JP2007045510A - Laminated steel sheet for two-piece can, and two-piece laminated can - Google Patents

Laminated steel sheet for two-piece can, and two-piece laminated can Download PDF

Info

Publication number
JP2007045510A
JP2007045510A JP2005234561A JP2005234561A JP2007045510A JP 2007045510 A JP2007045510 A JP 2007045510A JP 2005234561 A JP2005234561 A JP 2005234561A JP 2005234561 A JP2005234561 A JP 2005234561A JP 2007045510 A JP2007045510 A JP 2007045510A
Authority
JP
Japan
Prior art keywords
piece
steel sheet
laminated
adhesive
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005234561A
Other languages
Japanese (ja)
Other versions
JP4788234B2 (en
Inventor
Hiroshi Kubo
啓 久保
Katsumi Kojima
克己 小島
Yukei Nishihara
友佳 西原
Yoshihiko Yasue
良彦 安江
Hiroki Iwasa
浩樹 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005234561A priority Critical patent/JP4788234B2/en
Priority to PCT/JP2006/316130 priority patent/WO2007020955A1/en
Publication of JP2007045510A publication Critical patent/JP2007045510A/en
Application granted granted Critical
Publication of JP4788234B2 publication Critical patent/JP4788234B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/30Iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/66Cans, tins

Landscapes

  • Laminated Bodies (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated steel plate suitable for manufacturing a laminated two-piece can processed to a high extent which prevents a laminated resin layer from being peeled off and broken even if the laminated two-piece can is such a can body having a high degree of processing as an aerosol two-piece can, and to provide the laminated two-piece can having a high degree of processing high extent. <P>SOLUTION: The laminated steel plate is used for manufacturing such a two-piece can that a height h, a maximum radius r, and a minimum radius d of a final molded body and a radius R of a disc before molding which has the same weight as the final molded body satisfy inequalities: 0.1≤d/R≤0.25 and 1.5≤h/(R-r)≤4. At least one surface of the steel plate has a coating layer made of a polyolefin resin. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えばエアゾール缶のような加工度の高い2ピース缶の製造に好適なラミネート鋼板および加工度の高い2ピースラミネート缶に関するものである。   The present invention relates to a laminated steel plate suitable for manufacturing a two-piece can having a high degree of processing such as an aerosol can, and a two-piece laminated can having a high degree of processing.

エアゾール用金属容器には、大別して2ピース缶と3ピース缶が存在する。2ピース缶は、シーム部(溶接部)が存在しないことで外観が美麗である反面、一般的に加工程度が高い。3ピース缶はシーム部が存在することで、2ピース缶に比較すると、外観性が劣るが、一般的に加工程度が低い。この為、市場においては小容量で高級品には2ピース缶が多く使用され、大容量で低価格品には3ピース缶が多く使用されている。   There are roughly two-piece cans and three-piece cans for aerosol metal containers. The two-piece can has a beautiful appearance due to the absence of a seam portion (welded portion), but generally has a high degree of processing. The three-piece can has a seam portion, and its appearance is inferior to that of the two-piece can. However, the degree of processing is generally low. For this reason, in the market, two-piece cans are often used for small-scale and high-end products, and three-piece cans are often used for large-capacity and low-priced products.

エアゾール2ピース缶における金属素材は、一般的に、高価で板厚の厚いアルミニウムなどが用いられており、安価で板厚の薄いぶりきやティンフリースチールなどの鋼板素材はほとんど用いられていない。その理由は、エアゾール2ピース缶は加工度が高いため、絞り加工やDI加工の適用が難しく、アルミニウムでは軟質金属材料に対して適用可能なインパクト成形を適用して製造しているからである。このような状況下、安価で、薄くても強度の高いぶりきやティンフリースチールなどの鋼板素材を用いることができれば、産業的な意義は非常に大きい。   The metal material in the aerosol two-piece can is generally made of expensive and thick aluminum or the like, and inexpensive and thin steel plate materials such as tinplate and tin-free steel are hardly used. The reason is that the aerosol two-piece can has a high degree of processing, so that it is difficult to apply drawing or DI processing, and aluminum is manufactured by applying impact molding applicable to a soft metal material. Under such circumstances, industrial significance is very large if steel sheets such as tinplate and tin-free steel that are inexpensive and thin but have high strength can be used.

従来、ラミネート鋼板の絞り加工及びDI加工法は種々提案されているが、エアゾール2ピース缶のように絞り加工後に加工度の高い縮径加工を行う缶体の製造方法は検討されていない。   Conventionally, various methods for drawing and DI processing of laminated steel sheets have been proposed, but a method for producing a can body that performs diameter reduction processing with a high degree of processing after drawing, such as an aerosol two-piece can, has not been studied.

例えば、特許文献1〜3は、樹脂被覆金属板の絞り加工及び絞りしごき加工の加工方法を開示したものであるが、特許文献1〜3に記載の加工度(特許文献1〜3では絞り比)は本発明で規定するものよりも低い範囲にある。特許文献1〜3は飲料缶、食缶などをターゲットとしており、飲料缶、食缶は、本発明で規定する加工度の範囲より低い加工度の缶体であるためである。   For example, Patent Documents 1 to 3 disclose a processing method for drawing and drawing ironing of a resin-coated metal plate, but the degree of processing described in Patent Documents 1 to 3 (the drawing ratio in Patent Documents 1 to 3). ) Is in a range lower than that defined in the present invention. This is because Patent Documents 1 to 3 target beverage cans, food cans, and the like, and beverage cans and food cans are can bodies having a processing degree lower than the range of processing degrees defined in the present invention.

そこで、発明者らは、ラミネート鋼板を用いて、絞りしごき加工と縮径加工による多段成形によって加工度の高い2ピース缶を製造したところ、高加工特有の問題が発生、具体的には、樹脂層の剥離と破断の問題があった。したがって、エアゾール2ピース缶のような高加工度の缶体を製造するためには新たな製造法を検討する必要がある。
特公平7−106394号公報 特許第2526725号公報 特開2004−148324号公報
Therefore, the inventors manufactured a two-piece can with a high degree of processing by multi-stage forming by drawing ironing and shrinking using a laminated steel sheet, and a problem peculiar to high processing occurred. Specifically, resin There were problems of delamination and breakage of the layers. Therefore, it is necessary to study a new manufacturing method in order to manufacture a can body having a high workability such as an aerosol two-piece can.
Japanese Examined Patent Publication No. 7-106394 Japanese Patent No. 2526725 JP 2004-148324 A

本発明の課題は、上記問題点を解決し、エアゾール2ピース缶のような高加工度の缶体であってもラミネート樹脂層の剥離と破断を防止できる高加工度の2ピースラミネート缶の製造に好適なラミネート鋼板および加工度の高い2ピースラミネート缶を提供することである。   The object of the present invention is to solve the above-mentioned problems and produce a two-piece laminated can with high workability that can prevent peeling and breaking of the laminate resin layer even in a high-working can such as an aerosol two-piece can. It is to provide a laminated steel sheet suitable for the above and a two-piece laminated can having a high degree of processing.

上記課題を解決する本発明の手段は次のとおりである。   Means of the present invention for solving the above-mentioned problems are as follows.

(1)最終成形体の高さh、最大半径r、最小半径d(rとdが同じ場合を含む)が、最終成形体と重量が等価となる成形前の円状板の半径Rに対して、0.1≦d/R≦0.25、かつ1.5≦h/(R−r)≦4の関係を満足する2ピース缶の製造に使用するラミネート鋼板であって、鋼板の少なくとも片面に、ポリオレフィン樹脂の被覆層を有することを特徴とする2ピース缶用ラミネート鋼板(第1発明)。   (1) The height h, maximum radius r, and minimum radius d (including the case where r and d are the same) of the final molded body are compared with the radius R of the circular plate before molding in which the weight is equivalent to the final molded body. A laminated steel plate used for manufacturing a two-piece can satisfying the relationship of 0.1 ≦ d / R ≦ 0.25 and 1.5 ≦ h / (R−r) ≦ 4, A laminated steel plate for a two-piece can having a coating layer of a polyolefin resin on one side (first invention).

(2)前記ポリオレフィン樹脂は、鋼板面と接着性樹脂層を介してその上層として配置されていることを特徴とする(1)に記載の2ピース缶用ラミネート鋼板(第2発明)。   (2) The laminated steel sheet for a two-piece can according to (1), wherein the polyolefin resin is disposed as an upper layer via a steel sheet surface and an adhesive resin layer (second invention).

(3)前記ポリオレフィン樹脂層はポリプロピレン系樹脂であり、前記接着性樹脂層は接着性ポリエチレンと接着性ポリプロピレンの混合物であって、前記混合物中に接着性ポリエチレンは、質量比で8〜20%含有されることを特徴とする(2)に記載の2ピースラミネート缶(第3発明)。   (3) The polyolefin resin layer is a polypropylene resin, and the adhesive resin layer is a mixture of adhesive polyethylene and adhesive polypropylene, and the adhesive polyethylene is contained in the mixture in an amount of 8 to 20% by mass. The two-piece laminated can according to (2) (third invention),

(4)接着性ポリエチレンは、エチレンの単独重合体、またはエチレンと、1−ブテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−1−ペンテンうちから選ばれる1種以上のαオレフィンとのブロック又はランダム共重合体であり、接着性ポリプロピレンは、プロピレンの単独重合体、またはプロピレンと、エチレン、1−ブテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−1−ペンテンうちから選ばれる1種以上のαオレフィンとのブロック又はランダム共重合体であることを特徴とする(3)に記載の2ピース缶用ラミネート鋼板(第4発明)。   (4) Adhesive polyethylene is a homopolymer of ethylene or one or more α selected from ethylene and 1-butene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene. It is a block or random copolymer with olefin, and adhesive polypropylene is a homopolymer of propylene, or propylene and ethylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1 -A laminated steel sheet for a two-piece can according to (3), which is a block or random copolymer with at least one α-olefin selected from among pentenes (fourth invention).

(5)前記ポリプロピレン系樹脂はプロピレン・エチレンブロック共重合体であり、ブロック共重合体のプロピレン成分の比率が50モル%以上98モル%以下であることを特徴とする(3)または(4)に記載の2ピース缶用ラミネート鋼板(第5発明)。   (5) The polypropylene resin is a propylene / ethylene block copolymer, and the ratio of the propylene component of the block copolymer is 50 mol% or more and 98 mol% or less (3) or (4) 2 laminated steel sheet for cans (5th invention).

(6) (1)〜(5)のいずれかの項に記載のラミネート鋼板の円状板を多段成形して製造した2ピースラミネート缶であって、その最終成形体の高さh、最大半径r、最小半径d(rとdが同じ場合を含む)が、最終成形体と重量が等価となる成形前の円状板の半径Rに対して、0.1≦d/R≦0.25、かつ1.5≦h/(R−r)≦4の関係を満足することを特徴とする2ピースラミネート缶(第6発明)。   (6) A two-piece laminated can manufactured by multi-stage forming the circular plate of the laminated steel sheet according to any one of (1) to (5), wherein the final molded body has a height h and a maximum radius. r, the minimum radius d (including the case where r and d are the same) is 0.1 ≦ d / R ≦ 0.25 with respect to the radius R of the circular plate before molding that is equivalent in weight to the final molded body. And a two-piece laminate can characterized by satisfying a relationship of 1.5 ≦ h / (R−r) ≦ 4 (the sixth invention).

本発明のラミネート鋼板を素材として2ピース缶を製造することで、樹脂層の剥離と破断を防止して高加工度の2ピース缶を製造することができる。本発明法で製造された2ピース缶は、高加工度が必要なエアゾール2ピース缶等の用途に使用することができる。   By producing a two-piece can using the laminated steel sheet of the present invention as a raw material, it is possible to produce a two-piece can having a high workability while preventing the resin layer from peeling and breaking. The two-piece can manufactured by the method of the present invention can be used for applications such as an aerosol two-piece can that requires a high degree of processing.

本発明の実施の形態と限定理由について説明する。   The embodiment of the present invention and the reason for limitation will be described.

図1は本発明の缶体の製造工程の一実施形態を説明する図で、円形状ブランクを絞り加工(DI加工を含む)で有底筒状の成形体に成形し、さらに前記の成形体の開口部近傍を縮径加工して、開口部付近が縮径された2ピース缶を製造する工程順を示している。   FIG. 1 is a diagram for explaining an embodiment of a can manufacturing process according to the present invention, in which a circular blank is formed into a bottomed cylindrical formed body by drawing (including DI processing), and the formed body is further described. The order of steps for manufacturing a two-piece can in which the vicinity of the opening is reduced in diameter and the vicinity of the opening is reduced is shown.

図1において、1は加工前の円板状ブランク(ブランクシート)、2は基体部で成形体のストレート壁部分(工程Dでは縮径加工されていないストレート壁部分)、3はドーム形状部、4はネック形状部で縮径加工されたストレート壁部分、5はテーパ形状部で、縮径加工後のテーパ壁部分である。   In FIG. 1, 1 is a disc-shaped blank (blank sheet) before processing, 2 is a base portion and a straight wall portion of the molded body (a straight wall portion not subjected to diameter reduction processing in Step D), 3 is a dome-shaped portion, Reference numeral 4 denotes a straight wall portion that has been reduced in diameter by the neck shape portion, and reference numeral 5 denotes a tapered shape portion that is a tapered wall portion after the diameter reduction processing.

まず円状板ブランク1に1段または複数段の絞り加工(DI加工を含む)を行い、所定の缶径(半径r;缶外面の半径)を有する有底筒状の成形体に成形する(工程A)。次に成形体の底部を上方に凸状形状に成形してドーム形状部3を形成するドーム加工を行い(工程B)、さらに成形体の開口側端部をトリムする(工程C)。次に成形体の開口側部分に1段または複数段の縮径加工を行い成形体の開口部側部分を所定の缶径(半径d;缶外面の半径)に縮径加工し、所望の最終成形体(2ピース缶)を得る。図中、R0は成形前円状板ブランク1の半径、h、r、dは、各々、成形途中の段階の成形体または最終成形体の高さ、最大半径、最小半径、Rは最終成形体と重量が等価となる成形前の円状板の半径R最終成形体と重量が等価となる成形前の円状板の半径である。本2ピース缶の製造工程では、工程Aは最大半径と最小半径が同一、すなわちr=dであり、工程Dはr>dである。   First, one or a plurality of stages of drawing (including DI processing) is performed on the circular plate blank 1 to form a bottomed cylindrical molded body having a predetermined can diameter (radius r; radius of can outer surface) ( Step A). Next, the bottom of the molded body is formed in a convex shape upward to perform dome processing for forming the dome-shaped portion 3 (step B), and the opening side end of the molded body is trimmed (step C). Next, one or more stages of diameter reduction processing are performed on the opening side portion of the molded body to reduce the diameter of the opening side portion of the molded body to a predetermined can diameter (radius d: radius of the can outer surface). A molded body (2-piece can) is obtained. In the figure, R0 is the radius of the circular blank 1 before molding, h, r, and d are the height of the molded body or final molded body in the middle of molding, the maximum radius, the minimum radius, and R is the final molded body, respectively. And the radius R of the circular plate before molding that is equivalent to the weight R and the radius of the circular plate before molding that is equivalent in weight to the final molded body. In the manufacturing process of the two-piece can, the maximum radius and the minimum radius of the process A are the same, that is, r = d, and the process D is r> d.

最終成形体と重量が等価となる成形前の円状板の半径Rは、最終成形体の測定重量に基づき決定される。すなわち、最終成形体の重量を測定し、この重量と同じにな重量になる成形前の円状板の寸法(半径)を求め、これを最終成形体と重量が等価となる成形前の円状板の半径Rとする。缶体の製造工程の途中で缶端部がトリムされるが、最終成形体と重量が等価となる成形前の円状板の半径Rは、トリムの影響が排除されているので、より適切な加工度の評価が可能になる。   The radius R of the circular plate before molding that is equivalent in weight to the final molded body is determined based on the measured weight of the final molded body. That is, the weight of the final molded body is measured, the dimension (radius) of the circular plate before molding that becomes the same weight as this weight is obtained, and this is the circular shape before molding in which the weight is equivalent to the final molded body. Let it be the radius R of the plate. The can end is trimmed during the manufacturing process of the can body, but the radius R of the circular plate before molding, which is equivalent in weight to the final molded body, is more appropriate because the influence of trim is eliminated. The degree of processing can be evaluated.

このように円状板ブランクに絞り加工(DI加工を含む)、縮径加工を適用して作成される2ピース缶においては、樹脂層は、高さ方向に伸ばされ周方向に縮むこととなる。加工度が高い場合、樹脂の変形量が大きくなり、樹脂層の破断につながる。本発明では加工度の指標として、縮み程度を表すパラメータd/Rだけでなく、さらに缶高さ方向の伸びと関連するパラメータh/(R−r)を用いる。これは、高加工度領域において、加工度を表現するのに、絞り比に加えて、伸び量も加味する必要があるからである。即ち、縮みの程度と伸びの程度で加工度を規定することで、樹脂層の変形度合いを定量化していることとなる。樹脂層は高さ方向に伸び、周方向に縮むことで、剥離しやすくなるので、縮みの程度に加えて、高さ方向の伸び量も重要な因子となる。   Thus, in a two-piece can created by applying drawing (including DI processing) and diameter reduction processing to a circular plate blank, the resin layer is stretched in the height direction and contracted in the circumferential direction. . When the degree of processing is high, the amount of deformation of the resin increases, leading to the breakage of the resin layer. In the present invention, not only the parameter d / R indicating the degree of shrinkage but also the parameter h / (R−r) related to the elongation in the can height direction is used as an index of the degree of processing. This is because, in the high workability region, it is necessary to consider the elongation amount in addition to the drawing ratio in order to express the workability. That is, by defining the degree of processing by the degree of shrinkage and the degree of elongation, the degree of deformation of the resin layer is quantified. Since the resin layer extends in the height direction and shrinks in the circumferential direction, it becomes easy to peel off. In addition to the degree of shrinkage, the amount of elongation in the height direction is an important factor.

本発明では、最終的に製造された缶体(最終成形体)の加工度について、最終成形体の高さh、最大半径r、最小半径dを、最終成形体と重量が等価となる成形前の円状板の半径Rに対して、0.1≦d/R≦0.25、かつ1.5≦h/(R−r)≦4の缶径を満足する範囲に規定する。   In the present invention, regarding the degree of processing of the finally manufactured can body (final molded body), the height h, the maximum radius r, and the minimum radius d of the final molded body are set so that the weight is equivalent to that of the final molded body. Is defined in a range satisfying the can diameter of 0.1 ≦ d / R ≦ 0.25 and 1.5 ≦ h / (R−r) ≦ 4.

前述したように、本発明の目的は、ラミネート鋼板を用いて、従来技術では困難であった高加工度の缶体を製造できるようにすることである。従来技術では、ラミネート鋼板を用いて、縮みの程度を規定するパラメータd/Rが0.25以下を満足し、かつ伸びの程度を規定するパラメータh/(R−r)が1.5以上を同時に満足する高加工度の缶体を製造することが困難であった。そのため、本発明では、製造する缶体の加工度d/Rを0.25以下、かつh/(R−r)を1.5以上に規定した。   As described above, an object of the present invention is to make it possible to manufacture a can body having a high workability, which has been difficult with the prior art, by using a laminated steel plate. In the prior art, using a laminated steel sheet, the parameter d / R that defines the degree of shrinkage satisfies 0.25 or less, and the parameter h / (R−r) that defines the degree of elongation is 1.5 or more. At the same time, it was difficult to produce a can with a high degree of processing that was satisfactory. Therefore, in the present invention, the working degree d / R of the can body to be manufactured is regulated to 0.25 or less, and h / (R−r) is regulated to 1.5 or more.

縮みの程度を規定するパラメータd/Rが0.1以下になり、または伸びの程度を規定するパラメータh/(R−r)が4を超える高い加工度であると、成形が可能であってもいたずらに成形段数が増加したり、または加工硬化に伴い板の伸び限界に達し、板破断する問題が生じたりするためである。そのため、本発明では、製造する缶体の加工度について、0.1≦d/R、かつh/(R−r)≦4と規定した。   Molding is possible when the parameter d / R that defines the degree of shrinkage is 0.1 or less, or the parameter h / (R−r) that defines the degree of elongation is a high degree of processing exceeding 4. This is because the number of forming steps increases unnecessarily, or the elongation limit of the plate is reached with work hardening, and the plate breaks. Therefore, in the present invention, the degree of processing of the can body to be manufactured is defined as 0.1 ≦ d / R and h / (R−r) ≦ 4.

なお、本発明が対象とする多段成形は、絞り加工、絞り・しごき加工、縮径加工のうちのいずれかの加工またはこれらを組み合わせた加工である。縮径加工を含む場合は、最終成形体の寸法dは、r>dである。縮径加工を含まない場合は、最終成形体の寸法はr=d(r、dは最終成形体の缶径)である。   Note that the multi-stage forming that is the subject of the present invention is any one of drawing, drawing / ironing, diameter reduction, or a combination of these. When the diameter reduction process is included, the dimension d of the final molded body is r> d. When the diameter reduction processing is not included, the size of the final molded body is r = d (r and d are can diameters of the final molded body).

一般的に飲料缶や食缶に使用されるラミネート鋼板の樹脂種は、ポリエチレンテレフタレートに代表されるポリエステルであるが、発明者らの検討結果によると、前述の高加工度の成形においては、ポリオレフィンが好適であることが判明した。一般的にポリオレフィン樹脂は、ポリエステル系に比較すると、安価で、変形性に富む反面、耐熱性や強度に劣る。しかし、高加工度の成形においては変形のし易さが特に重要となり、この為、ポリエステル系樹脂よりもポリオレフィン系樹脂が適切となる。換言すれば、高加工度の成形に対して、ポリエステル系樹脂は加工限界で破断しやすく、ポリオレフィンは、加工限界が高いため、加工に追随し易い。   In general, the resin type of laminated steel plates used in beverage cans and food cans is polyester represented by polyethylene terephthalate, but according to the results of investigations by the inventors, in the above-mentioned high workability molding, polyolefin Was found to be suitable. In general, a polyolefin resin is cheaper and more deformable than a polyester resin, but is inferior in heat resistance and strength. However, ease of deformation is particularly important in molding with a high degree of processing, and for this reason, polyolefin resins are more suitable than polyester resins. In other words, the polyester-based resin easily breaks at the processing limit, while the polyolefin has a high processing limit, and easily follows the processing for molding with a high processing degree.

また、絞り加工においては、これほどの加工度の成形を行う場合、通常、数〜十数段の加工段階が必要となり、相対的に1段階毎の加工度は小さくなる。その結果、加工による発熱量は却って小さくなり、耐熱性に劣るポリオレフィン樹脂を適用しても問題が無い。   In the drawing process, when forming with such a degree of processing, usually, several to tens of processing steps are required, and the processing degree for each step is relatively small. As a result, the calorific value due to processing becomes smaller, and there is no problem even if a polyolefin resin having poor heat resistance is applied.

樹脂層の変形のし易さは、加工の追随性と伴に、内部応力の蓄積にも関連する。即ち、同じ変形量の変形に対して、変形し易いポリオレフィン樹脂系のものは、変形しにくいポリエステル系のものに対して発生する内部応力が小さい。その結果、変形による密着性の劣化に対してもポリオレフィン系が有利となる。このような理由に基いて、第1発明は、ラミネート鋼板の樹脂層をオレフィンに限定した。   The ease of deformation of the resin layer is related to the accumulation of internal stress as well as the process following ability. That is, for the same amount of deformation, the polyolefin resin-based material that is easily deformed has a smaller internal stress generated than the polyester-based material that is difficult to deform. As a result, the polyolefin system is advantageous for the deterioration of adhesion due to deformation. Based on such a reason, the 1st invention limited the resin layer of the laminated steel plate to the olefin.

樹脂層の膜厚は特に限定されないが、10μm以上50μm以下が好ましい。フィルムラミネートの場合、10μm未満のフィルムコストは一般的に高価になり、また、膜厚は厚いほど加工性に優れるが高価になり、50μmを超えた場合は、加工性に対する寄与は飽和しており、高価となるためである。   Although the film thickness of a resin layer is not specifically limited, 10 micrometers or more and 50 micrometers or less are preferable. In the case of film lamination, the film cost of less than 10 μm is generally expensive, and the thicker the film thickness, the better the workability, but the higher the cost. When it exceeds 50 μm, the contribution to processability is saturated. This is because it becomes expensive.

本発明で規定するラミネート鋼板は、鋼板の少なくとも片面に本発明で規定する樹脂層が被覆されていればよい。   The laminated steel sheet defined by the present invention only needs to cover at least one surface of the steel sheet with the resin layer defined by the present invention.

第2発明は、前記ポリオレフィン樹脂は、鋼板面と接着性樹脂層を介してその上層として配置されること、すなわち接着性樹脂からなる樹脂層を鋼板との間に設ける規定をしている。これは、接着性樹脂層を配置することで鋼板との密着力を強化する為である。ポリオレフィン系樹脂は、加工による内部応力の増加という点では、ポリエステル系樹脂より有利であるが、加工前の初期密着性は一般的にポリエステルに劣る。この為、密着性が特に必要となる加工や、密着力の劣るオレフィン樹脂の適用に対しては接着性樹脂を介すると良い。接着層は、上層と鋼板を強く接着する層であれば良い。   The second invention prescribes that the polyolefin resin is disposed as an upper layer via a steel plate surface and an adhesive resin layer, that is, a resin layer made of an adhesive resin is provided between the steel plate and the steel plate. This is because the adhesive strength with the steel sheet is enhanced by disposing the adhesive resin layer. Polyolefin resins are more advantageous than polyester resins in terms of increasing internal stress due to processing, but initial adhesion before processing is generally inferior to polyester. For this reason, it is preferable to use an adhesive resin for processing that particularly requires adhesion, and for application of an olefin resin having poor adhesion. The adhesive layer may be a layer that strongly bonds the upper layer and the steel plate.

第3発明は、接着性樹脂層とその上層のポリオレフィン樹脂の好適な組み合わせを開示したものである。上層をポリオレフィン樹脂に限定したのは、オレフィンは伸び性に優れるからである。鋼板面と接する下層樹脂層は、接着性(熱接着性)ポリプロピレンと接着性(熱接着性)ポリエチレンを主成分樹脂とし、これら両樹脂は混合して使用される。接着性樹脂層を接着性ポリエチレンと接着性ポリプロピレンの混合物とするのは、この接着性樹脂層は、ポリプロピレン系の熱接着性樹脂を単独で用いるよりも、ポリエチレン系樹脂を混合した接着層とする方が加工後の密着性に対して有利であったことによる。   The third invention discloses a suitable combination of an adhesive resin layer and an upper polyolefin resin. The reason why the upper layer is limited to polyolefin resin is that olefin is excellent in elongation. The lower resin layer in contact with the steel plate surface is composed of adhesive (thermal adhesive) polypropylene and adhesive (thermal adhesive) polyethylene as main components, and these two resins are used in combination. The adhesive resin layer is made of a mixture of adhesive polyethylene and adhesive polypropylene. This adhesive resin layer is an adhesive layer in which a polyethylene resin is mixed rather than using a polypropylene-based thermal adhesive resin alone. This is because it is more advantageous for adhesion after processing.

接着性ポリエチレンの含有量を8〜20%に規定したのは、8%を下回ると密着性が劣り、ポリエチレン系樹脂の比率が高くなると上層との密着力が低減し、20%を超えると加工によっては層間剥離が生ずる危険があるためである。   The adhesive polyethylene content is defined as 8 to 20% because the adhesion is inferior when the content is less than 8%, and the adhesion with the upper layer is reduced when the ratio of the polyethylene resin is increased, and the processing is performed when the content exceeds 20%. This is because there is a risk that delamination may occur.

上記の接着性ポリプロピレンは、プロピレンの単独重合体、若しくはプロピレンとαオレフィンとのブロック又はランダム共重合体である。後者の場合のαオレフィンとしては、エチレン、1−ブテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−1−ペンテン等が挙げられ、これらの1種又は2種以上を用いることができる。接着性ポリプロピレンのメルトフロレート(MFR JIS K6758)は0.5〜20g/10minであることが好ましい。   The adhesive polypropylene is a propylene homopolymer, or a block or random copolymer of propylene and α-olefin. Examples of the α-olefin in the latter case include ethylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene, etc., and use one or more of these. Can do. The melt flow rate (MFR JIS K6758) of the adhesive polypropylene is preferably 0.5 to 20 g / 10 min.

接着性ポリプロピレンは、ポリプロピレン樹脂に不飽和カルボン酸及び/又はその誘導体を導入することで接着性(熱接着性)を付与したものが好ましい。この酸変性に使用する不飽和カルボン酸又はその誘導体としては、マレイン酸、アクリル酸、フマール酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、ナジック酸などの不飽和カルボン酸又はその誘導体、例えば、アミド、イミド、無水物、エステル、酸ハライドなどが挙げられ、これらの1種又は2種以上を用いることができるが、無水マレイン酸を用いるのが一般的である。これらの不飽和カルボン酸及び/又はその誘導体をポリプロピレンに導入する方法は、グラフト重合が一般的である。特に、無水マレイン酸を0.01〜5質量%とするグラフト重合が好ましい。   The adhesive polypropylene preferably has an adhesive property (thermal adhesive property) by introducing an unsaturated carboxylic acid and / or a derivative thereof into a polypropylene resin. As the unsaturated carboxylic acid or derivative thereof used for this acid modification, unsaturated carboxylic acid or derivative thereof such as maleic acid, acrylic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, nadic acid, For example, amides, imides, anhydrides, esters, acid halides and the like can be used, and one or more of these can be used, but maleic anhydride is generally used. Graft polymerization is common as a method for introducing these unsaturated carboxylic acids and / or derivatives thereof into polypropylene. In particular, graft polymerization in which maleic anhydride is 0.01 to 5% by mass is preferable.

上記接着性ポリプロピレン系樹脂に混合する接着性ポリエチレンとしては、エチレンの単独重合体、若しくはエチレンとαオレフィンとのブロック又はランダム共重合体であるが、上層との密着性を確保するためには後者の共重合体が好ましい。ポリエチレン樹脂がエチレンとαオレフィンとのブロック又はランダム共重体である場合、側鎖を与えるαオレフィンの量は1〜25モル%が望ましい。αオレフィンの量が1モル%未満では上層のポリプロピレン系樹脂層との密着性が低下し、一方、25モル%を超えると常温での粘着性が増大し、製膜が難しくなる。αオレフィンとしては、プロピレン、1−ブテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−1−ペンテンが挙げられ、これらの1種又は2種以上を用いることができる。なお、上記ポリエチレン樹脂の特に好ましい共重合体はランダム共重合体である。   The adhesive polyethylene to be mixed with the adhesive polypropylene-based resin is an ethylene homopolymer, or a block or random copolymer of ethylene and α-olefin, but the latter is required to ensure adhesion with the upper layer. These copolymers are preferred. When the polyethylene resin is a block or random copolymer of ethylene and α-olefin, the amount of α-olefin that gives a side chain is preferably 1 to 25 mol%. If the amount of α-olefin is less than 1 mol%, the adhesiveness with the upper polypropylene resin layer is lowered. On the other hand, if it exceeds 25 mol%, the adhesiveness at room temperature increases and film formation becomes difficult. Examples of the α-olefin include propylene, 1-butene, 1-hexene, 1-heptene, 1-octene, and 4-methyl-1-pentene, and one or more of these can be used. A particularly preferable copolymer of the polyethylene resin is a random copolymer.

上記接着性ポリエチレンのメルトフローレート(MFR ASTM D1238)は製膜性の観点から0.5〜50g/10minであることが望ましい。   The melt flow rate (MFR ASTM D1238) of the adhesive polyethylene is preferably 0.5 to 50 g / 10 min from the viewpoint of film forming properties.

上記接着性ポリエチレンは、ポリエチレン樹脂に不飽和カルボン酸及び/又はその誘導体を導入することで接着性(熱接着性)を付与したものが好ましい。この酸変性に使用する不飽和カルボン酸又はその誘導体としては、マレイン酸、アクリル酸、フマール酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、ナジック酸などの不飽和カルボン酸又はその誘導体、例えば、アミド、イミド、無水物、エステル、酸ハライド等が挙げられ、これらの1種又は2種以上を用いることができるが、無水マレイン酸、アクリル酸メチル、メタクリル酸メチル等を用いるのが一般的である。また、そのなかでも耐食性の観点からは無水マレイン酸を単独で若しくは無水マレイン酸と他の不飽和カルボン酸の1種又は2種以上を混合したものを用いるのが好ましい。   The adhesive polyethylene preferably has an adhesive property (thermal adhesive property) by introducing an unsaturated carboxylic acid and / or a derivative thereof into a polyethylene resin. As the unsaturated carboxylic acid or derivative thereof used for this acid modification, unsaturated carboxylic acid or derivative thereof such as maleic acid, acrylic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, nadic acid, For example, amides, imides, anhydrides, esters, acid halides and the like can be used, and one or more of these can be used. Maleic anhydride, methyl acrylate, methyl methacrylate, etc. are generally used. Is. Among these, from the viewpoint of corrosion resistance, it is preferable to use maleic anhydride alone or a mixture of maleic anhydride and one or more of other unsaturated carboxylic acids.

また、グリシジルメタクリレート、酢酸ビニル、アクリル酸メチル、アイオノマーをそれぞれ単独で、若しくは2種以上を混合して用いてもよい。これらの不飽和カルボン酸及び/又はその誘導体をポリエチレンに導入する方法としては、グラフト重合、ランダム重合、ブロック重合が挙げられる。特に、無水マイレン酸を0.01〜5質量%とするグラフト重合が好ましい。   Further, glycidyl methacrylate, vinyl acetate, methyl acrylate, and ionomer may be used alone or in admixture of two or more. Examples of methods for introducing these unsaturated carboxylic acids and / or derivatives thereof into polyethylene include graft polymerization, random polymerization, and block polymerization. In particular, graft polymerization in which maleic anhydride is 0.01 to 5% by mass is preferable.

上記接着性ポリプロピレンと接着性ポリエチレンからなる接着層樹脂は、接着性ポリエチレン8〜20モル%となるよう混合することを定めた。接着性ポリエチレンの割合が8モル%未満では下地鋼板との密着性が劣る。逆に接着性ポリエチレンの割合が20モル%を超えると、主層(上層)との剥離が生じやすくなるため不適となる。   It was determined that the adhesive layer resin composed of the above adhesive polypropylene and adhesive polyethylene was mixed so as to be 8 to 20 mol% of adhesive polyethylene. When the proportion of the adhesive polyethylene is less than 8 mol%, the adhesion with the base steel plate is poor. On the other hand, if the proportion of the adhesive polyethylene exceeds 20 mol%, it becomes unsuitable because peeling from the main layer (upper layer) tends to occur.

また、接着性樹脂には、前記以外の配合物も、本発明の効果を損なわない限度で適量配合できる。   In addition, an appropriate amount of a compound other than the above can be blended with the adhesive resin as long as the effects of the present invention are not impaired.

上記接着性ポリプロピレンと接着性ポリエチレンからなる接着層の厚みは特に限定しないが、2〜10μmであると好適である。接着層の厚みが2μm未満の場合、接着性樹脂が局所的に薄い箇所ができやすく、鋼板の被覆が局所的に劣化し、密着性が損なわれる危険性がある。一方、接着性樹脂は一般的に高価であり、接着層厚みを10μmよりも厚くした場合、性能的には問題は発生しないが、経済性に劣るため実用的ではない。   The thickness of the adhesive layer composed of the adhesive polypropylene and adhesive polyethylene is not particularly limited, but is preferably 2 to 10 μm. When the thickness of the adhesive layer is less than 2 μm, a portion where the adhesive resin is locally thin is likely to be formed, and there is a risk that the coating of the steel plate is locally degraded and the adhesion is impaired. On the other hand, the adhesive resin is generally expensive, and when the thickness of the adhesive layer is greater than 10 μm, there is no problem in terms of performance, but it is not practical because it is economically inferior.

第5発明に示すプロピレン・エチレンブロック共重合体は、ポリプロピレン樹脂中にポリエチレン成分が粒状に分散する海島構造をとることが知られている。マトリックスのポリプロピレン(海の部分)はポリエチレンに比較して強度が高いという特徴があり、ハンドリングの面(耐疵付き性など)で有利であり、ポリエチレン成分(島の部分)はポリプロピレンに比較して柔軟であるという特徴を有する。   The propylene / ethylene block copolymer shown in the fifth invention is known to have a sea-island structure in which a polyethylene component is dispersed in a granular form in a polypropylene resin. Polypropylene in the matrix (sea part) is characterized by higher strength compared to polyethylene, which is advantageous in terms of handling (such as wrinkle resistance), and the polyethylene component (island part) compared to polypropylene. It has the characteristic of being flexible.

高加工に際して、樹脂層は分子が加工方向に並んでいく(配向)傾向があり、その結果、内部応力が上昇していき、剥離が生じやすくなる。しかしながら、海島構造を有するこのような樹脂系においては、島部が存在することで、その内部応力が緩和される。これは、柔軟なポリエチエン部が変形することで内部応力を緩和しているものと考えられる。ポリプロピレン成分の比率を50モル%以上98モル%以下に規定したのは、この観点で設定されたものであり、98モル%を超えると、上述の海島構造の利点を活かす事ができなくなり、50モル%を下回ると上述の海島構造が維持できない為、格別の効果が得られない。   During high processing, the resin layer has a tendency that molecules are aligned (orientated) in the processing direction. As a result, internal stress increases and peeling tends to occur. However, in such a resin system having a sea-island structure, the internal stress is relieved by the presence of the island portion. This is considered that the internal stress is relieved by the deformation of the flexible polyethylene part. The reason why the ratio of the polypropylene component is defined as 50 mol% or more and 98 mol% or less is set from this viewpoint. If the ratio exceeds 98 mol%, the advantages of the sea-island structure described above cannot be utilized. If it is less than mol%, the above-mentioned sea-island structure cannot be maintained, so that a special effect cannot be obtained.

本発明のラミネート鋼板は、樹脂層中に顔料や滑剤、安定剤などの添加剤を加えて用いても良いし、本発明で規定する樹脂層に加えて他の機能を有する樹脂層を上層または下地鋼板、接着性樹脂層があるときは該接着性樹脂層との中間層に配置しても良い。   The laminated steel sheet of the present invention may be used by adding additives such as pigments, lubricants, stabilizers, etc. in the resin layer, or in addition to the resin layer defined in the present invention, an upper layer or a resin layer having other functions may be used. When there is a base steel plate or an adhesive resin layer, it may be arranged in an intermediate layer with the adhesive resin layer.

鋼板へのラミネート方法は特に限定されないが、2軸延伸フィルム、あるいは無延伸フィルムを熱圧着させる熱圧着法、Tダイなどを用いて鋼板上に直接樹脂層を形成させる押し出し法など適宜選択すればよく、いずれも十分な効果が得られることが確認されている。   The method of laminating to the steel plate is not particularly limited, and it may be appropriately selected, such as a thermocompression bonding method in which a biaxially stretched film or an unstretched film is thermocompression bonded, or an extrusion method in which a resin layer is directly formed on a steel plate using a T die. In all cases, it has been confirmed that sufficient effects can be obtained.

本発明で規定するラミネート鋼板は、下地金属板は鋼板であるので、アルミニウムなどに比較して安価であり、経済性に優れるからである。鋼板は、一般的なティンフリースチールやぶりきなどを用いると良い。ティンフリースチールは、例えば、表面に付着量50〜200mg/mの金属クロム層と、金属クロム換算の付着量が3〜30mg/mのクロム酸化物層を有することが好ましい。ぶりきは0.5〜15g/mのめっき量を有するものが好ましい。板厚は、特に限定されないが、例えば、0.15〜0.30mmの範囲のものを適用できる。また、経済性を考慮に入れなければ、本技術はアルミニウム素材にも単純に適用できる。 This is because the laminated steel sheet defined in the present invention is cheaper and more economical than aluminum or the like because the base metal sheet is a steel sheet. As the steel plate, it is preferable to use general tin-free steel or tinplate. Tin-free steel, for example, a metal layer of chromium coating weight 50-200 mg / m 2 on the surface, the adhesion amount of metal chromium conversion preferably has an chromium oxide layer of 3 to 30 mg / m 2. The tinplate preferably has a plating amount of 0.5 to 15 g / m 2 . Although plate | board thickness is not specifically limited, For example, the thing of the range of 0.15-0.30 mm is applicable. Moreover, this technology can be simply applied to an aluminum material if economic efficiency is not taken into consideration.

本発明のラミネート鋼板を用いて多段成形して2ピース缶を製造する際は、樹脂層の剥離を防止するために、加工途中の段階や最終工程で成形体をポリオレフィン樹脂のガラス転移点以上の温度に加熱する熱処理をすることで加工による配向を消失させることも適宜実施してよい。   When producing a two-piece can by multi-stage forming using the laminated steel sheet of the present invention, in order to prevent the peeling of the resin layer, the molded product is not less than the glass transition point of the polyolefin resin in the middle of processing or in the final step. The orientation caused by the processing may be appropriately eliminated by performing a heat treatment that is heated to a temperature.

熱処理の方法については、特に限定されるものではなく、電気炉、ガスオーブン、赤外炉、インダクションヒーターなどで同様の効果が得られることが確認されている。また、加熱速度、加熱時間、冷却速度は効果に応じて適宜選択すればよいが、加熱速度は速いほど効率的であり、加熱時間の目安は15秒〜60秒程度であるが、この範囲に限定されるものではなく、冷却速度は速い方が良いが、効果に応じて適宜選択すればよい。   The heat treatment method is not particularly limited, and it has been confirmed that the same effect can be obtained with an electric furnace, a gas oven, an infrared furnace, an induction heater, or the like. The heating rate, heating time, and cooling rate may be appropriately selected according to the effect, but the higher the heating rate, the more efficient, and the approximate heating time is about 15 seconds to 60 seconds. The cooling rate is not limited, and it is preferable that the cooling rate is fast. However, the cooling rate may be appropriately selected according to the effect.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

「ラミネート鋼板の作製」
下地金属板として厚さ0.20mmのT4CA、TFS(金属Cr層:120mg/m、Cr酸化物層:金属Cr換算で10mg/m)を用い、この原板に対して、フィルムラミネート法(フィルム熱圧着法)、あるいはダイレクトラミネート法(直接押し出し法)を用いて種々の樹脂層を形成させた。尚、フィルムラミネートについては、2軸延伸フィルムを用いたものと無延伸フィルムを用いたものの2通りを実施した。金属板の両面に各々上層厚さ45μm、下層(接着性樹脂層)厚さ5μmのフィルムをラミネートした。
"Production of laminated steel sheet"
T4CA and TFS (metal Cr layer: 120 mg / m 2 , Cr oxide layer: 10 mg / m 2 in terms of metal Cr) having a thickness of 0.20 mm were used as the base metal plate. Various resin layers were formed using a film thermocompression bonding method) or a direct laminating method (direct extrusion method). In addition, about the film lamination, two types, what used the biaxially stretched film and what used the unstretched film, were implemented. A film having an upper layer thickness of 45 μm and a lower layer (adhesive resin layer) thickness of 5 μm was laminated on both surfaces of the metal plate.

ラミネート鋼板の製造方法と作製したラミネート鋼板の内容を表1に示す。   Table 1 shows the production method of the laminated steel sheet and the contents of the produced laminated steel sheet.

ラミネート法は次のとおりである。
フィルム熱圧着法1:2軸延伸法で作成したフィルムを、鋼板を樹脂の融点+10℃まで加熱した状態で、ニップロールにて熱圧着し、次いで7秒以内に水冷によって冷却した。
フィルム熱圧着法2:無延伸フィルムを、鋼板を樹脂の融点+10℃まで加熱した状態でニップロールにて熱圧着し、次いで7秒以内に水冷によって冷却した。
直接押し出し法:樹脂ペレットを押し出し機にて混練、溶融させ、Tダイより、走行中の鋼板上に被覆し、次いで樹脂被覆された鋼板を80℃の冷却ロールにてニップ冷却させ、更に、水冷によって冷却した。
尚、接着性樹脂層は共押し出し法にて、上層とともに、押し出し機及びTダイより押し出され、フィルムを形成、あるいは直接鋼板上に形成される。
比較例の塗装鋼板は、エポキシ系熱硬化樹脂を塗布し、220℃で10分加熱して厚さ8μmの塗膜を形成した。
The laminating method is as follows.
Film thermocompression bonding method 1: A film prepared by the biaxial stretching method was subjected to thermocompression bonding with a nip roll in a state where the steel sheet was heated to the melting point of the resin + 10 ° C., and then cooled by water cooling within 7 seconds.
Film thermocompression bonding method 2: An unstretched film was thermocompression bonded with a nip roll while the steel sheet was heated to the melting point of the resin + 10 ° C., and then cooled by water cooling within 7 seconds.
Direct extrusion method: resin pellets are kneaded and melted with an extruder, coated on a running steel plate from a T-die, and then the resin-coated steel plate is nip-cooled with an 80 ° C. cooling roll, and further water-cooled Cooled by.
The adhesive resin layer is extruded together with the upper layer from an extruder and a T die by a co-extrusion method to form a film or directly on a steel plate.
The coated steel sheet of the comparative example was coated with an epoxy thermosetting resin and heated at 220 ° C. for 10 minutes to form a coating film having a thickness of 8 μm.

Figure 2007045510
Figure 2007045510

「缶体成形」
作製した供試鋼板を用いて、図1に示した製造工程に準じて、以下の手順で缶体(最終成形体)を作製した。中間成形体(工程C)及び最終成形体(工程D)の形状を表2に示す。工程Aの絞り加工は5段階で行い、工程Dの縮径加工は7段階で行った。
"Can body molding"
Using the produced test steel plate, a can body (final formed body) was produced according to the following procedure in accordance with the production process shown in FIG. Table 2 shows the shapes of the intermediate molded body (process C) and the final molded body (process D). The drawing process of the process A was performed in 5 stages, and the diameter reduction process of the process D was performed in 7 stages.

表2において、最終成形体(工程D)のh、r、d、ha、hc、Rは、各々最終成形体の開口端部までの高さ、基体部2の直径、ネック形状部3の直径、基体部2の高さ、ネック形状部3の高さ、最終成形体と重量が等価となる成形前の円状板ブランクの半径である(図1参照)。円状板ブランクの半径Rは、次のようにして求めた。成形前のブランクシートの重量及びトリム工程後の最終成形体の重量を測定し、この測定結果に基づき、最終成形体と重量が等価となる成形前ブランクシートの半径を求め、この半径を最終成形体と重量が等価となる成形前の円状板ブランクの半径Rとした。   In Table 2, h, r, d, ha, hc, and R of the final molded body (step D) are the height to the open end of the final molded body, the diameter of the base portion 2, and the diameter of the neck shape portion 3, respectively. The height of the base body 2, the height of the neck-shaped portion 3, and the radius of the circular plate blank before molding that is equivalent in weight to the final molded body (see FIG. 1). The radius R of the circular plate blank was determined as follows. Measure the weight of the blank sheet before molding and the weight of the final molded body after the trimming process. Based on the measurement results, determine the radius of the blank sheet before molding that is equivalent to the weight of the final molded body. It was set as the radius R of the circular plate blank before shaping | molding in which a body and a weight became equivalent.

Figure 2007045510
Figure 2007045510

Figure 2007045510
Figure 2007045510

1)ブランキング(71〜94mmφ)
2)絞り加工及びしごき加工(工程A)
5段の絞り加工にて、缶体の半径r、高さhが、d/R:0.24〜0.32、h/(R−r):1.84〜2.75の範囲の缶体(中間缶体)を作製した。また、所望の缶体を作製する為に、適宜、しごき加工も併用した。
3)缶底部のドーム形状加工(工程B)
缶底部に、深さ6mmの半球状の張り出し加工を行った。
4)トリム加工(工程C)
缶上端部を2mmほどトリムした。
5)円筒上部の縮径加工(工程D)
円筒上部に縮径加工を施し、具体的には、内面テーパ形状のダイに開口端部を押し当てて縮径を行うダイネック方式にて実施し、表2に示した最終的な缶体形状の缶体を作製した。
1) Blanking (71-94mmφ)
2) Drawing and ironing (process A)
Can with radius r and height h of d / R: 0.24 to 0.32, h / (R−r): 1.84 to 2.75 in five stages of drawing. A body (intermediate can body) was produced. Moreover, in order to produce a desired can body, the ironing process was also used together suitably.
3) Dome shape processing of can bottom (process B)
A hemispherical overhanging process having a depth of 6 mm was performed on the bottom of the can.
4) Trim processing (Process C)
The upper end of the can was trimmed by about 2 mm.
5) Diameter reduction of the upper part of the cylinder (Process D)
The diameter of the cylinder is reduced, specifically, the die neck method in which the opening end is pressed against the inner tapered die to reduce the diameter, and the final can body shape shown in Table 2 is obtained. A can body was produced.

上記手順で作製した缶体のフィルム層の密着性、加工性、外観を以下のようにして評価した。評価結果を表3に併せて記載した。   The adhesion, workability, and appearance of the film layer of the can body produced by the above procedure were evaluated as follows. The evaluation results are also shown in Table 3.

<密着性試験>
缶体を周方向巾15mmになるように缶高さ方向に略長方形に剪断し、その缶高さ方向で底面から10mmの位置を、周方向に直線状に、鋼板のみを剪断した。結果、剪断位置を境に缶高さ方向底面側に10mm部分と残余の部分からなる試験片が作成された。10mmの部分に巾15mm、長さ60mmの鋼板を繋ぎ(溶接)、60mm鋼板部分を持って、残余部分のフィルムを破断位置から10mmほど剥離させる。フィルムを剥離した部分と60mm鋼板部分を掴みしろとして180°方向にピール試験を実施した。観測されたピール強度の最小値を密着性の指標とした。
「ピール強度」
3N/15mm未満:×
3N/15mm以上、5N/15mm未満:○
5N/15mm以上:◎
<Adhesion test>
The can body was sheared into a substantially rectangular shape in the can height direction so as to have a width of 15 mm in the circumferential direction, and only the steel plate was sheared linearly in the circumferential direction at a position 10 mm from the bottom surface in the can height direction. As a result, a test piece composed of a 10 mm portion and the remaining portion on the bottom side in the can height direction with the shearing position as a boundary was created. A steel plate having a width of 15 mm and a length of 60 mm is connected to the 10 mm portion (welding), and the 60 mm steel plate portion is held, and the remaining portion of the film is peeled off by about 10 mm from the breaking position. A peel test was carried out in the direction of 180 ° with the part from which the film was peeled off and the 60 mm steel plate part being held. The minimum value of the observed peel strength was used as an index of adhesion.
"Peel strength"
Less than 3N / 15mm: ×
3N / 15mm or more, less than 5N / 15mm: ○
5N / 15mm or more: ◎

「フィルム加工性評価」
缶上端より10mmの位置を中心に、15mmφの小窓を開けたシールを貼り、測定面積が15mmφとなるようにした。次に、小窓部分を電解液(KCl:5%溶液、温度は常温)に浸し、鋼板と電解液間に6.2Vの電圧をかけた。この時測定される電流値に応じて下記のように評価した。
「電流値」
1.0mA以下:○
1.0mA超え:×
"Film processability evaluation"
A seal with a small window of 15 mmφ centered at a position 10 mm from the upper end of the can so that the measurement area was 15 mmφ. Next, the small window portion was immersed in an electrolytic solution (KCl: 5% solution, temperature is room temperature), and a voltage of 6.2 V was applied between the steel plate and the electrolytic solution. Evaluation was made as follows according to the current value measured at this time.
"Current value"
1.0 mA or less: ○
Over 1.0 mA: ×

「評価結果」
缶体C1〜C7は、本発明の実施例であり、フィルム密着性、加工性とも良好な値を示した。
"Evaluation results"
Can bodies C1 to C7 are examples of the present invention, and showed good values for film adhesion and workability.

缶体C8〜13及びC15、16は、本発明の実施例であり、主層にポリプロピレン−ポリエチレンブロック共重合体を設けてあり、加工性、密着性ともに良好である。特に、密着性は◎となった。   Can bodies C8 to 13 and C15 and 16 are examples of the present invention, and a polypropylene-polyethylene block copolymer is provided in the main layer, and both processability and adhesion are good. In particular, the adhesion was ◎.

缶体C14は、本発明の実施例であり、主層がポリプロピレン−ポリエチレンブロック共重合体であるが、ポリエチレンの濃度が下限を割っている。加工性、密着性ともに良好であるが、密着性は○に留まった。   Can body C14 is an example of the present invention, and the main layer is a polypropylene-polyethylene block copolymer, but the polyethylene concentration is lower than the lower limit. Both workability and adhesion were good, but the adhesion was only good.

缶体15は、本発明の比較例である。樹脂層に熱硬化性の塗料を塗布したものであり、加工性、密着性、双方とも×となった。   The can body 15 is a comparative example of the present invention. The resin layer was coated with a thermosetting paint, and the processability and adhesion were both x.

本発明のラミネート鋼板は、ラミネート樹脂層の剥離と破断を防止できる高加工度の2ピース缶を製造するために利用することができる。本発明法の2ピースラミネート缶は、高加工度が要求されるエアゾール缶等の用途に利用することができる。   The laminated steel sheet of the present invention can be used to produce a two-piece can with a high workability that can prevent peeling and breaking of the laminated resin layer. The two-piece laminate can of the present invention can be used for applications such as aerosol cans that require a high degree of processing.

本発明の缶体の製造工程の一実施形態を説明する図である。It is a figure explaining one Embodiment of the manufacturing process of the can of this invention.

符号の説明Explanation of symbols

1 ブランクシート
2 基体部
3 ドーム形状部
4 ネック形状部
5 テーパ形状部
DESCRIPTION OF SYMBOLS 1 Blank sheet 2 Base | substrate part 3 Dome shape part 4 Neck shape part 5 Tapered shape part

Claims (6)

最終成形体の高さh、最大半径r、最小半径d(rとdが同じ場合を含む)が、最終成形体と重量が等価となる成形前の円状板の半径Rに対して、0.1≦d/R≦0.25、かつ1.5≦h/(R−r)≦4の関係を満足する2ピース缶の製造に使用するラミネート鋼板であって、鋼板の少なくとも片面に、ポリオレフィン樹脂の被覆層を有することを特徴とする2ピース缶用ラミネート鋼板。 The height h, the maximum radius r, and the minimum radius d (including the case where r and d are the same) of the final molded body are 0 with respect to the radius R of the circular plate before molding in which the weight is equivalent to the final molded body. 1 ≦ d / R ≦ 0.25 and 1.5 ≦ h / (R−r) ≦ 4, a laminated steel sheet used for the production of a two-piece can, wherein at least one side of the steel sheet, A laminated steel sheet for a two-piece can, comprising a coating layer of a polyolefin resin. 前記ポリオレフィン樹脂は、鋼板面と接着性樹脂層を介してその上層として配置されていることを特徴とする請求項1に記載の2ピース缶用ラミネート鋼板。 2. The laminated steel sheet for a two-piece can according to claim 1, wherein the polyolefin resin is disposed as an upper layer through a steel sheet surface and an adhesive resin layer. 前記ポリオレフィン樹脂層はポリプロピレン系樹脂であり、前記接着性樹脂層は接着性ポリエチレンと接着性ポリプロピレンの混合物であって、前記混合物中に接着性ポリエチレンは、質量比で8〜20%含有されることを特徴とする請求項2に記載の2ピース缶用ラミネート鋼板。 The polyolefin resin layer is a polypropylene resin, and the adhesive resin layer is a mixture of adhesive polyethylene and adhesive polypropylene, and the adhesive polyethylene is contained in the mixture in an amount of 8 to 20% by mass. The laminated steel sheet for a two-piece can according to claim 2. 接着性ポリエチレンは、エチレンの単独重合体、またはエチレンと、1−ブテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−1−ペンテンうちから選ばれる1種以上のαオレフィンとのブロック又はランダム共重合体であり、接着性ポリプロピレンは、プロピレンの単独重合体、またはプロピレンと、エチレン、1−ブテン、1−ヘキセン、1−ヘプテン、1−オクテン、4−メチル−1−ペンテンうちから選ばれる1種以上のαオレフィンとのブロック又はランダム共重合体であることを特徴とする請求項3に記載の2ピース缶用ラミネート鋼板。 Adhesive polyethylene is a homopolymer of ethylene, or ethylene and one or more α-olefins selected from 1-butene, 1-hexene, 1-heptene, 1-octene and 4-methyl-1-pentene. Block or random copolymer, adhesive polypropylene is propylene homopolymer or propylene and ethylene, 1-butene, 1-hexene, 1-heptene, 1-octene, 4-methyl-1-pentene The laminated steel plate for a two-piece can according to claim 3, which is a block or random copolymer with one or more α-olefins selected from the group consisting of: 前記ポリプロピレン系樹脂はプロピレン・エチレンブロック共重合体であり、ブロック共重合体のプロピレン成分の比率が50モル%以上98モル%以下であることを特徴とする請求項3または4に記載の2ピース缶用ラミネート鋼板。 5. The two-piece according to claim 3, wherein the polypropylene resin is a propylene / ethylene block copolymer, and a ratio of a propylene component of the block copolymer is 50 mol% or more and 98 mol% or less. Laminated steel sheet for cans. 請求項1〜5のいずれかの項に記載のラミネート鋼板の円状板を多段成形して製造した2ピースラミネート缶であって、その最終成形体の高さh、最大半径r、最小半径d(rとdが同じ場合を含む)が、最終成形体と重量が等価となる成形前の円状板の半径Rに対して、0.1≦d/R≦0.25、かつ1.5≦h/(R−r)≦4の関係を満足することを特徴とする2ピースラミネート缶。
A two-piece laminated can manufactured by multi-stage forming the circular plate of the laminated steel sheet according to any one of claims 1 to 5, wherein the final molded body has a height h, a maximum radius r, and a minimum radius d. (Including the case where r and d are the same), but 0.1 ≦ d / R ≦ 0.25 and 1.5 with respect to the radius R of the circular plate before molding that is equivalent in weight to the final molded body ≦ h / (R−r) ≦ 4 The two-piece laminate can characterized by satisfying the relationship.
JP2005234561A 2005-08-12 2005-08-12 Laminated steel sheet for 2-piece can and 2-piece laminated can Expired - Fee Related JP4788234B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005234561A JP4788234B2 (en) 2005-08-12 2005-08-12 Laminated steel sheet for 2-piece can and 2-piece laminated can
PCT/JP2006/316130 WO2007020955A1 (en) 2005-08-12 2006-08-10 Laminate steel sheet for two-piece can and two-piece laminate sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005234561A JP4788234B2 (en) 2005-08-12 2005-08-12 Laminated steel sheet for 2-piece can and 2-piece laminated can

Publications (2)

Publication Number Publication Date
JP2007045510A true JP2007045510A (en) 2007-02-22
JP4788234B2 JP4788234B2 (en) 2011-10-05

Family

ID=37757612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005234561A Expired - Fee Related JP4788234B2 (en) 2005-08-12 2005-08-12 Laminated steel sheet for 2-piece can and 2-piece laminated can

Country Status (2)

Country Link
JP (1) JP4788234B2 (en)
WO (1) WO2007020955A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117009A1 (en) * 2009-04-06 2010-10-14 武内プレス工業株式会社 Metal bottle can

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220033136A1 (en) * 2019-02-07 2022-02-03 Nippon Steel Corporation Can lid made of resin laminate steel sheet for resin-metal composite container, can bottom made of resin laminate steel sheet for resin-metal composite container, and resin-metal composite container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269858A (en) * 1992-03-30 1993-10-19 Nippon Steel Corp Manufacture of resin coated steel plate excellent in processing adhesion
JPH068368A (en) * 1992-01-17 1994-01-18 Nippon Steel Corp Polypropylene laminated steel plate and production thereof
JPH0631362A (en) * 1992-07-14 1994-02-08 Nippon Steel Corp Manufacture of multi-drawing can made of laminated steel sheet with high adhesion
JP2001270029A (en) * 2000-03-23 2001-10-02 Mitsubishi Plastics Ind Ltd Film laminated steel sheet and container made of film laminated steel sheet
JP2002249131A (en) * 2001-02-21 2002-09-03 Daiwa Can Co Ltd Drawn can coated with organic resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068368A (en) * 1992-01-17 1994-01-18 Nippon Steel Corp Polypropylene laminated steel plate and production thereof
JPH05269858A (en) * 1992-03-30 1993-10-19 Nippon Steel Corp Manufacture of resin coated steel plate excellent in processing adhesion
JPH0631362A (en) * 1992-07-14 1994-02-08 Nippon Steel Corp Manufacture of multi-drawing can made of laminated steel sheet with high adhesion
JP2001270029A (en) * 2000-03-23 2001-10-02 Mitsubishi Plastics Ind Ltd Film laminated steel sheet and container made of film laminated steel sheet
JP2002249131A (en) * 2001-02-21 2002-09-03 Daiwa Can Co Ltd Drawn can coated with organic resin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010117009A1 (en) * 2009-04-06 2010-10-14 武内プレス工業株式会社 Metal bottle can
CN102378722A (en) * 2009-04-06 2012-03-14 武内普莱斯工业株式会社 Metal bottle can

Also Published As

Publication number Publication date
JP4788234B2 (en) 2011-10-05
WO2007020955A1 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4692146B2 (en) Two-piece can manufacturing method and two-piece laminated can
JP4692147B2 (en) Two-piece can manufacturing method and two-piece laminated can
JP3768145B2 (en) Thermoplastic resin-coated metal plate and can using the same
JP2017030210A (en) Metal sheet with resin coating film for container
JP4961696B2 (en) Two-piece can manufacturing method and two-piece laminated can
JP2015160351A (en) Film for metal laminate, laminate metal plate and metal container
JP4788234B2 (en) Laminated steel sheet for 2-piece can and 2-piece laminated can
JP4622737B2 (en) Laminated steel sheet for 2-piece can and 2-piece laminated can
JP7192088B2 (en) Laminate manufacturing method
JP6289914B2 (en) Resin film for metal plate lamination, resin laminated metal plate, container and container lid using the same
JP4622736B2 (en) Laminated steel sheet for 2-piece cans, 2-piece can manufacturing method, and 2-piece laminate cans
JP2015134875A5 (en)
JP4924357B2 (en) Laminated steel sheet for container materials
JP2005014939A (en) Resin film for can lid, resin film-coated metallic plate for can lid coated with resin film for can lid, and can lid using the same
JP2005035674A (en) Can lid resin film, and can lid resin film covered-metal plate covered with can lid resin film and can lid using the same
JP2006045590A (en) Steel sheet coated with organic resin film for di can, and manufacturing method therefor
JP2003285394A (en) Resin-laminated steel plate for can
JP2001150590A (en) Resin laminated steel plate and metal can
JP2009096083A (en) Resin laminated steel sheet for can
JP2006035508A (en) Resin-coated aluminum alloy sheet and can lid using it
JP2007182056A (en) Resin-coated aluminum sheet for di can and di can made by drawing and ironing processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees