JPH06174383A - Treating method of electric furnace dust - Google Patents

Treating method of electric furnace dust

Info

Publication number
JPH06174383A
JPH06174383A JP15996592A JP15996592A JPH06174383A JP H06174383 A JPH06174383 A JP H06174383A JP 15996592 A JP15996592 A JP 15996592A JP 15996592 A JP15996592 A JP 15996592A JP H06174383 A JPH06174383 A JP H06174383A
Authority
JP
Japan
Prior art keywords
chloride
exhaust gas
electric furnace
iron
dust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15996592A
Other languages
Japanese (ja)
Inventor
Kinichi Sugawara
欣一 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNO TORIITO KK
Original Assignee
TECHNO TORIITO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNO TORIITO KK filed Critical TECHNO TORIITO KK
Priority to JP15996592A priority Critical patent/JPH06174383A/en
Publication of JPH06174383A publication Critical patent/JPH06174383A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To furnish a novel treating method wherein impurity components such as Zn, Pb, Cl, etc., are removed and collected from electric furnace dust containing these components, while an iron content is returned in the form of higher purity to an electric furnace, and an exhaust gas is made harmless. CONSTITUTION:Solid carbon and ferric chloride in the form of fine powder are added to and mixed in electric furnace dust containing Zn, Pb, Cl, etc., and mixing kneading, granulation and drying are conducted. Thereafter the dust thus processed is subjected, together with an externally charged carbon material, to reduction, chlorination, volatilization and roast in a heating furnace such as a rotary kiln and thereby Zn and Pb are volatilized and removed as chloride, while an iron content is reduced. A burned material thus produced is subjected to magnetic separation and a magnetized material is supplied to an electric furnace as an electric furnace material, while a non-magnetized material is classified or sieved, so as to remove an ash content therefrom, and added to the externally charged carbon material for circulation. The chloride volatilized in an exhaust gas is led to a vertical type packing tower or the like, deposited and precipitated on a packed material and removed. Thereafter a hydrogen chloride content in the exhaust gas is removed by adsorption by blowing ferric hydroxide, limonite, iron oxide in the form of fine powder, or the like, into the exhaust gas, while the chloride thus treated is collected by a dust collector and supplied as the ferric chloride to a head for circulation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【本特許技術の必要性】製鐵業からは多種・多量のダス
ト類が発生し,その或るものは関連する工程へ循環使用
され,また或るものは他の用途に有効活用がはかられた
りしているが,それらのうち亜鉛や鉛等を含有するダス
ト特に電気炉精錬工程で発生するものは有効かつ経済的
な利用方法が確立されていないため高額な費用を負担し
て非鉄精錬会社へその処理を委託しているのが実情であ
る。しかしそれでも発生量の全てが処理されるまでに至
らず余剰が生じ,埋立て廃棄を行なうには有害成分の固
定化或は無害化処理を行なわなければならない等の大き
な問題を抱えている。これら電気炉ダストの再資源化処
理については、これまでも種々試みられており、例え
ば、公開特許公報「特開昭48−42909」、「昭5
7−35644」、「昭58−37138」等特許出願
されている技術も極めて多くを数えるが,以下に述べる
問題点を完全に解決し得た実用技術は皆無であり,この
技術の確立は大きな社会的ニーズを有しているといえ
る。
[Necessity of this patented technology] Various kinds of large amounts of dust are generated from the steel industry, some of which are recycled to related processes, and some of which are effectively used for other purposes. However, among them, dust containing zinc, lead, etc., especially those generated in the electric furnace refining process, have not established an effective and economical utilization method, and therefore non-ferrous refining at a high cost is incurred. The reality is that the processing is outsourced to the company. However, even if all of the generated amount is not processed, a surplus occurs, and there is a big problem that immobilization or detoxification treatment of harmful components must be performed before landfill disposal. Various attempts have been made so far to recycle these electric furnace dusts. For example, Japanese Patent Laid-Open Publication Nos. 48-42909 and 48-5 are disclosed.
The number of patent applications such as “7-35644” and “Sho 58-37138” is extremely large, but there is no practical technique that can completely solve the problems described below, and the establishment of this technique is great. It can be said that they have social needs.

【0002】[0002]

【従来技術及びその問題点】この種のダストは,微細で
あるという粒度的特性の他に,成分的には製鐵寄与成分
であるFe以外に有害成分であるZn,Pb,及びCl
を含有しているのが特徴である。従って,これを鉄精錬
工程へ循環し鉄分の有効利用をはかるためにはこれら有
害成分を除去しなければならないが,Zn及びPbを除
去する乾式法として知られている「還元法」と「塩化揮
発法」を適用する場合,それぞれ以下のような技術的な
問題点が存在する。
2. Description of the Related Art This type of dust has a fine grain size characteristic, and in addition to Fe, which is a component contributing to iron making, is a harmful component such as Zn, Pb, and Cl.
It is characterized by containing. Therefore, it is necessary to remove these harmful components in order to circulate them in the iron refining process and to effectively utilize the iron content. The "reduction method" and the "chlorination method" are known as dry methods for removing Zn and Pb. When applying the “volatilization method”, there are the following technical problems.

【0003】[0003]

【還元法の問題点】金属亜鉛の沸点は907℃であるか
ら,この温度以上の還元温度条件下でダスト中の亜鉛を
金属亜鉛まで還元して揮発除去することは理論的に可能
である。しかし金属鉛の沸点は1,620℃であるか
ら,この両成分を同時に揮発除去するには相当に高い温
度を必要とする。良く知られているように,FeとSi
を含有する物質の還元焼成の限界温度は1,050
℃程度とされている。この温度を越えると、FeO−S
iO系成分の融液が生成して装入物の相互融着を起こ
し,そのために還元炉の操業が著しく困難になるためで
ある。また該ダストの場合,含有する塩素分が加熱によ
り装入物中の付着水若しくは結合水と作用して塩化水素
を発生するので排ガスの中和・無害化が必要になる。こ
の点だけに関しては,装入物中に石灰石若しくは生石灰
を混入すればこれが塩化水素と結合して塩化カルシウム
を生成し固定化出来るのでその目的は達せられるが,一
方で塩化カルシウムの融液化(融点:772℃)が起こ
り上述の装入物の相互融着を増幅することになる。これ
らの問題点のために,該ダストの還元揮発法による脱Z
n,Pb処理は極めて困難である。
[Problems of the reduction method] Since the boiling point of metallic zinc is 907 ° C, it is theoretically possible to reduce zinc in the dust to metallic zinc under the reduction temperature conditions above this temperature to volatilize and remove it. However, since the boiling point of metallic lead is 1,620 ° C., a considerably high temperature is required to volatilize and remove both of these components at the same time. As is well known, Fe and Si
The limiting temperature for reduction firing of a substance containing O 2 is 1,050.
It is said to be about ℃. If this temperature is exceeded, FeO-S
This is because a melt of the iO 2 -based component is generated and mutual fusion of the charged materials occurs, which makes the operation of the reduction furnace extremely difficult. Further, in the case of the dust, the chlorine content contained acts on the adhered water or the bound water in the charging material by heating to generate hydrogen chloride, so that it is necessary to neutralize and detoxify the exhaust gas. Regarding this point alone, if limestone or quick lime is mixed in the charge, it can bond with hydrogen chloride to form calcium chloride and immobilize it. : 772 ° C.) will occur to amplify the mutual fusion of the above-mentioned charges. Due to these problems, de-Z removal of the dust by the reducing volatilization method
The n, Pb processing is extremely difficult.

【0004】[0004]

【塩化揮発法の問題点】塩化揮発法は,Zn,Pb等の
金属成分を塩化物となしてこれを揮発除去せしめる方法
であるが,塩素源としては一般に塩素ガス若しくは塩化
カルシウムが用いられている。しかし製鐵原料に適用さ
れた例は比較的少なく,現存するプロセスとしては,硫
酸焼鉱中のCu,Zn,Pb,Au,Ag等の除去回収
に適用されている塩化揮発ベレット法(通称光和プロセ
ス)が唯一のものといってよい。しかしこのプロセスで
は,塩素源としての塩化カルシウムを原料鉱石を造粒す
る際に添加するためその添加量に制約があり,従って揮
発し得る金属量はそれほど多くはない。被揮発金属量が
多い場合,それに応じて塩化カルシウム量を増やすと,
前項記述と同様の理由及び酸化第二鉄との反応によるC
a−ferrite系融液生成によって装入物の相互融
着が起こり,安定した操業が行なわれなくなる。これに
対して塩素ガスを用いる方法は,上記方法よりは多量の
金属成分を揮発出来るが,塩素ガスのコスト負担が,例
えその効率的な循環使用に成功したとしてもなお重く,
本プロセス成立の隘路となっている。
[Problems of the chlorination volatilization method] The chlorination volatilization method is a method in which metal components such as Zn and Pb are converted to chlorides and volatilized and removed. However, chlorine gas or calcium chloride is generally used as a chlorine source. There is. However, there are relatively few cases where it is applied to the raw material for steelmaking, and the existing process is the volatile volatile beret method (commonly known as the light emission method), which is applied to the removal and recovery of Cu, Zn, Pb, Au, Ag, etc. in sulfuric acid ore. The sum process is the only one. However, in this process, since calcium chloride as a chlorine source is added when granulating the raw ore, the amount of addition is limited, and therefore the amount of metal that can be volatilized is not so large. When the amount of metal to be volatilized is large, if the amount of calcium chloride is increased accordingly,
C for the same reason as described in the preceding paragraph and due to reaction with ferric oxide
The generation of the a-ferrite-based melt causes mutual fusion of the charged materials, which prevents stable operation. On the other hand, the method using chlorine gas can volatilize a larger amount of metal components than the above-mentioned method, but the cost burden of chlorine gas is still heavy even if it succeeds in efficient recycling.
This is the bottleneck to the establishment of this process.

【0005】[0005]

【本特許技術の特徴】発明者は上述した両プロセスの問
題点を克服すべく研究を重ね,合理的かつ実用的技術を
確立するに至った。以下に本技術の特徴を述べる。
[Characteristics of the Patented Technology] The inventor has conducted research to overcome the problems of both processes described above, and has established rational and practical technology. The features of the present technology will be described below.

【0006】[0006]

【脱Zn,Pb の原理とその進行の制御】ZnとPb
の除去を還元法によって行なおうとすると,前述のよう
に高温を必要とし,それに伴う困難な問題に逢着する。
従ってZnとPbの除去は塩化揮発で行なう。しかし塩
素源として塩化カルシウムや塩素を用いると,前述のよ
うに操業上の壁に突当るから,これを解決しなければな
らない。このための新技術として,塩化鉄を塩素源とし
て用い塩素の放出を鉄の還元の進行で制御する方法を開
発した。還元温度は1,000℃目標でFeO−SiO
系融体の生成温度以下であり,塩化鉄は還元の進行に
伴って塩素を放出しつつ金属鉄となるので上述のような
塩化カルシウムの融液化やCa−ferrite系融液
生成もなく安定的な操業状態が維持される。ZnやPb
を充分に塩化揮発せしめるには、被揮発成分に対して
1.2〜1.5当量の塩化鉄が必要である。 斯くて電
気炉ダストからは,有害なZnとPbが塩化物として揮
発・除去されると同時にFe分は還元されて金属鉄とな
る。還元は炭素質物の内外賦存併用法によって行ない、
内装炭材は微粉状の固体炭材であればよいが,5%以下
では充分な還元が行われず、また15%以上では炭材が
多過ぎて造粒作業が困難になったり或は造粒物の強度が
低下したりするので5〜15% が適当である。外装炭
材は揮発分の低いもの、例えばコークス,無煙炭等が望
ましく、造粒物に対し重量比で30〜100%配合す
る。排出物は先ず磁選によって金属鉄分を分離回収して
これは電気炉原料へ再使用し,非磁着尾鉱は分級処理を
行なって灰分を除去した後,これを外装炭材として循環
する。
[Principle of Zn removal and Pb control and its progress] Zn and Pb
If a reduction method is used to remove the above, high temperature is required as described above, and the difficult problems that accompany it are encountered.
Therefore, the removal of Zn and Pb is performed by chlorination volatilization. However, if calcium chloride or chlorine is used as the chlorine source, it hits the operational barrier as described above, and this must be solved. As a new technology for this purpose, we have developed a method that uses iron chloride as a chlorine source and controls the release of chlorine by the progress of iron reduction. The reduction temperature is set at 1,000 ° C. with the goal of FeO-SiO
It is below the formation temperature of the 2 system melt, and iron chloride becomes metallic iron while releasing chlorine as the reduction progresses, so it is stable without the above-mentioned melt of calcium chloride and the formation of Ca-ferrite system melt. Operating conditions are maintained. Zn or Pb
In order to volatilize chlorinated satisfactorily, 1.2 to 1.5 equivalents of iron chloride with respect to the components to be volatilized are necessary. Thus, from the electric furnace dust, harmful Zn and Pb are volatilized and removed as chlorides, and at the same time, Fe is reduced to metallic iron. The reduction is carried out by the combined internal and external method of carbonaceous material,
The internal carbonaceous material may be fine powdery solid carbonaceous material, but if it is 5% or less, sufficient reduction is not performed, and if it is 15% or more, the carbonaceous material is too much to make granulation work difficult or granulate. Since the strength of the product may be reduced, 5 to 15% is suitable. The exterior carbonaceous material is preferably one having a low volatile content, for example, coke, anthracite, etc., and is mixed in a proportion of 30 to 100% by weight with respect to the granulated material. The effluent is first separated by magnetic separation to recover metallic iron, which is reused as a raw material for the electric furnace. The non-magnetic tailings are subjected to classification to remove ash, and then circulated as exterior carbonaceous material.

【0007】[0007]

【揮発塩化物の捕集】塩化揮発除去されたZnCl
PbCl等は,通常の集塵機例えばバグフィルターや
電気集塵機等で集塵すれば捕集出来るが,後述する排ガ
スの無害化処理のために,前段で鉄鉱石ペレット若しく
はアルミナボール等の下部排出式竪型充填塔で捕集する
方法をとる。即ち揮発した塩化物含有のガスを,該充填
塔の下部位に導入し,降下する粒状充填物と向流的に接
触させて、含有する気体状塩化物を、温度低下により固
体として充填物表面に沈着せしめ,排出された塩化物付
着の粒状物はトロンメル若しくは振動篩等で剥離除去回
収し,これは粗亜鉛原料として利用をはかる。
[Collecting Volatile Chlorides] ZnCl 2 from which chloride volatilization was removed.
PbCl 2 etc. can be collected by collecting it with an ordinary dust collector such as a bag filter or an electric dust collector, but in order to detoxify exhaust gas described later, lower discharge type vertical pellets such as iron ore pellets or alumina balls Use a method of collecting in a mold packing tower. That is, the volatilized chloride-containing gas is introduced into the lower part of the packed column and is brought into countercurrent contact with the descending granular packing, and the gaseous chloride contained therein is converted into a solid by the temperature decrease to the packing surface. The particulates adhering to the chloride, which had been deposited on the sol, were removed and collected using a trommel or vibrating sieve, and this was used as a raw material for crude zinc.

【0008】[0008]

【排ガスの無害化処理】前項で述べた揮発塩化物捕集後
の排ガスは,塩化水素と少量の塩素を含有するのでこれ
を無害化しなければならない。このような場合,生石灰
を排ガス中に吹込み散布してこれと反応させ塩化カルシ
ウムとして固定化し,無害化する方法がとられている
が,本プロセスでは,塩化揮発の塩素源に塩化鉄を用い
ることと連動させて褐鉄鉱、水酸化鉄若しくは活性な酸
化鉄ダスト等を微粉状で排ガス中へ吹込み散布して塩化
鉄として固定化し無害化する。この方法によっても除去
し得ない微量の塩化水素分は苛性ソーダ、石灰乳等のア
ルカリ液との接触により完全に吸収除去せしめる。
[Detoxification treatment of exhaust gas] Since the exhaust gas after the collection of volatile chlorides described in the previous section contains hydrogen chloride and a small amount of chlorine, it must be detoxified. In such a case, quick lime is blown into the exhaust gas, and it reacts with this to immobilize it as calcium chloride to render it harmless. In this process, iron chloride is used as the chlorine source for volatile chloride. In conjunction with this, limonite, iron hydroxide, or active iron oxide dust, etc., are blown into the exhaust gas in the form of fine powder to be dispersed and fixed as iron chloride to render it harmless. A trace amount of hydrogen chloride which cannot be removed by this method is completely absorbed and removed by contact with an alkaline liquid such as caustic soda and lime milk.

【0009】[0009]

【プロセスフローの説明】以上説明を加えた本発明法の
プロセスフロー図は図1のように示される。即ち,亜鉛
や鉛を含有するダストに粉状の固体炭材と塩化鉄類を添
加,造粒・乾燥後外装炭材を添加してロータリヘキルン
等で焙焼して還元焼成物を得ると共に,亜鉛や鉛を塩化
物として揮発除去・捕集し、その排出焼成物を冷却後磁
選によって磁着物たる還元ペレットと非磁着物に分離
し,磁着物は電気炉へリサイクルし非磁着物は分級等の
手段で炭素分を分離濃集して外装炭材へ循環し、更に,
前記排ガスに微粉状の水酸化鉄,褐鉄鉱又は活性な酸化
鉄ダスト等を吹込んで排ガスを無害化すると共に捕集物
を塩化剤として循環する。
[Explanation of Process Flow] A process flow diagram of the method of the present invention, which has been described above, is shown in FIG. That is, powdery solid carbonaceous materials and iron chlorides are added to dust containing zinc or lead, and after granulation / drying, external carbonaceous materials are added, and roasted in a rotary he kiln to obtain a reduced calcined product. , Zinc and lead are volatilized and collected as chlorides, and the discharged fired product is cooled and then separated by magnetic separation into reduced pellets and non-magnetic substances, which are recycled to the electric furnace and classified. Etc. to separate and concentrate the carbon content and circulate it to the exterior carbonaceous material.
Finely powdered iron hydroxide, limonite or active iron oxide dust is blown into the exhaust gas to render the exhaust gas harmless and circulate the collected matter as a chlorinating agent.

【0010】[0010]

【実施例 1】つぎに本発明技術の実施例について説明
する。 表1に示す成分組成の電気炉ダストに、微粉コ
ークスと塩化第一鉄(工業用薬品)を表2の配合比で混
合し、1 mφの皿型造粒機で13〜16mmφペレッ
トに造粒後、箱形乾燥機で乾燥し、ペレット100gを
−5mmの粉コークス100gと共に100mmφ×1
50mmLの温度帯を持つ外熱式回転焙焼炉で1,00
0℃で 120 min.焙焼し、焼成物を磁石によつ
て磁着物と非磁着物とに分けた。磁着物の成分は表3の
ようであり、非磁着物は成分分析はしていないが、外見
上粉コークスと大差はなく十分循環使用が可能である。
Embodiment 1 Next, an embodiment of the technology of the present invention will be described. Fine coke and ferrous chloride (industrial chemicals) were mixed with the electric furnace dust having the composition shown in Table 1 at the compounding ratio shown in Table 2, and granulated into 13 to 16 mmφ pellets with a 1 mφ dish type granulator. After that, it is dried in a box dryer, and 100 g of pellets is mixed with 100 g of coke of -5 mm and 100 mmφ × 1.
External heating type roasting furnace with a temperature zone of 50 mmL
120 min. At 0 ° C. The roasted and fired product was divided into a magnetic product and a non-magnetic product by using a magnet. The components of the magnetic substance are as shown in Table 3, and the components of the non-magnetic substance have not been analyzed, but there is no great difference in appearance from the powder coke, and it can be sufficiently recycled.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【0011】[0011]

【実施例 2】上記電気炉ダスト原料ペレツトの還元塩
化揮発で生成する排ガス中の、塩化物を沈着・除去した
後には、通常4〜5%のHClが含有されている。これ
を想定して濃塩酸を加熱し逸出する含塩酸水蒸気を空気
と共に吸引してHCl濃度5%,流量100cc/mi
n.のガス流れを作り、これに沈澱法によって製造した
水酸化第二鉄を乾燥・微粉状で10g/min.の割合
でこれに添加し、ガスと接触させたのち回収し、塩素分
を分析して吸収されたHCl分を算出したところ、98
%となつた。即ち排ガスの無害化処理はほゞ達成されて
いる。
Example 2 After depositing / removing chloride in the exhaust gas produced by reducing and volatilizing the pellet of the electric furnace dust raw material, HCl is usually contained in an amount of 4 to 5%. Assuming this, concentrated hydrochloric acid is heated and the hydrochloric acid-containing steam that escapes is sucked together with air to obtain an HCl concentration of 5% and a flow rate of 100 cc / mi.
n. Of the ferric hydroxide produced by the precipitation method in a dry and fine powder form at 10 g / min. It was added to this at a ratio of 100%, collected after contacting with gas, and analyzed for chlorine content to calculate absorbed HCl content.
% That is, the detoxification process of the exhaust gas is almost achieved.

【0012】[0012]

【発明の効果】以上説明したように、本発明法は、従来
法では極めて困難であったZn,Pbなどを含有する電
気炉ダストの完全な処理と有効利用の技術を、全く新し
い原理をもとに開発し、実用化を図ったものであって、
今後本発明法の普及により、現在、電気炉メーカーを悩
ませているダスト処理の負担が相当に軽減されることが
期待される。
Industrial Applicability As described above, the method of the present invention has a completely new principle on the technique of completely treating and effectively utilizing the electric furnace dust containing Zn, Pb, etc., which was extremely difficult by the conventional method. Was developed and put into practical use,
With the spread of the method of the present invention in the future, it is expected that the burden of dust processing, which is currently bothering electric furnace manufacturers, will be considerably reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法のプロセスフローを示した説明図であ
る。
FIG. 1 is an explanatory diagram showing a process flow of a method of the present invention.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C22B 19/30 Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C22B 19/30

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 亜鉛や鉛を含有する電気炉ダスト類に,
粉状の固体炭素を5〜15%と,塩化鉄を揮発メタル量
の1.2乃至1.5当量になるように添加して,造粒,
乾燥後,外装炭材を加えロータリーキルン等で還元倍焼
して還元焼成物を得ると共に亜鉛や鉛等の成分を塩化物
として揮発除去・捕集する処理法。
1. An electric furnace dust containing zinc or lead,
Granules were obtained by adding 5 to 15% of solid carbon powder and iron chloride to 1.2 to 1.5 equivalents of the amount of volatile metal.
After drying, the exterior carbonaceous material is added and the product is subjected to reduction-double firing in a rotary kiln to obtain a reduced fired product, and components such as zinc and lead are volatilized and collected as chlorides.
【請求項2】 上記処理法に於いて還元焼成物を冷却後
磁選によって磁着物たる還元ペレットと非磁着物に分離
し,非磁着物は篩分け若しくは空気分級等によって炭材
分を濃集せしめてこれを外装炭材へ循環する処理法。
2. In the above-mentioned treatment method, after the reduced calcined product is cooled, it is separated by magnetic separation into reduced pellets which are magnetically adsorbed substances and non-magnetically adsorbed substances, and the non-magnetically adsorbed substances are concentrated by sieving or air classification. A treatment method that circulates this to the exterior carbon material.
【請求項3】 請求項1の処理法に於いて、揮発する塩
化物を冷却し析出・沈着・捕集した後の排ガス中に微粉
状の乾いた褐鉄鉱,水酸化鉄,又は活性な酸化鉄ダスト
等を吹込んで該排ガス中に含有される塩化水素をこれに
吸着反応せしめて塩化鉄を生成させ排気を無害化すると
共にこの生成物を電気集塵機等で捕集したのち塩化鉄へ
循環する排ガスの処理法。
3. The treatment method according to claim 1, wherein the volatile chloride is cooled, and the flue gas after being precipitated, deposited, and collected is a fine powder of dry limonite, iron hydroxide, or active iron oxide. Exhaust gas that blows dust etc. and causes hydrogen chloride contained in the exhaust gas to adsorb and react with it to produce iron chloride and detoxify the exhaust gas, and collect this product with an electric dust collector and then circulate it to iron chloride Processing method.
JP15996592A 1992-05-08 1992-05-08 Treating method of electric furnace dust Pending JPH06174383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15996592A JPH06174383A (en) 1992-05-08 1992-05-08 Treating method of electric furnace dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15996592A JPH06174383A (en) 1992-05-08 1992-05-08 Treating method of electric furnace dust

Publications (1)

Publication Number Publication Date
JPH06174383A true JPH06174383A (en) 1994-06-24

Family

ID=15705043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15996592A Pending JPH06174383A (en) 1992-05-08 1992-05-08 Treating method of electric furnace dust

Country Status (1)

Country Link
JP (1) JPH06174383A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1064982A1 (en) * 1999-07-02 2001-01-03 CT Umwelttechnik AG Method for removing metals from residual material
JP2006316333A (en) * 2005-05-16 2006-11-24 Nippon Steel Corp Zinc-containing dust pellet, and zinc recovering method using the same
WO2007099714A1 (en) * 2006-03-03 2007-09-07 Ehime University Method of recovering metal and high-gradient magnetic separator
JP2008261006A (en) * 2007-04-12 2008-10-30 Sumitomo Metal Mining Co Ltd Method for treating iron precipitate produced in process of refining nickel
JP2010180461A (en) * 2009-02-06 2010-08-19 Sumitomo Heavy Ind Ltd Apparatus for recovering zinc
CN105921264A (en) * 2016-04-29 2016-09-07 辽宁科技大学 Efficient hydrogen magnetization roasting and magnetic separation method for refractory iron ores
WO2019043261A1 (en) * 2017-09-04 2019-03-07 Ferro Duo Gmbh Process for the purification of waste materials or industrial by-products comprising chlorine
CN113201651A (en) * 2021-04-30 2021-08-03 湖南青涟环保科技有限公司 Synergistic treatment method of iron-containing dust and mud

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1064982A1 (en) * 1999-07-02 2001-01-03 CT Umwelttechnik AG Method for removing metals from residual material
JP2006316333A (en) * 2005-05-16 2006-11-24 Nippon Steel Corp Zinc-containing dust pellet, and zinc recovering method using the same
WO2007099714A1 (en) * 2006-03-03 2007-09-07 Ehime University Method of recovering metal and high-gradient magnetic separator
JP2008261006A (en) * 2007-04-12 2008-10-30 Sumitomo Metal Mining Co Ltd Method for treating iron precipitate produced in process of refining nickel
JP2010180461A (en) * 2009-02-06 2010-08-19 Sumitomo Heavy Ind Ltd Apparatus for recovering zinc
CN105921264A (en) * 2016-04-29 2016-09-07 辽宁科技大学 Efficient hydrogen magnetization roasting and magnetic separation method for refractory iron ores
CN105921264B (en) * 2016-04-29 2017-09-26 辽宁科技大学 A kind of method of the high efficiency hydrogen magnetizing roast of refractory iron ore magnetic separation again
WO2019043261A1 (en) * 2017-09-04 2019-03-07 Ferro Duo Gmbh Process for the purification of waste materials or industrial by-products comprising chlorine
JP2020532425A (en) * 2017-09-04 2020-11-12 フェロ・デュオ・ゲーエムベーハー Methods for refining waste materials or industrial by-products containing chlorine
US11938527B2 (en) 2017-09-04 2024-03-26 Amateq Holding Gmbh Process for the purification of waste materials or industrial by-products comprising chlorine
CN113201651A (en) * 2021-04-30 2021-08-03 湖南青涟环保科技有限公司 Synergistic treatment method of iron-containing dust and mud

Similar Documents

Publication Publication Date Title
RU2079562C1 (en) Method to process polymetallic ores and concentrates bearing noble metals, arsenic, carbon and sulfur
US5667553A (en) Methods for recycling electric arc furnace dust
CN107413816B (en) A kind of method that garbage flying ash cooperates with recycling treatment with metallurgical dust
CN102242253A (en) Method for treating poor-tin middling ore and recovering iron-making raw material
JPS61135678A (en) Treatment of free particle and material used therein
US3955969A (en) Process for the production and use of activated alumina
JPH06174383A (en) Treating method of electric furnace dust
US7871454B2 (en) Chemical process for recovery of metals contained in industrial steelworks waste
CA1239020A (en) Method for recovering zinc from substances containing a zinc compound
JP2004000882A (en) Method for treating heavy metal and/or organic compound
US5855645A (en) Production of more concentrated iron product from industrial waste materials streams
US20040261577A1 (en) Mechanical separation of volatile metals at high temperatures
US4050999A (en) Process for the production and use of activated alumina to produce aluminum
US4003736A (en) Method for preparing dry-collected fume for use in metallurgical furnaces
US4050925A (en) Process for the production and use of activated alumina in refining steel
JP2002285255A (en) Method for manufacturing zinc oxide calcine or zinc oxide briquette
US5667555A (en) Method for the removal of calcium by products during the production of an iron feedstock
US4915730A (en) Process and apparatus for recovery of flue dust
KR100642964B1 (en) Method for smelting treatment of fine granular material containing water and iron in copper ps converter
JPH08134557A (en) Operation of dust treatment by vacuum reaction furnace
JPS6117888B2 (en)
AU2018389705B2 (en) Method for the treatment of iron-containing sludge
US5846290A (en) Method for the recovery of group IA salts during the treatment of industrial process waste streams
JPH11156328A (en) Treatment of zinc-containing dust and zinc-containing dust pellet
JPH07224331A (en) Method for recycling reduced iron pellet in reduction rotary kiln operation of iron and steel dust