JP2007044577A - Solid-gas separation method and apparatus - Google Patents

Solid-gas separation method and apparatus Download PDF

Info

Publication number
JP2007044577A
JP2007044577A JP2005228887A JP2005228887A JP2007044577A JP 2007044577 A JP2007044577 A JP 2007044577A JP 2005228887 A JP2005228887 A JP 2005228887A JP 2005228887 A JP2005228887 A JP 2005228887A JP 2007044577 A JP2007044577 A JP 2007044577A
Authority
JP
Japan
Prior art keywords
gas
cooling
separation
dust
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005228887A
Other languages
Japanese (ja)
Other versions
JP5183865B2 (en
Inventor
Masashige Fujiwara
正成 藤原
Masaki Fujimoto
昌樹 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2005228887A priority Critical patent/JP5183865B2/en
Publication of JP2007044577A publication Critical patent/JP2007044577A/en
Application granted granted Critical
Publication of JP5183865B2 publication Critical patent/JP5183865B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separating Particles In Gases By Inertia (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid-gas separation method in which a dust-suspended gas containing the vapor of a substance to be solidified when cooled can suitably be separated separately into the substance to be contained therein and the dust while restraining the substance from being stuck to a solid-gas separation apparatus. <P>SOLUTION: The solid-gas separation method, which is used for separately separating the dust-suspended gas containing the vapor of the substance to be solidified when cooled into the substance and the dust, comprises the steps of: introducing the dust-suspended gas into a separating/cooling flow passage 2; introducing a cooling gas to be whirled almost around the central axis of the separating/cooling flow passage 2 into the separating/cooling flow passage 2 from an introduction line 3 connected to the separating/cooling flow passage 2; centrifugally separating the dust by a whirling current of the dust-suspended gas to be generated by the introduction of the cooling gas while cooling/solidifying the substance and while preventing the inner wall surface of the separating/cooling flow passage 2 from being brought into contact with the dust-suspended gas by the cooling gas; and separating the solidified substance. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷却すると固化する物質の蒸気を含み且つ粉塵が懸濁している懸濁ガスから該物質及び粉塵を別々に分離する固気分離方法及び装置、特に、セメントクリンカ製造用のキルン内で生じるガス(以下、キルンガスともいう)の処理に好適な固気分離方法及び装置に関する。   The present invention relates to a solid-gas separation method and apparatus for separating a substance and dust separately from a suspended gas containing the vapor of the substance that solidifies upon cooling and in which the dust is suspended, particularly in a kiln for producing cement clinker. The present invention relates to a solid-gas separation method and apparatus suitable for the treatment of the generated gas (hereinafter also referred to as kiln gas).

冷却すると固化する物質の蒸気を含み、且つダスト等の粉塵が懸濁した懸濁ガスから、前記物質を前記粉塵の混入を少なくして回収する方法は、次の二つの方法に大別される。   Methods of recovering the substance from the suspended gas containing the vapor of the substance that solidifies when cooled and suspended in dust such as dust are roughly classified into the following two methods. .

第1の方法は、気体分離法と以下に称する方法であり、高温下で前記物質を蒸気の状態のままにしておき、これから前記粉塵を分離し、粉塵が低減された懸濁ガスを冷却して前記物質を固化して回収する方法である。気体分離法は、高温を維持できれば、例えば、サイクロンのような通常の固気分離の単位操作を利用でき、設計も容易である。   The first method is the method referred to below as a gas separation method, in which the substance is left in a vapor state at a high temperature, the dust is separated therefrom, and the suspended gas with reduced dust is cooled. This is a method of solidifying and collecting the substance. As long as the gas separation method can maintain a high temperature, for example, a normal solid-gas separation unit operation such as a cyclone can be used, and the design is easy.

斯かる気体分離法をキルンガスの処理に適用した技術として、例えば特許文献1〜3に記載の技術が知られている。しかし、これらの技術は、ダストの分離が不十分であったり、キルンガスに含まれる塩化カリウムや塩化ナトリウムを主成分とする揮発成分の物性や運転条件によっては、キルン内では気化しているが、キルンより低温の部分ではキルンガスと接触する部分にコーチングと称される付着物が付着して成長し、運転の障害となって安定した連続運転ができなくなる課題を有している。   As a technique in which such a gas separation method is applied to kiln gas processing, for example, techniques described in Patent Documents 1 to 3 are known. However, these technologies have insufficient dust separation, or depending on the physical properties and operating conditions of volatile components mainly composed of potassium chloride and sodium chloride contained in the kiln gas, they are vaporized in the kiln. In the part lower than the kiln, there is a problem that deposits called “coaching” adhere to and grow on the part in contact with the kiln gas, which becomes an obstacle to the operation and prevents stable continuous operation.

第2の方法は、固体分離法と以下に称する方法であり、前記懸濁ガスを冷却して前記物質を固化させ、固化した該物質と前記粉塵との混合物からこれらを粒子サイズや比重の差、溶解度等の物性の違いを利用して分離するものが一般的であり、種々の効果的な単位操作が提案されている。   The second method is a method called a solid separation method, which will be described below. The suspended gas is cooled to solidify the substance, and a mixture of the solidified substance and the dust is used to obtain a difference in particle size and specific gravity. In general, separation is performed using a difference in physical properties such as solubility, and various effective unit operations have been proposed.

斯かる固体分離法をキルンガスの処理に適用した技術としては、例えば特許文献4に記載の技術が知られている。しかし、この技術は、キルンガスの冷却によって前記揮発成分のかなりの量がダストに強固に凝結・凝集するため、分級機による分離のみでは分離が困難であり、特許文献5に記載の技術のように、その後に水洗処理を必要とするなど、分離処理が複雑となる課題を有している。   As a technique in which such a solid separation method is applied to kiln gas processing, for example, a technique described in Patent Document 4 is known. However, in this technique, a considerable amount of the volatile components are strongly condensed and aggregated in the dust due to the cooling of the kiln gas, so that separation is difficult only by separation with a classifier, as in the technique described in Patent Document 5 Then, there is a problem that the separation process becomes complicated, such as requiring a water washing process thereafter.

特開昭49−69758号公報JP 49-69758 A 特開昭54−54131号公報JP 54-54131 A 特開平9−301752号公報Japanese Patent Laid-Open No. 9-301752 特開昭63−210049号公報JP 63-210049 A 特開2003−286050号公報JP 2003-286050 A

本発明は、上記課題に鑑みてなされたものであり、冷却すると固化する物質の蒸気を含み且つ粉塵が懸濁している懸濁ガスからそれに含まれる該物質及び該粉塵を別々に、該物質の装置への固着を抑えて好適に分離することができる固気分離方法及び装置を提供することを目的とする。   The present invention has been made in view of the above problems, and separately contains the substance and the dust contained in the suspended gas containing the vapor of the substance that solidifies upon cooling and in which the dust is suspended. An object of the present invention is to provide a solid-gas separation method and apparatus that can be suitably separated while suppressing sticking to the apparatus.

本発明者らは、セメントキルンのキルンガスを取り扱うに当たり、キルンガスの熱を原料の予熱に利用している、サスペンションプレヒーター付きキルンのプレヒーター等に成長するコーチングを詳細に観察することで、コーチングの成長が以下のプロセスによることを見出した。   When handling the kiln gas of a cement kiln, the present inventors use the heat of the kiln gas to preheat the raw material, and observe in detail the coaching that grows in the preheater of the kiln with a suspension preheater. We found that growth is due to the following process.

(1)キルンガスに含まれる前記揮発成分の沸点が高い場合、高温のキルンガスは装置内壁面や外部の空気の進入によって冷却され、該揮発成分が液化する。
(2)液化した前記揮発成分がキルンガス中を懸濁するセメント原料ダスト(以下、単にダストともいう。)を伴って装置内壁面に付着物として付着する。
(3)装置内壁面に付着した前記付着物がその成長に伴う断熱効果で冷えて固化する。
(4)固化により前記付着物が強度を持ち、これに上記(1)〜(3)が繰り返えされて付着物が層状に付着して成長し、厚いコーチングとなる。
(1) When the boiling point of the volatile component contained in the kiln gas is high, the high-temperature kiln gas is cooled by the ingress of the inner wall surface of the apparatus or outside air, and the volatile component is liquefied.
(2) The liquefied volatile component adheres to the inner wall surface of the apparatus as an adhering material together with cement raw material dust (hereinafter also simply referred to as dust) suspended in the kiln gas.
(3) The adhering matter adhering to the inner wall surface of the apparatus is cooled and solidified by a heat insulating effect accompanying its growth.
(4) The deposit has strength due to solidification, and the above (1) to (3) are repeated on the deposit, so that the deposit adheres and grows in layers, resulting in a thick coating.

上記プロセスによれば、コーチングの装置内壁面での成長は、上記(2)の過程で、装置内壁面に揮発成分が付着することから始まるので、揮発成分を装置内壁面に近づけなければ、コーチングを防ぐことができると考えられる。   According to the above process, the growth of the coaching on the inner wall surface of the apparatus starts from the adhesion of the volatile component to the inner wall surface of the apparatus in the process of (2). Can be prevented.

本発明者らは、キルンガスの流路の内壁面に沿うように別のガスの層でカーテンを作って該内壁面を保護し、揮発成分を該内壁面に接触させない方法を考えた。この別のガスでカーテンを作る場合、キルンガスの流れに旋回流が形成されるようにその流路の外周に対して接線方向からガスを導入することで、カーテン効果をもたらす旋回流が当該ガスの導入位置の下流においても十分に維持されることを見出した。そして、さらに検討を行った結果、次の二つの知見を得、本発明を完成するに至った。   The inventors of the present invention have considered a method in which a curtain is made of another gas layer along the inner wall surface of the kiln gas flow path to protect the inner wall surface so that volatile components do not contact the inner wall surface. When making a curtain with this other gas, the swirl flow that brings about the curtain effect is introduced by introducing the gas from the tangential direction with respect to the outer periphery of the flow path so that the swirl flow is formed in the flow of the kiln gas. It has been found that it is sufficiently maintained downstream of the introduction position. As a result of further investigation, the following two findings were obtained and the present invention was completed.

(1)キルンガスの流路に対し、その外周の接線方向から別のガスを導入して旋回流を形成することで、キルンガスも旋回するようになり、キルンガス中に懸濁されたダストの粗粒がサイクロンのような効果で遠心分離され、流路の壁面へと移動した。キルンガス中の揮発成分の固化物とダストを厳密に分離しなくてもよい場合には、十分にダストの分離・回収が可能である。   (1) By introducing another gas from the tangential direction of the outer periphery of the kiln gas flow path to form a swirling flow, the kiln gas also swirls, and coarse particles of dust suspended in the kiln gas Was centrifuged by a cyclone-like effect and moved to the wall of the channel. When it is not necessary to strictly separate the solidified volatile component and the dust in the kiln gas, the dust can be sufficiently separated and recovered.

(2)別のガスの旋回流によって、キルンガスの流れが狭められるので、オリフィスのような作用によって、キルンガスの流路における別のガスの導入部分より上流側にも該流路壁面に沿った該別のガスの旋回流の逆流が生じた。コーチングが生じ易い部分であるキルンガスの処理部への導入部分の内面にもカーテン効果が及び、当該部分に新たにカーテン効果をもたらす気体を導入しなくても、当該部分のコーチングを防ぐことが可能であり、当該部分も分離処理に利用できる。   (2) Since the flow of the kiln gas is narrowed by the swirling flow of another gas, the upstream side of the other gas introduction part in the flow path of the kiln gas along the flow path wall surface by an action like an orifice. A reverse flow of another gas swirl flow occurred. Curtain effect is also applied to the inner surface of the kiln gas introduction part, which is a part where coaching is likely to occur, and it is possible to prevent coaching of that part without introducing a gas that causes the curtain effect to the part. This part can also be used for separation processing.

本発明は、上記知見に基づきなされたものであり、冷却すると固化する物質の蒸気を含み且つ粉塵が懸濁している懸濁ガスから該物質及び該粉塵を別々に分離する固気分離方法であって、前記懸濁ガスを分離冷却流路内に導入する一方、前記分離冷却流路の中心軸を略中心軸として旋回する冷却ガスを該分離冷却流路に接続された導入路を通して該分離冷却流路内に導入し、前記冷却ガスで前記分離冷却流路の内壁面と前記懸濁ガスとの接触を防ぎつつ前記物質を冷却して固化させながら、前記冷却ガスの導入に伴って生じる前記懸濁ガスの旋回流によって前記粉塵を遠心分離し、しかる後、固化させた前記物質を分離する固気分離方法を提供するものである。   The present invention has been made based on the above knowledge, and is a solid-gas separation method that separates the substance and the dust separately from a suspended gas containing the vapor of the substance that solidifies when cooled and in which the dust is suspended. The suspension gas is introduced into the separation cooling flow path, while the cooling gas swirling around the central axis of the separation cooling flow path as a substantially central axis is passed through the introduction passage connected to the separation cooling flow path. Introducing into the flow path, the cooling gas is solidified by cooling and solidifying the substance while preventing contact between the inner wall surface of the separation cooling flow path and the suspension gas, The present invention provides a solid-gas separation method in which the dust is centrifuged by a swirling flow of a suspended gas, and then the solidified substance is separated.

また、本発明は、上記本発明の固気分離方法を実施するための固気分離装置であって、前記懸濁ガスが導入される分離冷却流路と、前記分離冷却流路に接続され該分離冷却流路内にその中心軸を略中心軸とする前記冷却ガスの旋回流を導入する導入路と、前記分離冷却流路の壁部に配設され前記冷却ガスの導入に伴って生じる前記懸濁ガスの旋回流によって遠心分離された前記粉塵を回収する回収手段と、該回収手段より前記分離冷却流路の下流側に配設され固化した前記物質を分離する分離手段とを備えている固気分離装置を提供するものである。   The present invention is also a solid-gas separation apparatus for carrying out the solid-gas separation method of the present invention, wherein the suspension gas is introduced into a separation cooling channel and connected to the separation cooling channel. An introduction path for introducing a swirling flow of the cooling gas whose central axis is a substantially central axis in the separation cooling flow path, and the occurrence of the cooling gas that is provided on the wall of the separation cooling flow path and that is caused by the introduction of the cooling gas. A recovery means for recovering the dust centrifuged by the swirling flow of the suspension gas, and a separation means for separating the solidified substance disposed downstream of the recovery cooling flow path from the recovery means. A solid-gas separation device is provided.

本発明の固気分離方法及び装置によれば、冷却すると固化する物質の蒸気を含み且つ粉塵が懸濁している懸濁ガスからそれに含まれる前記物質及び前記粉塵を、該物質の固着の発生を抑えて好適に別々に分離することができる。本発明では、特に、固気分離と揮発成分の固化時の結晶の成長との時間スケールの大きな差を利用し、懸濁ガスから粉塵を分離しながら当該懸濁ガスを冷却してそれに含まれる固化する物質を冷却するので、小規模な装置でも効率よく分離を行うことができる。   According to the solid-gas separation method and apparatus of the present invention, the substance and the dust contained in the suspended gas containing the vapor of the substance that solidifies when cooled and suspended in the dust are caused to adhere to the substance. It is possible to separate them suitably while suppressing them. In the present invention, in particular, the suspension gas is cooled and contained in the suspension gas while separating dust from the suspension gas by utilizing a large time scale difference between solid-gas separation and crystal growth at the time of solidification of volatile components. Since the solidifying substance is cooled, separation can be performed efficiently even in a small-scale apparatus.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。   The present invention will be described below based on preferred embodiments with reference to the drawings.

図1及び図2は、本発明の固気分離装置(以下、単に分離装置ともいう。)を、セメントクリンカ製造用のロータリーキルンのキルンガス煙道10に付設され、キルンガス中の揮発成分(冷却すると固化する物質)及びダスト(粉塵)を当該キルンガスから別々に分離する分離装置に適用した第1実施形態を模式的に示すものである。   1 and 2 show a solid-gas separation device (hereinafter, also simply referred to as a separation device) of the present invention attached to a kiln gas flue 10 of a rotary kiln for producing cement clinker, and volatile components in the kiln gas (solidify when cooled). FIG. 1 schematically shows a first embodiment in which the present invention is applied to a separation apparatus that separates a substance) and dust (dust) from the kiln gas separately.

図1に示したように、本実施形態の分離装置1は、キルンガスが導入される分離冷却流路2と、分離冷却流路2に接続され分離冷却流路2内にその中心軸を略中心軸とする冷却ガスの旋回流を導入する導入路3と、導入路3に前記冷却ガスを送るファン4と、分離冷却流路2の壁部に配設され前記冷却ガスの導入に伴って生じる前記キルンガスの旋回流によって遠心分離された前記ダストを回収する回収手段5と、分離冷却流路2から排出されるガスを冷却する冷却手段6と、冷却手段6で冷却されたガスから固化した前記物質を分離する分離手段7と、キルンガス煙道10から分離手段7に至るまでのガスの吸引を行う吸引ファン8と、吸引ファン8で排出されたガスを、ファン4を介して導入路3に導く循環路9とを備えている。   As shown in FIG. 1, the separation device 1 of this embodiment includes a separation cooling channel 2 into which a kiln gas is introduced, and a central axis in the separation cooling channel 2 connected to the separation cooling channel 2. An introduction path 3 that introduces a swirling flow of cooling gas as an axis, a fan 4 that sends the cooling gas to the introduction path 3, and a wall portion of the separation cooling flow path 2 that is provided with the introduction of the cooling gas. The collecting means 5 for collecting the dust centrifuged by the swirling flow of the kiln gas, the cooling means 6 for cooling the gas discharged from the separation cooling flow path 2, and the gas solidified from the gas cooled by the cooling means 6 Separation means 7 for separating substances, a suction fan 8 for sucking gas from the kiln gas flue 10 to the separation means 7, and a gas discharged by the suction fan 8 are passed to the introduction path 3 via the fan 4. And a circulation path 9 for guiding.

図2に示したように、分離冷却流路2は、流路断面が略円形の管で構成されており、両端部にはキルンガスの導入路21と分離冷却処理を終えて排出されるガスの排出路22が接続されている。分離冷却流路2は、直線的に形成されていることが好ましいが、本発明の効果に影響を及ぼさない範囲において、屈曲又は湾曲した形態とすることもできる。   As shown in FIG. 2, the separation cooling flow path 2 is configured by a tube having a substantially circular cross section, and at both ends, the kiln gas introduction path 21 and the gas discharged after the separation cooling process is finished. A discharge path 22 is connected. The separation cooling channel 2 is preferably formed linearly, but may be bent or curved as long as the effect of the present invention is not affected.

本発明者らの検討結果によれば、キルンガスの処理中の分離冷却流路2内では、分離冷却流路2の内壁面から中心軸方向に向けて年輪状の等温線を形成するように温度分布が形成されており、分離冷却流路2の下流に進むにつれて流路断面の中心部分の最高温度は低下することがわかった。このことから、分離冷却流路2の長さは、この中心部分の最高温度がキルンガスに含まれている揮発成分の凝固点以下となる位置で処理を終えたガスが排出される長さ以上に設定することが、分離冷却流路2内でコーチングが発生することを一層防止できる点で好ましい。   According to the examination results of the present inventors, in the separation cooling channel 2 during the treatment of the kiln gas, the temperature is set so as to form an annual ring-shaped isotherm from the inner wall surface of the separation cooling channel 2 toward the central axis. It was found that a distribution was formed, and the maximum temperature at the central portion of the cross section of the flow path decreased as it proceeded downstream of the separation cooling flow path 2. For this reason, the length of the separation cooling channel 2 is set to be longer than the length at which the processed gas is discharged at a position where the maximum temperature of the central portion is not higher than the freezing point of the volatile component contained in the kiln gas. It is preferable that the coating can be further prevented from occurring in the separation cooling channel 2.

導入路21は、後述する冷却ガスの逆流によるカーテン効果を得る上では短い方が好ましく、分離冷却流路2の内径の2倍程度以下、特に1倍程度以下の長さが好ましい。また、流路断面形状を楕円形とすることもできる。   The introduction path 21 is preferably shorter in order to obtain a curtain effect due to the backflow of the cooling gas, which will be described later, and preferably has a length of about 2 times or less, particularly about 1 time or less, of the inner diameter of the separation cooling flow path 2. Moreover, the cross-sectional shape of the flow path can be elliptical.

本実施形態では、分離冷却流路2は、その長さ方向中間部において下流に進むにつれて流路の断面が漸次連続的に狭められた形態を有している。分離冷却流路2をこのような形態とすることで、後述するようにキルンガスの流れが冷却ガスによって中心部分に狭められることと相まって、キルンガスの流れが狭められる位置から上流側における分離冷却流路2の内壁部分に冷却ガスの逆流を生じさせ、この冷却ガスの逆流によって当該部分におけるキルンガスと内壁部分との接触を防いでコーチングの発生を抑えている。このような逆流を効果的に起こすには、導入路3との接続後の下流側における導入路21の断面積と導入路3の断面積の和より、導入路3と接続後の下流側における分離冷却流路2の断面積が小さくなっていて、冷却ガスが簡単に後方に流れ難くすることが好ましい。   In the present embodiment, the separation cooling flow path 2 has a form in which the cross section of the flow path is gradually narrowed as it progresses downstream in the middle portion in the longitudinal direction. By adopting such a configuration for the separation cooling flow path 2, the separation cooling flow path on the upstream side from the position where the flow of the kiln gas is narrowed in combination with the flow of the kiln gas being narrowed to the central portion by the cooling gas as will be described later. The backflow of the cooling gas is generated in the inner wall portion of the two, and the backflow of the cooling gas prevents the contact between the kiln gas and the inner wall portion in the portion, thereby suppressing the occurrence of coaching. In order to effectively cause such a backflow, the sum of the cross-sectional area of the introduction path 21 and the cross-sectional area of the introduction path 3 on the downstream side after connection with the introduction path 3 is determined on the downstream side after connection with the introduction path 3. It is preferable that the cross-sectional area of the separation cooling flow path 2 is small and it is difficult for the cooling gas to easily flow backward.

分離冷却流路2の下流側(排出路22との接続側)の端部は、冷却ガスの導入によるカーテン効果を損なわない範囲で、分離冷却流路内の温度分布を壊すような形態とすることが好ましい。本実施形態では、分離冷却流路2の下流側の端部は、下流に進むにつれて流路断面が漸次連続的に広がるように設けられている。そして、この流路断面が広がった部分において、該部分と二重になるように、かつ、流路断面が広がる前の分離冷却流路と同心となるように排出路22が接続されている。この場合、排出路22の流路断面は、流路断面が広がる前の分離冷却流路の流路断面と同じとすることが好ましい。排出路22の分離冷却流路2との接続方法(排出路22の径や、分離冷却流路2との重なり具合、つまり、分離冷却流路2への差し込み具合)は、排出されるガスに含まれるダストの性状等を考慮して設定する。   The end of the separation cooling channel 2 on the downstream side (connection side to the discharge channel 22) is configured to destroy the temperature distribution in the separation cooling channel as long as the curtain effect due to the introduction of the cooling gas is not impaired. It is preferable. In the present embodiment, the downstream end portion of the separation cooling channel 2 is provided so that the channel cross-section gradually spreads as it goes downstream. And in this part where the flow path cross section expanded, the discharge path 22 is connected so as to be double with the part and concentric with the separation cooling flow path before the flow path cross section is expanded. In this case, the channel cross section of the discharge channel 22 is preferably the same as the channel cross section of the separation cooling channel before the channel cross section is expanded. The method of connecting the discharge path 22 to the separation cooling flow path 2 (the diameter of the discharge path 22 and the overlapping state with the separation cooling flow path 2, that is, the degree of insertion into the separation cooling flow path 2) depends on the exhausted gas. Set in consideration of the properties of the dust contained.

導入路3は、分離冷却流路2のかなり上流側において流路の外周に対して接線方向から接するように接続されており、冷却ガスをキルンガスの流れに対して接線方向に導入し、分離冷却流路2の中心軸を略中心軸とする冷却ガスの旋回流を形成する。そして、導入された冷却ガスは、分離冷却流路2の内壁面に沿って旋回流を維持し、この冷却ガスのカーテンが高温のキルンガスの接触から当該内壁面を保護する。   The introduction path 3 is connected so as to be in contact with the outer periphery of the flow path from the tangential direction on the considerably upstream side of the separation cooling flow path 2, and introduces the cooling gas in the tangential direction with respect to the flow of the kiln gas. A swirling flow of the cooling gas having the central axis of the flow path 2 as a substantially central axis is formed. The introduced cooling gas maintains a swirling flow along the inner wall surface of the separation cooling channel 2, and the cooling gas curtain protects the inner wall surface from contact with the high-temperature kiln gas.

このようにして形成した冷却ガスの旋回流は、その中心部を流れようとするキルンガスにも旋回流を発生させるため、サイクロン効果でダストを分離冷却流路2の外周方向に遠心分離しながら冷却する。   The swirling flow of the cooling gas formed in this manner generates a swirling flow also in the kiln gas that flows through the center portion thereof, so that cooling is performed while centrifugally separating dust in the outer circumferential direction of the separation cooling flow path 2 by the cyclone effect. To do.

導入路3には、作業口30が設けられており、分離冷却流路2にキルンガスを導く導入路21の入口部分がコーチングの成長によって閉塞されないように、内壁部に付着したコーチングをこの作業口30から落とすことができるようになっている。この作業口30は、冷却ガスの導入路3が、冷却ガスによって高温から保護されており、また、冷却ガスの流速のため、ベルヌーイの法則に従って周囲に比べて負圧となることが多いので、ダストや導入管に付着したコーチング等が飛び出しにくく安全であり、運転をしながらでも作業を行える。また、キルンガスの導入路21にも近く、作業がし易いので好ましい。   A work port 30 is provided in the introduction path 3, and the coaching attached to the inner wall portion is prevented from being blocked by the growth of the coaching so that the inlet portion of the introduction path 21 that introduces the kiln gas to the separation cooling flow path 2 is not blocked. It can be dropped from 30. In this working port 30, the cooling gas introduction path 3 is protected from the high temperature by the cooling gas, and because of the flow velocity of the cooling gas, the negative pressure is often lower than the surroundings according to Bernoulli's law. It is safe to prevent dust and coaching from adhering to the injection pipe from popping out, so you can work while driving. It is also preferable because it is close to the kiln gas introduction path 21 and can be easily operated.

導入路3は、冷却ガスの流速を調整する流速調整手段としてゲートを備えている。本実施形態のようなセメントクリンカ製造用のキルンの塩素バイパスでは、バイパスさせたい塩素の量に応じてキルンガスの量を3倍程度の範囲で変えることがある。このような場合に、分離冷却流路2から排出される排出ガスの温度を変化させないようにするには、冷却ガスの導入量をキルンガスの量に略比例して変化させる必要がある。このような場合に、ゲートで冷却ガスの流速を調整することで、キルンガスの流量の変化に伴って冷却ガスの流量に変更を生じた場合にも冷却ガスの流速を適切にコントロールすることができる。   The introduction path 3 includes a gate as a flow rate adjusting means for adjusting the flow rate of the cooling gas. In the chlorine bypass of a kiln for producing cement clinker as in this embodiment, the amount of kiln gas may be changed within a range of about three times according to the amount of chlorine to be bypassed. In such a case, in order not to change the temperature of the exhaust gas discharged from the separation cooling channel 2, it is necessary to change the introduction amount of the cooling gas substantially in proportion to the amount of the kiln gas. In such a case, by adjusting the flow rate of the cooling gas at the gate, the flow rate of the cooling gas can be appropriately controlled even when the flow rate of the cooling gas is changed with the change of the flow rate of the kiln gas. .

回収手段5は、分離冷却流路2の内壁面において上方に向けて開口するホッパ50を備えている。前記冷却ガスの旋回流で分離冷却流路2の外周方向に分離されたダストは、このホッパで回収される。ホッパ50の開口面積は冷却ガスによる効果を損なわず、コーチングの塊によって開口部が塞がらない範囲の広さに設定する。この場合、ガスの流れが乱れることを防ぐ上で、ダストがその堆積を利用してホッパの開口部を埋め尽くすように充填された状態で運転し、分離冷却流路2の内壁面を滑らかな曲面状に維持することが好ましい。また、ホッパ50は、より多くのダストを回収する上では分離冷却流路2の排出口近傍に配置することが好ましいが、それ以外の位置や、冷却ガスの導入部分の下流側の近傍及び分離冷却流路2の下流といった複数箇所に配設することもできる。   The recovery means 5 includes a hopper 50 that opens upward on the inner wall surface of the separation cooling channel 2. The dust separated in the outer peripheral direction of the separation cooling channel 2 by the swirling flow of the cooling gas is collected by this hopper. The opening area of the hopper 50 is set to a size within a range where the opening is not blocked by a lump of coating without impairing the effect of the cooling gas. In this case, in order to prevent the gas flow from being disturbed, the operation is performed in a state where dust is filled so as to fill the opening of the hopper by using the accumulation, and the inner wall surface of the separation cooling channel 2 is smoothed. It is preferable to maintain a curved shape. In order to collect more dust, the hopper 50 is preferably disposed in the vicinity of the discharge port of the separation cooling channel 2, but other positions, the vicinity of the downstream side of the cooling gas introduction portion, and the separation. It can also be disposed at a plurality of locations such as downstream of the cooling flow path 2.

冷却手段6は、分離冷却流路2から排出されるガスを分離手段7のバグフィルタの耐熱温度まで冷却するものであればその冷却手法に特に制限はない。ガスの処理量を抑える上で熱交換器を用いることが好ましいが、空気等の冷却ガスを導入して冷却してもよい。   The cooling means 6 is not particularly limited as long as it cools the gas discharged from the separation cooling flow path 2 to the heat resistant temperature of the bag filter of the separation means 7. Although it is preferable to use a heat exchanger in order to suppress the gas throughput, it may be cooled by introducing a cooling gas such as air.

分離手段7は、バグフィルタを備えた集塵装置で構成されており、分離冷却流路2内で固化されたキルンガス中の揮発成分の固化物を分離・回収する。集塵装置には従来からキルンガスの処理に用いられているものが採用される。   Separation means 7 is composed of a dust collector equipped with a bag filter, and separates and collects solidified volatile components in the kiln gas solidified in the separation cooling flow path 2. As the dust collector, those conventionally used for the treatment of kiln gas are adopted.

循環路9は、吸引ファン8の排気口とファン4の吸気口の間を接続する管路であり、吸引ファン8からの排出ガスを冷却ガスの一部又は全部としてファン4及び導入路3を介して再び分離冷却流路2に導く。   The circulation path 9 is a pipe line connecting between the exhaust port of the suction fan 8 and the intake port of the fan 4, and the exhaust gas from the suction fan 8 is used as a part or all of the cooling gas to connect the fan 4 and the introduction path 3. To the separation cooling channel 2 again.

次に、本発明の固気分離方法の実施形態を、前記固気分離装置1を用いた実施形態に基づき説明する。   Next, an embodiment of the solid-gas separation method of the present invention will be described based on an embodiment using the solid-gas separation device 1.

先ず、キルンからキルンガスの一部を導入路21を介して分離冷却流路2内に導入する。キルンから導入されるキルンガスは、およそ900〜1300℃の高温のガスであり、塩化カリウムと塩化ナトリウムを主成分とする蒸気を揮発成分として含むとともに、ダストが懸濁した状態の懸濁ガスである。   First, a part of the kiln gas is introduced from the kiln into the separation cooling flow path 2 through the introduction path 21. The kiln gas introduced from the kiln is a high-temperature gas of about 900 to 1300 ° C., and is a suspended gas in a state where dust is suspended while containing vapor mainly composed of potassium chloride and sodium chloride as volatile components. .

分離冷却流路2に導入するキルンガスには、ガス吸着性の冷却剤を添加することが好ましい。斯かる冷却剤を添加することで、キルンガスの冷却効果が得られる他、当該キルンガスに含まれる亜硫酸ガスを吸着させて、酸露点を上げることができるので、装置の腐食防止効果も得ることができる。亜硫酸ガスの化学吸着には、反応速度を考慮すると、800℃程度の温度が好適であり、キルンガスの温度が斯かる温度となる領域で添加することが好ましい。このようなガス吸着性の冷却剤としては、後述するように回収手段で回収された比較的粒径の細かいダスト、セメント原料、石灰石粉等が挙げられる。該冷却剤の添加量は、排出路22の温度や亜硫酸ガス濃度に応じて設定することができる。   It is preferable to add a gas adsorbent coolant to the kiln gas introduced into the separation cooling channel 2. By adding such a coolant, the cooling effect of the kiln gas can be obtained, and the sulfurous acid gas contained in the kiln gas can be adsorbed to increase the acid dew point, so that the corrosion prevention effect of the apparatus can also be obtained. . For the chemical adsorption of sulfurous acid gas, considering the reaction rate, a temperature of about 800 ° C. is suitable, and it is preferable to add in a region where the temperature of the kiln gas becomes such a temperature. Examples of such a gas adsorbing coolant include dust having a relatively small particle diameter, cement raw material, limestone powder and the like collected by a collecting means as described later. The amount of the coolant added can be set according to the temperature of the discharge passage 22 and the sulfurous acid gas concentration.

上述のようにキルンガスの一部を分離冷却流路2に導入する一方で、ファン4によって、分離冷却流路2の中心軸を略中心軸として旋回する冷却ガスを導入路3を通して分離冷却流路2内に導入する。該冷却ガスには、空気を用いることが好ましい。冷却ガスの温度は、キルンガス中の前記揮発成分を固化し得る冷却効果が得られる温度であればよいが、前記揮発成分やその冷却に伴う生成成分の露点、流路の耐熱性を考慮すると、100〜350℃が好ましく、150〜200℃がより好ましい。冷却ガスの一部又は全部を分離手段7からの排気ガスとすると、処理に関わるガス量を軽減できるほか、亜硫酸ガスを石膏として回収し、セメント原料として利用できる点においても好ましい。   While a part of the kiln gas is introduced into the separation cooling channel 2 as described above, the cooling gas swirling around the central axis of the separation cooling channel 2 by the fan 4 is passed through the introduction channel 3 by the fan 4. 2 is introduced. Air is preferably used as the cooling gas. The temperature of the cooling gas only needs to be a temperature at which a cooling effect capable of solidifying the volatile components in the kiln gas is obtained, but considering the dew point of the volatile components and generated components accompanying the cooling, and the heat resistance of the flow path, 100-350 degreeC is preferable and 150-200 degreeC is more preferable. Using part or all of the cooling gas as the exhaust gas from the separation means 7 is preferable in that the amount of gas related to the treatment can be reduced and the sulfurous acid gas can be recovered as gypsum and used as a cement raw material.

次いで、分離冷却流路2内に導入した前記冷却ガスの旋回流で分離冷却流路2の内壁面と前記キルンガスとの接触を防ぎつつ前記揮発成分を冷却して固化させながら、前記冷却ガスの導入に伴って生じる前記キルンガスの旋回流によって前記ダストを遠心分離し、回収手段5で回収する。   Subsequently, the cooling gas introduced into the separation cooling channel 2 is cooled and solidified while the volatile component is cooled and solidified while preventing contact between the inner wall surface of the separation cooling channel 2 and the kiln gas. The dust is centrifuged by the swirling flow of the kiln gas generated along with the introduction, and recovered by the recovery means 5.

即ち、前述した温度分布が形成されている分離冷却流路2内では、キルンガスと冷却ガスとが、0.3〜3秒の間で流路の周縁から中心に向けて層状に徐々に混合される。そして、この冷却ガスとの混合に伴うキルンガスの冷却によって、前記揮発成分が急速に冷却されて固化し、微粒のヒュームとなる。つまり、遠心力を利用した固気分離法における0.1〜1秒以内の時間スケールと比較すると、徐々に混合されており、揮発成分の固化時の結晶の成長時間スケール(初期生成ではなくヒュームの成長で、通常は数秒から数分、さらには1時間以上かかる)と比較すると、揮発成分は急激に冷却されるため。この揮発成分のヒュームは、冷却ガスの導入に伴って生じる旋回流による遠心力の作用を殆ど受けない程の微粒であり、分離冷却流路内で遠心分離されることなく分離冷却流路2の中心部分のキルンガスの流れに乗って下流に送られる。その一方で、ダストは、冷却ガスの導入に伴って生じる旋回流による遠心力の作用で、分離冷却流路2の外周方向に移動し、回収手段5によって回収される。   That is, in the separation cooling channel 2 in which the above-described temperature distribution is formed, the kiln gas and the cooling gas are gradually mixed in layers from the periphery of the channel to the center in 0.3 to 3 seconds. The And by the cooling of the kiln gas accompanying mixing with this cooling gas, the said volatile component is rapidly cooled and solidified, and it becomes a fine particle fume. In other words, compared to the time scale of 0.1 to 1 second or less in the solid-gas separation method using centrifugal force, the mixture is gradually mixed, and the crystal growth time scale at the time of solidification of volatile components (fume rather than initial production) (It usually takes a few seconds to a few minutes, or even an hour or more), because the volatile components are cooled rapidly. The fumes of the volatile components are fine particles that are hardly affected by the centrifugal force due to the swirling flow generated with the introduction of the cooling gas, and are not separated in the separation cooling flow path 2 without being centrifuged. It is sent downstream by the kiln gas flow in the center. On the other hand, the dust is moved in the outer peripheral direction of the separation cooling flow path 2 by the action of the centrifugal force generated by the swirling flow generated with the introduction of the cooling gas, and is recovered by the recovery means 5.

遠心分離作用によってダストをどの程度分離するかは、定性的にはサイクロンを設計する場合の限界粒子径を求める式に準じて考えることができる。分離冷却流路2の内径に相当するような寸法(例えば、分離冷却流路2の流路断面が円のときは分離冷却流路2の内径)を小さくするか、軸方向の長さを長くするか、又は冷却ガスの導入速度を増せば、より微小なダストまで分離回収することができる。ガスの乱れや粒子の運動の乱れのため、斯かる遠心力を作用させることによって分離回収し得るダストの粒子サイズの下限は、実用上5〜10μm程度であることが多い。   The degree to which dust is separated by the centrifugal separation can be qualitatively considered in accordance with an equation for obtaining a critical particle size when a cyclone is designed. The dimension corresponding to the inner diameter of the separation cooling flow path 2 (for example, the inner diameter of the separation cooling flow path 2 when the flow passage section of the separation cooling flow path 2 is a circle) is reduced, or the length in the axial direction is increased. If the introduction rate of the cooling gas is increased, even finer dust can be separated and recovered. Due to the turbulence of gas and the movement of particles, the lower limit of the particle size of dust that can be separated and recovered by applying such centrifugal force is practically about 5 to 10 μm in many cases.

キルンガスに含まれるダストに相当するセメント原料の粒子サイズは、概ね(90%以上が)2〜100μmであるが、凝集などのため、サイクロンの集塵機構で評価される粒子サイズは概ね10〜50μmに分布している。つまり、セメント原料の予熱装置であるサスペンションプレヒーターはサイクロンで集塵された粒子が下段へと供給され、最終的にキルン原料になるように構成されているので、導入路21から導入されるキルンガス中のキルン原料であるダストもこのように凝集した粒子が主体となっている。そのため、本実施形態においては、上記遠心力を作用させることによってキルンガスに含まれるダストを概ね分離回収することができる。   The particle size of the cement raw material corresponding to the dust contained in the kiln gas is approximately 2 to 100 μm (90% or more), but due to aggregation, the particle size evaluated by the cyclone dust collection mechanism is approximately 10 to 50 μm. Distributed. That is, the suspension preheater, which is a cement raw material preheating device, is configured so that particles collected by the cyclone are supplied to the lower stage and finally become a kiln raw material, so that the kiln gas introduced from the introduction passage 21 is used. The dust that is the raw material of the kiln is mainly composed of such aggregated particles. Therefore, in the present embodiment, the dust contained in the kiln gas can be roughly separated and recovered by applying the centrifugal force.

回収されたダストは、再利用することが好ましい。回収されたダストは、ホッパの設置箇所によってその粒径が異なり、冷却ガスの導入部分の下流側近傍で回収される概ね30μm以上の粒径を有し、中には10mmを超えるかなり粗い粒子も含むものや、分離冷却流路の下流で回収される数μm〜100μm程度の粒径のものがあるので、複数の回収手段5を設けることもできる。前者のように比較的粒径の大きなダストは、処理のし易さを考慮するとキルンに再投入することが好ましい。回収したダストをキルンに再投入する場合には、キルンに投入されるキルン原料の流れるサスペンションプレヒーターのボトムサイクロンのシュートやキルン出口ダクトに特別な耐火物施工のないシュートを取り付けて行うことが好ましい。投入量の調整や気密性確保のため差し込みダンパー、ロータリフィーダー、スクリューコンベアを取り付けることがより好ましく、温度が高い部分では耐火物施工を施すことが好ましい。また、サスペンションプレヒーターの送入原料や調合原料に戻しても良い。一方後者のように、比較的粒径の細かいダストは、消石灰を半分程度含んでおり、一部が石膏や硫化カルシウムとなっているため、その全量又は一部をクリンカやセメントに添加することで、硫化カルシウムの効果でセメントの微量成分の溶出を抑制することができる。また、分離手段7で分離回収された前記揮発成分の固化物とともに回収して処理してもよい。また、循環させて前記冷却剤として使用することで、キルンガス中の亜硫酸ガスとの反応が促進されるので、石膏の代替品としてセメントに添加する際にさらに好適に利用できる。さらに、前者と同様にキルンに再投入することもできる。   The recovered dust is preferably reused. The recovered dust has a particle size that varies depending on the location of the hopper, and has a particle size of approximately 30 μm or more recovered in the vicinity of the downstream side of the cooling gas introduction portion. Since there are those that are included and those with a particle size of about several μm to 100 μm that are recovered downstream of the separation cooling channel, a plurality of recovery means 5 can be provided. It is preferable that dust having a relatively large particle size like the former is re-introduced into the kiln in consideration of ease of processing. When the collected dust is reintroduced into the kiln, it is preferable to attach a chute with no special refractory construction to the bottom cyclone chute of the suspension preheater or the kiln outlet duct through which the kiln raw material to be introduced into the kiln flows. . It is more preferable to attach an insertion damper, a rotary feeder, and a screw conveyor in order to adjust the input amount and ensure airtightness, and it is preferable to perform refractory construction in a portion where the temperature is high. Moreover, you may return to the feed raw material and compounded raw material of a suspension preheater. On the other hand, the dust with relatively fine particle size, like the latter, contains about half of the slaked lime, and part of it is gypsum and calcium sulfide, so the whole or part of it can be added to the clinker or cement. The elution of trace components of cement can be suppressed by the effect of calcium sulfide. Moreover, you may collect | recover and process with the solidified material of the said volatile component isolate | separated and collect | recovered by the isolation | separation means 7. FIG. Moreover, since the reaction with the sulfurous acid gas in the kiln gas is promoted by circulating and using as the coolant, it can be more suitably used when added to cement as a substitute for gypsum. Furthermore, it can be re-entered into the kiln as in the former case.

本実施形態では、導入路3を介して前記分離冷却流路2内に導入した前記冷却ガスで前記キルンガスの流れを狭めることで生じるオリフィス効果によって、当該キルンガスの流れと逆方向の該冷却ガスの流れが形成される。そしてこの流れによって、分離冷却流路2における該冷却ガスの導入部分よりも上流側の部分の内壁面と前記キルンガスとの接触が防がれるため、当該内壁面の部分におけるコーチングの発生を防ぐことができる。   In this embodiment, due to the orifice effect generated by narrowing the flow of the kiln gas with the cooling gas introduced into the separation cooling flow path 2 via the introduction path 3, the cooling gas in the direction opposite to the flow of the kiln gas is reduced. A flow is formed. This flow prevents contact between the inner wall surface of the upstream portion of the separation cooling flow channel 2 and the kiln gas from the cooling gas introduction portion, thereby preventing the occurrence of coaching in the inner wall surface portion. Can do.

分離冷却流路2から排出される排出ガスの温度は、キルンガスに含まれる亜硫酸ガスの露点、前記揮発成分の融点を考慮すると、130〜500℃とすることが好ましい。   Considering the dew point of sulfurous acid gas contained in the kiln gas and the melting point of the volatile component, the temperature of the exhaust gas discharged from the separation cooling channel 2 is preferably 130 to 500 ° C.

その後、前記排出ガスを前記バグフィルタの耐熱温度以下に冷却し、固化させた前記揮発成分を当該バグフィルタで分離・回収する。   Thereafter, the exhaust gas is cooled below the heat resistant temperature of the bag filter, and the solidified volatile components are separated and collected by the bag filter.

本実施形態では、吸引ファン8から排出される排出ガスを、前記冷却ガスの全部又は一部として吸引ファン8、循環路9、ファン4及び導入路3を経由して分離冷却流路2に導入する。これにより、ガスの処理量を軽減できるので好ましい。   In this embodiment, exhaust gas discharged from the suction fan 8 is introduced into the separation cooling flow path 2 via the suction fan 8, the circulation path 9, the fan 4 and the introduction path 3 as all or part of the cooling gas. To do. This is preferable because the gas throughput can be reduced.

以上説明した本実施形態の固気分離装置1及びこれを用いた固気分離方法によれば、キルンガスから、それに含まれる揮発成分及びダストを、該揮発成分の装置への固着を抑えて好適に分離することができる。特に、本実施形態では、固気分離と揮発成分の固化時の結晶の成長との時間スケールの大きな差を利用し、キルンガスからダストを分離しながらキルンガスを冷却してそれに含まれる揮発成分を冷却するので、小規模な装置でも効率よく分離を行うことができる。   According to the solid-gas separation device 1 of the present embodiment described above and the solid-gas separation method using the same, the volatile components and dust contained in the kiln gas are suitably suppressed while suppressing the fixation of the volatile components to the device. Can be separated. In particular, in this embodiment, a large difference in time scale between solid-gas separation and crystal growth during solidification of volatile components is utilized, and the kiln gas is cooled while the dust is separated from the kiln gas to cool the volatile components contained therein. Therefore, separation can be performed efficiently even with a small-scale apparatus.

図3は、本発明の実施に当たって、コンピュータシミュレーションによって、以下のようにして固気分離流路内の温度分布及び粉塵の流れを計算した結果を示したものである。計算に際しては、図3に示すような導入路側の端部も窄めた形状の分離冷却路を用い、回収手段のホッパは省略した。また、計算を短時間で行うために、ガスを導入路側の端部から均等に押し込んだとき、その影響が導入路の入口に大きく現れるので、導入路を実際より長くして入口付近を仮想的な部分と見なす(つまり無視する)ことで対応した。また、ガスに含ませる粒子間の相互作用は無視した。   FIG. 3 shows the result of calculating the temperature distribution and the dust flow in the solid-gas separation flow path by computer simulation as follows in the implementation of the present invention. In the calculation, a separation cooling path having a narrowed end on the introduction path side as shown in FIG. 3 was used, and the hopper of the recovery means was omitted. Also, in order to perform the calculation in a short time, when the gas is pushed in evenly from the end on the introduction path side, the effect appears greatly at the entrance of the introduction path. It was dealt with by considering it as an unimportant part. In addition, the interaction between the particles included in the gas was ignored.

<温度分布>
導入路側から1100℃のガス(二酸化炭素25%、酸素3%、水蒸気8%、窒素64%)をベースガスとして2.4m/秒で吹き込み、さらに冷却ガスの導入路から30℃の空気を冷却ガスとして7.8m/秒で吹き込んで計算した。その結果を図3に示す。
<Temperature distribution>
1100 ° C gas (carbon dioxide 25%, oxygen 3%, water vapor 8%, nitrogen 64%) was blown in at a rate of 2.4 m / sec from the introduction channel side, and 30 ° C air was cooled from the cooling gas introduction channel. It was calculated by blowing in as gas at 7.8 m / sec. The result is shown in FIG.

<粉塵の流れ>
上記ベースガスに同伴させて密度が2000kg/m3の球形粒子を128個導入路の側の断面における周方向に32、半径方向に4均等に分散配置した位置から吹き込んだ場合について、3μm、10μm及び30μmの三種類の粒径を対象に粒子間の相互作用を無視して計算した。その結果を図4に示す。
<Dust flow>
In the case where 128 spherical particles having a density of 2000 kg / m 3 are blown from the position where 32 spherical particles in the cross section on the introduction path side and 4 in the radial direction are evenly distributed in the base gas, 3 μm, 10 μm In addition, the calculation was performed by ignoring the interaction between the particles for three particle sizes of 30 μm. The result is shown in FIG.

図3に示したように、分離冷却流路の排出側の端部では、中心部でも500℃以下にガス温度が下がり、導入側の内壁面も冷却ガスの逆流で保護されていることがわかった。また、図4(a)〜(c)に示したように、10μm以上の粒子が殆ど壁面に寄っていることがわかった。   As shown in FIG. 3, at the end of the separation cooling channel on the discharge side, the gas temperature is lowered to 500 ° C. or less even in the center, and the inner wall surface on the introduction side is also protected by the backflow of the cooling gas. It was. In addition, as shown in FIGS. 4A to 4C, it was found that particles having a size of 10 μm or more are almost on the wall surface.

実際の設計に当たっては、より詳細なモデルで厳密な計算を行う必要があるが、上記モデルに回収手段として図2に示すようなホッパ50を接続してもキルンガスに含まれる揮発成分の融点が略600℃以上であるので、分離冷却流路や排出路の内壁面にはコーチングの付着は発生せず、また10μm以上(詳細には8μm程度以上)の粒子は冷却ガスの導入による遠心分離作用によって回収できることが計算できた。また、このようなシミュレーションの結果に基づいて、内部の詳細な形状や懸濁ガス及び冷却ガスの速度等の運転条件を設定することができる。   In actual design, it is necessary to carry out a strict calculation with a more detailed model. However, even if a hopper 50 as shown in FIG. 2 is connected to the above model as a recovery means, the melting point of the volatile component contained in the kiln gas is substantially reduced. Since it is 600 ° C. or higher, no coating is generated on the inner wall surface of the separation cooling channel or the discharge channel, and particles of 10 μm or more (more specifically about 8 μm or more) are caused by the centrifugal separation action by introducing the cooling gas. It was calculated that it could be recovered. Further, based on the result of such a simulation, it is possible to set operating conditions such as the internal detailed shape and the speed of the suspended gas and the cooling gas.

本発明は、前記実施形態に制限されない。
例えば、循環路9で循環させずに排出してもよい。排出ガスには亜硫酸ガス等が含まれるので、処理を行ってから排出する必要があり、該排出ガスをセメントクリンカの生産工程に戻して処理することが好ましい。
The present invention is not limited to the embodiment.
For example, it may be discharged without being circulated in the circulation path 9. Since the exhaust gas contains sulfurous acid gas and the like, it is necessary to discharge after processing, and it is preferable to return the exhaust gas to the cement clinker production process for processing.

また、前記実施形態では、冷却ガスの導入路3を一つ備えたものとしたが、複数の導入路を備えていても良い。導入路3を複数備えていると、キルンガスが分離冷却流路2の中心部分を流れやすくすることができるため、ダストの分離や前記ガスの逆流をきれいに発生させやすくなるので好ましい。   In the above embodiment, one cooling gas introduction path 3 is provided, but a plurality of introduction paths may be provided. It is preferable to provide a plurality of introduction paths 3 because the kiln gas can easily flow through the central portion of the separation cooling flow path 2, so that dust separation and backflow of the gas can be easily generated cleanly.

また、設計上導入路21を長く設定しなければならず、冷却ガスの逆流効果が十分に期待できない場合には、導入路21の導入口から新たに冷却ガスを導入することもできる。この場合にも、分離冷却流路2における冷却ガスの導入路3と同様に、キルンガスに旋回が生じるように外周に対し接線方向から冷却ガスを導入することが好ましい。   In addition, when the introduction path 21 has to be set longer by design and the backflow effect of the cooling gas cannot be sufficiently expected, a new cooling gas can be introduced from the introduction port of the introduction path 21. Also in this case, it is preferable to introduce the cooling gas from the tangential direction with respect to the outer periphery so that the kiln gas is swirled as in the cooling gas introduction path 3 in the separation cooling flow path 2.

また、分離冷却流路2へのキルンガスの導入路21にも冷却ガスの導入路3を接続し、この導入路から導入する冷却ガスによって、当該導入路21へのコーチングの付着を防止できるようにすることもできる。冷却ガスには、前記実施形態における導入路3に用いたものと同様のガスを用いることができる。このように分離冷却流路2とは別に冷却ガスを導入することで、導入路21の距離が長く、冷却ガスの逆流によるコーチングの付着防止効果が十分に得られない場合にも、効果的にコーチングの付着を防止することができる。   Further, the cooling gas introduction path 3 is also connected to the kiln gas introduction path 21 to the separation cooling flow path 2 so that the adhesion of the coating to the introduction path 21 can be prevented by the cooling gas introduced from the introduction path. You can also As the cooling gas, the same gas as that used for the introduction path 3 in the above embodiment can be used. Thus, by introducing the cooling gas separately from the separation cooling flow path 2, it is effective even when the distance of the introduction path 21 is long and the effect of preventing the adhesion of the coating due to the back flow of the cooling gas cannot be obtained sufficiently. Coaching adhesion can be prevented.

また、導入路3からの冷却ガスの逆流をより起こし易くするためには、分離冷却流路2の流路を該冷却ガスで中心部より狭める構造が好ましい。このためには、例えば、分離冷却流路2は、図1及び図2では、導入路3との接続部の前後でその内径を拡げているが、そのように拡げずに導入路21の内径と同じままとすることが好ましい。   Further, in order to make the backflow of the cooling gas from the introduction path 3 easier to occur, a structure in which the flow path of the separation cooling flow path 2 is narrowed from the center by the cooling gas is preferable. For this purpose, for example, in FIG. 1 and FIG. 2, the separation cooling flow path 2 has its inner diameter expanded before and after the connecting portion with the introduction path 3, but the inner diameter of the introduction path 21 is not expanded as such. Is preferably kept the same.

また、本発明の効果を損なわない範囲において、キルンガスの導入路21の導入口に邪魔板や堰を設けて流路を外周から絞ることは冷却ガスの逆流を引き起こす上で有効である。   Further, within the range not impairing the effect of the present invention, it is effective to provide a baffle plate or a weir at the inlet of the kiln gas introduction passage 21 to restrict the flow path from the outer periphery in order to cause a backflow of the cooling gas.

〔実施例1〕
図1に示す装置を使用し、循環路による排出ガスの循環及び冷却剤の添加は行わずにキルンガスの固気分離処理を行ったところ、分離冷却流路において遠心分離によって回収されたダストは、キルン原料であるボトムサイクロンで捕集された原料に比べて塩素とカリウムがそれぞれ2.5%程度多く、SO4が5%程度多い以外は、略同等のダストが回収できた。一方、分離手段で分離回収された回収物について化学分析を行った結果、当該回収物は、塩化カリウム50%、塩化ナトリウム5%及び硫化カリウム10%を含み、化合物は不明であるが、鉛、カドミウム及びセレンも合計で1%程度含まれていた。残りの部分は、前述のキルン原料が主体であるが、それよりはSO4が5%程度多く、Al23も多く含まれていた。この結果は、分離冷却流路において遠心分離されなかったキルン原料の微粒成分が多めに回収されたためであると推定された。この結果から、該回収物は、微粒成分を多く含むダストが約30%、揮発成分の固化物が約60%、ガスに含まれていた亜硫酸ガス等が化学吸着(反応)したものが約10%と推定された。同様に、遠心分離作用によって回収された回収物は、ダストが約85%、揮発成分の固化物が約10%、亜硫酸ガスが約5%と推定された。
[Example 1]
When the device shown in FIG. 1 is used and the solid-gas separation treatment of the kiln gas is performed without circulating the exhaust gas and adding the coolant, the dust recovered by the centrifugal separation in the separation cooling flow path is Compared to the raw material collected by the bottom cyclone, which is the kiln raw material, approximately 2.5% more chlorine and potassium were obtained, and almost the same dust was recovered except SO 4 was about 5% more. On the other hand, as a result of chemical analysis of the recovered material separated and recovered by the separation means, the recovered material contains 50% potassium chloride, 5% sodium chloride and 10% potassium sulfide, and the compound is unknown, but lead, Cadmium and selenium were also included in a total of about 1%. The remaining part is mainly the above-described kiln raw material, but it contains about 5% more SO 4 and more Al 2 O 3 than that. This result was presumed to be because a larger amount of fine components of the kiln raw material that was not centrifuged in the separation cooling channel was recovered. From this result, the recovered material is about 30% of dust containing a large amount of fine particles, about 60% of solidified volatile components, and about 10 of the chemical adsorbed (reacted) sulfurous acid gas contained in the gas. %. Similarly, the recovered material recovered by the centrifugal separation operation was estimated to be about 85% dust, about 10% solidified volatile components, and about 5% sulfurous acid gas.

〔比較例1〕
回収手段のホッパを回収物で満たし、回収物を回収しないで、全量を分離手段で分離回収する運転を行った。このときの分離手段による回収物について、実施例1と同様に化学分析した結果、ダストが約70%、揮発成分の固化物が約25%、化学吸着した亜硫酸ガスが約10%と推定された。この回収物を篩やセパレータ等を用いて種々機械的な分級を試みたが、揮発成分の固化物が最大でも35%程度までしか上がらなかった。この原因としては、全量を分理手段の回収物として回収したため、大部分が微小粒子である揮発成分の固化物が、回収物に含まれる粗粒に強く凝集したためであると考えられる。
[Comparative Example 1]
An operation was performed in which the hopper of the recovery means was filled with the recovered material, and the entire amount was separated and recovered by the separating means without recovering the recovered material. As a result of chemical analysis in the same manner as in Example 1, the recovered material by the separation means at this time was estimated to be about 70% dust, about 25% solidified volatile components, and about 10% chemically adsorbed sulfurous acid gas. . Although various mechanical classifications of this recovered material were attempted using a sieve, a separator, etc., the solidified product of volatile components increased only to about 35% at the maximum. The reason for this is thought to be that the entire amount was recovered as the recovered material of the distribution means, and the solidified volatile components, which are mostly fine particles, strongly aggregated into the coarse particles contained in the recovered material.

そこで、従来から固体分離法に用いられているサイクロンを分級機として備えている固気分離装置をセメントクリンカ製造用のキルンの塩素バイパスに適用したときのデータを用いて、実施例1及び比較例1の結果を以下のように検討した。   Therefore, using data obtained when a solid-gas separation device equipped with a cyclone conventionally used in a solid separation method as a classifier is applied to a chlorine bypass of a kiln for producing a cement clinker, Example 1 and Comparative Example The result of 1 was examined as follows.

すなわち、従来の固気分離装置による回収物中の揮発成分の固化物の濃度が、実施例1と変わらない約60%であるデータについて調べたところ、分級機で回収された回収物中の揮発成分の固化物の濃度は、約17%であった。ここで、ある着目した成分の分離手段における回収物として回収される割合(回収率)を求める。当該着目成分について、濃度N1の分級機による回収物と濃度N2の分離手段による回収物を、a:(1−a)で混合すると、前述の全量を分離手段で分離回収した場合の濃度Nになると考えれば、
aN1+(1−a)N2=N
である。この式を解いて、
a=(N−N2)/(N1−N2)
が求まる。従って、前記回収率は、
(1−a)N2/N=(1−N1/N)/(1−N1/N2)
となる。
That is, when the concentration of the solidified product of the volatile component in the collected material by the conventional solid-gas separation device was about 60%, which was the same as in Example 1, the volatile content in the collected material collected by the classifier was examined. The concentration of the solidified component was about 17%. Here, the ratio (recovery rate) collected as a recovered product in the separation means of a certain component of interest is obtained. Regarding the component of interest, when the recovered material by the classifier of concentration N1 and the recovered material by the separation means of concentration N2 are mixed at a: (1-a), the concentration N is the concentration when the above-mentioned total amount is separated and recovered by the separating means. If you think
aN1 + (1-a) N2 = N
It is. Solving this equation
a = (N-N2) / (N1-N2)
Is obtained. Therefore, the recovery rate is
(1-a) N2 / N = (1-N1 / N) / (1-N1 / N2)
It becomes.

前記揮発成分の固化物の濃度に着目して当該固化物の回収率を計算すると、
実施例1は(1−10/25)/(1−10/60)=72%
比較例1は(1−17/25)/(1−17/60)=45%
であった。
When paying attention to the concentration of the solidified product of the volatile component and calculating the recovery rate of the solidified product,
Example 1 is (1-10 / 25) / (1-10 / 60) = 72%
Comparative Example 1 is (1-17 / 25) / (1-17 / 60) = 45%
Met.

比較例1による方法は、固体分離法に当たり、もし凝集しなかった微粉側だけ分離手段で回収物として分離回収するとすれば、実施例1と同程度の分理能力を発揮することができるのだが、凝固や凝集のため粗粉側にどうしても多くの揮発成分の固化物が含まれてしまい、当該固化物のみの回収の観点からは非効率になっている。この点本発明によれば濃度が同程度であれば回収効率が高いことがわかった。   The method according to Comparative Example 1 is a solid separation method. If only the fine powder side that has not been agglomerated is separated and recovered as a recovered material by the separating means, it is possible to exert the same level of separation ability as in Example 1. Because of solidification and agglomeration, solidified products of many volatile components are inevitably contained on the coarse powder side, which is inefficient from the viewpoint of recovery of only the solidified products. In this regard, according to the present invention, it was found that the recovery efficiency is high if the concentration is approximately the same.

本発明の固気分離方法及び装置は、前記実施形態のように、セメントクリンカ製造用のキルンのキルンガスの処理に好適であるが、これ以外に、例えば、ゴミ焼却場の排ガス処理にも適用でき、排ガスに含まれる蒸気状の食塩等の塩化物や重金属類と、ゴミに含まれる微粉とを別々に分離することができ、急冷によるダイオキシン類の生成を抑制する効果も期待できる。   The solid-gas separation method and apparatus of the present invention is suitable for the treatment of kiln gas in a kiln for producing cement clinker as in the above embodiment, but can also be applied to, for example, exhaust gas treatment in a garbage incinerator. In addition, chlorides such as vaporous salt and heavy metals contained in exhaust gas and fine powder contained in garbage can be separated separately, and an effect of suppressing the production of dioxins by rapid cooling can be expected.

本発明の固気分離装置の一実施形態を模式的に示す図である。It is a figure which shows typically one Embodiment of the solid-gas separation apparatus of this invention. 図1の要部を模式的に示す拡大図であり、(a)は冷却ガスの導入路の接合部分の縦断面図((b)のA−A断面図)、(b)は分離冷却流路を下流側から視た図、(c)は排出路と回収手段の位置関係を示す図である。It is an enlarged view which shows the principal part of FIG. 1 typically, (a) is a longitudinal cross-sectional view (AA sectional drawing of (b)) of the junction part of the introduction path | route of a cooling gas, (b) is a separated cooling flow. The figure which looked at the path | route from the downstream, (c) is a figure which shows the positional relationship of a discharge path and a collection | recovery means. 本発明における分離冷却流路内の温度分布の概略をコンピュータシミュレーションで計算した結果を示す図である。It is a figure which shows the result of having calculated the outline of the temperature distribution in the separation cooling flow path in this invention by computer simulation. (a)〜(c)は、本発明における分離冷却流路内を流れる懸濁ガス中の粉塵の流れをその粒径毎にコンピュータシミュレーションで計算した結果を示す透視図である。(A)-(c) is a perspective view which shows the result of having calculated the flow of the dust in the suspension gas which flows through the inside of the separation cooling flow path in this invention for every particle size by computer simulation.

符号の説明Explanation of symbols

1 固気分離装置
2 分離冷却流路
3 導入路
4 ファン
5 回収手段
6 冷却手段
7 分離手段
8 吸引ファン
9 循環路
10 キルンガス煙道
11 塩素バイパス

DESCRIPTION OF SYMBOLS 1 Solid-gas separation apparatus 2 Separation cooling flow path 3 Introductory path 4 Fan 5 Recovery means 6 Cooling means 7 Separation means 8 Suction fan 9 Circulation path 10 Kiln gas flue 11 Chlorine bypass

Claims (8)

冷却すると固化する物質の蒸気を含み且つ粉塵が懸濁している懸濁ガスから該物質及び該粉塵を別々に分離する固気分離方法であって、
前記懸濁ガスを分離冷却流路内に導入する一方、前記分離冷却流路の中心軸を略中心軸として旋回する冷却ガスを該分離冷却流路に接続された導入路を通して該分離冷却流路内に導入し、前記冷却ガスで前記分離冷却流路の内壁面と前記懸濁ガスとの接触を防ぎつつ前記物質を冷却して固化させながら、前記冷却ガスの導入に伴って生じる前記懸濁ガスの旋回流によって前記粉塵を遠心分離し、しかる後、固化させた前記物質を分離する固気分離方法。
A solid-gas separation method for separately separating the substance and the dust from a suspended gas containing the vapor of the substance that solidifies upon cooling and in which the dust is suspended,
The suspension gas is introduced into the separation cooling channel, and the cooling gas swirling around the central axis of the separation cooling channel is passed through the introduction channel connected to the separation cooling channel. The suspension generated by the introduction of the cooling gas while being cooled and solidified while preventing the contact between the inner wall surface of the separation cooling channel and the suspension gas with the cooling gas. A solid-gas separation method in which the dust is centrifuged by a swirling gas flow, and then the solidified substance is separated.
前記分離冷却流路内に導入した前記冷却ガスで前記懸濁ガスの流れを狭めて該懸濁ガスの流れと逆方向に該冷却ガスの流れを形成する請求項1に記載の固気分離方法。   The solid-gas separation method according to claim 1, wherein the flow of the suspension gas is narrowed by the cooling gas introduced into the separation cooling flow path to form the flow of the cooling gas in a direction opposite to the flow of the suspension gas. . 前記粉塵及び前記物質を分離した前記懸濁ガスを前記冷却ガスの全部又は一部として前記分離冷却流路に導入する請求項1又は2に記載の固気分離方法。   The solid-gas separation method according to claim 1 or 2, wherein the suspended gas from which the dust and the substance are separated is introduced into the separation cooling channel as all or part of the cooling gas. 前記懸濁ガスに、ガス吸着性の冷却剤を添加する請求項1〜3の何れかに記載の固気分離方法。   The solid-gas separation method according to claim 1, wherein a gas adsorbing coolant is added to the suspension gas. 前記懸濁ガスが、セメントクリンカ製造用のキルンから導かれるガスである請求項1〜4の何れかに記載の固気分離方法。   The solid-gas separation method according to any one of claims 1 to 4, wherein the suspended gas is a gas derived from a kiln for producing a cement clinker. 請求項1に記載の固気分離方法を実施するための固気分離装置であって、
前記懸濁ガスが導入される分離冷却流路と、前記分離冷却流路に接続され該分離冷却流路内にその中心軸を略中心軸とする前記冷却ガスの旋回流を導入する導入路と、前記分離冷却流路の壁部に配設され前記冷却ガスの導入に伴って生じる前記懸濁ガスの旋回流によって遠心分離された前記粉塵を回収する回収手段と、該回収手段より前記分離冷却流路の下流側に配設され固化した前記物質を分離する分離手段とを備えている固気分離装置。
A solid-gas separation device for carrying out the solid-gas separation method according to claim 1,
A separation cooling channel into which the suspended gas is introduced, and an introduction channel that is connected to the separation cooling channel and introduces a swirling flow of the cooling gas with the central axis as a substantially central axis in the separation cooling channel. A recovery means for recovering the dust centrifugally separated by a swirling flow of the suspension gas that is provided on the wall of the separation cooling flow path and that is generated by the introduction of the cooling gas; and the separation cooling by the recovery means A solid-gas separation device comprising: a separation unit that is disposed downstream of the flow path and separates the solidified substance.
前記分離冷却流路の流路断面が前記導入路の接続位置より下流において狭められている請求項6記載の固気分離装置。   The solid-gas separation device according to claim 6, wherein a flow path cross section of the separation cooling flow path is narrowed downstream from a connection position of the introduction path. 前記分離手段から排出されるガスを前記導入路に導く循環路を備えている請求項6又は7に記載の固気分離装置。

The solid-gas separation device according to claim 6 or 7, further comprising a circulation path for guiding the gas discharged from the separation means to the introduction path.

JP2005228887A 2005-08-05 2005-08-05 Solid-gas separation method and apparatus Active JP5183865B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228887A JP5183865B2 (en) 2005-08-05 2005-08-05 Solid-gas separation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228887A JP5183865B2 (en) 2005-08-05 2005-08-05 Solid-gas separation method and apparatus

Publications (2)

Publication Number Publication Date
JP2007044577A true JP2007044577A (en) 2007-02-22
JP5183865B2 JP5183865B2 (en) 2013-04-17

Family

ID=37847883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228887A Active JP5183865B2 (en) 2005-08-05 2005-08-05 Solid-gas separation method and apparatus

Country Status (1)

Country Link
JP (1) JP5183865B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064939A (en) * 2014-09-24 2016-04-28 太平洋セメント株式会社 Cement firing apparatus
JP2016064938A (en) * 2014-09-24 2016-04-28 太平洋セメント株式会社 Extraction cooling apparatus, chlorine bypass system using the same, and method for treating cement kiln extraction gas
JP2017120138A (en) * 2015-12-28 2017-07-06 宇部興産株式会社 Bleeding device and bleeding method
JP2018131374A (en) * 2017-02-14 2018-08-23 宇部興産株式会社 Extraction device and extraction method of kiln gas

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252349A (en) * 1986-04-22 1987-11-04 秩父セメント株式会社 Treatment for cement kiln exhaust gas
JPH06265134A (en) * 1993-03-11 1994-09-20 Kansai Electric Power Co Inc:The Apparatus and method for recovering value in plasma melting furnace
JPH07194916A (en) * 1993-12-07 1995-08-01 Mannesmann Ag Method and device for removing heavy metal and heavy metal containing compound
JPH083722A (en) * 1994-06-22 1996-01-09 Nkk Corp Waste gas treatment
JPH09175847A (en) * 1995-10-24 1997-07-08 Ube Ind Ltd Method for treating bled exhaust gas of cement kiln and its treating device
JPH09309751A (en) * 1996-03-19 1997-12-02 Ube Ind Ltd Apparatus for firing cement materials
JPH1135355A (en) * 1997-07-17 1999-02-09 Chichibu Onoda Cement Corp Waste gas cooling method in kiln bypass and device therefor
JPH11130490A (en) * 1997-10-24 1999-05-18 Kawasaki Heavy Ind Ltd Method for controlling and removing harmful substance from cement firing equipment and device therefor
JP2000104915A (en) * 1998-09-28 2000-04-11 Ebara Corp Method and apparatus for preventing deposition of dust on melting furnace waste gas duct
JP2001317722A (en) * 2000-05-01 2001-11-16 Takuma Co Ltd Method and device for preventing adhesion of dust

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62252349A (en) * 1986-04-22 1987-11-04 秩父セメント株式会社 Treatment for cement kiln exhaust gas
JPH06265134A (en) * 1993-03-11 1994-09-20 Kansai Electric Power Co Inc:The Apparatus and method for recovering value in plasma melting furnace
JPH07194916A (en) * 1993-12-07 1995-08-01 Mannesmann Ag Method and device for removing heavy metal and heavy metal containing compound
JPH083722A (en) * 1994-06-22 1996-01-09 Nkk Corp Waste gas treatment
JPH09175847A (en) * 1995-10-24 1997-07-08 Ube Ind Ltd Method for treating bled exhaust gas of cement kiln and its treating device
JPH09309751A (en) * 1996-03-19 1997-12-02 Ube Ind Ltd Apparatus for firing cement materials
JPH1135355A (en) * 1997-07-17 1999-02-09 Chichibu Onoda Cement Corp Waste gas cooling method in kiln bypass and device therefor
JPH11130490A (en) * 1997-10-24 1999-05-18 Kawasaki Heavy Ind Ltd Method for controlling and removing harmful substance from cement firing equipment and device therefor
JP2000104915A (en) * 1998-09-28 2000-04-11 Ebara Corp Method and apparatus for preventing deposition of dust on melting furnace waste gas duct
JP2001317722A (en) * 2000-05-01 2001-11-16 Takuma Co Ltd Method and device for preventing adhesion of dust

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016064939A (en) * 2014-09-24 2016-04-28 太平洋セメント株式会社 Cement firing apparatus
JP2016064938A (en) * 2014-09-24 2016-04-28 太平洋セメント株式会社 Extraction cooling apparatus, chlorine bypass system using the same, and method for treating cement kiln extraction gas
JP2017120138A (en) * 2015-12-28 2017-07-06 宇部興産株式会社 Bleeding device and bleeding method
JP2018131374A (en) * 2017-02-14 2018-08-23 宇部興産株式会社 Extraction device and extraction method of kiln gas

Also Published As

Publication number Publication date
JP5183865B2 (en) 2013-04-17

Similar Documents

Publication Publication Date Title
TW539829B (en) Processing method for high-temperature exhaust gas
EP0137599B1 (en) Treatment of flue gas
JP5183865B2 (en) Solid-gas separation method and apparatus
JPH09175847A (en) Method for treating bled exhaust gas of cement kiln and its treating device
TW200416211A (en) Cement kiln chlorine sulfur bypass system
JP5541736B2 (en) Method and apparatus for recovering metal from furnace dust
JPH10330136A (en) Calcination of cement raw material and apparatus for calcination
JPWO2015046200A1 (en) Extraction cooling device, chlorine bypass system, cement kiln extraction gas processing method, and cement firing device
JPH02107301A (en) Method and apparatus for separating vapor like metal compound from carrier gas
JP2002282639A (en) Process and device for eliminating volatile elements, in particular chlorides and/or sulfates, contained in stream of fumes
US3146998A (en) Method and apparatus for preheating of fine-grain material
EP2494082B1 (en) Method and apparatus for condensing metal and other vapours
JP5355977B2 (en) Method for treating materials containing platinum group elements, rhenium and arsenic
JP2011506901A (en) Method and apparatus for coarse separation of solid particles from gas containing solids
CN111057851B (en) Aluminum chip treatment device and treatment method
JP6372538B2 (en) Molten slag processing apparatus and molten slag processing method
JP2009281617A (en) Exhaust gas treatment method for rotary hearth furnace
JP2004076090A (en) Apparatus and method for recovering low-melting point valuable sources
JP3503402B2 (en) Cement raw material firing equipment
JPH06174383A (en) Treating method of electric furnace dust
JP6601482B2 (en) Steel slag treatment method and equipment
JP6609996B2 (en) Cement clinker manufacturing apparatus, cement manufacturing apparatus, cement clinker manufacturing apparatus method, and cement manufacturing method
JP2001278643A (en) Operating process of chlorine bypass for cement kiln and chlorine bypass for cement kiln using process thereof
JP5306136B2 (en) Method of charging ore raw material and solvent into smelting furnace
JP2004529770A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120306

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5183865

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250