JP2007046439A - Rotating mechanism and excavator - Google Patents

Rotating mechanism and excavator Download PDF

Info

Publication number
JP2007046439A
JP2007046439A JP2005259924A JP2005259924A JP2007046439A JP 2007046439 A JP2007046439 A JP 2007046439A JP 2005259924 A JP2005259924 A JP 2005259924A JP 2005259924 A JP2005259924 A JP 2005259924A JP 2007046439 A JP2007046439 A JP 2007046439A
Authority
JP
Japan
Prior art keywords
shaft
peripheral portion
center line
annular
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005259924A
Other languages
Japanese (ja)
Other versions
JP4496484B2 (en
Inventor
Kazuhiko Isoda
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005259924A priority Critical patent/JP4496484B2/en
Publication of JP2007046439A publication Critical patent/JP2007046439A/en
Application granted granted Critical
Publication of JP4496484B2 publication Critical patent/JP4496484B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mechanism forming a generally polygonal route while reducing the run-out and vibration of a drive system and the cost of the drive system. <P>SOLUTION: This rotating mechanism comprises a fixed bearing 31 having an annular inner peripheral part 311 around a predetermined fixed centerline P, an annular shaft 32 having an inner peripheral part 321 and an outer peripheral part 322 around a predetermined moving centerline G parallel with the fixed centerline and fitted into the bearing with the outer peripheral part in engageable contact with the inner peripheral part of the bearing, a rotating shaft 33 installed rotatably around the fixed centerline and having the outer peripheral part 331 in engageable contact with the inner peripheral part of the annular shaft, a holding member 37 fitted in the annular shaft in such a manner that is rotated around the moving centerline and supporting the rotating shaft to hold the engagement of the outer peripheral part of the rotating shaft with the inner peripheral part of the annular shaft, a drive part rotatingly driving the rotating shaft, and vane members 21 of a quantity reduced by one from the number of corners of the specified regular polygonal shape installed on the annular shaft, radially extending from the moving centerline by the same length at equal angular intervals in the regular polygonal shape around the fixed centerline. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ほぼ多角形状の軌跡をなす回転機構、および当該回転機構を用いて地盤などを掘削する掘削機に関するものである。   The present invention relates to a rotation mechanism that forms a substantially polygonal locus, and an excavator that excavates the ground and the like using the rotation mechanism.

一般的な掘削機は、回転機構によってカッタヘッドを回転させて当該カッタヘッドで地盤を掘削するものが知られている。このような掘削機は、カッタヘッドが所定の中心を以て回転することから必然的に断面形状が円形になる。しかし、鉄道や道路などのトンネル利用空間は、断面形状がほぼ矩形であることが多く、上記円形の掘削断面内にほぼ矩形の鉄道や道路などの空間を構築する。このため、利用空間以上の掘削を行うことになるので、用地面積が多く必要となることに加えて建設費が嵩むという問題がある。   A general excavator is known in which a cutter head is rotated by a rotating mechanism and the ground is excavated by the cutter head. Such an excavator inevitably has a circular cross-section because the cutter head rotates about a predetermined center. However, tunnel use spaces such as railways and roads often have a substantially rectangular cross section, and a substantially rectangular space such as a railway or road is constructed within the circular excavation cross section. For this reason, since excavation more than utilization space is performed, in addition to requiring a lot of land area, there exists a problem that construction cost increases.

従来、ルーロー三角形なるルーロー三角形回転体に切削用バイトを設け、当該ルーロー三角形回転体を回転することで、被加工物に正方形状の穴明けを行う正方形穴明け加工装置がある(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, there is a square drilling device for forming a square hole in a workpiece by providing a cutting tool on a roulau triangle rotating body, which is a roulau triangle, and rotating the roulau triangle rotating body (for example, Patent Documents). 1).

他に、加工部材をその中心周りに回転自在に加工部材自転支持装置に取り付け、当該加工部材自転支持装置を加工部材公転支持装置に取り付けた掘削機がある。加工部材には、中心と同芯状のほぼ正三角形の各頂点とその内方に掘削刃を設けて掘削作用面が形成してある。加工部材自転支持装置は、加工部材を前記正三角形の一辺の((1/2)/cos30°−(1/2))倍の半径で中心が回転するように加工部材公転支持装置に取り付けてある。そして、加工部材を自転させながらその自転方向とは逆の方向に3倍公転させる駆動手段を設けてある(例えば、特許文献2参照)。   In addition, there is an excavator in which a machining member is attached to a machining member rotation support device so as to be rotatable about its center, and the machining member rotation support device is attached to the machining member revolution support device. The processed member is provided with an excavation working surface by providing excavation blades at the apexes of substantially equilateral triangles concentric with the center and inward thereof. The processed member rotation support device is attached to the processed member revolving support device so that the center rotates at a radius ((1/2) / cos30 ° − (1/2)) times one side of the equilateral triangle. is there. And the drive means which revolves 3 times in the direction opposite to the rotation direction while rotating a process member is provided (for example, refer patent document 2).

また他に、正三角形の各頂点を中心とし、その一辺の長さを半径とする円弧を各対辺の外側に描き、これらの3つの円弧により囲まれたルーロー三角形を外形とするカッタを、矩形状スキンプレートの中心軸の回りに公転させながら自転させて掘削する矩形シールド工法がある。スキンプレートの中心軸に対するカッタの回転軸の偏心距離は、(L/2)/cos30°−(L/2)を満足するように設定してある(L:ルーロー三角形の頂点間の距離)。また、カッタの公転数は自転数の3倍で、公転方向と自転方向が逆方向である(例えば、特許文献3参照)。   In addition, a circular arc centered on each vertex of the regular triangle and having the length of one side as a radius is drawn on the outside of each opposite side, and a cutter having an outline of a Rouleau triangle surrounded by these three circular arcs is defined as a rectangle. There is a rectangular shield method in which excavation is performed by rotating while revolving around the central axis of the shape skin plate. The eccentric distance of the rotation axis of the cutter with respect to the center axis of the skin plate is set so as to satisfy (L / 2) / cos 30 ° − (L / 2) (L: distance between vertices of the Rouleau triangle). Further, the revolution number of the cutter is three times the revolution number, and the revolution direction and the revolution direction are opposite directions (see, for example, Patent Document 3).

特開平11−267950号公報JP-A-11-267950 特開平1−158196号公報JP-A-1-158196 特許第2926125号公報Japanese Patent No. 2926125

ところで、ルーロー三角形を利用して略矩形状に掘削を行う場合には、ルーロー三角形をその重心を中心として回転させ、かつルーロー三角形の重心を正方形の中心の周りに公転させる必要がある。   By the way, when excavating into a substantially rectangular shape by using the Rouleau triangle, it is necessary to rotate the Rouleau triangle around its center of gravity and revolve the center of gravity of the Rouleau triangle around the center of the square.

特許文献1の発明は、モータのトルクを伝達する軸と、ルーロー三角形回転体の重心の軸とを自在継手で連結してある。しかし、この構成では駆動伝達系に回転ぶれや振動が生じることになり、さらに大きなトルクが必要となる掘削機では自在継手は高価であり製造コストが嵩む。   In the invention of Patent Document 1, a shaft for transmitting the torque of the motor and a shaft at the center of gravity of the Rouleau triangle rotating body are connected by a universal joint. However, in this configuration, rotational vibration and vibration are generated in the drive transmission system, and in an excavator that requires a larger torque, the universal joint is expensive and the manufacturing cost increases.

特許文献2の発明では、モータからのトルクをクランク軸によって加工部材に伝達して公転装置を構成してある。しかし、クランク軸にせん断力や曲げモーメントが生じて回転ぶれや振動の原因となる。さらに、特許文献2の発明では、正方形の枠を用いることなくルーロー三角形を公転させているが、ルーロー三角形を公転させる半径が正三角形の一辺の((1/2)/cos30°−(1/2))倍に設定してある。しかし、この場合では、掘削されるほぼ矩形状の断面の各辺が孔の内側に向けて凹状に形成されることになる。このように掘削された掘削孔は、力学的に強度が低下するため好ましくない。   In the invention of Patent Document 2, a revolution device is configured by transmitting torque from a motor to a machining member by a crankshaft. However, a shearing force and a bending moment are generated on the crankshaft, which causes rotational shake and vibration. Furthermore, in the invention of Patent Document 2, the Reuleaux triangle is revolved without using a square frame, but the radius of revolution of the Reuleaux triangle is ((1/2) / cos30 ° − (1 / 2)) It is set to double. However, in this case, each side of the substantially rectangular cross section to be excavated is formed in a concave shape toward the inside of the hole. The excavated hole thus excavated is not preferable because the strength is mechanically reduced.

特許文献3の発明は、矩形状スキンプレートの中心に公転駆動盤を設けてこの公転駆動盤にカッタ回転軸を設けてある。そして、公転駆動盤を回転させるモータと、カッタ回転軸を回転させるモータを設けてある。しかし、カッタ回転軸を回転させるモータは、公転駆動盤に設けてあるため、配線や配管の処理を十分検討して設計する必要がある。さらに、各モータの回転数や回転方向を調整してそれぞれ同期させる必要がある。この結果、設計コストが嵩む。さらに、特許文献3の発明では、カッタ回転軸の中心と公転駆動盤の中心との偏心距離は、(L/2)/cos30°−(L/2)としてある。しかし、この場合では、上述した特許文献2の発明と同様に掘削されるほぼ矩形状の断面の各辺が孔の内側に向けて凹状に形成されることになり好ましくない。   In the invention of Patent Document 3, a revolution drive board is provided at the center of a rectangular skin plate, and a cutter rotation shaft is provided on the revolution drive board. A motor for rotating the revolution drive board and a motor for rotating the cutter rotating shaft are provided. However, since the motor for rotating the cutter rotating shaft is provided on the revolution drive board, it is necessary to design the wiring and pipes after careful examination. Furthermore, it is necessary to synchronize by adjusting the rotation speed and rotation direction of each motor. As a result, the design cost increases. Furthermore, in the invention of Patent Document 3, the eccentric distance between the center of the cutter rotation shaft and the center of the revolution drive panel is (L / 2) / cos 30 ° − (L / 2). However, in this case, each side of the substantially rectangular cross section excavated in the same manner as the invention of Patent Document 2 described above is not preferable because it is formed in a concave shape toward the inside of the hole.

このように、ほぼ矩形状の軌跡をなすためにルーロー三角形の原理を利用した回転機構についての出願はあるものの、いずれも円滑な駆動を実現するものはない。また、大きなトルクが必要である掘削機においては、正方形枠は掘削孔内で大きなスペースを要することから正方形枠のない機構が望まれている。さらに、矩形状の掘削に限らず矩形状を含む多角形状の軌跡をなす回転機構、および当該回転機構を用いた掘削機を実現するものはない。   As described above, although there is an application for a rotation mechanism that uses the principle of the Rouleau triangle to form a substantially rectangular locus, none of them realizes smooth driving. Further, in excavators that require a large torque, a square frame requires a large space in the excavation hole, so a mechanism without a square frame is desired. Furthermore, there is no realization of a rotating mechanism that forms a polygonal locus including a rectangular shape and an excavator using the rotating mechanism, not limited to rectangular excavation.

本発明は、上記実情に鑑みて、正方形枠など枠体を要することなく駆動系の回転ぶれや振動を低減するとともに駆動系のコストを低減した上でほぼ多角形状の軌跡をなす回転機構、および当該回転機構を用いて力学的に強度を有するほぼ多角形状の断面の掘削を実現することができる掘削機を提供することを目的とする。さらに、本発明は、正方形枠を要することなくルーロー三角形の原理を用いて、駆動系の回転ぶれや振動を低減するとともに駆動系のコストを低減し、また力学的に強度を有するほぼ矩形状の断面の掘削を実現することができる掘削機を提供することを目的とする。   In view of the above circumstances, the present invention reduces the rotational shake and vibration of the drive system without requiring a frame such as a square frame, and reduces the cost of the drive system, and forms a substantially polygonal trajectory. An object of the present invention is to provide an excavator that can realize excavation of a substantially polygonal cross section having mechanical strength using the rotating mechanism. Furthermore, the present invention uses the principle of the Rouleau triangle without requiring a square frame, reduces the rotational shake and vibration of the drive system, reduces the cost of the drive system, and has a substantially rectangular shape that is mechanically strong. An object of the present invention is to provide an excavator capable of realizing cross-section excavation.

上記の目的を達成するために、本発明の請求項1に係る回転機構は、所定の固定中心線を中心とした環状の内周部を有する固定の軸受と、前記固定中心線に平行な所定の移動中心線を中心とした内周部および外周部を有して環状に形成してあってその外周部を前記軸受の内周部に当接係合して前記軸受に内装した環状軸と、前記固定中心線を回転中心として回転可能に設けてあって前記環状軸の内周部に対して自身の外周部を当接係合した回転軸と、前記移動中心線を中心に回動する態様で前記環状軸に内装してあるとともに前記回転軸を支持して当該回転軸の外周部と前記環状軸の内周部との係合を保持しつつ前記軸受の内周部と前記環状軸の外周部との係合を保持する保持部材と、前記回転軸を回転駆動する駆動部と、前記固定中心線を中心とした所望の正多角形状の輪郭内で当該正多角形状の角数から1つ減らした数をもって前記環状軸に設けてあって前記移動中心線から放射方向に延在しつつ等角度に同じ長さで配置した羽根部材とを備えたことを特徴とする。   In order to achieve the above object, a rotating mechanism according to claim 1 of the present invention includes a fixed bearing having an annular inner periphery centered on a predetermined fixed center line, and a predetermined parallel to the fixed center line. An annular shaft having an inner peripheral portion and an outer peripheral portion centering on the moving center line, and formed in an annular shape, the outer peripheral portion being in contact with and engaging with the inner peripheral portion of the bearing; A rotation shaft that is rotatably provided with the fixed center line as a rotation center and that is in contact with and engages with the inner periphery of the annular shaft, and rotates about the movement center line. In the aspect, the inner peripheral portion of the bearing and the annular shaft are supported in the annular shaft and support the rotary shaft while maintaining the engagement between the outer peripheral portion of the rotary shaft and the inner peripheral portion of the annular shaft. A holding member that holds the engagement with the outer peripheral portion, a drive unit that rotationally drives the rotating shaft, and the fixed center line Within the contour of the desired regular polygonal shape as the center, the number of the regular polygonal shape reduced by one is provided on the annular shaft, and the same angle is equal while extending radially from the moving center line. And a blade member arranged in length.

本発明の請求項2に係る回転機構は、上記請求項1において、前記軸受の内周部の半径を[R]、前記環状軸の外周部の半径を[R’]、前記移動中心線からの羽根部材の長さを[L]として、正n角形状を所望とする場合に、n≧3、R:R’=n:(n−1)、L≧R×(n+1)/nと設定したことを特徴とする。   The rotating mechanism according to a second aspect of the present invention is the rotary mechanism according to the first aspect, wherein the radius of the inner peripheral portion of the bearing is [R], the radius of the outer peripheral portion of the annular shaft is [R ′], and the moving center line When the length of the blade member is [L] and a regular n-square shape is desired, n ≧ 3, R: R ′ = n: (n−1), L ≧ R × (n + 1) / n It is characterized by setting.

本発明の請求項3に係る掘削機は、請求項1または2に記載の回転機構を用いて、前記軸受を支持するとともに前記駆動部を内部に配置した筒状の胴部と、前記羽根部材にカッタを配設した掘削カッタとを備えたことを特徴とする。   An excavator according to a third aspect of the present invention uses the rotating mechanism according to the first or second aspect to support the bearing and to have a cylindrical body portion in which the driving portion is disposed, and the blade member And a drilling cutter provided with a cutter.

上記の目的を達成するために、本発明の請求項4に係る掘削機は、所定の固定中心線を中心とした環状の内周部を有する固定の軸受と、所定の移動中心線を中心とした内周部および外周部を有して環状に形成してあってその外周部を前記軸受の内周部に当接係合して前記軸受に内装した環状軸と、前記固定中心線を回転中心として回転可能に設けてあって前記環状軸の内周部に対して自身の外周部を当接係合した回転軸と、前記移動中心線上に設けてあって前記回転軸の外周部に対して自身の外周部を当接係合した中心軸と、前記回転軸と同じ外周部を有して当該外周部を前記環状軸の内周部および前記中心軸の外周部に当接係合した複数の従動軸と、前記回転軸を回転駆動する駆動部と、前記環状軸に設けてあって前記移動中心線上に中心を置いたルーロー三角形状の範囲内で少なくとも中心と頂点とを結ぶ延長線に沿って配置した掘削カッタとを備えたことを特徴とする。   In order to achieve the above object, an excavator according to a fourth aspect of the present invention includes a fixed bearing having an annular inner periphery centered on a predetermined fixed center line, and a predetermined moving center line. An annular shaft having an inner peripheral portion and an outer peripheral portion formed in an annular shape and abutting and engaging the outer peripheral portion with the inner peripheral portion of the bearing, and rotating the fixed center line A rotating shaft provided rotatably as a center and having its outer peripheral portion abuttingly engaged with an inner peripheral portion of the annular shaft; and provided on the moving center line with respect to the outer peripheral portion of the rotating shaft. A central axis that abuts and engages its outer peripheral part, and an outer peripheral part that has the same outer peripheral part as the rotary shaft, and abuts and engages the outer peripheral part with the inner peripheral part of the annular shaft and the outer peripheral part of the central axis A plurality of driven shafts, a drive unit that rotationally drives the rotating shaft, and a center provided on the moving center line provided on the annular shaft Characterized in that a drilling cutter disposed along the extension line connecting the at least the center and vertex within Reuleaux triangle ranging placed.

本発明の請求項5に係る掘削機は、上記請求項4において、前記回転軸の中心から前記中心軸の中心に至る距離を[r]として前記軸受の内周部の直径を[8r]、前記環状軸の外周部の直径を[6r]、および前記環状軸の内周部の直径を[回転軸の直径+2r]と設定し、かつ、前記掘削カッタのルーロー三角形の外幅を[a]として前記掘削カッタを配置するルーロー三角形状の中心と頂点とを結ぶ延長線を[0.5a+r]と設定したことを特徴とする。   The excavator according to claim 5 of the present invention is the excavator according to claim 4, wherein the distance from the center of the rotating shaft to the center of the central axis is [r], and the diameter of the inner peripheral portion of the bearing is [8r], The diameter of the outer peripheral portion of the annular shaft is set to [6r], the diameter of the inner peripheral portion of the annular shaft is set to [diameter of rotating shaft + 2r], and the outer width of the roulau triangle of the excavation cutter is set to [a]. As an extension line connecting the center and apex of the Rouleau triangle where the excavation cutter is arranged is set as [0.5a + r].

本発明の請求項6に係る掘削機は、上記請求項5において、前記回転軸の中心から前記中心軸の中心に至る距離[r]を、前記掘削カッタにおけるルーロー三角形の外幅[a]の6%〜8%として偏心量に設定したことを特徴とする。   The excavator according to a sixth aspect of the present invention is the excavator according to the fifth aspect, wherein the distance [r] from the center of the rotating shaft to the center of the central axis is equal to the outer width [a] of the rouleau triangle in the excavating cutter. The eccentricity is set as 6% to 8%.

本発明によれば、駆動部の駆動力を回転軸に伝達することによって、回転軸が軸受の固定中心線を中心として回転する。すると、回転軸の外周部に係合する環状軸が移動中心線を中心として回転軸と同方向に回転する。また、移動中心線を中心として回転する環状軸は、その外周部が軸受の内周部に係合しているため、当該軸受の内周部に沿って軸受の固定中心線の周りに回転軸と逆方向に輪転運動(公転)することになる。このため、環状軸に設けた羽根部材は、環状軸の輪転運動に伴ってその先端が移動する。移動する羽根部材の先端は、ほぼ正多角形状の軌跡をなすことができる。そして、羽根部材にカッタを配設した掘削カッタを備えた掘削機とすれば、ほぼ正多角形状の掘削孔を掘削することができる。   According to the present invention, by transmitting the driving force of the driving unit to the rotating shaft, the rotating shaft rotates about the fixed center line of the bearing. Then, the annular shaft engaged with the outer peripheral portion of the rotating shaft rotates in the same direction as the rotating shaft around the movement center line. In addition, since the outer peripheral portion of the annular shaft that rotates about the moving center line is engaged with the inner peripheral portion of the bearing, the rotary shaft rotates around the fixed center line of the bearing along the inner peripheral portion of the bearing. It will rotate in the opposite direction (revolution). For this reason, the tip of the blade member provided on the annular shaft moves as the annular shaft rotates. The tip of the moving blade member can form a substantially polygonal locus. And if it is set as the excavator provided with the excavation cutter which arrange | positioned the cutter to the blade member, it can excavate a substantially regular polygon-shaped excavation hole.

また、回転軸が軸受の固定中心線を中心として回転駆動され、かつ、環状軸が回転軸の回転に伴って保持部材に保持された形態で移動中心線を中心として回転する。この結果、回転軸が軸受の固定中心線上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することができる。また、環状軸が回転軸の回転に伴って保持部材に保持された形態で移動中心線を中心として回転するため、回転軸と環状軸との間に従前の自在継手を要することがないので、自在継手に係るコストを低減することが可能になる。   The rotating shaft is driven to rotate about the fixed center line of the bearing, and the annular shaft rotates about the moving center line in a form held by the holding member as the rotating shaft rotates. As a result, the rotating shaft rotates on the fixed center line of the bearing without shifting its axis, so that rotational shake and vibration can be reduced. Further, since the annular shaft rotates around the moving center line in a form held by the holding member as the rotating shaft rotates, a conventional universal joint is not required between the rotating shaft and the annular shaft. Costs relating to the universal joint can be reduced.

また、回転機構は、軸受の内周部の半径を[R]、環状軸の外周部の半径を[R’]、移動中心線からの羽根部材の長さを[L]として、正n角形状を所望とする場合に、n≧3、R:R’=n:(n−1)、L≧R×(n+1)/nと設定してある。この結果、ほぼ正多角形状の軌跡は、各辺が平行もしくは外側に向けて凸状に形成することができる。また、羽根部材の長さを[L]の値を大きくするにしたがって円形に近い正多角形状の軌跡となる。そして、この軌跡を掘削機で掘削すれば力学的に強度を有する掘削孔を得ることができる。なお、移動中心線、固定中心線、羽根部材の先端が、この順で一直線上に並ぶときには、羽根部材の先端は正多角形状の一辺の中央にあり、かつ、当該辺と上記一直線とは直交する。   Further, the rotation mechanism has a positive n-angle, where [R] is the radius of the inner peripheral portion of the bearing, [R ′] is the radius of the outer peripheral portion of the annular shaft, and [L] is the length of the blade member from the moving center line. When the shape is desired, n ≧ 3, R: R ′ = n: (n−1), and L ≧ R × (n + 1) / n are set. As a result, a substantially regular polygonal locus can be formed in a convex shape with each side parallel or outward. Further, as the length of the blade member is increased, the locus of a regular polygonal shape close to a circle is obtained. And if this locus is excavated with an excavator, an excavation hole having mechanical strength can be obtained. When the moving center line, the fixed center line, and the tip of the blade member are aligned in this order, the tip of the blade member is at the center of one side of the regular polygon, and the side and the straight line are orthogonal to each other. To do.

本発明に係る掘削機は、回転軸が軸受の固定中心線を中心として回転駆動され、かつ、環状軸が回転軸の回転に伴って回転軸、中心軸および従動軸に支持された形態で移動中心線を中心として回転する。この結果、回転軸が固定中心線上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することができる。また、環状軸が回転軸の回転に伴って回転軸および従動軸に支持された形態で移動中心線を中心として回転する。このため、回転軸と環状軸との間に従前の自在継手を要することがないので、自在継手に係るコストを低減することができ、さらにルーロー三角形およびこれに外接する正方形枠を必要とせずにほぼ矩形断面の掘削孔を掘削することができる。   In the excavator according to the present invention, the rotary shaft is driven to rotate about the fixed center line of the bearing, and the annular shaft is supported by the rotary shaft, the central shaft and the driven shaft as the rotary shaft rotates. Rotate around the center line. As a result, the rotating shaft rotates on the fixed center line without shifting its axis, so that rotational shake and vibration can be reduced. Further, the annular shaft rotates around the movement center line in a form supported by the rotating shaft and the driven shaft as the rotating shaft rotates. For this reason, since a conventional universal joint is not required between the rotating shaft and the annular shaft, it is possible to reduce the cost of the universal joint, and further, without requiring a Rouleau triangle and a circumscribed square frame. Drilling holes with a substantially rectangular cross section can be drilled.

また、上述した掘削機は、回転軸の中心(固定中心線)から中心軸の中心(移動中心線)に至る距離を[r]として軸受の内周部の直径を[8r]、環状軸の外周部322の直径を[6r]、および環状軸の内周部の直径を[回転軸の直径+2r]と設定し、かつ、掘削カッタにおけるルーロー三角形の外幅(掘削される正方形断面の一辺)を[a]として掘削カッタ2を配置するルーロー三角形状の中心(移動中心線)と頂点とを結ぶ延長線長さを[0.5a+r]と設定し、この延長線上に回転軸の中心が位置するときの延長線方向を正方形の一辺の方向と一致させることによって、理想的なほぼ矩形断面の掘削孔を掘削することができる。   In the excavator described above, the distance from the center of the rotating shaft (fixed center line) to the center of the center axis (moving center line) is [r], and the diameter of the inner peripheral portion of the bearing is [8r]. The diameter of the outer peripheral portion 322 is set to [6r], the diameter of the inner peripheral portion of the annular shaft is set to [diameter of the rotating shaft + 2r], and the outer width of the rouleau triangle in the excavation cutter (one side of the square section to be excavated) Is set to [0.5a + r], and the center of the rotation axis is located on this extension line. By making the direction of the extended line coincide with the direction of one side of the square, it is possible to excavate an ideal substantially rectangular section of the excavation hole.

また、上述した掘削機は、回転軸の中心(固定中心線)から中心軸の中心(移動中心線)に至る距離[r]を、掘削カッタにおけるルーロー三角形の外幅[a]の6%〜8%として偏心量に設定したことによって、掘削された掘削孔は、ほぼ矩形状の断面の各辺が平行もしくは掘削孔の外側に向けて凸状に形成されるため、力学的に強度を有するものとなる。また、偏心量を適宜変更することで、必要に応じたほぼ矩形断面の掘削孔を得ることができる。   Further, in the excavator described above, the distance [r] from the center of the rotation axis (fixed center line) to the center of the center axis (movement center line) is 6% to the outer width [a] of the rouleau triangle in the excavation cutter. By setting the eccentric amount as 8%, the excavated excavation hole is mechanically strong because each side of the substantially rectangular cross section is formed in parallel or convex toward the outside of the excavation hole. It will be a thing. Further, by appropriately changing the amount of eccentricity, it is possible to obtain an excavation hole having a substantially rectangular cross section as required.

[実施の形態1]
以下に添付図面を参照して、本発明に係る回転機構および掘削機の好適な実施の形態1を詳細に説明する。なお、この実施の形態1によりこの発明が限定されるものではない。
[Embodiment 1]
Exemplary embodiments of a rotating mechanism and an excavator according to the present invention will be explained below in detail with reference to the accompanying drawings. The present invention is not limited to the first embodiment.

図1は本発明に係る回転機構を用いた掘削機の実施の形態1を示す概略側面図、図2は図1に示す回転機構を軸方向(前方向)から視た概念図、図3は図1に示す回転機構の分解斜視図である。   FIG. 1 is a schematic side view showing a first embodiment of an excavator using a rotating mechanism according to the present invention, FIG. 2 is a conceptual view of the rotating mechanism shown in FIG. 1 viewed from the axial direction (forward direction), and FIG. It is a disassembled perspective view of the rotation mechanism shown in FIG.

図1に示すように掘削機は、胴部1と掘削カッタ2とを備えている。胴部1は、掘削カッタ2を支持しつつ掘削カッタ2を駆動するものであって、掘削機の外郭をなし、筒状とした内部に回転機構3を有している。   As shown in FIG. 1, the excavator includes a trunk portion 1 and a excavation cutter 2. The trunk portion 1 drives the excavation cutter 2 while supporting the excavation cutter 2. The trunk portion 1 forms an outline of the excavator and includes a rotating mechanism 3 in a cylindrical shape.

回転機構3は、軸受31、環状軸32、回転軸33、保持部材37および駆動部36を有している。   The rotation mechanism 3 includes a bearing 31, an annular shaft 32, a rotation shaft 33, a holding member 37, and a drive unit 36.

軸受31は、胴部1に固定してあり、胴部1の前後方向に沿って配置した所定の固定中心線Pを中心として環状の内周部311を有している。   The bearing 31 is fixed to the body part 1 and has an annular inner peripheral part 311 with a predetermined fixed center line P arranged along the front-rear direction of the body part 1 as a center.

環状軸32は、固定中心線Pと平行にして胴部1の前後方向に沿って配置した所定の移動中心線Gを中心とした内周部321および外周部322を有してほぼ円環状に形成してある。この環状軸32は、軸受31の環状内に内装してあり、その外周部322を軸受31の内周部311に対して当接係合してある。なお、環状軸32は、内周部321および外周部322を一体に有した環状体、あるいは内周部321を有した管体と外周部322を有した管体とを組み合わせた構成とすることができる。   The annular shaft 32 has an inner peripheral portion 321 and an outer peripheral portion 322 centered on a predetermined movement center line G arranged along the front-rear direction of the body portion 1 in parallel with the fixed center line P, and is substantially annular. It is formed. The annular shaft 32 is housed inside the annular shape of the bearing 31, and the outer peripheral portion 322 is in contact with and engaged with the inner peripheral portion 311 of the bearing 31. The annular shaft 32 has a configuration in which an annular body integrally including an inner peripheral portion 321 and an outer peripheral portion 322, or a tubular body having the inner peripheral portion 321 and a tubular body having the outer peripheral portion 322 are combined. Can do.

回転軸33は、軸受31の固定中心線Pを回転中心として回転可能に胴部1に支持してある。この回転軸33は、環状軸32の環状内に内装してあり、ほぼ円柱状の外周部331を環状軸32の内周部321に対して当接係合してある。   The rotary shaft 33 is supported on the body 1 so as to be rotatable about the fixed center line P of the bearing 31 as a rotation center. The rotating shaft 33 is provided inside the annular shaft 32, and a substantially cylindrical outer peripheral portion 331 is in contact with and engaged with the inner peripheral portion 321 of the annular shaft 32.

保持部材37は、環状軸32の内周とほぼ同じ外周を有して所定厚さの円板状に形成してあり、環状軸32の内周に摺接して移動中心線Gを中心に回動する態様で環状軸に内装してある。また、保持部材37には、固定中心線Pを中心として回転軸33の外周とほぼ同じ内周を有した挿通孔371が偏心して設けてある。この挿通孔371には、回転軸33が回動可能に挿通支持してある。すなわち、保持部材37は、回転軸33を回動可能に挿通して回転軸33の外周部331と環状軸32の内周部321との係合を常に保持する。   The holding member 37 has a disk shape with a predetermined thickness and has substantially the same outer periphery as the inner periphery of the annular shaft 32, and is slidably contacted with the inner periphery of the annular shaft 32 and rotates around the movement center line G. It is mounted on the annular shaft in a moving manner. In addition, the holding member 37 is provided with an eccentric insertion hole 371 having an inner periphery substantially the same as the outer periphery of the rotation shaft 33 with the fixed center line P as the center. The rotation shaft 33 is inserted into and supported by the insertion hole 371 so as to be rotatable. That is, the holding member 37 is inserted through the rotary shaft 33 so as to be rotatable, and always holds the engagement between the outer peripheral portion 331 of the rotary shaft 33 and the inner peripheral portion 321 of the annular shaft 32.

駆動部36は、回転軸33を回転させるものであり、例えばモータなど胴部1に設けた駆動源からなる。なお、駆動部36は、図には明示しないが駆動源と回転軸33との間に適宜減速機構を有していてもよい。   The drive unit 36 rotates the rotary shaft 33 and includes a drive source provided in the body 1 such as a motor. The drive unit 36 may have a speed reduction mechanism as appropriate between the drive source and the rotary shaft 33, although not shown in the figure.

なお、軸受31と環状軸32との係合、環状軸32と回転軸33との係合には、例えば歯車の噛合による係合がある。あるいは、高摩擦材などを介して接触滑りが防止された係合であってもよい。   The engagement between the bearing 31 and the annular shaft 32 and the engagement between the annular shaft 32 and the rotary shaft 33 include, for example, engagement by gear meshing. Or the engagement by which contact slip was prevented via the high friction material etc. may be sufficient.

掘削カッタ2は、胴部1の前側に延出した環状軸32の前端に設けてある羽根部材21からなる。羽根部材21は、固定中心線Pを中心とした所望の正多角形状の輪郭内で当該正多角形状の角数から1つ減らした数をもって環状軸32に設けてあって、移動中心線Gから放射方向に延在しつつ等角度に同じ長さで配置してある。例えば、図2に示すように所望の正多角形状が正四角形である場合には、羽根部材は3つであり、固定中心線Pを中心とした正四角形の輪郭に先端Tを当接するようにして、移動中心線Gから放射方向に延在しつつ等角度に同じ長さで配置してある。そして、羽根部材の前面に掘削ビット(図示せず)を設けることによって掘削カッタ2が構成される。また、移動中心線G、固定中心線Pおよび掘削カッタ2の先端Tを、この順序で一直線上に並べた場合、掘削カッタ2の先端Tは、所望の正多角形状の1辺の中央にあり、この辺と前記一直線は直交する。   The excavation cutter 2 includes a blade member 21 provided at the front end of an annular shaft 32 extending to the front side of the trunk portion 1. The blade member 21 is provided on the annular shaft 32 with a number obtained by subtracting one from the number of the regular polygonal shape within the contour of the desired regular polygon centered on the fixed centerline P. While extending in the radial direction, they are disposed at the same angle and at the same length. For example, when the desired regular polygonal shape is a regular square as shown in FIG. 2, the number of blade members is three, and the tip T is brought into contact with the contour of the regular square centered on the fixed center line P. Thus, they extend from the movement center line G in the radial direction and are arranged at the same angle and the same length. And the excavation cutter 2 is comprised by providing an excavation bit (not shown) in the front surface of a blade | wing member. Further, when the moving center line G, the fixed center line P, and the tip T of the excavation cutter 2 are arranged in a straight line in this order, the tip T of the excavation cutter 2 is at the center of one side of a desired regular polygon shape. This side and the straight line are orthogonal to each other.

ここで、上記軸受31、環状軸32、回転軸33、および掘削カッタ2(羽根部材21)に係る寸法設定について説明する。図2に示すように軸受31の内周部311の半径を[R]、環状軸32の外周部322の半径を[R’]、移動中心線Gからの羽根部材21の長さを[L]として、正n角形状を所望とする場合に、n≧3、R:R’=n:(n−1)、L≧R×(n+1)/nと設定する。固定中心線Pから移動中心線Gに至る偏心量[r]は、r=R−R’となる。   Here, the dimension setting which concerns on the said bearing 31, the annular shaft 32, the rotating shaft 33, and the excavation cutter 2 (blade member 21) is demonstrated. As shown in FIG. 2, the radius of the inner peripheral portion 311 of the bearing 31 is [R], the radius of the outer peripheral portion 322 of the annular shaft 32 is [R ′], and the length of the blade member 21 from the moving center line G is [L]. ], When a desired n-angle shape is desired, n ≧ 3, R: R ′ = n: (n−1), and L ≧ R × (n + 1) / n. The amount of eccentricity [r] from the fixed center line P to the moving center line G is r = R−R ′.

上記構成の掘削機は、回転機構3において駆動部36の駆動力を回転軸33に伝達することによって、回転軸33が軸受31の固定中心線Pを中心として回転(例えば図2における時計回り方向)する。すると、回転軸33の外周部331に係合する環状軸32が移動中心線Gを中心として回転軸33と同方向(例えば図2における時計回り方向)に回転する。このとき、保持部材37は、移動中心線Gを中心に回動するとともに、回転軸33の回動を許容することによって回転軸33の外周部331と環状軸32の内周部321との係合を常に保持する。すなわち、環状軸32は、回転軸33の回転に伴って、保持部材37に保持された形態で移動中心線Gを中心として回転する。さらに、移動中心線Gを中心として回転する環状軸32は、その外周部322が軸受31の内周部311に係合しているため、当該軸受31の内周部311に沿って軸受31の固定中心線Pの周りに回転軸33と逆方向(例えば図2における反時計回り方向)に輪転運動(公転)することになる。このため、環状軸32に設けた掘削カッタ2(羽根部材21)は、環状軸32の輪転運動に伴って自転および公転移動する。移動する掘削カッタ2の先端Tは、所望の正多角形状(正n角形状)の軌跡をなす。   The excavator having the above configuration transmits the driving force of the driving unit 36 to the rotating shaft 33 in the rotating mechanism 3, whereby the rotating shaft 33 rotates around the fixed center line P of the bearing 31 (for example, the clockwise direction in FIG. 2). ) Then, the annular shaft 32 that engages with the outer peripheral portion 331 of the rotating shaft 33 rotates in the same direction as the rotating shaft 33 (for example, the clockwise direction in FIG. 2) about the movement center line G. At this time, the holding member 37 rotates about the movement center line G and allows the rotation of the rotation shaft 33, thereby engaging the outer periphery 331 of the rotation shaft 33 and the inner periphery 321 of the annular shaft 32. Always hold the match. That is, the annular shaft 32 rotates around the movement center line G in a form held by the holding member 37 as the rotation shaft 33 rotates. Further, the annular shaft 32 that rotates about the movement center line G has an outer peripheral portion 322 engaged with an inner peripheral portion 311 of the bearing 31, and therefore, the bearing 31 extends along the inner peripheral portion 311 of the bearing 31. A rotary motion (revolution) is performed around the fixed center line P in the direction opposite to the rotation shaft 33 (for example, counterclockwise in FIG. 2). For this reason, the excavation cutter 2 (blade member 21) provided on the annular shaft 32 rotates and revolves as the annular shaft 32 rotates. The tip T of the excavating cutter 2 that moves moves in a desired regular polygonal shape (regular n-square shape).

具体的には、正四角形状(n=4)について図4〜図8に例示するように、環状軸32が固定中心線Pを中心に1回転公転すると、当該環状軸32は移動中心線Gの周りに1/3自転する。したがって、図4〜図8における掘削カッタ2の先端T(A,B,C)の移動位置で示すように掘削カッタ2も同様に公転および自転し、図8に示すようにほぼ正四角形(正方形)状の軌跡をなす。この結果、ほぼ正四角形の断面の掘削孔Hを掘進することが可能になる。この掘削孔Hは、一般的な断面円形の掘削孔と比較して、不要な空間を掘削せずに利用空間のみの掘削で得られるため、必要以上の用地面積を要さないことに加えて建設費を低減することが可能になる。   Specifically, as illustrated in FIGS. 4 to 8 for a regular quadrangular shape (n = 4), when the annular shaft 32 revolves around the fixed center line P, the annular shaft 32 moves toward the moving center line G. Rotate around 1/3. Accordingly, as shown by the movement position of the tip T (A, B, C) of the excavation cutter 2 in FIGS. 4 to 8, the excavation cutter 2 similarly revolves and rotates, and as shown in FIG. ). As a result, it is possible to excavate the excavation hole H having a substantially square cross section. Since this excavation hole H can be obtained by excavating only the use space without excavating unnecessary space, compared with a general excavation hole having a circular cross section, it does not require an unnecessarily large land area. Construction costs can be reduced.

さらに、掘削カッタ2を設けた環状軸32は、保持部材37によって保持された形態で公転および自転する構成であるため、従前のようにルーロー三角形の外幅を一辺とする正方形枠にルーロー三角形状の軸を支持して回転させる必要がない。すなわち、正方形枠が必要ない。このため、掘進した掘削孔Hの断面形状に対して、掘削機の胴部1の前面視の輪郭を小さく形成することが可能になる。この結果、掘削カッタ2が先行して掘進した掘削孔Hに胴部1が通過できるので、掘削断面がほぼ矩形状の掘削孔Hの掘進を行う掘削機を得ることが可能になる。この掘削機は、上記のごとく簡素な機構でほぼ矩形状の断面の掘削孔Hを掘進するため、故障が起こり難く信頼性が高く、コストが嵩むことがない。   Furthermore, since the annular shaft 32 provided with the excavation cutter 2 is configured to revolve and rotate in a form held by the holding member 37, a Louro triangular shape is formed in a square frame having one side of the outer width of the Rouleau triangle as before. There is no need to support and rotate the shaft. That is, a square frame is not necessary. For this reason, it becomes possible to form the outline of the body part 1 of an excavator small in front view with respect to the cross-sectional shape of the excavated drill hole H. As a result, since the trunk portion 1 can pass through the excavation hole H that the excavation cutter 2 has excavated in advance, it is possible to obtain an excavator that excavates the excavation hole H having a substantially rectangular excavation cross section. Since the excavator excavates the excavation hole H having a substantially rectangular cross section with a simple mechanism as described above, the excavator is less likely to fail, has high reliability, and does not increase cost.

なお、上記構成の掘削機によって掘削した掘削孔Hは、ほぼ矩形状の断面の角部が丸みを帯びることになる。丸みを帯びた断面ほぼ矩形状の掘削孔Hは、断面矩形状と比較して隅部への応力集中を緩和することができるので掘削に際して適している。   The excavation hole H excavated by the excavator having the above-described configuration has rounded corners of a substantially rectangular cross section. The digging hole H having a rounded cross section and a substantially rectangular shape is suitable for excavation because stress concentration at the corner can be reduced as compared with a rectangular cross section.

ところで、上記構成の掘削機において、複数の回転機構3を回転軸33が平行となるように設け、相互の回転機構3の各掘削カッタ2の軌跡が前面視で重複する態様で隣接する相互の掘削カッタ2の位置を回転軸33の軸方向でずらして配置する。このように構成すれば、ほぼ正四角形状の掘削断面を一連に連続したほぼ長方形状の掘削断面の掘削孔Hを得ることが可能になる。また、複数の回転機構3を回転軸33が平行となるように設け、相互の回転機構3の掘削カッタ2の軌跡が前面視で重複する態様で配置する場合、隣接する各掘削カッタ2を同一面上に配置しつつ、隣接する各回転軸33を逆方向に回転駆動する。このように構成しても、ほぼ正四角形状の掘削断面を一連に連続したほぼ長方形状の掘削断面の掘削孔Hを得ることが可能になる。   By the way, in the excavator having the above-described configuration, a plurality of rotating mechanisms 3 are provided so that the rotation shafts 33 are parallel to each other, and the trajectories of the excavation cutters 2 of the mutual rotating mechanisms 3 are adjacent to each other in an overlapping manner in front view. The position of the excavation cutter 2 is shifted in the axial direction of the rotary shaft 33. If comprised in this way, it becomes possible to obtain the excavation hole H of the substantially rectangular excavation cross section which continued the excavation cross section of the substantially square shape continuously. In addition, when a plurality of rotating mechanisms 3 are provided so that the rotation shafts 33 are parallel and the trajectories of the excavation cutters 2 of the respective rotation mechanisms 3 overlap in a front view, the adjacent excavation cutters 2 are the same. The adjacent rotating shafts 33 are rotated in the reverse direction while being arranged on the surface. Even if comprised in this way, it becomes possible to obtain the excavation hole H of the substantially rectangular excavation cross-section which continued the excavation cross-section of the substantially square shape continuously.

すなわち、ほぼ正四角形状の掘削断面である複数の掘削孔Hを一連に連続したほぼ長方形状の掘削断面の掘削を行うことが可能になる。また、各掘削カッタ2について相互の前面を同一面上に配置することによって、掘削した先端部を凹凸なく平らに掘進することが可能になる。   In other words, it becomes possible to perform excavation of a substantially rectangular excavation section in which a plurality of excavation holes H having an approximately regular quadrangular excavation section are continuously connected. Further, by arranging the front surfaces of the excavation cutters 2 on the same plane, it becomes possible to excavate the excavated tip portion evenly without unevenness.

以下、上述した回転機構3における固定中心線Pから移動中心線Gに至る距離である偏心量[r]について説明する。   Hereinafter, the eccentric amount [r], which is the distance from the fixed center line P to the movement center line G in the rotation mechanism 3 described above, will be described.

上述したように、回転軸33が回転した場合に、回転軸33の外周部331に係合する環状軸32が公転して、その中心である移動中心線Gを所定軌道で移動させる。そして、ほぼ正多角形状断面の掘削孔Hを掘削する場合には、掘削カッタ2を含む環状軸32の中心である移動中心線Gに対する回転軸33の中心(固定中心線P)の移動軌跡がほぼ円形で、その半径の偏心量r=R−R’は、以下の式から求めることができる。   As described above, when the rotating shaft 33 rotates, the annular shaft 32 that engages with the outer peripheral portion 331 of the rotating shaft 33 revolves and moves the movement center line G that is the center thereof along a predetermined trajectory. When excavating the excavation hole H having a substantially regular polygonal cross section, the movement locus of the center of the rotation shaft 33 (fixed center line P) with respect to the movement center line G that is the center of the annular shaft 32 including the excavation cutter 2 is It is substantially circular, and the eccentricity r = R−R ′ of the radius can be obtained from the following equation.

すなわち、例えば所望の正六角形状(正n角形状)の輪郭をなす掘削カッタ2(羽根部材21)は、図9に示すように移動中心線Gから放射状に(n−1)=(6−1)=5本である。そして、各掘削カッタ2(羽根部材21)の相互の角度を2θとする。このθは、下記数1であらわされる。   That is, for example, the excavation cutter 2 (blade member 21) having a desired regular hexagonal shape (regular n-corner shape) is radially (n−1) = (6−6) from the movement center line G as shown in FIG. 1) = 5. The mutual angle of each excavation cutter 2 (blade member 21) is 2θ. This θ is expressed by the following formula 1.

Figure 2007046439
Figure 2007046439

そして、正n角形状の高さをD、掘削カッタ2の長さ(G〜T)をLとすると、3辺がL,L,Dの二等辺三角形の余弦定理より、下記数2が得られる。   When the height of the regular n-corner is D and the length (G to T) of the excavation cutter 2 is L, the following formula 2 is obtained from the cosine theorem of an isosceles triangle with three sides L, L, D. It is done.

Figure 2007046439
Figure 2007046439

すなわち、正n角形状の高さDは、下記数3に示すように正n角形状の中心(固定中心線P)から辺中央までの長さの2倍となる。   That is, the height D of the regular n-corner shape is twice the length from the center (fixed center line P) of the regular n-corner shape to the center of the side, as shown in the following formula 3.

Figure 2007046439
Figure 2007046439

そして、高さDの中心(固定中心線P)が回転中心とすると、移動中心線Gとの偏心量r=R−R’は、下記数4および数5で求められる。   Then, assuming that the center of the height D (fixed center line P) is the rotation center, the amount of eccentricity r = R−R ′ with respect to the movement center line G is obtained by the following equations 4 and 5.

Figure 2007046439
Figure 2007046439

Figure 2007046439
Figure 2007046439

なお、正多角形状の辺が内側に凹まないよう、Lをここで求めた値以上とする。また、正n角形状の1辺の長さaは、下記数6で求められる。   Note that L is set to be equal to or larger than the value obtained here so that the sides of the regular polygon are not recessed inward. Further, the length a of one side of the regular n-corner shape is obtained by the following formula 6.

Figure 2007046439
Figure 2007046439

また、正n角形状の頂点から中心までの長さ(外接円半径)bは、下記数7で求められる。   Further, the length (circumscribed circle radius) b from the apex to the center of the regular n-corner shape is obtained by the following formula 7.

Figure 2007046439
Figure 2007046439

このように、固定された軸受31の内周部311の半径R、この内周部311に内接する環状軸32の外周部322の半径R’から、偏心量r=R−R’を求め、数5〜数7で掘削カッタ2(羽根部材21)の長さL、正n角形状の1辺の長さa、正n角形状の外接円半径bが得られる。逆に、a、bを設定した場合には、数6または数7から偏心量rを求めて、数1からLを求め、下記数8、数9および数10からR,R’を求める。   Thus, from the radius R of the inner peripheral portion 311 of the fixed bearing 31 and the radius R ′ of the outer peripheral portion 322 of the annular shaft 32 inscribed in the inner peripheral portion 311, the eccentricity r = R−R ′ is obtained. The length L of the excavation cutter 2 (blade member 21), the length a of one side of the regular n-corner shape, and the circumscribed circle radius b of the regular n-corner shape are obtained by Equations 5 to 7. On the contrary, when a and b are set, the eccentricity r is obtained from Equation 6 or Equation 7, L is obtained from Equation 1, and R and R 'are obtained from Equation 8, Equation 9, and Equation 10 below.

Figure 2007046439
Figure 2007046439

Figure 2007046439
Figure 2007046439

Figure 2007046439
Figure 2007046439

なお、上述したように軸受31の内周部311の半径Rと、環状軸32の外周部322の半径R’の比率は、R:R’=n:(n−1)とする。そして、固定中心線Pを原点として移動中心線Gの位置を定める。移動中心線Gからは、長さLの掘削カッタ2(羽根部材21)が延在する。そして、例えば図2に示す正n角形状の横辺をX座標、縦辺をY座標とする座標系で、掘削カッタ2の先端Tの座標は、固定中心線P、移動中心線Gおよび掘削カッタ2の先端Tが直線上に並んだときからの移動中心線Gの回転角をφとすると、下記数11および数12から固定中心線Pを中心としたほぼ正n角形状(図2の場合ほぼ正四角形状)が得られる。   As described above, the ratio of the radius R of the inner peripheral portion 311 of the bearing 31 to the radius R ′ of the outer peripheral portion 322 of the annular shaft 32 is R: R ′ = n: (n−1). Then, the position of the movement center line G is determined with the fixed center line P as the origin. An excavation cutter 2 (blade member 21) having a length L extends from the movement center line G. For example, in a coordinate system in which the horizontal side of the regular n-corner shape shown in FIG. 2 is the X coordinate and the vertical side is the Y coordinate, the coordinates of the tip T of the excavation cutter 2 are the fixed center line P, the moving center line G, Assuming that the rotation angle of the moving center line G from when the tip T of the cutter 2 is aligned on a straight line is φ, a substantially positive n-corner shape centered on the fixed center line P (see FIG. 2) In the case of a regular square).

Figure 2007046439
Figure 2007046439

Figure 2007046439
Figure 2007046439

以下、数5を適用した算定例であって、横辺をX座標、縦辺をY座標とする座標系において回転機構3を回転させたときの正多角形状の軌跡を見る。図10は正三角形状の軌跡を示す図であり、単位をm(メートル)とする。ここでは、R=6m,R’=4m,L=8.4mとし、偏心量r=2mとする。これにより、図10に示す正三角形状断面の掘削孔Hが得られる。この結果、例えば上部を車道(2車線)、下部を下水道に利用する複合トンネルとなる。また、上記形状を上下逆向きにすることで、土被りの小さい箇所でも掘削地盤の崩壊を生じ難くできる。   The following is a calculation example applying Formula 5, in which a regular polygonal locus is observed when the rotation mechanism 3 is rotated in a coordinate system in which the horizontal side is the X coordinate and the vertical side is the Y coordinate. FIG. 10 is a diagram showing a regular triangular trajectory, and the unit is m (meter). Here, R = 6 m, R ′ = 4 m, L = 8.4 m, and the eccentricity r = 2 m. Thereby, the excavation hole H of the equilateral triangle cross section shown in FIG. 10 is obtained. As a result, for example, a composite tunnel is used in which the upper part is used for a roadway (two lanes) and the lower part is used for sewerage. Moreover, by making the said shape upside down, it is possible to make it difficult for the excavated ground to collapse even in places where the earth covering is small.

図11は正四角形状の軌跡を示す図であり、単位をm(メートル)とする。ここでは、R=4m,R’=3m,L=8mとし、偏心量r=1mとする。これにより、図11に示す正四角形状断面の掘削孔Hが得られる。この結果、例えば道路・鉄道などの有効空間を円形断面よりも小さい外径寸法のトンネルとなる。   FIG. 11 is a diagram showing a regular tetragonal locus, and the unit is m (meter). Here, R = 4 m, R ′ = 3 m, L = 8 m, and eccentricity r = 1 m. Thereby, the excavation hole H of the regular square cross section shown in FIG. 11 is obtained. As a result, for example, an effective space such as a road / railway becomes a tunnel having an outer diameter smaller than the circular cross section.

図12は正六角形状の軌跡を示す図であり、単位をm(メートル)とする。ここでは、R=3m,R’=2.5m,L=10mとし、偏心量r=0.5mとする。これにより、図12に示す正六角形状断面の掘削孔Hが得られる。この結果、例えば立坑掘削機によって施工した正六角形状の孔を組み合わせてハニカム状の地中壁が得られる。   FIG. 12 is a diagram showing a regular hexagonal locus, and the unit is m (meter). Here, R = 3 m, R ′ = 2.5 m, L = 10 m, and the eccentricity r = 0.5 m. Thereby, the excavation hole H of the regular hexagonal cross section shown in FIG. 12 is obtained. As a result, for example, a honeycomb-shaped underground wall can be obtained by combining regular hexagonal holes constructed by a shaft excavator.

図13は正八角形状の軌跡を示す図であり、単位をm(メートル)とする。ここでは、R=2m,R’=1.75m,L=9.5mとし、偏心量r=0.25mとする。これにより、図13に示す正八角形状断面の掘削孔Hが得られる。   FIG. 13 is a diagram showing a regular octagonal locus, and the unit is m (meters). Here, R = 2m, R '= 1.75m, L = 9.5m, and the eccentricity r = 0.25m. Thereby, the excavation hole H of a regular octagonal cross section shown in FIG. 13 is obtained.

なお、上記回転機構3は、移動中心線G、固定中心線Pおよび掘削カッタ2の先端Tを、この順序で直線上に並べた態様において、当該直線と直交する方向が所望とする正多角形状の1辺の方向となる。すなわち、所望とする正多角形状の軌跡の配置は、移動中心線G、固定中心線Pおよび掘削カッタ2の先端Tの位置設定によって決められる。掘削機の場合、移動中心線G、固定中心線Pおよび掘削カッタ2の先端Tの位置に合わせて設置角度を調整すれば、掘削孔Hの断面配置を設定できる。   The rotating mechanism 3 has a regular polygonal shape in which the direction perpendicular to the straight line is desired in a mode in which the movement center line G, the fixed center line P, and the tip T of the excavation cutter 2 are arranged in a straight line in this order. It becomes the direction of one side. That is, the desired regular polygonal trajectory arrangement is determined by the position setting of the movement center line G, the fixed center line P, and the tip T of the excavation cutter 2. In the case of an excavator, the cross-sectional arrangement of the excavation holes H can be set by adjusting the installation angle according to the positions of the movement center line G, the fixed center line P, and the tip T of the excavation cutter 2.

このように、上述した回転機構3は、所定の固定中心線Pを中心とした環状の内周部311を有する固定の軸受31と、固定中心線Pに平行な所定の移動中心線Gを中心とした内周部321および外周部322を有して環状に形成してあってその外周部322を軸受31の内周部311に当接係合して軸受31に内装した環状軸32と、固定中心線Pを回転中心として回転可能に設けてあって環状軸32の内周部321に対して自身の外周部331を当接係合した回転軸33と、移動中心線Gを中心に回動する態様で環状軸32に内装してあるとともに回転軸33を支持して当該回転軸33の外周部331と環状軸32の内周部321との係合を保持しつつ軸受31の内周部311と環状軸32の外周部322との係合を保持する保持部材37と、回転軸33を回転駆動する駆動部36と、固定中心線Pを中心とした所望の正多角形状の輪郭内で当該正多角形状の角数から1つ減らした数をもって環状軸32に設けてあって移動中心線Gから放射方向に延在しつつ等角度に同じ長さで配置した掘削カッタ2(羽根部材21)とを備えている。   As described above, the rotation mechanism 3 described above is centered on the fixed bearing 31 having the annular inner peripheral portion 311 centered on the predetermined fixed center line P and the predetermined movement center line G parallel to the fixed center line P. An annular shaft 32 having an inner peripheral part 321 and an outer peripheral part 322 formed in an annular shape, the outer peripheral part 322 being in contact with and engaging with the inner peripheral part 311 of the bearing 31, A rotation shaft 33 that is rotatably provided with the fixed center line P as a rotation center and that abuts and engages the outer peripheral portion 331 with the inner peripheral portion 321 of the annular shaft 32, and a rotation center line G. The inner periphery of the bearing 31 is mounted on the annular shaft 32 in a moving manner, supports the rotating shaft 33 and maintains the engagement between the outer peripheral portion 331 of the rotating shaft 33 and the inner peripheral portion 321 of the annular shaft 32. Holding member 3 that holds the engagement between the portion 311 and the outer peripheral portion 322 of the annular shaft 32 And a drive unit 36 for rotationally driving the rotary shaft 33, and a number obtained by subtracting one from the number of corners of the regular polygon within the contour of the desired regular polygon centered on the fixed center line P. In addition, an excavation cutter 2 (blade member 21) is provided that extends in the radial direction from the movement center line G and is arranged at the same angle and the same length.

そして、駆動部36の駆動力を回転軸33に伝達することによって、回転軸33が軸受31の固定中心線Pを中心として回転する。すると、回転軸33の外周部331に係合する環状軸32が移動中心線Gを中心として回転軸33と同方向に回転する。また、移動中心線Gを中心として回転する環状軸32は、その外周部322が軸受31の内周部311に係合しているため、当該軸受31の内周部311に沿って軸受31の固定中心線Pの周りに回転軸33と逆方向に輪転運動(公転)することになる。このため、環状軸32に設けた掘削カッタ2(羽根部材21)は、環状軸32の輪転運動に伴ってその先端Tが移動する。移動する掘削カッタ2の先端Tは、所望の正多角形状の軌跡をなし、ほぼ正多角形状断面の掘削孔Hが得られる。   Then, by transmitting the driving force of the driving unit 36 to the rotating shaft 33, the rotating shaft 33 rotates around the fixed center line P of the bearing 31. Then, the annular shaft 32 that engages with the outer peripheral portion 331 of the rotation shaft 33 rotates about the movement center line G in the same direction as the rotation shaft 33. In addition, the annular shaft 32 that rotates about the movement center line G has an outer peripheral portion 322 engaged with an inner peripheral portion 311 of the bearing 31, so that the bearing 31 extends along the inner peripheral portion 311 of the bearing 31. A rotary motion (revolution) is made around the fixed center line P in the direction opposite to the rotation shaft 33. For this reason, the tip T of the excavation cutter 2 (blade member 21) provided on the annular shaft 32 moves as the annular shaft 32 rotates. The tip T of the excavating cutter 2 that moves moves along a desired regular polygonal trajectory, and an excavation hole H having a substantially regular polygonal cross section is obtained.

すなわち、回転機構3は、回転軸33が軸受31の固定中心線Pを中心として回転駆動され、かつ、環状軸32が回転軸33の回転に伴って保持部材37に保持された形態で移動中心線Gを中心として回転する。この結果、回転軸33が軸受31の固定中心線P上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することが可能になる。また、環状軸32が回転軸33の回転に伴って保持部材37に保持された形態で移動中心線Gを中心として回転するため、回転軸33と環状軸32との間に従前の自在継手を要することがないので、自在継手に係るコストを低減することが可能になる。   That is, the rotation mechanism 3 is driven in such a manner that the rotation shaft 33 is driven to rotate about the fixed center line P of the bearing 31 and the annular shaft 32 is held by the holding member 37 as the rotation shaft 33 rotates. Rotate around line G. As a result, the rotating shaft 33 rotates on the fixed center line P of the bearing 31 without shifting its axis, so that it is possible to reduce rotational shake and vibration. Further, since the annular shaft 32 rotates around the movement center line G in a form held by the holding member 37 as the rotating shaft 33 rotates, a conventional universal joint is provided between the rotating shaft 33 and the annular shaft 32. Since it does not need, it becomes possible to reduce the cost concerning a universal joint.

さらに、環状軸32が保持部材37に保持された形態で移動中心線Gを中心として回転するため、従前の枠体を必要とせずにほぼ正多角形状の軌跡をなすことが可能になる。このため、掘進した掘削孔Hの断面形状に対して、掘削機の胴部1の前面視の輪郭を小さく形成することが可能になる。この結果、掘削カッタ2が先行して掘進した掘削孔Hに胴部1が通過できるので、ほぼ多角形状断面の掘削孔Hの掘進を行う掘削機を得ることが可能になる。   Furthermore, since the annular shaft 32 is rotated around the movement center line G in the form of being held by the holding member 37, it is possible to form a substantially regular polygonal trajectory without requiring a conventional frame. For this reason, it becomes possible to form the outline of the body part 1 of an excavator small in front view with respect to the cross-sectional shape of the excavated drill hole H. As a result, since the trunk portion 1 can pass through the excavation hole H that the excavation cutter 2 has excavated in advance, it is possible to obtain an excavator that excavates the excavation hole H having a substantially polygonal cross section.

また、上記回転機構3は、軸受31の内周部311の半径を[R]、環状軸32の外周部322の半径を[R’]、移動中心線Gからの羽根部材21の長さを[L]として、正n角形状を所望とする場合に、n≧3、R:R’=n:(n−1)、L≧R×(n+1)/nと設定してある。この結果、掘削された掘削孔Hは、ほぼ正多角形状断面の各辺が平行もしくは掘削孔Hの外側に向けて凸状に形成されるため、力学的に強度を有するものとなる。また、必要に応じて、偏心量r=R−R’を小さく調整する、もしくは羽根部材21の長さLを長く調整することで、ほぼ多角形状断面の各辺が外側に向けて丸みを帯びた断面形状の掘削孔Hを得ることが可能である。   The rotation mechanism 3 has a radius of the inner peripheral portion 311 of the bearing 31 [R], a radius of the outer peripheral portion 322 of the annular shaft 32 [R ′], and the length of the blade member 21 from the moving center line G. [L] is set such that n ≧ 3, R: R ′ = n: (n−1), and L ≧ R × (n + 1) / n when a regular n-corner shape is desired. As a result, the excavated excavation hole H is mechanically strong because each side of the substantially regular polygonal cross section is formed parallel or convex toward the outside of the excavation hole H. Further, if necessary, by adjusting the eccentric amount r = R−R ′ to be small or by adjusting the length L of the blade member 21 to be long, each side of the substantially polygonal cross section is rounded outward. It is possible to obtain an excavation hole H having a different cross-sectional shape.

また、回転軸33が固定中心線Pに位置して回転駆動されることから、その前端を掘削カッタ2の前側に延在して別の掘削カッタを装備することが可能である。この結果、ほぼ正多角形状断面の掘削孔Hを掘削する前に円形の補助掘削孔を掘削したり、掘削断面の途中までをほぼ正多角形状断面にしてその先を円形状断面とすることができる。また、回転軸33の前端部に掘削ドリルを設ければ、掘削孔Hを掘削する前に削岩が可能になり、掘削の負荷を低減できる。   Further, since the rotary shaft 33 is rotationally driven at the fixed center line P, it is possible to extend the front end of the rotary shaft 33 to the front side of the excavation cutter 2 and to equip another excavation cutter. As a result, a circular auxiliary excavation hole can be excavated before excavating the excavation hole H having a substantially regular polygonal cross section, or a part of the excavation cross section can be formed into a substantially regular polygonal cross section and the tip can be a circular cross section. it can. Further, if a drilling drill is provided at the front end of the rotary shaft 33, rock drilling can be performed before the drilling hole H is drilled, and the load of drilling can be reduced.

なお、掘削断面の途中までをほぼ正多角形状断面にしてその先を円形状断面とする場合、例えば、場所打ちコンクリート杭の杭頭のみをほぼ正方形断面にして、残りの下部を円形とする。このようにすることで、図14に示すように基礎と接合される応力が大きい杭頭だけをほぼ正方形状断面として、X,Y方向に配筋される基礎梁やマット配筋との干渉を避けつつ、杭頭に大量の主筋を配することが可能になる。また、ほぼ正方形状断面なので外周フープ100だけでなく、断面中央部にトレミー管101のスペースを確保しつつ両端にフック102aを有した中子フープ102を追加することで、せん断耐力を容易に増大させて杭頭部でのせん断破壊を防止することができる。従前の円形状断面の杭頭では、拡頭断面でもある程度の耐力増加はできたが、杭頭主筋配筋が円周上に並ぶことから基礎配筋との干渉問題があり、せん断耐力確保のために過大な杭頭断面積となる場合も多く、本実施の形態1ではこれらを根本的に解決する。   In addition, when making the middle part of a digging cross section into a substantially regular polygonal cross section and making the tip into a circular cross section, for example, only the pile head of a cast-in-place concrete pile is made into a substantially square cross section, and the remaining lower part is made circular. By doing this, as shown in FIG. 14, only the pile head with a large stress joined to the foundation is made into a substantially square cross section, and interference with the foundation beam and the mat reinforcement arranged in the X and Y directions is prevented. While avoiding, it becomes possible to arrange a large amount of main bars on the pile head. In addition, since it has a substantially square cross section, not only the outer peripheral hoop 100 but also a core hoop 102 having hooks 102a at both ends while securing a space for the tremy tube 101 in the center of the cross section is easily added to increase the shear strength. It is possible to prevent shear failure at the pile head. The conventional pile head with a circular cross section had some increase in yield strength even with the expanded section, but there was a problem of interference with the foundation reinforcement due to the fact that the main reinforcement of the pile heads were lined up on the circumference, to ensure the shear strength. In many cases, the cross-sectional area of the pile head is excessively large, and in the first embodiment, these are fundamentally solved.

また、複数の回転機構3を回転軸33が平行となるように設け、相互の回転機構3の各掘削カッタ2の軌跡が前面視で重複する態様で隣接する相互の掘削カッタ2の位置を回転軸33の軸方向でずらして配置する。あるいは、隣接する各掘削カッタ2を同一面上に配置しつつ、隣接する各回転軸33を逆方向に回転駆動する。このように構成すれば、ほぼ正多角形状の掘削断面を組み合わせて一連に連続した掘削断面の掘削孔Hを得ることが可能である。さらに、上記回転機構3と従前の円形掘削の回転機構とを組み合わせれば、多角形状の掘削断面と円形状の掘削断面とを組み合わせて一連に連続した掘削断面の掘削孔Hを得ることが可能である。なお、各掘削カッタ2について相互の前面を同一面上に配置すれば、相互の回転機構3の間において掘削した先端部を凹凸なく平らに掘進することが可能になる。   A plurality of rotation mechanisms 3 are provided so that the rotation shafts 33 are parallel, and the positions of the adjacent excavation cutters 2 are rotated in such a manner that the trajectories of the excavation cutters 2 of the rotation mechanisms 3 overlap each other in front view. The shaft 33 is shifted in the axial direction. Alternatively, the adjacent rotary shafts 33 are driven to rotate in opposite directions while the adjacent excavation cutters 2 are arranged on the same plane. If comprised in this way, it is possible to obtain the excavation hole H of the continuous excavation cross section by combining the excavation cross section of a substantially regular polygon shape. Further, by combining the rotation mechanism 3 and the conventional circular excavation rotation mechanism, it is possible to obtain a continuous excavation hole H by combining a polygonal excavation section and a circular excavation section. It is. If the front surfaces of the excavation cutters 2 are arranged on the same plane, the excavated tip portions between the rotary mechanisms 3 can be dug flatly without any unevenness.

また、回転軸33が固定中心線Pに位置して回転駆動されることから、従前からある掘削機の回転軸の前端部構成を上述した機構に変更することで上記掘削機を容易に得ることが可能である。   Moreover, since the rotating shaft 33 is positioned and fixed to the fixed center line P, the excavator can be easily obtained by changing the configuration of the front end of the rotating shaft of a conventional excavator to the above-described mechanism. Is possible.

ところで、上述した実施の形態1では、回転軸33の外周部331と環状軸32の内周部321との係合を常に保持しつつ、軸受31の内周部311と環状軸32の外周部322との係合を常に保持する保持部材37として、環状軸32の内周に摺接して移動中心線Gを中心に回動し、回転軸33を回動可能に挿通支持する構成としてある。これに限らず、例えば図15に示すように中心軸34および従動軸35で構成した保持部材37であってもよい。中心軸34は、環状軸32の移動中心線G上に設けてあって、環状軸32の環状内に内装してあり、ほぼ円柱状の外周部341を回転軸33の外周部331に対して当接係合してある。従動軸35は、回転軸33と同じ直径の外周部351を有して回転軸33と平行に設けてあって、環状軸32の環状内に内装してあり、ほぼ円柱状の外周部351を環状軸32の内周部321および中心軸34の外周部341に当接係合してある。この従動軸35は、複数(図15では2つ)設けてあって、回転軸33を伴って移動中心線Gを中心として120°間隔で配置してある。すなわち、環状軸32は、回転軸33の回転に伴って、回転軸33、中心軸34および従動軸35によって保持された形態で移動中心線Gを中心として回転する。また、図には明示しないが、軸受31の内周部311と環状軸32の外周部322との間に保持部材が係合されることによっても、回転軸33を支持して当該回転軸33の外周部331と環状軸32の内周部321との係合を保持しつつ、軸受31の内周部311と環状軸32の外周部322との係合を保持することになるので、このような形態であってもよい。この場合の保持部材(図示なし)は、軸受31の内周とほぼ同じ外周を有して所定厚さの円板状に形成してあり、環状軸32の外周に摺接して固定中心線Pを中心に回動する態様で軸受31に内装してある。そして、この保持部材(図示なし)には、移動中心線Gを中心として環状軸32の外周とほぼ同じ内周を有する貫通孔が偏心して設けられている。もちろん、この図示しない保持部材と図1や図15に示す保持部材37とをそれぞれ組み合わせて双方用いてもよい。   By the way, in Embodiment 1 mentioned above, the outer peripheral part of the inner peripheral part 311 of the bearing 31 and the outer peripheral part of the annular shaft 32 is always maintained while the engagement between the outer peripheral part 331 of the rotating shaft 33 and the inner peripheral part 321 of the annular shaft 32 is maintained. The holding member 37 that always holds the engagement with the 322 is configured to slidably contact with the inner periphery of the annular shaft 32 and rotate around the movement center line G, and the rotation shaft 33 is inserted and supported to be rotatable. Not only this but the holding member 37 comprised, for example with the center axis | shaft 34 and the driven shaft 35 as shown in FIG. 15 may be sufficient. The central shaft 34 is provided on the movement center line G of the annular shaft 32 and is provided in the annular shape of the annular shaft 32, and the substantially cylindrical outer peripheral portion 341 with respect to the outer peripheral portion 331 of the rotating shaft 33. Abutment engagement. The driven shaft 35 has an outer peripheral portion 351 having the same diameter as that of the rotating shaft 33 and is provided in parallel with the rotating shaft 33. The driven shaft 35 is provided inside the annular shaft 32 and has a substantially cylindrical outer peripheral portion 351. The inner peripheral portion 321 of the annular shaft 32 and the outer peripheral portion 341 of the central shaft 34 are in contact with and engaged with each other. A plurality (two in FIG. 15) of the driven shafts 35 are provided, and the rotation shafts 33 are arranged at intervals of 120 ° with the rotation axis 33 as the center. That is, the annular shaft 32 rotates around the movement center line G in a form held by the rotation shaft 33, the center shaft 34 and the driven shaft 35 as the rotation shaft 33 rotates. Although not clearly shown in the drawing, the rotating shaft 33 is supported and supported by the holding member being engaged between the inner peripheral portion 311 of the bearing 31 and the outer peripheral portion 322 of the annular shaft 32. The engagement between the inner peripheral portion 311 of the bearing 31 and the outer peripheral portion 322 of the annular shaft 32 is maintained while the engagement between the outer peripheral portion 331 of the annular shaft 32 and the inner peripheral portion 321 of the annular shaft 32 is maintained. Such a form may be sufficient. In this case, the holding member (not shown) has a disk shape with a predetermined thickness having substantially the same outer periphery as the inner periphery of the bearing 31, and is in sliding contact with the outer periphery of the annular shaft 32. The bearing 31 is housed in such a manner that it rotates around the center. The holding member (not shown) is eccentrically provided with a through hole having an inner periphery substantially the same as the outer periphery of the annular shaft 32 around the movement center line G. Of course, both the holding member (not shown) and the holding member 37 shown in FIGS. 1 and 15 may be used in combination.

なお、上述した実施の形態1では、回転機構3を掘削機に適用した例で説明しているが、上記回転機構3は掘削機に限るものではない。例えばほぼ多角形状の軌跡をなす上記回転機構3の他の用途として、地中連続壁などでの多角形状断面の掘削に用いたり、セメントなどの硬化材を地盤中に注入する地盤改良で地盤を硬化材とともに混練り攪拌するときに用いたり、あるいは工作物の多角形状の切削に用いたり、地盤以外の混練り物製造の攪拌に用いたりするなど、様々な用途が考えられる。すなわち、地盤改良や混練り攪拌に上記回転機構3を用いる場合には、羽根部材21が攪拌羽根となる。また、切削に上記回転機構3を用いる場合には、羽根部材21に切削刃を設けて切削カッタとなる。したがって、本発明の実施の形態1での掘削は、攪拌や切削を含む意味で用いている。   In the first embodiment described above, an example in which the rotation mechanism 3 is applied to an excavator has been described. However, the rotation mechanism 3 is not limited to an excavator. For example, as another use of the rotating mechanism 3 having a substantially polygonal trajectory, the ground can be used for excavation of a polygonal cross section in an underground continuous wall or by improving the ground by injecting a hardening material such as cement into the ground. Various uses are conceivable, such as when used for kneading and stirring together with a hardener, or for use in cutting polygonal shapes of workpieces, or for stirring for manufacturing kneaded materials other than the ground. That is, when the rotation mechanism 3 is used for ground improvement or kneading and stirring, the blade member 21 is a stirring blade. When the rotating mechanism 3 is used for cutting, the blade member 21 is provided with a cutting blade to form a cutting cutter. Therefore, the excavation in Embodiment 1 of the present invention is used in the meaning including stirring and cutting.

[実施の形態2]
以下に添付図面を参照して、本発明に係る掘削機の好適な実施の形態2を詳細に説明する。なお、この実施の形態2によりこの発明が限定されるものではない。
[Embodiment 2]
Hereinafter, a preferred embodiment 2 of an excavator according to the present invention will be described in detail with reference to the accompanying drawings. The present invention is not limited to the second embodiment.

図16は本発明に係る掘削機の実施の形態2を示す概略側面図、図17は図16に示す掘削機を軸方向から視た概念図である。なお、本実施の形態2において、上述した実施の形態1と同等部分には同一の符号を付す。   16 is a schematic side view showing a second embodiment of the excavator according to the present invention, and FIG. 17 is a conceptual view of the excavator shown in FIG. 16 viewed from the axial direction. In the second embodiment, the same reference numerals are given to the same parts as those in the first embodiment.

図16に示すように掘削機は、胴部1と掘削カッタ2(実施の形態1における羽根部材21)とを備えている。胴部1は、掘削カッタ2を支持しつつ掘削カッタ2を駆動するものであって、掘削機の外郭をなし、その内部に駆動機構(実施の形態1における回転機構)3を有している。   As shown in FIG. 16, the excavator includes a trunk portion 1 and an excavation cutter 2 (blade member 21 in the first embodiment). The trunk portion 1 drives the excavation cutter 2 while supporting the excavation cutter 2. The trunk portion 1 forms an outline of the excavator and includes a drive mechanism (the rotation mechanism in the first embodiment) 3 therein. .

駆動機構3は、軸受31、環状軸32、回転軸33、中心軸34、従動軸35および駆動部36を有している。   The drive mechanism 3 includes a bearing 31, an annular shaft 32, a rotation shaft 33, a central shaft 34, a driven shaft 35, and a drive unit 36.

軸受31は、胴部1に固定してあり、胴部1の前後方向に沿って配置した所定の固定中心線Pを中心として環状の内周部311を有している。   The bearing 31 is fixed to the body part 1 and has an annular inner peripheral part 311 with a predetermined fixed center line P arranged along the front-rear direction of the body part 1 as a center.

環状軸32は、固定中心線Pと平行にして胴部1の前後方向に沿って配置した所定の移動中心線Gを中心とした内周部321および外周部322を有してほぼ円環状に形成してある。この環状軸32は、軸受31の環状内に内装してあり、その外周部322を軸受31の内周部311に対して当接係合してある。なお、環状軸32は、内周部321および外周部322を一体に有した環状体、あるいは内周部321を有した管体と外周部322を有した管体とを組み合わせた構成とすることができる。   The annular shaft 32 has an inner peripheral portion 321 and an outer peripheral portion 322 centered on a predetermined movement center line G arranged along the front-rear direction of the body portion 1 in parallel with the fixed center line P, and is substantially annular. It is formed. The annular shaft 32 is housed inside the annular shape of the bearing 31, and the outer peripheral portion 322 is in contact with and engaged with the inner peripheral portion 311 of the bearing 31. The annular shaft 32 has a configuration in which an annular body integrally including an inner peripheral portion 321 and an outer peripheral portion 322, or a tubular body having the inner peripheral portion 321 and a tubular body having the outer peripheral portion 322 are combined. Can do.

回転軸33は、軸受31の固定中心線Pを回転中心として回転可能に胴部1に支持してある。この回転軸33は、環状軸32の環状内に内装してあり、ほぼ円柱状の外周部331を環状軸32の内周部321に対して当接係合してある。   The rotary shaft 33 is supported on the body 1 so as to be rotatable about the fixed center line P of the bearing 31 as a rotation center. The rotating shaft 33 is provided inside the annular shaft 32, and a substantially cylindrical outer peripheral portion 331 is in contact with and engaged with the inner peripheral portion 321 of the annular shaft 32.

中心軸34は、環状軸32の移動中心線G上に設けてある。この中心軸34は、環状軸32の環状内に内装してあり、ほぼ円柱状の外周部341を回転軸33の外周部331に対して当接係合してある。なお、中心軸34は、実施の形態1における保持部材37を構成する。   The central shaft 34 is provided on the movement center line G of the annular shaft 32. The central shaft 34 is provided inside the annular shaft 32, and a substantially cylindrical outer peripheral portion 341 is in contact with and engaged with the outer peripheral portion 331 of the rotating shaft 33. The central shaft 34 constitutes the holding member 37 in the first embodiment.

従動軸35は、回転軸33と同じ直径の外周部351を有して回転軸33と平行に設けてある。この従動軸35は、環状軸32の環状内に内装してあり、ほぼ円柱状の外周部351を環状軸32の内周部321および中心軸34の外周部341に当接係合してある。また、従動軸35は、複数(本実施の形態2では2つ)設けてあって、回転軸33とともに移動中心線Gを中心として120°間隔で配置してある。なお、従動軸35は、実施の形態1における保持部材37を構成する。   The driven shaft 35 has an outer peripheral portion 351 having the same diameter as the rotating shaft 33 and is provided in parallel with the rotating shaft 33. The driven shaft 35 is provided in the annular shape of the annular shaft 32, and a substantially cylindrical outer peripheral portion 351 is in contact with and engaged with the inner peripheral portion 321 of the annular shaft 32 and the outer peripheral portion 341 of the central shaft 34. . Further, a plurality of driven shafts 35 (two in the second embodiment) are provided, and are arranged at intervals of 120 ° around the movement center line G together with the rotation shaft 33. The driven shaft 35 constitutes the holding member 37 in the first embodiment.

駆動部36は、回転軸33を回転させるものであり、例えばモータなど胴部1に設けた駆動源からなる。なお、駆動部36は、図には明示しないが駆動源と回転軸33との間に適宜減速機構を有していてもよい。   The drive unit 36 rotates the rotary shaft 33 and includes a drive source provided in the body 1 such as a motor. The drive unit 36 may have a speed reduction mechanism as appropriate between the drive source and the rotary shaft 33, although not shown in the figure.

なお、軸受31と環状軸32との係合、環状軸32と回転軸33および従動軸35との係合、中心軸34と回転軸33および従動軸35との係合には、例えば歯車の噛合による係合がある。あるいは、高摩擦材などを介して接触滑りが防止された係合であってもよい。   The engagement between the bearing 31 and the annular shaft 32, the engagement between the annular shaft 32 and the rotation shaft 33 and the driven shaft 35, and the engagement between the center shaft 34 and the rotation shaft 33 and the driven shaft 35 are, for example, gears. There is engagement by meshing. Or the engagement by which contact slip was prevented via the high friction material etc. may be sufficient.

掘削カッタ2は、胴部1の前側に延出した環状軸32の前端に設けてあって、移動中心線G上に中心(重心)を置いた仮想ルーロー三角形状の範囲内であって、少なくとも中心(移動中心線G)と頂点(T)とを結ぶ延長線に沿って配置してある。図には明示しないが掘削カッタ2の前面には、掘削ビットが設けてある。ルーロー三角形は、図17に一点鎖線で示すように正三角形の各頂点を中心として他の頂点を結ぶ円弧を描いてなる形状をなし、その外幅(差し渡し幅)がいずれも定幅なものである。   The excavation cutter 2 is provided at the front end of the annular shaft 32 extending to the front side of the body portion 1, and is within a range of a virtual roulau triangle having a center (center of gravity) on the movement center line G, They are arranged along an extension line connecting the center (moving center line G) and the vertex (T). Although not shown in the drawing, a drill bit is provided on the front surface of the drill cutter 2. The rouleau triangle has a shape formed by drawing an arc connecting the other vertices with each vertex of the regular triangle as the center as shown by a dashed line in FIG. 17, and the outer width (passing width) is constant. is there.

ここで、上記軸受31、環状軸32、回転軸33、中心軸34、および掘削カッタ2の寸法設定について説明する。図18は図17に示す掘削機の寸法設定を示す概念図である。図18に示すように回転軸33の中心(固定中心線P)から中心軸34の中心(移動中心線G)に至る距離(偏心量)を[r]として、軸受31の内周部311の直径を[8r]、環状軸32の外周部322の直径を[6r]、および環状軸32の内周部321の直径を[h(回転軸の直径)+2r]と設定する。かつ、掘削カッタ2のルーロー三角形の外幅を[a]として、掘削カッタ2を配置するルーロー三角形の中心(移動中心線G)と頂点Tとを結ぶ延長線Lを[L=0.5a+r]と設定する。   Here, the dimension setting of the bearing 31, the annular shaft 32, the rotary shaft 33, the central shaft 34, and the excavation cutter 2 will be described. FIG. 18 is a conceptual diagram showing the dimension setting of the excavator shown in FIG. As shown in FIG. 18, the distance (eccentricity) from the center (fixed center line P) of the rotating shaft 33 to the center (moving center line G) of the center shaft 34 is [r]. The diameter is set to [8r], the diameter of the outer peripheral portion 322 of the annular shaft 32 is set to [6r], and the diameter of the inner peripheral portion 321 of the annular shaft 32 is set to [h (diameter of rotating shaft) + 2r]. And, with the outer width of the roulau triangle of the excavation cutter 2 as [a], an extension line L connecting the center (movement center line G) of the roulau triangle on which the excavation cutter 2 is arranged and the apex T is [L = 0.5a + r]. And set.

上記構成の掘削機は、駆動機構3において駆動部36の駆動力を回転軸33に伝達することによって、回転軸33が軸受31の固定中心線Pを中心として回転(例えば図17における時計回り方向)する。すると、回転軸33の外周部331に係合する中心軸34が移動中心線Gを中心として回転軸33とは逆方向(例えば図17における反時計回り方向)に回転する。さらに、中心軸34の外周部341に係合する従動軸35が回転軸33と同方向(例えば図17における時計回り方向)に回転する。同時に、回転軸33が回転することによって、回転軸33の外周部331および従動軸35の外周部351に係合する環状軸32が移動中心線Gを中心として回転軸33および従動軸35と同方向(例えば図17における時計回り方向)に回転する。すなわち、環状軸32は、回転軸33の回転に伴って、回転軸33および従動軸35に支持された形態で移動中心線Gを中心として回転する。また、移動中心線Gを中心として回転する環状軸32は、その外周部322が軸受31の内周部311に係合しているため、当該軸受31の内周部311に沿って軸受31の固定中心線Pの周りに回転軸33と逆方向(例えば図17における反時計回り方向)に輪転運動(公転)することになる。このため、環状軸32に設けた掘削カッタ2は、環状軸32の輪転運動に伴ってその先端であるルーロー三角形の頂点Tが移動する。移動する掘削カッタ2の先端(頂点T)は、ルーロー三角形の外幅を一辺とし軸受31の固定中心線Pを中心とした正方形に近いほぼ矩形状の軌跡をなす。   The excavator having the above configuration transmits the driving force of the driving unit 36 to the rotating shaft 33 in the driving mechanism 3 so that the rotating shaft 33 rotates around the fixed center line P of the bearing 31 (for example, the clockwise direction in FIG. 17). ) Then, the center shaft 34 that engages with the outer peripheral portion 331 of the rotation shaft 33 rotates about the movement center line G in the direction opposite to the rotation shaft 33 (for example, counterclockwise in FIG. 17). Further, the driven shaft 35 engaged with the outer peripheral portion 341 of the central shaft 34 rotates in the same direction as the rotating shaft 33 (for example, the clockwise direction in FIG. 17). At the same time, when the rotating shaft 33 rotates, the annular shaft 32 engaged with the outer peripheral portion 331 of the rotating shaft 33 and the outer peripheral portion 351 of the driven shaft 35 is the same as the rotating shaft 33 and the driven shaft 35 around the movement center line G. It rotates in a direction (for example, clockwise direction in FIG. 17). That is, the annular shaft 32 rotates around the movement center line G in a form supported by the rotation shaft 33 and the driven shaft 35 as the rotation shaft 33 rotates. In addition, the annular shaft 32 that rotates about the movement center line G has an outer peripheral portion 322 engaged with an inner peripheral portion 311 of the bearing 31, so that the bearing 31 extends along the inner peripheral portion 311 of the bearing 31. The rotary motion (revolution) is performed around the fixed center line P in the direction opposite to the rotation shaft 33 (for example, counterclockwise in FIG. 17). For this reason, the excavation cutter 2 provided on the annular shaft 32 moves the vertex T of the Rouleau triangle, which is the tip of the excavation cutter 2, as the annular shaft 32 rotates. The tip (vertex T) of the moving excavation cutter 2 forms a substantially rectangular locus close to a square centered on the fixed center line P of the bearing 31 with the outer width of the Rouleau triangle as one side.

なお、上記寸法設定によって「環状軸32の外周部322の直径[6r]」:「軸受31の内周部311の直径[8r]」、すなわち3:4に設定してあるため、図19〜図23に示すように環状軸32が移動中心線Gを中心に1回転すると、当該環状軸32は固定中心線Pの周りに1/3回転分公転することになる。したがって、図19〜図23における掘削カッタ2の先端A,B,Cの移動位置で示すように掘削カッタ2も同様に公転回転する。   Since the above-described dimension setting is set to “diameter [6r] of outer peripheral portion 322 of annular shaft 32”: “diameter [8r] of inner peripheral portion 311 of bearing 31”, that is, 3: 4, FIG. As shown in FIG. 23, when the annular shaft 32 makes one rotation around the movement center line G, the annular shaft 32 revolves around the fixed center line P by 1/3 rotation. Accordingly, as shown by the movement positions of the tips A, B, and C of the excavation cutter 2 in FIGS.

この結果、図17に示すようにほぼ矩形状の断面の掘削孔Hを掘進することが可能になる。この掘削孔Hは、断面円形の掘削孔と比較して、不要な空間を掘削せずに利用空間のみの掘削で得られるため、必要以上の用地面積を要さないことに加えて建設費を低減することが可能になる。   As a result, as shown in FIG. 17, it becomes possible to dig up the excavation hole H having a substantially rectangular cross section. Since this excavation hole H can be obtained by excavating only the use space without excavating unnecessary space, compared to the excavation hole having a circular cross section, in addition to not requiring more land area than necessary, the construction cost is reduced. It becomes possible to reduce.

さらに、掘削カッタ2を設けた環状軸32は、回転軸33および従動軸35に支持された形態で回転する構成であるため、従前のようにルーロー三角形の外幅を一辺とする正方形枠にルーロー三角形状の軸を支持して回転させる必要がない。すなわち、正方形枠が必要ない。このため、掘進した掘削孔Hの断面形状に対して、掘削機の胴部1の前面視の輪郭を小さく形成することが可能になる。この結果、掘削カッタ2が先行して掘進した掘削孔Hに胴部1が通過できるので、掘削断面がほぼ矩形状の掘削孔Hの掘進を行う掘削機を得ることが可能になる。この掘削機は、上記のごとく簡素な機構でほぼ矩形状の断面の掘削孔Hを掘進するため、故障が起こり難く信頼性が高く、コストが嵩むことがない。   Further, since the annular shaft 32 provided with the excavation cutter 2 is configured to rotate in a form supported by the rotary shaft 33 and the driven shaft 35, the loop shaft 32 is formed in a square frame with the outer width of the Rouleau triangle as one side as before. There is no need to support and rotate the triangular shaft. That is, a square frame is not necessary. For this reason, it becomes possible to form the outline of the body part 1 of an excavator small in front view with respect to the cross-sectional shape of the excavated drill hole H. As a result, since the trunk portion 1 can pass through the excavation hole H that the excavation cutter 2 has excavated in advance, it is possible to obtain an excavator that excavates the excavation hole H having a substantially rectangular excavation cross section. Since the excavator excavates the excavation hole H having a substantially rectangular cross section with a simple mechanism as described above, the excavator is less likely to fail, has high reliability, and does not increase cost.

なお、上記構成の掘削機によって掘削した掘削孔Hは、ほぼ矩形状の断面の角部が丸みを帯びることになる。丸みを帯びた断面ほぼ矩形状の掘削孔Hは、断面矩形状と比較して隅部への応力集中を緩和することができるので掘削に際して適している。   The excavation hole H excavated by the excavator having the above-described configuration has rounded corners of a substantially rectangular cross section. The digging hole H having a rounded cross section and a substantially rectangular shape is suitable for excavation because stress concentration at the corner can be reduced as compared with a rectangular cross section.

ところで、上記構成の掘削機において、回転軸33を複数平行に設けた上記駆動機構3によって掘削カッタ2を複数隣接し、相互の掘削カッタ2の軌跡が前面視で重複する態様で隣接する相互の掘削カッタ2の位置を回転軸33の軸方向でずらして配置する。このように構成すれば、ほぼ正方形(ほぼ矩形状)の掘削断面を一連に連続したほぼ長方形(ほぼ矩形状)の掘削断面の掘削孔を得ることが可能になる。   By the way, in the excavator having the above-described configuration, a plurality of excavation cutters 2 are adjacent to each other by the drive mechanism 3 provided with a plurality of rotating shafts 33 in parallel, and the trajectories of the excavation cutters 2 are adjacent to each other in an overlapping manner in front view. The position of the excavation cutter 2 is shifted in the axial direction of the rotary shaft 33. If comprised in this way, it becomes possible to obtain the excavation hole of the substantially rectangular (substantially rectangular shape) excavation cross section which continued the excavation cross section of substantially square (substantially rectangular shape) in series.

また、回転軸33を複数平行に設けた上記駆動機構3によって掘削カッタ2を複数隣接し、相互の掘削カッタ2の軌跡が前面視で重複する態様で配置する場合、隣接する各掘削カッタ2を同一面上に配置しつつ、隣接する各回転軸33を逆方向に回転駆動する。このように構成すれば、ほぼ正方形(ほぼ矩形状)の掘削断面を一連に連続したほぼ長方形(ほぼ矩形状)の掘削断面の掘削孔を得ることが可能になる。   In addition, when a plurality of excavation cutters 2 are adjacent to each other by the drive mechanism 3 provided with a plurality of rotation shafts 33 in parallel, and the trajectories of the excavation cutters 2 are overlapped in front view, the adjacent excavation cutters 2 are The rotating shafts 33 adjacent to each other are rotationally driven in opposite directions while being arranged on the same plane. If comprised in this way, it becomes possible to obtain the excavation hole of the substantially rectangular (substantially rectangular shape) excavation cross section which continued the excavation cross section of substantially square (substantially rectangular shape) in series.

すなわち、ほぼ正方形(ほぼ矩形状)の掘削断面である複数の掘削孔Hを一連に連続したほぼ長方形(ほぼ矩形状)の掘削断面の掘削を行うことが可能になる。また、各掘削カッタ2について相互の前面を同一面上に配置することによって、掘削した先端部を凹凸なく平らに掘進することが可能になる。   That is, it becomes possible to perform excavation of a substantially rectangular (substantially rectangular) excavation cross-section in which a plurality of excavation holes H that are substantially square (substantially rectangular) excavation cross-sections are continuously arranged. Further, by arranging the front surfaces of the excavation cutters 2 on the same plane, it becomes possible to excavate the excavated tip portion evenly without unevenness.

以下、上述した掘削機における回転軸33の中心(固定中心線P)から中心軸34の中心(移動中心線G)に至る距離[r]について説明する。   Hereinafter, the distance [r] from the center of the rotating shaft 33 (fixed center line P) to the center of the center axis 34 (moving center line G) in the excavator described above will be described.

上述したように、回転軸33が回転した場合に、回転軸33の外周部331に係合する環状軸32が公転して、その中心である中心軸34の中心(移動中心線G)を所定軌道で移動させる。そして、ほぼ正方形状の掘削孔Hを掘削する場合には、掘削カッタ2をなす仮想ルーロー三角形上において、当該ルーロー三角形の中心(重心)である中心軸34の中心(移動中心線G)に対する回転軸33の中心(固定中心線P)の移動軌跡がほぼ円形で、その半径である[r]は、仮想ルーロー三角形の外幅[a]の7.7%〜8.2%程度となることが幾何学的に分かっている。   As described above, when the rotating shaft 33 rotates, the annular shaft 32 that engages with the outer peripheral portion 331 of the rotating shaft 33 revolves, and the center of the center shaft 34 (movement center line G) that is the center thereof is predetermined. Move in orbit. Then, when excavating a substantially square excavation hole H, the rotation with respect to the center (moving center line G) of the central axis 34 that is the center (center of gravity) of the rouleau triangle on the virtual rouleau triangle forming the excavation cutter 2. The movement locus of the center of the axis 33 (fixed center line P) is almost circular, and its radius [r] is about 7.7% to 8.2% of the outer width [a] of the virtual rouleau triangle. Is known geometrically.

すなわち、図24に示すようにルーロー三角形の外幅[a]を一辺とした正方形の横辺をX座標、縦辺をY座標とする座標系で、当該正方形に内接する形態でルーロー三角形を回転させたときのルーロー三角形上での正方形の中心位置(回転軸33の中心(固定中心線P))の軌跡を見る。図24において破線で示す軌跡は、回転軸33の中心(固定中心線P)と中心軸34の中心(移動中心線G)との距離[r](偏心量)を下記数13で示す0.0774aで一定としたものである。   That is, as shown in FIG. 24, the Rouleau triangle is rotated in a form inscribed in the square in the coordinate system in which the horizontal side of the square with the outer width [a] of the Rouleau triangle as one side is the X coordinate and the vertical side is the Y coordinate. The locus of the center position of the square (the center of the rotation axis 33 (fixed center line P)) on the Rouleau triangle is observed. In FIG. 24, the trajectory indicated by a broken line is a distance 0 [r] (the amount of eccentricity) between the center of the rotating shaft 33 (fixed center line P) and the center of the center axis 34 (moving center line G). It is constant at 0774a.

Figure 2007046439
Figure 2007046439

しかし、上記破線で示す軌跡は、実際のルーロー三角形上での正方形の中心位置(回転軸33の中心(固定中心線P))の軌跡(図24に実線で示す)に対して一致するのは3箇所のみである。そして、破線で示す軌跡の場合は、掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の内側に向けてやや凹状に形成されることになる。このように掘削された掘削孔は、力学的に強度が低下するため好ましくない。   However, the locus shown by the broken line coincides with the locus (shown by the solid line in FIG. 24) of the center position of the square (the center of the rotation axis 33 (fixed center line P)) on the actual Rouleau triangle. There are only three places. And in the case of the locus | trajectory shown with a broken line, each side of the cross section of the substantially rectangular excavation hole H excavated will be formed in a slightly concave shape toward the inner side of the hole. The excavated hole thus excavated is not preferable because the strength is mechanically reduced.

上記実線で示す軌跡は、下記数14で示す0.0816aを含んで、回転軸33の中心(固定中心線P)と中心軸34の中心(移動中心線G)との距離[r](偏心量)が0.0774a〜0.0816aとなる。   The locus shown by the solid line includes 0.0816a shown by the following formula 14, and the distance [r] (eccentricity) between the center of the rotating shaft 33 (fixed center line P) and the center of the center axis 34 (moving center line G). Amount) is 0.0774a to 0.0816a.

Figure 2007046439
Figure 2007046439

また、回転軸33の中心(固定中心線P)と中心軸34の中心(移動中心線G)との距離[r](偏心量)が大きくなるほど掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の内側に向けて凹状に形成されることになる。したがって、距離[r]が、仮想ルーロー三角形の外幅[a]の6%〜8%であれば掘削される掘削孔Hの断面形状は理想的なほぼ矩形状となる。   Further, the cross section of the substantially rectangular excavation hole H that is excavated as the distance [r] (the amount of eccentricity) between the center of the rotation shaft 33 (fixed center line P) and the center of the center axis 34 (movement center line G) increases. Each side is formed in a concave shape toward the inside of the hole. Therefore, if the distance [r] is 6% to 8% of the outer width [a] of the virtual rouleau triangle, the cross-sectional shape of the excavation hole H to be excavated becomes an ideal substantially rectangular shape.

これを具体的に示すと、図17に示す状態からルーロー三角形(掘削カッタ2)が120°時計回りに回転すると、掘削カッタ2の中心であってルーロー三角形の重心である移動中心線Gは、回転軸33の中心である固定中心線Pの周りに360°反時計回りに回転する。したがって、環状軸32の中心(移動中心線G)が中心(固定中心線P)に対してφ回転したとき、掘削カッタ2は中心(移動中心線G)に対して−φ/3回転する。すなわち、上記正方形のX,Y座標において、掘削カッタ2の先端(ルーロー三角形の頂点)の軌跡は、下記数15および数16によって求められる。   Specifically, when the rouleau triangle (excavation cutter 2) rotates 120 ° clockwise from the state shown in FIG. 17, the movement center line G, which is the center of the excavation cutter 2 and the center of gravity of the rouleau triangle, It rotates 360 ° counterclockwise around a fixed center line P that is the center of the rotating shaft 33. Therefore, when the center of the annular shaft 32 (movement center line G) rotates φ with respect to the center (fixed center line P), the excavation cutter 2 rotates −φ / 3 with respect to the center (movement center line G). That is, in the X and Y coordinates of the square, the locus of the tip of the excavation cutter 2 (the vertex of the rouleau triangle) is obtained by the following equations 15 and 16.

Figure 2007046439
Figure 2007046439

Figure 2007046439
Figure 2007046439

そして、上記数15および数16で求めた掘削カッタ2の先端の軌跡を図25〜図33に示す。図25は回転軸33の中心(固定中心線P)と中心軸34の中心(移動中心線G)との距離[r](偏心量)が0.1a(10%)の場合の掘削カッタ2の先端の軌跡であり、掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の内側に向けて凹状に形成されることが分かる。   And the locus | trajectory of the front-end | tip of the excavation cutter 2 calculated | required by said Formula 15 and Formula 16 is shown in FIGS. FIG. 25 shows the excavation cutter 2 when the distance [r] (the amount of eccentricity) between the center of the rotating shaft 33 (fixed center line P) and the center of the center shaft 34 (moving center line G) is 0.1a (10%). It can be seen that each side of the cross section of the substantially rectangular excavation hole H is formed in a concave shape toward the inside of the hole.

図26は距離[r](偏心量)が0.09a(0.9%)の場合の掘削カッタ2の先端の軌跡であり、これも掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の内側に向けて凹状に形成されることが分かる。   FIG. 26 shows the trajectory of the tip of the excavation cutter 2 when the distance [r] (the amount of eccentricity) is 0.09a (0.9%), and each of the cross sections of the substantially rectangular excavation hole H is also excavated. It can be seen that the sides are formed concave toward the inside of the hole.

図27は距離[r](偏心量)が0.085a(0.85%)の場合の掘削カッタ2の先端の軌跡であり、これも掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の内側に向けて凹状に形成されることが分かる。   FIG. 27 shows the trajectory of the tip of the excavation cutter 2 when the distance [r] (the amount of eccentricity) is 0.085a (0.85%), and each of the cross sections of the substantially rectangular excavation hole H excavated. It can be seen that the sides are formed concave toward the inside of the hole.

図28は距離[r](偏心量)が0.08a(0.8%)の場合の掘削カッタ2の先端の軌跡であり、これも掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の内側に向けて凹状に形成されることが分かる。   FIG. 28 shows the trajectory of the tip of the excavation cutter 2 when the distance [r] (the amount of eccentricity) is 0.08a (0.8%), and each of the cross sections of the substantially rectangular excavation hole H is also excavated. It can be seen that the sides are formed concave toward the inside of the hole.

図29は距離[r](偏心量)が0.075a(0.75%)の場合の掘削カッタ2の先端の軌跡であり、掘削されたほぼ矩形状の掘削孔Hの断面の各辺が略平行に形成されることが分かる。   FIG. 29 shows the locus of the tip of the excavation cutter 2 when the distance [r] (the amount of eccentricity) is 0.075a (0.75%), and each side of the cross section of the substantially rectangular excavation hole H is shown. It turns out that it forms substantially parallel.

図30は距離[r](偏心量)が0.07a(0.7%)の場合の掘削カッタ2の先端の軌跡であり、掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の外側に向けて凸状に形成されることが分かる。   FIG. 30 shows the locus of the tip of the excavation cutter 2 when the distance [r] (the amount of eccentricity) is 0.07a (0.7%). Each side of the cross section of the excavated substantially rectangular excavation hole H is shown in FIG. It turns out that it forms in convex shape toward the outer side of a hole.

図31は距離[r](偏心量)が0.065a(0.65%)の場合の掘削カッタ2の先端の軌跡であり、これも掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の外側に向けて凸状に形成されることが分かる。   FIG. 31 shows the trajectory of the tip of the excavation cutter 2 when the distance [r] (the amount of eccentricity) is 0.065a (0.65%), and each of the cross sections of the substantially rectangular excavation hole H is also excavated. It can be seen that the sides are formed in a convex shape toward the outside of the hole.

図32は距離[r](偏心量)が0.06a(0.6%)の場合の掘削カッタ2の先端の軌跡であり、これも掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の外側に向けて凸状に形成されることが分かる。   FIG. 32 shows the trajectory of the tip of the excavation cutter 2 when the distance [r] (the amount of eccentricity) is 0.06a (0.6%), and each of the cross sections of the substantially rectangular excavation hole H is excavated. It can be seen that the sides are formed in a convex shape toward the outside of the hole.

図33は距離[r](偏心量)が0.055a(0.55%)の場合の掘削カッタ2の先端の軌跡であり、掘削されたほぼ矩形状の掘削孔Hの断面の各辺が孔の外側に向けて凸状に形成され、掘削孔H全体がやや丸みを帯びていることが分かる。   FIG. 33 shows the locus of the tip of the excavation cutter 2 when the distance [r] (the amount of eccentricity) is 0.055a (0.55%), and each side of the cross section of the substantially rectangular excavation hole H is shown. It can be seen that it is formed convex toward the outside of the hole, and the entire excavation hole H is slightly rounded.

したがって、図25〜図33に示すように理想的な断面形状の掘削孔Hを得るためには、回転軸33の中心(固定中心線P)と中心軸34の中心(移動中心線G)との距離[r]を、仮想ルーロー三角形の外幅[a]の6%〜8%として偏心量とすることが好ましいことが分かる。   Therefore, in order to obtain a drilling hole H having an ideal cross-sectional shape as shown in FIGS. 25 to 33, the center of the rotating shaft 33 (fixed center line P) and the center of the center axis 34 (moving center line G) It is understood that the distance [r] is preferably 6% to 8% of the outer width [a] of the virtual Rouleau triangle and set as the eccentric amount.

このように、上述した掘削機は、所定の固定中心線Pを中心とした環状の内周部311を有する固定の軸受31と、所定の移動中心線Gを中心とした内周部321および外周部322を有して環状に形成してあってその外周部322を軸受31の内周部311に当接係合して軸受31に内装した環状軸32と、軸受31の固定中心線Pを回転中心として回転可能に設けてあって環状軸32の内周部321に対して自身の外周部331を当接係合した回転軸33と、環状軸32の移動中心線G上に設けてあって回転軸33の外周部331に対して自身の外周部341を当接係合した中心軸34と、回転軸33と同じ外周部351を有して当該外周部351を環状軸32の内周部321および中心軸34の外周部341に当接係合した複数の従動軸35と、回転軸33を回転駆動する駆動部36と、環状軸32に設けてあって当該環状軸32の移動中心線G上に中心を置いたルーロー三角形状の範囲内で少なくとも中心(移動中心線G)と頂点Tとを結ぶ延長線に沿って配置した掘削カッタ2とを備えている。   As described above, the excavator described above includes the fixed bearing 31 having the annular inner peripheral portion 311 centered on the predetermined fixed center line P, the inner peripheral portion 321 and the outer periphery centered on the predetermined moving center line G. An annular shaft 32 which is formed in an annular shape having a portion 322 and whose outer peripheral portion 322 is in contact with and engaged with the inner peripheral portion 311 of the bearing 31 and the fixed center line P of the bearing 31 is The rotary shaft 33 is provided on the rotational center line G of the annular shaft 32 and the rotational shaft 33 provided so as to be rotatable as a center of rotation and abutting and engaging the outer peripheral portion 331 with the inner peripheral portion 321 of the annular shaft 32. The central shaft 34 that abuts and engages its outer peripheral portion 341 with the outer peripheral portion 331 of the rotary shaft 33, and the outer peripheral portion 351 that is the same as the rotary shaft 33. A plurality of followers that are in contact with and engaged with the outer peripheral portion 341 of the portion 321 and the central shaft 34 35, a drive unit 36 that rotationally drives the rotating shaft 33, and an annular shaft 32 provided at least on the center (moving center) within a range of a Rouleau triangle centered on the moving center line G of the annular shaft 32. The excavation cutter 2 is provided along an extension line connecting the line G) and the vertex T.

そして、駆動部36の駆動力を回転軸33に伝達することによって、回転軸33が軸受31の固定中心線Pを中心として回転する。すると、回転軸33の外周部331に係合する中心軸34が移動中心線Gを中心として回転軸33とは逆方向に回転する。さらに、中心軸34の外周部341に係合する従動軸35が回転軸33と同方向に回転する。同時に、回転軸33が回転することによって、回転軸33の外周部331および従動軸35の外周部351に係合する環状軸32が移動中心線Gを中心として回転軸33および従動軸35と同方向に回転する。また、移動中心線Gを中心として回転する環状軸32は、その外周部322が軸受31の内周部311に係合しているため、当該軸受31の内周部311に沿って軸受31の固定中心線Pの周りに回転軸33と逆方向に輪転運動(公転)することになる。このため、環状軸32に設けた掘削カッタ2は、環状軸32の輪転運動に伴ってその先端であるルーロー三角形の頂点Tが移動する。移動する掘削カッタ2の先端(頂点T)は、ルーロー三角形の外幅を一辺とし軸受31の固定中心線Pを中心とした正方形に近いほぼ矩形状の軌跡をなす。この結果、ほぼ矩形状の断面の掘削孔Hを掘進することができる。   Then, by transmitting the driving force of the driving unit 36 to the rotating shaft 33, the rotating shaft 33 rotates around the fixed center line P of the bearing 31. Then, the center shaft 34 that engages with the outer peripheral portion 331 of the rotation shaft 33 rotates about the movement center line G in the direction opposite to the rotation shaft 33. Further, the driven shaft 35 that engages with the outer peripheral portion 341 of the central shaft 34 rotates in the same direction as the rotating shaft 33. At the same time, when the rotating shaft 33 rotates, the annular shaft 32 engaged with the outer peripheral portion 331 of the rotating shaft 33 and the outer peripheral portion 351 of the driven shaft 35 is the same as the rotating shaft 33 and the driven shaft 35 around the movement center line G. Rotate in the direction. In addition, the annular shaft 32 that rotates about the movement center line G has an outer peripheral portion 322 engaged with an inner peripheral portion 311 of the bearing 31, so that the bearing 31 extends along the inner peripheral portion 311 of the bearing 31. A rotary motion (revolution) is made around the fixed center line P in the direction opposite to the rotation shaft 33. For this reason, the excavation cutter 2 provided on the annular shaft 32 moves the vertex T of the Rouleau triangle, which is the tip of the excavation cutter 2, as the annular shaft 32 rotates. The tip (vertex T) of the moving excavation cutter 2 forms a substantially rectangular locus close to a square centered on the fixed center line P of the bearing 31 with the outer width of the Rouleau triangle as one side. As a result, the excavation hole H having a substantially rectangular cross section can be advanced.

すなわち、回転軸33が軸受31の固定中心線Pを中心として回転駆動され、かつ、環状軸32が回転軸33の回転に伴って回転軸33および従動軸35に支持された形態で移動中心線Gを中心として回転するという回転機構のみによって成り立っている。この結果、回転軸33が軸受31の固定中心線P上でその軸心がずれることなく回転するため、回転ぶれや振動を低減することが可能になる。また、環状軸32が回転軸33の回転に伴って回転軸33、中心軸34および従動軸35に支持された形態で移動中心線Gを中心として回転するため、回転軸33と環状軸32との間に従前の自在継手を要することがないので、自在継手に係るコストを低減することが可能になる。   That is, the rotation center 33 is driven to rotate about the fixed center line P of the bearing 31 and the annular shaft 32 is supported by the rotation shaft 33 and the driven shaft 35 as the rotation shaft 33 rotates. It consists only of a rotation mechanism that rotates around G. As a result, the rotating shaft 33 rotates on the fixed center line P of the bearing 31 without shifting its axis, so that it is possible to reduce rotational shake and vibration. Further, since the annular shaft 32 rotates around the movement center line G in a form supported by the rotating shaft 33, the central shaft 34 and the driven shaft 35 as the rotating shaft 33 rotates, the rotating shaft 33 and the annular shaft 32 Since a conventional universal joint is not required, the cost related to the universal joint can be reduced.

さらに、環状軸32が回転軸33の回転に伴って回転軸33、中心軸34および従動軸35に支持された形態で移動中心線Gを中心として回転するため、正方形枠を必要とせずにほぼ矩形断面の掘削孔Hを掘削することが可能になる。   Further, since the annular shaft 32 rotates around the movement center line G in a form supported by the rotating shaft 33, the central shaft 34, and the driven shaft 35 as the rotating shaft 33 rotates, a square frame is not required. The excavation hole H having a rectangular cross section can be excavated.

また、回転軸33が固定中心線Pに位置して回転駆動されることから、前端を掘削カッタ2の前側に延在すれば、その前端に別の掘削カッタを装備することが可能である。例えば、回転軸33の前端部に設けた掘削カッタによって、ほぼ矩形断面の掘削孔Hを掘削する前に円形の補助掘削孔を掘削することが可能になる。   Further, since the rotary shaft 33 is rotationally driven at the fixed center line P, if the front end extends to the front side of the excavation cutter 2, it is possible to equip the front end with another excavation cutter. For example, a circular auxiliary excavation hole can be excavated by the excavation cutter provided at the front end of the rotating shaft 33 before excavating the excavation hole H having a substantially rectangular cross section.

また、回転軸33が固定中心線Pに位置して回転駆動されることから、従前からある掘削機の回転軸の前端部構成を上述した機構に変更することで上記掘削機を容易に得ることが可能である。   Moreover, since the rotating shaft 33 is positioned and fixed to the fixed center line P, the excavator can be easily obtained by changing the configuration of the front end of the rotating shaft of a conventional excavator to the above-described mechanism. Is possible.

また、上述した掘削機は、回転軸33の中心(固定中心線P)から中心軸の中心(移動中心線G)に至る距離を[r]として軸受31の内周部311の直径を[8r]、環状軸32の外周部322の直径を[6r]、および環状軸32の内周部321の直径を[回転軸の直径+2r]と設定し、かつ、掘削カッタ2のルーロー三角形の外幅を[a]として掘削カッタ2を配置するルーロー三角形状の中心(移動中心線G)と頂点Tとを結ぶ延長線を[0.5a+r]と設定した。この結果、理想的なほぼ矩形断面の掘削孔Hを掘削することが可能になる。   In the excavator described above, the distance from the center (fixed center line P) of the rotation shaft 33 to the center of the center axis (movement center line G) is [r], and the diameter of the inner peripheral portion 311 of the bearing 31 is [8r]. ], The diameter of the outer peripheral portion 322 of the annular shaft 32 is set to [6r], the diameter of the inner peripheral portion 321 of the annular shaft 32 is set to [diameter of the rotating shaft + 2r], and the outer width of the rouleau triangle of the excavating cutter 2 [A], an extension line connecting the center (movement center line G) of the Rouleau triangle where the excavation cutter 2 is arranged and the apex T was set to [0.5a + r]. As a result, it is possible to excavate an ideal borehole H having a substantially rectangular cross section.

また、上述した掘削機は、回転軸33の中心(固定中心線P)から中心軸の中心(移動中心線G)に至る距離[r]を、掘削カッタ2におけるルーロー三角形の外幅[a]の6%〜8%として偏心量に設定した。この結果、掘削された掘削孔Hは、ほぼ矩形状の断面の各辺が平行もしくは掘削孔Hの外側に向けて凸状に形成されるため、力学的に強度を有するものとなる。また、偏心量を適宜変更することで、必要に応じたほぼ矩形断面の掘削孔Hを得ることが可能である。   In the excavator described above, the distance [r] from the center of the rotating shaft 33 (fixed center line P) to the center of the center axis (moving center line G) is set to the outer width [a] of the rouleau triangle in the excavating cutter 2. The eccentric amount was set as 6% to 8%. As a result, the excavated excavation hole H is mechanically strong because each side of the substantially rectangular cross section is formed in parallel or convex toward the outside of the excavation hole H. Further, by appropriately changing the amount of eccentricity, it is possible to obtain an excavation hole H having a substantially rectangular cross section as required.

なお、上述した実施の形態2では、主に地盤などを掘削する掘削機に関して説明しているが、上記構成は掘削機に限るものではない。例えばほぼ矩形状の軌跡をなす上記回転機構における他の用途として、地中連続壁などでの矩形掘削に用いたり、セメントなどの硬化材を地盤中に注入する地盤改良で地盤を硬化材とともに混練り攪拌するときに用いたり、あるいは工作物の矩形切削に用いたり、地盤以外の混練り物製造の攪拌に用いたりするなど、様々な用途が考えられる。すなわち、地盤改良や混練り攪拌に上記回転機構を用いる場合には、上記掘削機,掘削カッタ2が、攪拌機,攪拌羽根となる。また、切削に上記回転機構を用いる場合には、上記掘削機,掘削カッタ2が、切削機,切削カッタとなる。したがって、本発明の実施の形態2でも、掘削は攪拌や切削を含む意味で用いている。   In the second embodiment described above, the excavator mainly excavating the ground or the like has been described. However, the above configuration is not limited to the excavator. For example, other applications of the rotating mechanism that has a nearly rectangular trajectory are used for rectangular excavation on underground continuous walls, etc., or the ground is mixed with the hardener by improving the ground by injecting a hardener such as cement into the ground. It can be used for various purposes such as kneading and stirring, rectangular cutting of workpieces, and kneading for manufacturing kneaded materials other than the ground. That is, when using the rotation mechanism for ground improvement or kneading and stirring, the excavator and excavation cutter 2 serve as a stirrer and a stirring blade. Moreover, when using the said rotation mechanism for cutting, the said excavator and excavation cutter 2 become a cutting machine and a cutting cutter. Therefore, in Embodiment 2 of the present invention, excavation is used in the meaning including stirring and cutting.

本発明に係る回転機構を用いた掘削機の実施の形態1を示す概略側面図である。It is a schematic side view which shows Embodiment 1 of the excavator using the rotation mechanism which concerns on this invention. 図1に示す回転機構を軸方向(前方向)から視た概念図である。It is the conceptual diagram which looked at the rotation mechanism shown in FIG. 1 from the axial direction (front direction). 図1に示す回転機構の分解斜視図である。It is a disassembled perspective view of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 図2に示す回転機構の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the rotation mechanism shown in FIG. 偏心量を算出するための概念図である。It is a conceptual diagram for calculating the amount of eccentricity. 正三角形状の軌跡を示す図である。It is a figure which shows the locus | trajectory of an equilateral triangle shape. 正四角形状の軌跡を示す図である。It is a figure which shows a regular tetragonal locus. 正六角形状の軌跡を示す図である。It is a figure which shows the locus | trajectory of a regular hexagon shape. 正八角形状の軌跡を示す図である。It is a figure which shows the locus | trajectory of a regular octagon shape. ほぼ正方形状断面とした杭頭を例示する概念図である。It is a conceptual diagram which illustrates the pile head made into the substantially square-shaped cross section. 他の保持部材を示す概念図である。It is a conceptual diagram which shows another holding member. 本発明に係る掘削機の実施の形態を示す概略側面図である。1 is a schematic side view showing an embodiment of an excavator according to the present invention. 図16に示す掘削機を軸方向から視た概念図である。It is the conceptual diagram which looked at the excavator shown in FIG. 16 from the axial direction. 図17に示す掘削機の寸法設定を示す概念図である。It is a conceptual diagram which shows the dimension setting of the excavator shown in FIG. 図17に示す掘削機の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the excavator shown in FIG. 図17に示す掘削機の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the excavator shown in FIG. 図17に示す掘削機の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the excavator shown in FIG. 図17に示す掘削機の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the excavator shown in FIG. 図17に示す掘削機の動作を示す概念図である。It is a conceptual diagram which shows operation | movement of the excavator shown in FIG. 仮想ルーロー三角形上での正方形の中心位置の軌跡を示す図である。It is a figure which shows the locus | trajectory of the center position of the square on a virtual roulau triangle. 掘削カッタの先端の軌跡を示す図である。It is a figure which shows the locus | trajectory of the front-end | tip of a digging cutter. 掘削カッタの先端の軌跡を示す図である。It is a figure which shows the locus | trajectory of the front-end | tip of a digging cutter. 掘削カッタの先端の軌跡を示す図である。It is a figure which shows the locus | trajectory of the front-end | tip of a digging cutter. 掘削カッタの先端の軌跡を示す図である。It is a figure which shows the locus | trajectory of the front-end | tip of a digging cutter. 掘削カッタの先端の軌跡を示す図である。It is a figure which shows the locus | trajectory of the front-end | tip of a digging cutter. 掘削カッタの先端の軌跡を示す図である。It is a figure which shows the locus | trajectory of the front-end | tip of a digging cutter. 掘削カッタの先端の軌跡を示す図である。It is a figure which shows the locus | trajectory of the front-end | tip of a digging cutter. 掘削カッタの先端の軌跡を示す図である。It is a figure which shows the locus | trajectory of the front-end | tip of a digging cutter. 掘削カッタの先端の軌跡を示す図である。It is a figure which shows the locus | trajectory of the front-end | tip of a digging cutter.

符号の説明Explanation of symbols

1 胴部
2 掘削カッタ
21 羽根部材
3 回転機構(駆動機構)
31 軸受
311 内周部
32 環状軸
321 内周部
322 外周部
33 回転軸
331 外周部
34 中心軸
341 外周部
35 従動軸
351 外周部
36 駆動部
37 保持部材
371 挿通孔
100 外周フープ
101 トレミー管
102 中子フープ
102a フック
a 外幅
b 外接円半径
r 偏心量
G 移動中心線
H 掘削孔
L 移動中心線からの羽根部材の長さ
P 固定中心線
R 軸受の内周部の半径
R’ 環状軸の外周部の半径
T 羽根部材の先端(頂点)
DESCRIPTION OF SYMBOLS 1 trunk | drum 2 excavation cutter 21 blade | wing member 3 rotation mechanism (drive mechanism)
31 Bearing 311 Inner peripheral portion 32 Annular shaft 321 Inner peripheral portion 322 Outer peripheral portion 33 Rotating shaft 331 Outer peripheral portion 34 Center shaft 341 Outer peripheral portion 35 Driven shaft 351 Outer peripheral portion 36 Drive portion 37 Holding member 371 Insertion hole 100 Outer peripheral hoop 101 Tremy tube 102 Core hoop 102a Hook a Outer width b Outer circle radius r Eccentricity G Movement center line H Drilling hole L Length of blade member from movement center line P Fixed center line R Radius of inner circumference of bearing R ' Radius of the outer periphery T Tip of the blade member (vertex)

Claims (6)

所定の固定中心線を中心とした環状の内周部を有する固定の軸受と、
前記固定中心線に平行な所定の移動中心線を中心とした内周部および外周部を有して環状に形成してあってその外周部を前記軸受の内周部に当接係合して前記軸受に内装した環状軸と、
前記固定中心線を回転中心として回転可能に設けてあって前記環状軸の内周部に対して自身の外周部を当接係合した回転軸と、
前記移動中心線を中心に回動する態様で前記環状軸に内装してあるとともに前記回転軸を支持して当該回転軸の外周部と前記環状軸の内周部との係合を保持しつつ前記軸受の内周部と前記環状軸の外周部との係合を保持する保持部材と、
前記回転軸を回転駆動する駆動部と、
前記固定中心線を中心とした所望の正多角形状の輪郭内で当該正多角形状の角数から1つ減らした数をもって前記環状軸に設けてあって前記移動中心線から放射方向に延在しつつ等角度に同じ長さで配置した羽根部材と
を備えたことを特徴とする回転機構。
A fixed bearing having an annular inner periphery centered on a predetermined fixed center line;
An inner peripheral portion and an outer peripheral portion centered on a predetermined movement center line parallel to the fixed center line are formed in an annular shape, and the outer peripheral portion is brought into contact with and engaged with the inner peripheral portion of the bearing. An annular shaft built in the bearing;
A rotating shaft provided rotatably about the fixed center line as a center of rotation and having its outer peripheral portion abuttingly engaged with the inner peripheral portion of the annular shaft;
While being mounted on the annular shaft so as to rotate around the movement center line, the rotating shaft is supported and the engagement between the outer peripheral portion of the rotating shaft and the inner peripheral portion of the annular shaft is maintained. A holding member that holds the engagement between the inner periphery of the bearing and the outer periphery of the annular shaft;
A drive unit that rotationally drives the rotary shaft;
Within the contour of the desired regular polygon centered on the fixed center line, a number obtained by subtracting one from the number of corners of the regular polygon shape is provided on the annular shaft and extends radially from the moving center line. And a vane member arranged at the same angle and at the same length.
前記軸受の内周部の半径を[R]、前記環状軸の外周部の半径を[R’]、前記移動中心線からの羽根部材の長さを[L]として、正n角形状を所望とする場合に、n≧3、R:R’=n:(n−1)、L≧R×(n+1)/nと設定したことを特徴とする請求項1に記載の回転機構。   A desired n-square shape is desired, where the radius of the inner peripheral portion of the bearing is [R], the radius of the outer peripheral portion of the annular shaft is [R '], and the length of the blade member from the moving center line is [L]. The rotation mechanism according to claim 1, wherein n ≧ 3, R: R ′ = n: (n−1), and L ≧ R × (n + 1) / n are set. 請求項1または2に記載の回転機構を用いて、
前記軸受を支持するとともに前記駆動部を内部に配置した筒状の胴部と、
前記羽根部材にカッタを配設した掘削カッタと
を備えたことを特徴とする掘削機。
Using the rotation mechanism according to claim 1 or 2,
A cylindrical body portion that supports the bearing and has the driving portion disposed therein;
An excavator comprising: an excavation cutter in which a cutter is disposed on the blade member.
所定の固定中心線を中心とした環状の内周部を有する固定の軸受と、
所定の移動中心線を中心とした内周部および外周部を有して環状に形成してあってその外周部を前記軸受の内周部に当接係合して前記軸受に内装した環状軸と、
前記固定中心線を回転中心として回転可能に設けてあって前記環状軸の内周部に対して自身の外周部を当接係合した回転軸と、
前記移動中心線上に設けてあって前記回転軸の外周部に対して自身の外周部を当接係合した中心軸と、
前記回転軸と同じ外周部を有して当該外周部を前記環状軸の内周部および前記中心軸の外周部に当接係合した複数の従動軸と、
前記回転軸を回転駆動する駆動部と、
前記環状軸に設けてあって前記移動中心線上に中心を置いたルーロー三角形状の範囲内で少なくとも中心と頂点とを結ぶ延長線に沿って配置した掘削カッタと
を備えたことを特徴とする掘削機。
A fixed bearing having an annular inner periphery centered on a predetermined fixed center line;
An annular shaft having an inner peripheral portion and an outer peripheral portion centered on a predetermined movement center line, which is formed in an annular shape, the outer peripheral portion being in contact with and engaging with the inner peripheral portion of the bearing When,
A rotating shaft provided rotatably about the fixed center line as a center of rotation and having its outer peripheral portion abuttingly engaged with the inner peripheral portion of the annular shaft;
A central axis provided on the moving center line and abutting and engaging with the outer peripheral portion of the rotary shaft;
A plurality of driven shafts having the same outer peripheral portion as the rotating shaft and abutting and engaging the outer peripheral portion with the inner peripheral portion of the annular shaft and the outer peripheral portion of the central shaft;
A drive unit that rotationally drives the rotary shaft;
A drilling cutter provided on the annular shaft and disposed along an extended line connecting at least the center and the apex within a range of a Rouleau triangle centered on the moving centerline. Machine.
前記回転軸の中心から前記中心軸の中心に至る距離を[r]として前記軸受の内周部の直径を[8r]、前記環状軸の外周部の直径を[6r]、および前記環状軸の内周部の直径を[回転軸の直径+2r]と設定し、かつ、前記掘削カッタのルーロー三角形の外幅を[a]として前記掘削カッタを配置するルーロー三角形状の中心と頂点とを結ぶ延長線を[0.5a+r]と設定したことを特徴とする請求項4に記載の掘削機。   The distance from the center of the rotating shaft to the center of the central axis is [r], the diameter of the inner peripheral portion of the bearing is [8r], the diameter of the outer peripheral portion of the annular shaft is [6r], and the annular shaft The diameter of the inner periphery is set to [diameter of rotating shaft + 2r], and the outer width of the roulau triangle of the excavation cutter is set to [a] and the extension connecting the center and apex of the roulau triangle where the excavation cutter is arranged The excavator according to claim 4, wherein the line is set to [0.5a + r]. 前記回転軸の中心から前記中心軸の中心に至る距離[r]を、前記掘削カッタにおけるルーロー三角形の外幅[a]の6%〜8%として偏心量に設定したことを特徴とする請求項5に記載の掘削機。   The distance [r] from the center of the rotation axis to the center of the center axis is set as an eccentric amount as 6% to 8% of the outer width [a] of the Rouleau triangle in the excavation cutter. 5. The excavator according to 5.
JP2005259924A 2005-07-11 2005-09-07 Rotating mechanism and excavator Expired - Fee Related JP4496484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005259924A JP4496484B2 (en) 2005-07-11 2005-09-07 Rotating mechanism and excavator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005202289 2005-07-11
JP2005259924A JP4496484B2 (en) 2005-07-11 2005-09-07 Rotating mechanism and excavator

Publications (2)

Publication Number Publication Date
JP2007046439A true JP2007046439A (en) 2007-02-22
JP4496484B2 JP4496484B2 (en) 2010-07-07

Family

ID=37849488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005259924A Expired - Fee Related JP4496484B2 (en) 2005-07-11 2005-09-07 Rotating mechanism and excavator

Country Status (1)

Country Link
JP (1) JP4496484B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031578A (en) * 2010-07-28 2012-02-16 Lixil Corp Washing tank device and fixing method of fixing member to ball chain
JP2013185435A (en) * 2012-03-05 2013-09-19 Bauer Maschinen Gmbh Ditching machine and ground ditching method
CN116810807A (en) * 2022-10-19 2023-09-29 温州市日康机械科技厂 Mechanical arm
CN117052294A (en) * 2023-08-21 2023-11-14 江苏建院营造股份有限公司 Novel multi-shaft pore-forming pile improved construction equipment and construction method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031578A (en) * 2010-07-28 2012-02-16 Lixil Corp Washing tank device and fixing method of fixing member to ball chain
JP2013185435A (en) * 2012-03-05 2013-09-19 Bauer Maschinen Gmbh Ditching machine and ground ditching method
CN116810807A (en) * 2022-10-19 2023-09-29 温州市日康机械科技厂 Mechanical arm
CN116810807B (en) * 2022-10-19 2024-03-15 温州市日康机械科技厂 Mechanical arm
CN117052294A (en) * 2023-08-21 2023-11-14 江苏建院营造股份有限公司 Novel multi-shaft pore-forming pile improved construction equipment and construction method thereof

Also Published As

Publication number Publication date
JP4496484B2 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
JP2007016563A (en) Excavator
JP4496484B2 (en) Rotating mechanism and excavator
JP2007211403A (en) Eccentric rotary cutter type rectangular continuous hole excavating working machine
JP2007100421A (en) Rotating mechanism and excavator
JP2013249682A (en) Ground agitation device and manufacturing method of ground improvement square column body
JP2006336427A (en) Ground agitator and diaphragm wall construction method
JP2926125B2 (en) Rectangular shield device
JP2007070931A (en) Rotary-rod type rectangular pit excavation work machine and rectangular pit excavation working method
CN110118061B (en) Double-layer reverse annular drill bit and construction method thereof
JP2011226254A (en) Soil improvement device, and soil improvement method, earthquake resistant construction method and construction foundation practice using the same
CN105696562A (en) Insertion equipment for H-shaped piles and circular piles
JPH08120665A (en) Ground improvement apparatus
KR20080006147U (en) Earth auger machine
JP2007169892A (en) Rotary rod type rectangular vertical hole excavating working machine by reuleaux mechanism
JP6349295B2 (en) Excavator
JP7159032B2 (en) Excavator bulkhead and excavator
JP7194003B2 (en) excavator steel shell and excavator
JP2007205104A (en) Rotating mechanism and excavator
JP2007247208A (en) Work machine for excavating wide rectangular continuous hole
JP2007205103A (en) Rotating mechanism and excavator
JP2005256434A (en) Shield machine
JP7159029B2 (en) Rotary body for cutting and excavator
KR101360027B1 (en) Connected band of excavating rod of ground excavating device used in scw method
JPS5919205B2 (en) Ground excavation method
US11371202B1 (en) Ground improvement apparatus and ground improvement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100331

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130423

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees