary-side wheel 13 is supported so as to be rotatable with respect to the main body frame 11 by a vertical axis, and an offset is provided between the position of the vertical axis and the position of the axle at this time. Therefore, a function as a so-called caster is provided.

そこで、駆動側車輪12A、12Bの回転数(回転速度)と回転方向を独立に制御することにより、停止したままの旋回も含めてコントローラ21により自由自在に前進後進や斜め走行、カーブ走行などがリモートコントロールできるようになっている。   Therefore, by independently controlling the rotation speed (rotation speed) and rotation direction of the driving wheels 12A and 12B, the controller 21 can freely move forward, backward, diagonally, curve, etc., including turning while stopped. Remote control is possible.

このとき、これら駆動側車輪12A、12Bと補助側車輪13は、特に図4から明らかなように、本体フレーム11に対してほぼ三角形の各頂点に位置するようにして取付けられ、これにより、走行面に対して三点支持となり、かなりの凹凸面でも車輪の浮き上がりが抑えられ、良好な路面接地性が与えられるようにしてある。   At this time, the drive side wheels 12A and 12B and the auxiliary side wheel 13 are attached to the main body frame 11 so as to be positioned substantially at the apexes of the triangle, as is apparent from FIG. The surface is supported at three points, so that the lift of the wheel is suppressed even on a considerably uneven surface, and good road surface grounding is provided.

次に、バランスウエイト17は、駆動側車輪12A、12Bと補助側車輪13の間の軸重バランスを調整する働きをし、自走式撮像装置10全体の重心位置の直下に駆動側車輪12A、12Bの2輪の車軸が位置するように重量と位置が設定してある。   Next, the balance weight 17 functions to adjust the axial load balance between the driving side wheels 12A and 12B and the auxiliary side wheel 13, and the driving side wheels 12A and 12B are directly below the center of gravity of the self-propelled imaging device 10. The weight and position are set so that the 12B two-wheel axle is located.

更に、前方転倒防止部材18A、18Bと横方向転倒防止部材19A、19Bは、例えばコイルバネなど適度の弾性力を持った部材で構成され、上記した2輪の駆動側車輪12A、12Bと1輪の補助側車輪13による走行面との三点支持に、通常の走行時には大きな影響を与えない長さで本体フレーム11の下面から突き出されているものであり、その機能については後述する。   Furthermore, the forward toppling prevention members 18A and 18B and the lateral toppling prevention members 19A and 19B are composed of members having an appropriate elastic force, such as a coil spring, for example. The three-point support with the running surface by the auxiliary side wheel 13 is projected from the lower surface of the main body frame 11 with a length that does not have a great influence during normal running, and its function will be described later.

次に、この自走式撮像装置10の動作について説明すると、これは、上記したように、左右の駆動側車輪12A、12Bの回転数がコントローラ21により夫々独立して制御することができる。そこで、例えば図2に示すように、原子炉圧力容器1の下鏡部にある保温材3の上に載置してやれば、保温材3の床面で前後進走行と旋回動作を自由自在に行なわせ、制御棒駆動機構用ハウジング2の間を縫って任意の位置にビデオカメラ14を移動させ、撮像を行うことができる。   Next, the operation of the self-propelled imaging device 10 will be described. As described above, the rotational speeds of the left and right drive wheels 12A and 12B can be independently controlled by the controller 21, as described above. Therefore, for example, as shown in FIG. 2, if it is placed on the heat insulating material 3 in the lower mirror portion of the reactor pressure vessel 1, it can freely move forward and backward and turn on the floor surface of the heat insulating material 3. The video camera 14 can be moved to an arbitrary position by sewing between the control rod drive mechanism housings 2 and imaging can be performed.

このとき、この自走式撮像装置10は、補助側車輪13が1輪にしてあるので、本体フレーム11のスリム化が図れ、しかも停止したまま、その位置で旋回できるので、いわゆる小回りが効き、この結果、旋回時に必要なスペースが少なくて済み、狭隘部にも容易に接近させることができる。   At this time, since the self-propelled imaging device 10 has the auxiliary wheel 13 as one wheel, the main body frame 11 can be slimmed and can be turned at that position while stopping, so-called small turning is effective, As a result, less space is required for turning, and the narrow portion can be easily approached.

従って、この自走式撮像装置10によれば、原子炉圧力容器1から離れた位置にある目視検査部20のモニタ22に、操作者Pが必要とする被検査対象部位の画像を任意に選択して映出させることができ、上記した原子炉圧力容器下部などの環境的及び空間的に接近が難しい場所での目視検査を容易に行うことができる。   Therefore, according to the self-propelled imaging device 10, an image of the inspection target part required by the operator P is arbitrarily selected on the monitor 22 of the visual inspection unit 20 located away from the reactor pressure vessel 1. Visual inspection at a place where it is difficult to approach environmentally and spatially, such as the lower part of the reactor pressure vessel, can be easily performed.

次に、ここでいま、図5と図6に示すように、自走式撮像装置10が、障害物Sが存在する走行面30を走行し、駆動側車輪12A、12Bと補助側車輪13が夫々障害物Sに接触したとする。このとき駆動側車輪12A、12B及び補助側車輪13の軸重バランスにより、図5の場合は、駆動側車輪12A、12Bの回転による推進力により障害物Sを乗り越え、図6の場合は、駆動側車輪12A、12Bの回転による進行方向への推進力と、補助側車輪13自身の回転の合力によって生じる上方向の僅かな力で補助側車輪13が動かされ、障害物20を乗り越えることができる。   Next, as shown in FIGS. 5 and 6, the self-propelled imaging device 10 travels on the traveling surface 30 on which the obstacle S exists, and the drive-side wheels 12 </ b> A and 12 </ b> B and the auxiliary-side wheel 13 are connected. It is assumed that each touches the obstacle S. At this time, due to the axial load balance of the drive side wheels 12A and 12B and the auxiliary side wheel 13, in the case of FIG. 5, the obstacle S is overcome by the propulsive force due to the rotation of the drive side wheels 12A and 12B, and in the case of FIG. The auxiliary wheel 13 can be moved by the propulsive force in the traveling direction due to the rotation of the side wheels 12A and 12B and the slight upward force generated by the resultant force of the rotation of the auxiliary wheel 13 itself, and the obstacle 20 can be overcome. .

また、図7に示すように、起伏のある走行面31を走行した場合には、駆動側車輪12A、12Bと補助側車輪13の軸重バランスにより、前傾姿勢による転倒の可能性が大きくなるが、このとき前方転倒防止部材18A(18B)4と横方転倒防止部材19A(19B)が走行面31に接触し、転倒を抑えることができる。   Further, as shown in FIG. 7, when traveling on an undulating traveling surface 31, the possibility of a fall due to a forward leaning posture is increased due to the axial load balance between the drive side wheels 12 </ b> A and 12 </ b> B and the auxiliary side wheel 13. However, at this time, the forward toppling prevention member 18A (18B) 4 and the lateral toppling prevention member 19A (19B) come into contact with the running surface 31, and the fall can be suppressed.

従って、この自走式撮像装置10によれば、駆動側車輪12A、12Bと補助側車輪13からなる3輪の走行機構によっても転倒の虞なくビデオカメラ14を移動させることができ、この結果、本体構造が単純化され、メンテナンス性の向上と軽量化が図れることになる。   Therefore, according to the self-propelled imaging device 10, the video camera 14 can be moved without fear of falling even by the three-wheel traveling mechanism including the driving wheels 12A and 12B and the auxiliary wheels 13. As a result, The structure of the main body is simplified, so that the maintainability can be improved and the weight can be reduced.

また、この結果、車輪による接地圧が抑えられるので、障害物Sを有する走行面30や起伏のある走行面31が、剛性に乏しい場合でも、それらに損傷を与える虞がなく、容易に遠隔目視検査を可能にすることができる。   As a result, since the ground contact pressure by the wheel is suppressed, even if the running surface 30 having the obstacle S or the running surface 31 with undulations is poor in rigidity, there is no risk of damaging them, and remote visual inspection can be easily performed. Inspection can be possible.

次に、本発明の実施形態による自走式撮像装置10の位置を確認する方法について説明する。この場合、自走式撮像装置10の位置は、ビデオカメラ14により撮像し、モニタ22に映出される自走式撮像装置10の周辺の景色から判断することができるが、このとき、図8は、目視可能な目印として、予め走行面30の必要な位置にマーカ40を配置するようにした場合の一実施形態である。   Next, a method for confirming the position of the self-propelled imaging device 10 according to the embodiment of the present invention will be described. In this case, the position of the self-propelled imaging device 10 can be determined from the surrounding scenery of the self-propelled imaging device 10 captured by the video camera 14 and projected on the monitor 22, but FIG. In this embodiment, the marker 40 is arranged in advance at a required position on the running surface 30 as a visible mark.

この図8の実施形態の場合、操作者Pは、マーカ40がモニタ22に映出されたことを確認して、自走式撮像装置10が予めマーカ40が配置させておいた位置に到達したことを知ることができるので、より正確に自走式撮像装置10の現在位置が確認でき、被検査部位に短時間で正確に自走式撮像装置10を誘導させることができる。   In the case of the embodiment of FIG. 8, the operator P confirms that the marker 40 has been projected on the monitor 22, and has reached the position where the marker 40 has been placed in advance by the self-propelled imaging device 10. Therefore, the current position of the self-propelled imaging device 10 can be confirmed more accurately, and the self-propelled imaging device 10 can be accurately guided to the site to be examined in a short time.

このとき、接近が難しい場所にマーカ40を設置する場合には、当該マーカ40を帯状の物体、例えば帯鋼41に規則的に取り付け、図9に示すように、帯鋼41が備えている剛性を利用して、接近が難しい場所の周辺部、例えば保温材3の周辺部から帯鋼41を挿入し、接近が難しい場所まで押し込むようにして延ばしてゆき、必要な位置に設置するようにする。   At this time, when the marker 40 is installed at a place where it is difficult to approach, the marker 40 is regularly attached to a band-shaped object, for example, the band steel 41, and the rigidity of the band steel 41 as shown in FIG. The steel strip 41 is inserted from the periphery of a place where access is difficult, for example, from the periphery of the heat insulating material 3, and is extended so as to be pushed to a place where access is difficult, so that it is installed at a required position. .

この場合、帯鋼41を規則的に複数配置して、接近が難しい場所にある全ての位置にマーカ40を設置することにより、自走式撮像装置10の位置を確認しながら操作を行うことができるので、例えば、上記した制御棒駆動機構用ハウジング2などの被検査部位にも、短時間で正確に自走式撮像装置10を誘導させることができる。   In this case, it is possible to perform the operation while confirming the position of the self-propelled imaging device 10 by arranging a plurality of the steel strips 41 regularly and installing the markers 40 at all positions where it is difficult to approach. Therefore, for example, the self-propelled imaging device 10 can be accurately guided in a short time also to a part to be inspected such as the control rod drive mechanism housing 2 described above.

次に、図10は、位置確認用のマーカとして、走行位置情報が記録されているICチップ42を用い、これに応じて自走式撮像装置10には読取装置43を設けたものである。ここで、ICチップ42としてはRFIDなどのICチップが使用できる。なお、このRFIDとは「Radio Frequency ID」のことであり、電波によるアクセスに応じて応答する機能をち、且つ、位置情報だけに限らず、製品又は部位の情報などユーザの要求に応じた情報も格納できる。   Next, FIG. 10 uses an IC chip 42 in which traveling position information is recorded as a marker for position confirmation, and the self-propelled imaging device 10 is provided with a reading device 43 in accordance therewith. Here, an IC chip such as an RFID can be used as the IC chip 42. This RFID is a “Radio Frequency ID”, which has a function of responding to access by radio waves, and is not limited to location information, but also information according to user requests such as product or part information. Can also be stored.

このとき読取装置43はICチップ読取用としての機能を備えていて、ICチップ42に電波でアクセスし、そこに記録されている走行位置情報を読み込むICチップ読取用としての機能を備えているが、これと共に、自走式撮像装置10が走行した走行ルート35を情報として記憶し、自走式撮像装置10の動作を制御する為の計算機能を備えている。但し、この読取装置43による自走式撮像装置10の駆動系制御機能を、遠隔地にある目視検査部20のコントローラ21に設けるようにしてもよい。   At this time, the reading device 43 has a function for reading the IC chip, and has a function for reading the IC chip by accessing the IC chip 42 by radio waves and reading the running position information recorded therein. At the same time, the travel route 35 traveled by the self-propelled imaging device 10 is stored as information, and a calculation function for controlling the operation of the self-propelled imaging device 10 is provided. However, the drive system control function of the self-propelled imaging device 10 by the reading device 43 may be provided in the controller 21 of the visual inspection unit 20 in a remote place.

そこで、このICチップ42を、図11に示すように、例えば制御棒駆動機構用ハウジング2などの走行を阻害する構造物の間で、自走式撮像装置10が走行可能なポイント部に設置する。そして、自走式撮像装置10を保温材3の上で自走させたとき、読取装置43はICチップ42から位置情報を読取り、読取った情報と自走式撮像装置10の走行ルート35の履歴情報から、自走式撮像装置10が目的とする検査位置の座標に向かうように、自走式撮像装置10の駆動系を制御する。   Therefore, as shown in FIG. 11, the IC chip 42 is installed at a point where the self-propelled imaging device 10 can travel between structures that obstruct travel, such as the control rod drive mechanism housing 2. . Then, when the self-propelled imaging device 10 is self-propelled on the heat insulating material 3, the reading device 43 reads the position information from the IC chip 42, and the read information and the history of the traveling route 35 of the self-propelled imaging device 10. From the information, the drive system of the self-propelled imaging device 10 is controlled so that the self-propelled imaging device 10 goes to the coordinates of the target inspection position.

このとき、自走式撮像装置10の目的検査位置座標からの帰りの走行ルートも、読取装置43に記憶した走行ルート35の履歴情報に基づいて設定することができるので、目的検査位置座標に向かう走行ルートを反対に進む戻り走行ルートに従って自動的に戻ってくるように制御することも可能である。   At this time, the return travel route from the target inspection position coordinates of the self-propelled imaging device 10 can also be set based on the history information of the travel route 35 stored in the reading device 43, so that it goes to the target inspection position coordinates. It is also possible to control to automatically return according to the return travel route that travels in the opposite direction.

そして、この実施形態のように、位置を表わすマーカとして、ICチップ42を用いた場合には、発信機能を持つアクティブ型のICチップなどを用いることができ、この場合、読取装置43は、読取装置43自体とICチップ42の相対位置関係を、駆動系を制御するための情報の一種として入手可能になるので、上記した走行ルート35に従った自走式撮像装置10の誘導が、より精度良く行えることになる。   As in this embodiment, when the IC chip 42 is used as a marker indicating the position, an active IC chip having a transmission function can be used. Since the relative positional relationship between the device 43 itself and the IC chip 42 can be obtained as a kind of information for controlling the drive system, the guidance of the self-propelled imaging device 10 according to the travel route 35 described above is more accurate. It can be done well.

従って、この実施形態によれば、目的とする検査位置座標までの自走式撮像装置10の移動に関して、走行ルート35に従った自走式撮像装置10の誘導が自動的に、しかも高精度で得られることになり、この結果、この実施形態によれば、上記した原子炉圧力容器下部などの環境的及び空間的に接近が難しい場所での目視検査を、自走式撮像装置10の自動走行により、容易に、しかも短時間で行うことができる。   Therefore, according to this embodiment, regarding the movement of the self-propelled imaging device 10 to the target inspection position coordinates, the guidance of the self-propelled imaging device 10 according to the traveling route 35 is automatically performed with high accuracy. As a result, according to this embodiment, the automatic traveling of the self-propelled imaging device 10 can be performed in a visual inspection at a place where environmental and spatial access is difficult such as the lower part of the reactor pressure vessel. Therefore, it can be carried out easily and in a short time.

次に、図12は、自走式撮像装置10の別の一実施形態で、これは、図3の実施形態における駆動側車輪12A、12Bの駆動を、スプロケット37と履帯ベルト38によるキャタピラ駆動方式にしたもので、他の構成には変りはない。このとき、動力伝達機構16A、16Bはスプロケット37に動力を伝達するように構成されているのは、いうまでもない。   Next, FIG. 12 shows another embodiment of the self-propelled imaging apparatus 10, which is a caterpillar drive system using a sprocket 37 and a crawler belt 38 for driving the driving wheels 12 A and 12 B in the embodiment of FIG. The other configurations remain the same. At this time, needless to say, the power transmission mechanisms 16A and 16B are configured to transmit power to the sprocket 37.

この図12の実施形態によれば、従来技術において用いられている車輪全体をキャタピラ駆動にする方式に比較して軽量化及び構造の簡素化が実現されると共に、前記の狭隘部での機動性を確保しつつ、高い障害物でも乗り越えることができるので、更に機動性の良い走行移動が得られることになる。   According to the embodiment of FIG. 12, the weight reduction and the simplification of the structure are realized as compared with the method in which the entire wheel used in the prior art is driven by the caterpillar, and the mobility in the narrow portion is achieved. It is possible to get over even high obstacles while securing the vehicle, and it is possible to obtain a traveling movement with better mobility.

本発明による遠隔目視検査方法の第1の実施形態を示す説明図である。It is explanatory drawing which shows 1st Embodiment of the remote visual inspection method by this invention. 本発明による遠隔目視検査方法の第1の実施形態の動作説明図である。It is operation | movement explanatory drawing of 1st Embodiment of the remote visual inspection method by this invention. 本発明による自走式撮像装置の第1の実施形態を示す側面図である。1 is a side view showing a first embodiment of a self-propelled imaging device according to the present invention. 本発明による自走式撮像装置の第1の実施形態を示す底面図である。It is a bottom view which shows 1st Embodiment of the self-propelled imaging device by this invention. 本発明による自走式撮像装置の第1の実施形態による障害物走行動作の説明図である。It is explanatory drawing of the obstacle running operation | movement by 1st Embodiment of the self-propelled imaging device by this invention. 本発明による自走式撮像装置の第1の実施形態による障害物走行動作の説明図である。It is explanatory drawing of the obstacle running operation | movement by 1st Embodiment of the self-propelled imaging device by this invention. 本発明による自走式撮像装置の第1の実施形態による傾斜路走行動作の説明図である。It is explanatory drawing of the ramp running operation | movement by 1st Embodiment of the self-propelled imaging device by this invention. 本発明による自走式撮像装置の第2の実施形態を示す側面図である。It is a side view which shows 2nd Embodiment of the self-propelled imaging device by this invention. 本発明による自走式撮像装置の第2の実施形態による走行動作の説明図である。It is explanatory drawing of driving | running | working operation | movement by 2nd Embodiment of the self-propelled imaging device by this invention. 本発明による自走式撮像装置の第3の実施形態を示す側面図である。It is a side view which shows 3rd Embodiment of the self-propelled imaging device by this invention. 本発明による遠隔目視検査方法の第3の実施形態による走行動作の説明図である。It is explanatory drawing of driving | running | working operation | movement by 3rd Embodiment of the remote visual inspection method by this invention. 本発明による自走式撮像装置の第4の実施形態を示す側面図である。It is a side view which shows 4th Embodiment of the self-propelled imaging device by this invention.

符号の説明Explanation of symbols

1:原子炉圧力容器
2:制御棒駆動機構用ハウジング
3:保温材(原子炉圧力容器下部保温材)
10:自走式撮像装置(本体)
11:本体フレーム
12A、12B:駆動側車輪
13:補助側車輪
14:ビデオカメラ
15A、15B:駆動源
16A、16B:動力伝達機構
17:バランスウエイト17
18A、18B:前方転倒防止部材
19A、19B:横方転倒防止部材
20:目視検査部(遠隔地)
21:コントローラ
22:モニタ
23:ケーブル
30:走行面
31:起伏のある走行面
35:走行ルート
37:スプロケット
38:履帯ベルト(無限軌道)
40:マーカ(目印)
41:帯鋼
42:ICチップ
43:読取装置
P:操作者(検査員)
S:障害物
1: Reactor pressure vessel 2: Housing for control rod drive mechanism 3: Thermal insulation (reactor pressure vessel lower thermal insulation)
10: Self-propelled imaging device (main unit)
11: Body frame 12A, 12B: Drive side wheel 13: Auxiliary side wheel 14: Video camera 15A, 15B: Drive source 16A, 16B: Power transmission mechanism 17: Balance weight 17
18A, 18B: Forward fall prevention member 19A, 19B: Lateral fall prevention member 20: Visual inspection part (remote location)
21: Controller 22: Monitor 23: Cable 30: Traveling surface 31: Riding traveling surface 35: Traveling route 37: Sprocket 38: Crawler belt (endless track)
40: Marker
41: Band steel 42: IC chip 43: Reading device P: Operator (inspector)
S: Obstacle

Claims (4)

移動手段に搭載したビデオカメラにより複数箇所にある被検査対象部位の画像を撮像し、前記ビデオカメラが撮像した画像の遠隔地でのモニタにより、前記複数箇所にある被検査対象部位の目視検査を行なうようにした遠隔目視検査方法において、
前記移動手段として駆動側車輪が2輪で補助側車輪が1輪の3輪構成の自走手段を用い、
前記自走手段に搭載されているビデオカメラにより撮像した画像を前記遠隔地でモニタすることにより、
前記被検査部位の確認と前記自走手段の位置制御及び前記ビデオカメラの撮像方向の制御の少なくとも一種と前記被検査部位の目視検査が、前記遠隔地において得られるようにしたことを特徴とする遠隔目視検査方法。
The video camera mounted on the moving means captures images of the inspected target sites at a plurality of locations, and the image captured by the video camera is monitored at a remote location to visually inspect the target target sites at the plurality of locations. In the remote visual inspection method to be performed,
As the moving means, a self-propelled means having two wheels on the driving side and one wheel on the auxiliary side is used.
By monitoring the image taken by the video camera mounted on the self-propelled means at the remote place,
At least one of confirmation of the inspected part, position control of the self-propelled means and control of the imaging direction of the video camera and visual inspection of the inspected part can be obtained in the remote place. Remote visual inspection method.
請求項1に記載の遠隔目視検査方法において、
前記被検査対象部位の近傍に配置したマーカを用い、
前記自走手段の位置確認が、前記マーカを撮像した画像のモニタから与えられることを特徴とする遠隔目視検査方法。
The remote visual inspection method according to claim 1,
Using a marker placed in the vicinity of the site to be examined,
The remote visual inspection method according to claim 1, wherein the position confirmation of the self-propelled means is given from a monitor of an image obtained by imaging the marker.
請求項1に記載の遠隔目視検査方法において、
前記被検査対象部位の近傍に配置したICチップを用い、
前記自走手段の位置確認が、前記ICチップに対する電波によるアクセスにより与えられることを特徴とする遠隔目視検査方法。
The remote visual inspection method according to claim 1,
Using an IC chip placed in the vicinity of the site to be inspected,
The remote visual inspection method according to claim 1, wherein the position confirmation of the self-propelled means is given by radio wave access to the IC chip.
2輪の駆動側車輪と1輪の補助側車輪が略三角形に配置された本体フレームと、
前記2輪の駆動側車輪の車軸位置が全体の重心の直下に位置するようにして前記本体フレームに設けられているバランスウエイトと、
前記2輪の駆動側車輪の車軸と直角な方向の一方の側で前記車軸と略平行な方向の一方の側と他方に位置するようにして前記本体フレームの下側に取付けられている前方転倒防止部材と、
前記2輪の駆動側車輪の車軸と直角な方向の他方の側で前記車軸と略平行な方向の一方の側と他方に位置するようにして前記本体フレームの下側に取付けられている左右転倒防止部材と、
前記2輪の駆動側車輪の回転方向と回転数を夫々独立に制御する遠隔制御手段とが設けられ、
前記本体フレームに遠隔操作によるパン機能とチルト機能を備えたビデオカメラを搭載したことを特徴とする自走式撮像装置。
A main body frame in which two driving wheels and one auxiliary wheel are arranged in a substantially triangular shape;
A balance weight provided on the main body frame so that the axle position of the two driving wheels is located directly below the overall center of gravity;
A forward turnover attached to the lower side of the main body frame so as to be positioned on one side and the other side in a direction substantially parallel to the axle on one side in a direction perpendicular to the axle of the two driving wheels. A prevention member;
Left-right fall mounted on the lower side of the main body frame so as to be positioned on one side and the other side in a direction substantially parallel to the axle on the other side in a direction perpendicular to the axle of the two driving wheels A prevention member;
Remote control means for independently controlling the rotational direction and the rotational speed of the two driving wheels,
A self-propelled imaging apparatus, wherein a video camera having a pan function and a tilt function by remote control is mounted on the main body frame.
JP2005229467A 2005-08-08 2005-08-08 Remote visual inspection method, and self-travel type imaging device Pending JP2007046944A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229467A JP2007046944A (en) 2005-08-08 2005-08-08 Remote visual inspection method, and self-travel type imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229467A JP2007046944A (en) 2005-08-08 2005-08-08 Remote visual inspection method, and self-travel type imaging device

Publications (1)

Publication Number Publication Date
JP2007046944A true JP2007046944A (en) 2007-02-22

Family

ID=37849885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229467A Pending JP2007046944A (en) 2005-08-08 2005-08-08 Remote visual inspection method, and self-travel type imaging device

Country Status (1)

Country Link
JP (1) JP2007046944A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526993A (en) * 2009-05-14 2012-11-01 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Non-tethered piping system inspection system
JP2013545075A (en) * 2010-09-13 2013-12-19 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Method for automated localization

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670603A (en) * 1992-08-25 1994-03-15 Honda Motor Co Ltd Power tiller
JPH0721028U (en) * 1993-09-27 1995-04-18 泰誉 大久保 Vehicle for pedestrians
JPH08282587A (en) * 1995-04-12 1996-10-29 Hitachi Ltd Underwater working device in container
JPH09211181A (en) * 1996-01-30 1997-08-15 Mitsubishi Heavy Ind Ltd Underwater inspection device
JP2002243649A (en) * 2001-02-16 2002-08-28 Ishikawajima Harima Heavy Ind Co Ltd Visual inspection device
JP2003232881A (en) * 2002-02-08 2003-08-22 Mitsubishi Heavy Ind Ltd Maintenance inspection system, maintenance inspection method and ic tag
JP2005049148A (en) * 2003-07-31 2005-02-24 Hitachi Ltd Device for visualizing distribution of radiation dose rate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670603A (en) * 1992-08-25 1994-03-15 Honda Motor Co Ltd Power tiller
JPH0721028U (en) * 1993-09-27 1995-04-18 泰誉 大久保 Vehicle for pedestrians
JPH08282587A (en) * 1995-04-12 1996-10-29 Hitachi Ltd Underwater working device in container
JPH09211181A (en) * 1996-01-30 1997-08-15 Mitsubishi Heavy Ind Ltd Underwater inspection device
JP2002243649A (en) * 2001-02-16 2002-08-28 Ishikawajima Harima Heavy Ind Co Ltd Visual inspection device
JP2003232881A (en) * 2002-02-08 2003-08-22 Mitsubishi Heavy Ind Ltd Maintenance inspection system, maintenance inspection method and ic tag
JP2005049148A (en) * 2003-07-31 2005-02-24 Hitachi Ltd Device for visualizing distribution of radiation dose rate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526993A (en) * 2009-05-14 2012-11-01 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Non-tethered piping system inspection system
JP2013545075A (en) * 2010-09-13 2013-12-19 ウエスチングハウス・エレクトリック・カンパニー・エルエルシー Method for automated localization

Similar Documents

Publication Publication Date Title
KR101909766B1 (en) Holonomic motion vehicle for travel on non-level surfaces
KR101781488B1 (en) A watching system moving on the rail
CN109922996B (en) Working vehicle
US11946882B2 (en) Systems and methods for inspecting pipelines using a pipeline inspection robot
JP6252029B2 (en) Remote control robot system
WO2005121859A3 (en) Mobile device suitable for supporting apparatus for site imaging while in transit
JP7023492B2 (en) Follow-up image presentation system for moving objects
KR101256650B1 (en) Track moving type monitoring system
JP2017039188A (en) Moving robot and construction position checking method
JP2017062702A (en) Mobile vehicle
JP2017052053A (en) Method of creating image for remote-control in unmanned vehicle, and remote control system of unmanned vehicle
JP2013112030A (en) Unmanned moving body operating system
JP2007046944A (en) Remote visual inspection method, and self-travel type imaging device
US20220057808A1 (en) Inspection vehicle
JP6697331B2 (en) Moving vehicle
JP4504744B2 (en) Duct cleaning robot camera imaging monitor system and duct cleaning method using the same
JP2633666B2 (en) Walking robot
JP3163271U (en) In-pipe inspection device
JP2020001635A (en) Load transport method and load transport system
JP6855206B2 (en) Debris internal investigation device and rubble internal investigation method
JP6472729B2 (en) Method of grasping the position of inspection robot
WO2018105654A1 (en) Travel control device, travel control method, recording medium, and autonomous travel device
KR20110129631A (en) Movable surveillance robot system
JPS6335394B2 (en)
JP2013131949A (en) Radio wave relay vehicle for remote operation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316