JP2007042571A - Carbon particle for anode of lithium secondary battery, and carbon anode for lithium secondary battery and lithium secondary battery using the same - Google Patents

Carbon particle for anode of lithium secondary battery, and carbon anode for lithium secondary battery and lithium secondary battery using the same Download PDF

Info

Publication number
JP2007042571A
JP2007042571A JP2005330205A JP2005330205A JP2007042571A JP 2007042571 A JP2007042571 A JP 2007042571A JP 2005330205 A JP2005330205 A JP 2005330205A JP 2005330205 A JP2005330205 A JP 2005330205A JP 2007042571 A JP2007042571 A JP 2007042571A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
carbon
negative electrode
carbon particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005330205A
Other languages
Japanese (ja)
Other versions
JP4967316B2 (en
Inventor
Yuriko Ida
百合子 井田
Koichi Takei
康一 武井
Eisuke Haba
英介 羽場
Yoshito Ishii
義人 石井
Keiji Okabe
圭児 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2005330205A priority Critical patent/JP4967316B2/en
Publication of JP2007042571A publication Critical patent/JP2007042571A/en
Application granted granted Critical
Publication of JP4967316B2 publication Critical patent/JP4967316B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery which has a small irreversible capacity and excellent output characteristics as compared to conventional lithium batteries, and to provide carbon particles for an anode of lithium secondary batteries and a cathode of lithium secondary batteries using the carbon particles. <P>SOLUTION: Carbon particles for an anode of lithium secondary batteries having an interplanar spacing d002 between the (002) planes of carbon determined by an X-ray diffraction device (XRD) of 0.340-0.390 nm have an He true density of 1.40-2.00 g/cc, and a CO<SB>2</SB>adsorption capacity of 0.01-5.00 cc/g. It is preferable that an oxygen concentration over the entire part of carbon particles is not more than 1 weight%, a specific surface area of N<SB>2</SB>by nitrogen adsorption measurement at 77 K is 0.30-10 m<SP>2</SP>/g, and an O/C (a surface oxygen concentration) determined by X-ray photoelectron spectroscopy (XPS) is 0.001-0.060. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、リチウム二次電池負極用炭素粒子及びそれを用いたリチウム二次電池用負極、リチウム二次電池に関する。更に詳しくは、高入出力特性を有する二次電池を必要とする電気自動車、パワーツール等の用途に好適な、充放電効率、出力特性に優れるリチウム二次電池とそれを得るためのリチウム二次電池負極用炭素粒子及び該炭素粒子を用いたリチウム二次電池用負極に関する。   The present invention relates to a carbon particle for a lithium secondary battery negative electrode, a negative electrode for a lithium secondary battery using the same, and a lithium secondary battery. More specifically, a lithium secondary battery excellent in charge / discharge efficiency and output characteristics suitable for applications such as electric vehicles and power tools that require a secondary battery having high input / output characteristics, and a lithium secondary battery for obtaining the same The present invention relates to carbon particles for battery negative electrodes and negative electrodes for lithium secondary batteries using the carbon particles.

近年、CO排出削減や燃費向上を目的としてエンジンとモーターを動力源として併用するハイブリッド型電気自動車(HEV)の開発、製品化が世界的規模で進められている。HEVの課題の1つとして、高出力、小型軽量かつ低コスト電池の開発がある。現在、ニッケル・水素二次電池が用いられているが、入出力特性、エネルギー密度に課題がある(非特許文献1)。そのため、高電圧、高エネルギー密度を有し、入出力特性に優れたリチウム二次電池は、小型・軽量化が可能であることから、HEV用電源として大きな期待が寄せられている。 In recent years, development and commercialization of a hybrid electric vehicle (HEV) that uses an engine and a motor as a power source for the purpose of reducing CO 2 emissions and improving fuel efficiency have been promoted on a global scale. One of the challenges of HEV is the development of a high output, small size, light weight and low cost battery. Currently, nickel-hydrogen secondary batteries are used, but there are problems in input / output characteristics and energy density (Non-Patent Document 1). Therefore, a lithium secondary battery having high voltage, high energy density, and excellent input / output characteristics can be reduced in size and weight, and thus is highly expected as a power source for HEV.

HEV用リチウム二次電池用負極材としては、エネルギー密度を重視する設計の場合には黒鉛系炭素材が、入出力特性を重視する場合には非晶質炭素材が検討されている。黒鉛系炭素材は、比表面積が小さいため初回充放電効率が高いが、理論容量である372Ah/kg以上の容量は得られず、入出力特性が劣るという問題点がある。一方、非晶質炭素材は、電解液との反応性が低く、樹枝状金属リチウムが生成しづらいため、入出力特性に優れ、単位重量あたりの放電容量として500Ah/kg以上の材料を得ることができるが、比表面積が大きいため初回充放電効率が低いという問題点がある(非特許文献2)。
芳尾真幸、小沢昭弥 「リチウムイオン二次電池 第二版」p121−134 (2001) リチウムイオン二次電池のための負極用炭素材料 (株)リアライズ社 p12
As a negative electrode material for a lithium secondary battery for HEV, a graphite-based carbon material is considered in the case of designing with an emphasis on energy density, and an amorphous carbon material is considered in the case of emphasizing input / output characteristics. The graphite-based carbon material has a high initial charge / discharge efficiency because of its small specific surface area, but has a problem that the capacity of 372 Ah / kg or more, which is the theoretical capacity, cannot be obtained and the input / output characteristics are inferior. On the other hand, the amorphous carbon material has low reactivity with the electrolytic solution and it is difficult to generate dendritic metallic lithium, so that it has excellent input / output characteristics, and a material having a discharge capacity per unit weight of 500 Ah / kg or more can be obtained. However, since the specific surface area is large, there is a problem that the initial charge / discharge efficiency is low (Non-patent Document 2).
Masayuki Yoshio, Akiya Ozawa "Lithium ion secondary battery second edition" p121-134 (2001) Carbon material for negative electrode for lithium ion secondary battery Realize Co., Ltd. p12

上記のようなため、入出力特性に優れ、不可逆容量が小さいリチウム二次電池とそれを得るための負極材料が要求されている。   Therefore, a lithium secondary battery having excellent input / output characteristics and a small irreversible capacity and a negative electrode material for obtaining the lithium secondary battery are required.

本発明は、従来のリチウム二次電池と比較して、不可逆容量が小さく、かつ出力特性に優れたリチウム二次電池とそれを得るためのリチウム二次電池負極用炭素粒子及び該炭素粒子を用いたリチウム二次電池用負極を提供することを目的とするものである。   The present invention relates to a lithium secondary battery having a small irreversible capacity and excellent output characteristics as compared with a conventional lithium secondary battery, carbon particles for a lithium secondary battery negative electrode for obtaining the same, and the carbon particles. An object of the present invention is to provide a negative electrode for a lithium secondary battery.

発明者らは、鋭意検討の結果、炭素粒子のHe真密度、CO吸着量、酸素濃度、N比表面積、表面酸素濃度(O/C)及び炭素002面の面間隔を制御することにより、不可逆容量が小さく、かつ出力特性に優れた、リチウム二次電池負極材として好適な炭素粒子を得ることができることを見出し、本発明を為すに至った。 As a result of intensive studies, the inventors have controlled the true He density, CO 2 adsorption amount, oxygen concentration, N 2 specific surface area, surface oxygen concentration (O / C), and interplanar spacing of the carbon 002 plane of the carbon particles. The inventors have found that carbon particles suitable for a lithium secondary battery negative electrode material having a small irreversible capacity and excellent output characteristics can be obtained, and the present invention has been achieved.

すなわち、本発明は、下記(1)〜(10)に記載の事項をその特徴とするものである。(1)X線回折装置(XRD)測定により求められる炭素002面の面間隔d002が0.340〜0.390nmであるリチウム二次電池負極用炭素粒子であって、He真密度が1.40〜2.00g/cc、CO吸着量が0.01〜5.00cc/gであるリチウム二次電池負極用炭素粒子。 That is, the present invention is characterized by the following items (1) to (10). (1) Carbon particles for a lithium secondary battery negative electrode having a carbon 002 plane spacing d002 of 0.340 to 0.390 nm determined by X-ray diffractometer (XRD) measurement, wherein the He true density is 1.40. Carbon particles for a lithium secondary battery negative electrode having ˜2.00 g / cc and CO 2 adsorption of 0.01 to 5.00 cc / g.

(2)炭素粒子全体の酸素濃度が1重量%以下である上記(1)に記載のリチウム二次電池負極用炭素粒子。 (2) The carbon particles for a lithium secondary battery negative electrode according to (1), wherein the oxygen concentration of the entire carbon particles is 1% by weight or less.

(3)77Kでの窒素吸着測定より求めたN比表面積が0.30〜10m/gである上記(1)または(2)記載のリチウム二次電池負極用炭素粒子。 (3) The carbon particles for a lithium secondary battery negative electrode according to the above (1) or (2), wherein the N 2 specific surface area determined from nitrogen adsorption measurement at 77K is 0.30 to 10 m 2 / g.

(4)X線光電子分光法(XPS)より求めたO/Cが0.001〜0.060である上記(1)〜(3)のいずれかに記載のリチウム二次電池負極用炭素粒子。 (4) The carbon particles for a lithium secondary battery negative electrode according to any one of the above (1) to (3), wherein O / C determined by X-ray photoelectron spectroscopy (XPS) is 0.001 to 0.060.

(5)炭素前駆体樹脂を450℃〜1000℃で炭素化し、得られた炭化物を粉砕し、粉砕した炭化物をさらに900℃〜2000℃で炭素化してなる上記(1)〜(4)のいずれかに記載のリチウム二次電池負極用炭素粒子。 (5) Any of the above (1) to (4), wherein the carbon precursor resin is carbonized at 450 ° C. to 1000 ° C., the obtained carbide is pulverized, and the pulverized carbide is further carbonized at 900 ° C. to 2000 ° C. Carbon particles for a lithium secondary battery negative electrode according to claim 1.

(6)平均粒径が5〜50μmの炭素前駆体樹脂を炭素化してなる上記(1)〜(5)のいずれかに記載のリチウム二次電池負極用炭素粒子。 (6) The carbon particles for a lithium secondary battery negative electrode according to any one of (1) to (5), wherein the carbon precursor resin having an average particle diameter of 5 to 50 μm is carbonized.

(7)下記一般式(I)

Figure 2007042571
(7) The following general formula (I)
Figure 2007042571

で表されるフェノール誘導体を構造に含む樹脂を炭素前駆体樹脂とし、これを炭素化してなる上記(1)〜(6)のいずれかに記載のリチウム二次電池負極用炭素粒子。 Carbon particles for a lithium secondary battery negative electrode according to any one of the above (1) to (6), wherein a resin containing a phenol derivative represented by the formula:

(8)上記樹脂が上記一般式(I)で表されるフェノール誘導体を構造に40〜70mol%含む上記(7)に記載のリチウム二次電池負極用炭素粒子。 (8) The carbon particles for a lithium secondary battery negative electrode according to (7), wherein the resin contains 40 to 70 mol% of a phenol derivative represented by the general formula (I) in the structure.

(9)上記(1)〜(8)のいずれかに記載のリチウム二次電池負極用炭素粒子を用いたリチウム二次電池用負極。 (9) A negative electrode for a lithium secondary battery using the carbon particles for a lithium secondary battery negative electrode according to any one of (1) to (8).

(10)上記(9)に記載のリチウム二次電池用負極を用いたリチウム二次電池。 (10) A lithium secondary battery using the negative electrode for a lithium secondary battery according to (9) above.

本発明によれば、従来のリチウム二次電池と比較して、不可逆容量が小さく、かつ出力特性に優れたリチウム二次電池とそれを得るためのリチウム二次電池負極用炭素粒子及び該炭素粒子を用いたリチウム二次電池用負極を得ることが可能となる。   According to the present invention, a lithium secondary battery having small irreversible capacity and excellent output characteristics as compared with a conventional lithium secondary battery, carbon particles for a lithium secondary battery negative electrode for obtaining the same, and the carbon particles It becomes possible to obtain a negative electrode for a lithium secondary battery using.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明におけるリチウム二次電池負極用炭素粒子は、X線回折装置(XRD)測定により求められる炭素002面の面間隔d002が0.340〜0.390nmであるリチウム二次電池負極用炭素粒子であって、He真密度が1.40〜2.00g/cc、CO吸着量が0.01〜5.00cc/gであることを特徴とする。 The carbon particles for a lithium secondary battery negative electrode according to the present invention are carbon particles for a lithium secondary battery negative electrode having a carbon 002 plane spacing d002 of 0.340 to 0.390 nm determined by X-ray diffractometer (XRD) measurement. The true density of He is 1.40 to 2.00 g / cc, and the CO 2 adsorption amount is 0.01 to 5.00 cc / g.

本発明のリチウム二次電池負極用炭素粒子は、後述するX線回折装置(XRD)測定より求められる炭素002面の面間隔d002が、0.340〜0.390nmの範囲であるが、0.350〜0.385nmであることが好ましく、0.360〜0.380nmであることがより好ましい。炭素002面の面間隔d002が0.340〜0.390nmの範囲であるリチウム二次電池負極用炭素粒子は、出力特性に優れる。一方、d002が0.340nm未満になると入出力特性が劣る傾向があり、0.390nmを超えると体積当りの容量が小さくなる傾向がある。   In the carbon particles for a lithium secondary battery negative electrode of the present invention, the interplanar spacing d002 of the carbon 002 surface determined by X-ray diffraction (XRD) measurement described below is in the range of 0.340 to 0.390 nm. It is preferable that it is 350-0.385 nm, and it is more preferable that it is 0.360-0.380 nm. The carbon particles for a lithium secondary battery negative electrode in which the interplanar spacing d002 of the carbon 002 plane is in the range of 0.340 to 0.390 nm are excellent in output characteristics. On the other hand, when d002 is less than 0.340 nm, the input / output characteristics tend to be inferior, and when it exceeds 0.390 nm, the capacity per volume tends to be small.

また、本発明のリチウム二次電池負極用炭素粒子のHe真密度は、1.40〜2.00g/ccの範囲であるが、1.45〜1.80g/ccであることが好ましく、1.50〜1.65g/ccであることがより好ましい。上記炭素002面の面間隔d002が0.340〜0.390nmである場合、He真密度が1.40〜2.00g/ccの範囲であると初回の不可逆容量を小さくすることが可能である。一方、He真密度が2.00g/ccを超えると初回の不可逆容量が大きくなる傾向があり、1.40g/cc未満であると体積あたりの容量が小さくなる傾向がある。なお、He真密度は、He密度計によって測定することができる。   In addition, the true He density of the carbon particles for a lithium secondary battery negative electrode of the present invention is in the range of 1.40 to 2.00 g / cc, preferably 1.45 to 1.80 g / cc. More preferably, it is 50-1.65 g / cc. When the interplanar spacing d002 of the carbon 002 plane is 0.340 to 0.390 nm, the initial irreversible capacity can be reduced when the He true density is in the range of 1.40 to 2.00 g / cc. . On the other hand, if the He true density exceeds 2.00 g / cc, the initial irreversible capacity tends to increase, and if it is less than 1.40 g / cc, the capacity per volume tends to decrease. The true He density can be measured with a He density meter.

また、リチウム二次電池負極用炭素粒子のCO吸着量は、0.01〜5.00cc/gの範囲であるが、0.05〜5.00cc/gであることが好ましく、0.1〜1.00cc/gであることがさらに好ましい。上記炭素002面の面間隔d002が0.340〜0.390nmである場合、CO吸着量が、0.01〜5.00cc/gの範囲であると初回の不可逆容量を小さくすることが可能である。一方、CO吸着量が5.00cc/gを超えると初回の不可逆容量が大きくなる傾向があり、0.01cc/g未満になると体積当たりの容量が小さくなる傾向がある。なお、CO吸着量は、例えば、ガス吸着測定装置によって測定することができる。 The CO 2 adsorption amount of the carbon particles for the lithium secondary battery negative electrode is in the range of 0.01 to 5.00 cc / g, preferably 0.05 to 5.00 cc / g, More preferably, it is -1.00 cc / g. When the interplanar spacing d002 of the carbon 002 plane is 0.340 to 0.390 nm, the initial irreversible capacity can be reduced when the CO 2 adsorption amount is in the range of 0.01 to 5.00 cc / g. It is. On the other hand, when the CO 2 adsorption amount exceeds 5.00 cc / g, the initial irreversible capacity tends to increase, and when it is less than 0.01 cc / g, the capacity per volume tends to decrease. Note that the CO 2 adsorption amount can be measured by, for example, a gas adsorption measurement device.

通常、炭素002面の面間隔d002が0.340nmを超えるような比較的結晶性の低い炭素粒子は、炭素六角網面が発達しておらず、表面に多くの細孔を有しているため、He真密度は2.00g/ccを超え、CO吸着量は5.00cc/gを超える。しかしながら、本発明の炭素粒子は炭素002面の面間隔d002が0.340〜0.390nmの低結晶性の炭素粒子でありながら、He真密度が1.40〜2.00g/cc、CO吸着量が0.01〜5.00cc/gであることから表面に細孔をほとんど有しないと考えられる。このような上記リチウム二次電池負極用炭素粒子をリチウム二次電池用負極材として用いた場合、炭素六角網面が発達していないため出力特性に優れるとともに、表面に細孔が殆どないため初回の不可逆容量の小さい特性を得ることが可能となる。 Usually, carbon particles having a relatively low crystallinity such that the interplanar spacing d002 of the carbon 002 plane exceeds 0.340 nm does not develop a carbon hexagonal network surface and has many pores on the surface. , The He true density exceeds 2.00 g / cc, and the CO 2 adsorption amount exceeds 5.00 cc / g. However, the carbon particles of the present invention are low crystalline carbon particles having a carbon 002 plane spacing d002 of 0.340 to 0.390 nm, but a He true density of 1.40 to 2.00 g / cc, CO 2. Since the adsorption amount is 0.01 to 5.00 cc / g, it is considered that the surface has few pores. When such a carbon particle for a lithium secondary battery negative electrode is used as a negative electrode material for a lithium secondary battery, the carbon hexagonal network surface is not developed, so that the output characteristics are excellent and the surface has few pores. It is possible to obtain characteristics with a small irreversible capacity.

また、本発明のリチウム二次電池負極用炭素粒子は、炭素粒子全体の酸素濃度が1重量%以下であることが好ましく、0.5重量%以下であることがより好ましく、0.3重量%以下であることがさらに好ましく、酸素を含有していないことが特に好ましい。酸素濃度が1.0重量%以下であるリチウム二次電池負極用炭素粒子は、リチウムイオンと酸素との反応が抑制されるため、初回の不可逆容量を小さくすることが可能である。一方、酸素濃度が1.0重量%を超えると初回の不可逆容量が大きくなる傾向がある。なお、酸素濃度は、例えば、酸素・窒素分析装置によって測定することができる。   In the carbon particles for a lithium secondary battery negative electrode of the present invention, the oxygen concentration of the entire carbon particles is preferably 1% by weight or less, more preferably 0.5% by weight or less, and 0.3% by weight. More preferably, it is particularly preferable that it does not contain oxygen. The carbon particles for a lithium secondary battery negative electrode having an oxygen concentration of 1.0% by weight or less can reduce the initial irreversible capacity because the reaction between lithium ions and oxygen is suppressed. On the other hand, if the oxygen concentration exceeds 1.0% by weight, the initial irreversible capacity tends to increase. The oxygen concentration can be measured by, for example, an oxygen / nitrogen analyzer.

このように、炭素002面の面間隔d002が0.340〜0.390nmであるリチウム二次電池負極用炭素粒子において、He真密度が1.40〜2.00g/cc、CO吸着量が0.01〜5.00cc/g、元素分析によって求めた炭素粒子の酸素濃度が1.0重量%以下である場合、その炭素材は、炭素六角網面が発達しておらず、表面に細孔が殆どなく、且つ、酸素が殆ど含まれていないと考えられる。 Thus, in the carbon particles for a lithium secondary battery negative electrode in which the interplanar spacing d002 of the carbon 002 plane is 0.340 to 0.390 nm, the He true density is 1.40 to 2.00 g / cc, and the CO 2 adsorption amount is When the oxygen concentration of the carbon particles obtained by 0.01 to 5.00 cc / g and elemental analysis is 1.0% by weight or less, the carbon hexagonal mesh surface is not developed, and the carbon material has a fine surface. It is considered that there are almost no pores and almost no oxygen.

また、本発明におけるリチウム二次電池負極用炭素粒子は、77Kでの窒素吸着測定より求めたN比表面積が0.30〜10m/gであることが好ましく、0.30〜8.0m/gがより好ましく、0.30〜5.0m/g以下であることがさらに好ましい。N比表面積が0.30〜10m/gの範囲であるリチウム二次電池負極用炭素粒子は、不可逆容量が小さく、電極との密着性がよい。一方、N比表面積が0.30m/g未満になると放電容量が低下し、さらに、電極密着性が低下する傾向があり、10m/gを超えると初回の不可逆容量が大きくなる傾向がある。なお、N比表面積は、例えば、ガス吸着測定装置でNの吸着量を測定し、BET理論によって算出することができる。 In addition, the carbon particles for a lithium secondary battery negative electrode in the present invention preferably have an N 2 specific surface area of 0.30 to 10 m 2 / g determined by nitrogen adsorption measurement at 77 K, and 0.30 to 8.0 m. 2 / g is more preferable, and 0.30 to 5.0 m 2 / g or less is further preferable. The carbon particles for a lithium secondary battery negative electrode having an N 2 specific surface area in the range of 0.30 to 10 m 2 / g have a small irreversible capacity and good adhesion to the electrode. On the other hand, the discharge capacity N 2 specific surface area is less than 0.30 m 2 / g is reduced, further, there is a tendency for electrode adhesion is lowered, tends to irreversible capacity of first time exceeds 10 m 2 / g is greater is there. The N 2 specific surface area can be calculated, for example, by measuring the adsorption amount of N 2 with a gas adsorption measurement device and using the BET theory.

また、本発明におけるリチウム二次電池負極用炭素粒子は、X線光電子分光測定(XPS)より求めたO/C(=酸素存在比atmic%/炭素存在比atmic%)が0.001〜0.060であることが好ましく、0.001〜0.050であることがより好ましく、0.001〜0.045であることがさらに好ましい。X線光電子分光測定(XPS)より求めたO/Cが0.001〜0.060の範囲であるリチウム二次電池負極用炭素粒子は、初回の不可逆容量が小さく、寿命特性が優れる。一方、O/Cが0.060を超えると初回の不可逆容量が大きくなる傾向があり、また、寿命特性も劣る傾向がある。   The carbon particles for a lithium secondary battery negative electrode in the present invention have an O / C (= oxygen abundance ratio atomic% / carbon abundance ratio atomic%) determined by X-ray photoelectron spectroscopy (XPS) of 0.001 to 0.00. 060 is preferable, 0.001 to 0.050 is more preferable, and 0.001 to 0.045 is even more preferable. Carbon particles for a lithium secondary battery negative electrode whose O / C determined by X-ray photoelectron spectroscopy (XPS) is in the range of 0.001 to 0.060 have a small initial irreversible capacity and excellent life characteristics. On the other hand, if O / C exceeds 0.060, the first irreversible capacity tends to increase, and the life characteristics tend to be inferior.

本発明のリチウム二次電池負極用炭素粒子の製造方法に特に制限はないが、例えば、炭素前駆体樹脂をN、Ar、He等の不活ガス性雰囲気下、900℃〜2000℃で焼成(炭素化)して得ることができる。炭素前駆体樹脂の焼成方法としては、最高温度まで1回で昇温し、焼成してもよく、また、比較的低温で1次焼成した後、最高温度で2次焼成を行ってもよい。 There is no particular limitation on method for producing a lithium secondary battery negative electrode carbon particles of the present invention, for example, a carbon precursor resin N 2, Ar, under inert gas atmosphere such as He, calcined at 900 ° C. to 2000 ° C. It can be obtained by (carbonization). As a method for firing the carbon precursor resin, the temperature may be raised once up to the maximum temperature and fired, or after the primary firing at a relatively low temperature, the secondary firing may be performed at the maximum temperature.

1回で最高温度まで焼成する場合は、あらかじめ平均粒径が5〜50μmに粒径調整された炭素前駆体樹脂を用いことが好ましい。この場合における炭素前駆体樹脂の平均粒径は5〜40μmがより好ましく、5〜30μmがさらに好ましい。平均粒径が5μm未満の炭素前駆体樹脂を焼成して得たリチウム二次電池負極用炭素粒子は、不可逆容量が大きくなると共に、粒子同士の接触が悪くなり易く、入出力特性が低下する傾向にある。一方、平均粒径が50μmを超える炭素前駆体樹脂を焼成して得たリチウム二次電池負極用炭素粒子は、電極面に凹凸が発生しやすくなり、電池の短絡の原因となると共に、粒子表面から内部へのリチウムの拡散距離が長くなるため入出力特性が低下する傾向にある。   When firing to the maximum temperature at a time, it is preferable to use a carbon precursor resin having an average particle size adjusted to 5 to 50 μm in advance. In this case, the average particle size of the carbon precursor resin is more preferably 5 to 40 μm, and further preferably 5 to 30 μm. Carbon particles for lithium secondary battery negative electrodes obtained by firing a carbon precursor resin having an average particle size of less than 5 μm tend to have a large irreversible capacity and a poor contact between the particles, resulting in poor input / output characteristics. It is in. On the other hand, the carbon particles for a lithium secondary battery negative electrode obtained by firing a carbon precursor resin having an average particle size exceeding 50 μm are likely to have irregularities on the electrode surface, causing a short circuit of the battery, and the particle surface. Since the diffusion distance of lithium from the inside to the inside becomes long, the input / output characteristics tend to deteriorate.

また、炭素前駆体樹脂を焼成する際の最高温度としては、900〜2000℃が好ましく、1100℃〜1500℃がより好ましく、1200℃〜1300℃がさらに好ましい。焼成温度が900℃未満では、リチウム二次電池用負極材として用いた場合、初回不可逆容量が大きくなる傾向があり、2000℃を超えると、放電容量が小さくなる傾向がある。   Moreover, as a maximum temperature at the time of baking carbon precursor resin, 900-2000 degreeC is preferable, 1100 degreeC-1500 degreeC is more preferable, 1200 degreeC-1300 degreeC is further more preferable. When the firing temperature is less than 900 ° C., the initial irreversible capacity tends to increase when used as a negative electrode material for a lithium secondary battery, and when it exceeds 2000 ° C., the discharge capacity tends to decrease.

一方、比較的低温で1次焼成を行った後、最高温度まで2次焼成する場合は、炭素前駆体樹脂を450℃〜1000℃で1次焼成し、得られた炭化物を粉砕し、その後、最高温度まで昇温し2次焼成を行い、得られた炭素粒子の粒径を整えることが好ましい。   On the other hand, when the secondary firing is performed up to the maximum temperature after the primary firing at a relatively low temperature, the carbon precursor resin is primarily fired at 450 ° C. to 1000 ° C., and the obtained carbide is pulverized. It is preferable to raise the temperature to the maximum temperature and perform secondary firing to adjust the particle size of the obtained carbon particles.

1次焼成の焼成温度としては、450℃〜1000℃が好ましく、700℃〜1000℃がより好ましく、800℃〜1000℃がさらに好ましい。2次焼成の焼成温度(最高温度)としては、900〜2000℃が好ましく、1100℃〜1500℃がより好ましく、1200℃〜1300℃がさらに好ましい。焼成温度が900℃未満では、リチウム二次電池用負極材として用いた場合、初回不可逆容量が大きくなる傾向があり、2000℃を超えると、放電容量が小さくなる傾向がある。   The firing temperature for the primary firing is preferably 450 ° C to 1000 ° C, more preferably 700 ° C to 1000 ° C, and still more preferably 800 ° C to 1000 ° C. The firing temperature (maximum temperature) for secondary firing is preferably 900 to 2000 ° C, more preferably 1100 ° C to 1500 ° C, and still more preferably 1200 ° C to 1300 ° C. When the firing temperature is less than 900 ° C., the initial irreversible capacity tends to increase when used as a negative electrode material for a lithium secondary battery, and when it exceeds 2000 ° C., the discharge capacity tends to decrease.

また、1次焼成後の炭化物を粉砕する方法としては、特に制限はないが、例えば、ジェットミル、振動ミル、ピンミル、カッターミル、ハンマーミル等の公知の方法を用いることができる。   The method for pulverizing the carbide after the primary firing is not particularly limited, and for example, known methods such as a jet mill, a vibration mill, a pin mill, a cutter mill, and a hammer mill can be used.

また、焼成後に得られた炭素粒子の粒径を整える方法としては、特に制限はないが、篩い、分級機等の既知の方法を用いることができる。また、炭素粒子の平均粒径としては5〜50μmが好ましく、5〜40μmがより好ましく、5〜30μmがさらに好ましい。平均粒径が5μm未満のリチウム二次電池負極用炭素粒子は、不可逆容量が大きくなると共に、粒子同士の接触が悪くなり易く、入出力特性が低下する傾向がある。一方、平均粒径が50μmを超えるリチウム二次電池負極用炭素粒子は、電極面に凹凸が発生しやすくなり電池の短絡の原因となると共に、粒子表面から内部へのリチウムの拡散距離が長くなるため入出力特性が低下する傾向がある。   Moreover, there is no restriction | limiting in particular as a method of adjusting the particle size of the carbon particle obtained after baking, However, Known methods, such as a sieve and a classifier, can be used. Moreover, as an average particle diameter of carbon particle, 5-50 micrometers is preferable, 5-40 micrometers is more preferable, 5-30 micrometers is further more preferable. The carbon particles for negative electrodes of lithium secondary batteries having an average particle size of less than 5 μm have a large irreversible capacity, are liable to deteriorate the contact between the particles, and tend to deteriorate input / output characteristics. On the other hand, the carbon particles for lithium secondary battery negative electrodes having an average particle size exceeding 50 μm are liable to generate irregularities on the electrode surface, causing a short circuit of the battery and increasing the diffusion distance of lithium from the particle surface to the inside. Therefore, the input / output characteristics tend to deteriorate.

炭素前駆体樹脂を単に焼成して得られた炭素粒子は、通常、表面と内部で炭素物性が異なり、内部の方が表面より緻密な構造をしている。従って、上記のように、焼成前に、予め、炭素前駆体樹脂の粒径を調整をしたり、或いは、1次焼成後に粉砕処理を加え緻密な構造をしている内部を表面に出しさらに焼成することで、各種物性(炭素002面の面間隔、He真密度、CO吸着量など)を満たす本願発明のリチウム二次電池負極用炭素粒子を作製することが可能となる。 The carbon particles obtained by simply firing the carbon precursor resin usually have different carbon properties on the surface and inside, and the inside has a denser structure than the surface. Therefore, as described above, before firing, the particle size of the carbon precursor resin is adjusted in advance, or after the primary firing, a pulverization treatment is performed to bring the inside having a dense structure to the surface and further firing. By doing so, it becomes possible to produce the carbon particles for a lithium secondary battery negative electrode of the present invention satisfying various physical properties (interplanar spacing of the carbon 002 plane, He true density, CO 2 adsorption amount, etc.).

炭素前駆体樹脂としては、例えば、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して生成するピッチ、ナフタレン等を超強酸存在下で重合させて作製される合成ピッチ、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性合成樹脂、デンプン、セルロース等の天然物、フェノール樹脂などを用いることができる。   As carbon precursor resin, for example, ethylene heavy end pitch, crude oil pitch, coal tar pitch, asphalt cracking pitch, pitch generated by pyrolyzing polyvinyl chloride, etc., and naphthalene are polymerized in the presence of a super strong acid. Synthetic pitches, thermoplastic synthetic resins such as polyvinyl chloride, polyvinyl alcohol, polyvinyl acetate, and polyvinyl butyral, natural products such as starch and cellulose, phenol resins, and the like can be used.

中でも炭素前駆体樹脂としてフェノール樹脂を用いることが好ましく、下記一般式(I)で表されるフェノール誘導体を構造に含む樹脂を用いることがより好ましく、下記一般式(I)で表されるフェノール誘導体を構造に40〜70mol%含む樹脂を用いることが特に好ましい。

Figure 2007042571
Among them, it is preferable to use a phenol resin as the carbon precursor resin, more preferably a resin containing a phenol derivative represented by the following general formula (I) in the structure, and a phenol derivative represented by the following general formula (I). It is particularly preferable to use a resin containing 40 to 70 mol% in the structure.
Figure 2007042571

上記一般式(I)で表されるフェノール誘導体の置換基Xとしては、例えば、メチル基、エチル基、ブチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、オクチル基、ペンチル基、イソペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基等が挙げられる。また、アリール基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基等が挙げられる。これらのアリール基は、置換基を有していてもよい。   Examples of the substituent X of the phenol derivative represented by the general formula (I) include a methyl group, an ethyl group, a butyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group. Tert-butyl group, octyl group, pentyl group, isopentyl group, neopentyl group, hexyl group, heptyl group and the like. Moreover, as an aryl group, a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group etc. are mentioned, for example. These aryl groups may have a substituent.

また、フェノール樹脂の構造中に下記一般式(II)で表されるフェノール誘導体が30mol%以下含まれていてもよい。

Figure 2007042571
Moreover, the phenol derivative represented by the following general formula (II) may be contained in an amount of 30 mol% or less in the structure of the phenol resin.
Figure 2007042571

炭素前駆体樹脂として熱可塑性の樹脂を用いる場合、焼成前に樹脂の硬化処理を行うことで、架橋反応が起こり炭素化率を増加させることができる。本発明における硬化方法は、特に限定されるものではないが、例えば、塩酸、硫酸、硝酸等の酸触媒下でアルデヒド類と架橋反応を行う方法、架橋剤と共に混合し180℃〜200℃に加熱溶融することで架橋反応を行う方法、架橋剤を使用せずレゾール樹脂と混合して使用する方法等が挙げられる。   When a thermoplastic resin is used as the carbon precursor resin, a crosslinking reaction occurs and the carbonization rate can be increased by performing a curing treatment of the resin before firing. The curing method in the present invention is not particularly limited. For example, a method of performing a crosslinking reaction with aldehydes under an acid catalyst such as hydrochloric acid, sulfuric acid, nitric acid, etc., mixing with a crosslinking agent and heating to 180 ° C. to 200 ° C. Examples thereof include a method of performing a crosslinking reaction by melting, a method of using a mixture with a resol resin without using a crosslinking agent, and the like.

酸触媒下でアルデヒド類と架橋反応を行う方法は、湿式反応であり、例えば、繊維形状の前駆体樹脂を硬化するのに適している。また、架橋剤と共に混合し180〜200℃に加熱溶融することで架橋反応を行う方法は、例えば、粉末フェノール樹脂を作製するのに適している。架橋剤としては、例えば、ヘキサメチレンテトラミン、パラホルムアルデヒド等のホルマリン供給源となる物質を用いることができる。   A method of performing a crosslinking reaction with an aldehyde under an acid catalyst is a wet reaction, and is suitable for curing, for example, a fiber-shaped precursor resin. Moreover, the method of performing a crosslinking reaction by mixing with a crosslinking agent and heat-melting at 180-200 degreeC is suitable for producing a powder phenol resin, for example. As the crosslinking agent, for example, a substance serving as a formalin supply source such as hexamethylenetetramine and paraformaldehyde can be used.

また、炭素前駆体樹脂の形状は、特に制限されるものではなく、ビーズ状の樹脂粒子を用いてもよく、また、樹脂の塊をジェットミル、振動ミル、ピンミル、カッターミル、ハンマーミル等を用いて粉砕したものを用いてもよい。   Further, the shape of the carbon precursor resin is not particularly limited, and bead-shaped resin particles may be used, and the resin lump may be a jet mill, a vibration mill, a pin mill, a cutter mill, a hammer mill, or the like. You may use what was used and grind | pulverized.

本発明のリチウムイオン二次電池用負極は、特に限定されないが、例えば、本発明のリチウムイオン二次電池負極用炭素粒子、有機系結着剤および必要に応じて添加される各種添加剤等を溶剤などとともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等により混練し、ペースト状の負極スラリーを調製し、これを例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法により集電体に塗布、乾燥し、必要に応じて、ロールプレス等の成形法により圧縮成形することで形成することができる。また、ペースト状の負極層用塗料をシート状、ペレット状等に成形し、これをロールプレス等の成形法により集電体と一体化することで形成することもできる。   The negative electrode for a lithium ion secondary battery of the present invention is not particularly limited. For example, the carbon particles for a negative electrode of the lithium ion secondary battery of the present invention, an organic binder, and various additives added as necessary. Kneading with a stirrer, ball mill, super sand mill, pressure kneader, etc. together with a solvent to prepare a paste-like negative electrode slurry, for example, metal mask printing method, electrostatic coating method, dip coating method, spray coating method, It can be formed by applying and drying on a current collector by a known method such as a roll coating method, a doctor blade method, a gravure coating method, a screen printing method, and if necessary, by compression molding by a molding method such as a roll press. it can. Alternatively, the paste-like coating material for the negative electrode layer can be formed into a sheet shape, a pellet shape, or the like and integrated with the current collector by a forming method such as a roll press.

上記有機系結着剤としては、例えば、スチレン−ブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、さらに、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸やイオン導電性の大きな高分子化合物が使用できる。イオン導電率の大きな高分子化合物としては、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等が使用できる。有機系結着剤の含有量は、炭素粒子と有機結着剤との混合物100重量部に対して1〜20重量部とすることが好ましい。   Examples of the organic binder include styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, butyl ( Ethylenically unsaturated carboxylic acid esters such as (meth) acrylates, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid, and polymer compounds having a large ion conductivity can be used. As the polymer compound having a high ionic conductivity, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like can be used. The content of the organic binder is preferably 1 to 20 parts by weight with respect to 100 parts by weight of the mixture of carbon particles and the organic binder.

また、上記添加剤として、導電補助剤を混合してもよい。導電補助剤としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す酸化物や窒化物等が挙げられる。導電補助剤の使用量は、本発明の炭素粒子の1〜15重量%程度とすればよい。   Moreover, you may mix a conductive support agent as said additive. Examples of the conductive auxiliary agent include carbon black, graphite, acetylene black, or an oxide or nitride that exhibits conductivity. The usage-amount of a conductive support agent should just be about 1 to 15 weight% of the carbon particle of this invention.

さらに、上記添加剤として、負極スラリーの増粘剤を混合してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどを挙げることができる。   Furthermore, you may mix the thickener of a negative electrode slurry as said additive. Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein.

上記集電体の材質および形状については、負極の場合は特に限定されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。   The material and shape of the current collector are not particularly limited in the case of a negative electrode, and a strip-shaped one made of aluminum, copper, nickel, titanium, stainless steel, etc. in a foil shape, a punched foil shape, a mesh shape, or the like. Use it. A porous material such as porous metal (foamed metal) or carbon paper can also be used.

本発明のリチウムイオン二次電池は、例えば、本発明のリチウムイオン二次電池用負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。   The lithium ion secondary battery of the present invention can be obtained, for example, by arranging the negative electrode for a lithium ion secondary battery and the positive electrode of the present invention facing each other via a separator and injecting an electrolytic solution.

上記正極は、負極と同様にして、集電体表面上に正極材料層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。   The positive electrode can be obtained by forming a positive electrode material layer on the current collector surface in the same manner as the negative electrode. In this case, the current collector may be a band-shaped material made of a metal or an alloy such as aluminum, titanium, or stainless steel in a foil shape, a punched foil shape, a mesh shape, or the like.

上記正極に用いる正極材料としては、特に制限はなく、例えば、LiNiO、LiCoO、LiMn、Cr、Cr、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS,ポリアニリン、ポリピロール等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。 Examples of the positive electrode material used for the positive electrode is not particularly limited, for example, LiNiO 2, LiCoO 2, LiMn 2 O 4, Cr 3 O 8, Cr 2 O 5, V 2 O 5, V 6 O 13, VO 2, MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , conductive polymer such as polyaniline and polypyrrole, porous carbon, etc. are used alone or in combination. be able to.

上記電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2―オン、γ−ブチロラクトン、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、メチルプロピルカーボネート、メチルエチルカーボネート、ブチルエチルカーボネート、ジプロビルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の単体、2成分及び3成分混合物等の非水系溶剤に溶解したいわゆる有機電解液を使用することができる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3- Methyl sulfolane, 2,4-dimethyl sulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, diethyl carbonate, dimethoxyethane, dimethyl carbonate, methyl propyl carbonate, methyl ethyl carbonate, butyl ethyl carbonate, dipro Bil carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate, ethyl acetate, etc. A so-called organic electrolytic solution dissolved in a non-aqueous solvent such as a fraction mixture can be used.

上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウム二次電池の正極と負極が使用中も直接接触しない構造にした場合は、セパレータを使用しなくとも良い。   As the separator, for example, a nonwoven fabric mainly composed of polyolefin such as polyethylene and polypropylene, cloth, microporous film, or a combination thereof can be used. In addition, when it is set as the structure where the positive electrode and negative electrode of a lithium secondary battery to produce do not contact directly during use, it is not necessary to use a separator.

本発明のリチウム二次電池の構造は、特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した構造とするのが一般的である。また、本発明のリチウム二次電池は、特に限定されないが、ペーパー型電池、ボタン電池、コイン型電池、積層型電池、円筒型電池などとして使用されうる。   The structure of the lithium secondary battery of the present invention is not particularly limited. Usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral shape to form a wound electrode plate group. Are generally laminated to form a laminated electrode plate group, and the electrode plate group is enclosed in an exterior body. The lithium secondary battery of the present invention is not particularly limited, but can be used as a paper-type battery, a button battery, a coin-type battery, a stacked battery, a cylindrical battery, or the like.

このようにして得られた本発明のリチウム二次電池は、従来の炭素粒子を負極に用いたリチウム二次電池と比較して、不可逆容量が小さく、なおかつ出力特性、急速充放電特性、安全性に優れたものとなる。   The lithium secondary battery of the present invention thus obtained has a small irreversible capacity compared to a lithium secondary battery using conventional carbon particles as a negative electrode, and also has output characteristics, rapid charge / discharge characteristics, and safety. It will be excellent.

以下、本発明を実施例によりさらに具体的に説明するが、本発明は実施例によって制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.

<リチウム二次電池負極用炭素粒子の作製>
(実施例1)
攪拌装置、還流冷却器、及び温度系を備えた2Lの三口フラスコ中にm−クレゾール(試薬特級:和光純薬品工業株式会社製)217g、38%ホルムアルデヒド水溶液(試薬特級:和光純薬品工業株式会社製)97g、1mol/l塩酸(容量分析用:和光純薬品工業株式会社製)20gを入れ、100℃まで加熱し、一時間保持した。その後150℃で4時間加熱還流し、180℃で系内の残存モノマと水を除去した。得られたフェノール樹脂を100g秤量し、ヘキサメチレンテトラミン(試薬特級:和光純薬品工業株式会社製)10gとともに粉砕・混合した。得られた粉末混合物をポリテトラフルオロエチレンバットに移し、200℃ホットプレート上で混合しながら硬化処理を行った。この樹脂硬化物を熱風乾燥機中で180℃、4時間加熱処理することにより、完全に硬化処理を行った。得られた樹脂硬化物をカッターミルを用いて30秒間粉砕した。
<Preparation of carbon particles for lithium secondary battery negative electrode>
Example 1
In a 2 L three-necked flask equipped with a stirrer, a reflux condenser, and a temperature system, 217 g of m-cresol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.), 38% formaldehyde aqueous solution (reagent special grade: Wako Pure Chemical Industries, Ltd.) 97 g, 1 mol / l hydrochloric acid (for volumetric analysis: Wako Pure Chemical Industries, Ltd.) 20 g was added, heated to 100 ° C., and held for 1 hour. Thereafter, the mixture was heated to reflux at 150 ° C. for 4 hours, and residual monomers and water in the system were removed at 180 ° C. 100 g of the obtained phenol resin was weighed and pulverized and mixed with 10 g of hexamethylenetetramine (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.). The obtained powder mixture was transferred to a polytetrafluoroethylene vat and cured while being mixed on a 200 ° C. hot plate. The cured resin was completely cured by heat treatment at 180 ° C. for 4 hours in a hot air dryer. The obtained cured resin was pulverized for 30 seconds using a cutter mill.

粉砕した樹脂を900℃の連続焼成炉に通し、炭素化を行った。得られた炭化物をカッターミルを用いて30秒間粉砕した後、250メッシュの篩で篩った。篩った炭化物をN雰囲気下、室温(25℃)から500℃まで30分、500℃から1200℃まで昇温速度5.8℃/minで昇温、1200℃で1時間保持することで、炭素粒子を作製した。 The pulverized resin was passed through a continuous firing furnace at 900 ° C. to perform carbonization. The obtained carbide was pulverized for 30 seconds using a cutter mill and then sieved with a 250 mesh sieve. By heating the sieved carbide from room temperature (25 ° C.) to 500 ° C. for 30 minutes and from 500 ° C. to 1200 ° C. at a heating rate of 5.8 ° C./min and holding at 1200 ° C. for 1 hour under N 2 atmosphere. Carbon particles were produced.

(実施例2)
攪拌装置、還流冷却器、及び温度系を備えた2Lの三口フラスコ中にm−クレゾール(試薬特級:和光純薬品工業株式会社製)217g、38%ホルムアルデヒド水溶液(試薬特級:和光純薬品工業株式会社製)97g、1mol/l塩酸(容量分析用:和光純薬品工業株式会社製)20gを入れ、100℃まで加熱し、一時間保持した。その後150℃で4時間加熱還流し、180℃で系内の残存モノマと水を除去した。得られたフェノール樹脂を100g秤量し、ヘキサメチレンテトラミン(試薬特級:和光純薬品工業株式会社製)10gとともに粉砕・混合した。得られた粉末混合物をポリテトラフルオロエチレンバットに移し、200℃ホットプレート上で混合しながら硬化処理を行った。この樹脂硬化物を熱風乾燥機中で180℃、4時間加熱処理することにより、完全に硬化処理を行った。得られた樹脂硬化物をカッターミルを用いて30秒間粉砕した。
(Example 2)
In a 2 L three-necked flask equipped with a stirrer, a reflux condenser, and a temperature system, 217 g of m-cresol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.), 38% formaldehyde aqueous solution (reagent special grade: Wako Pure Chemical Industries, Ltd.) 97 g, 1 mol / l hydrochloric acid (for volumetric analysis: Wako Pure Chemical Industries, Ltd.) 20 g was added, heated to 100 ° C., and held for 1 hour. Thereafter, the mixture was heated to reflux at 150 ° C. for 4 hours, and residual monomers and water in the system were removed at 180 ° C. 100 g of the obtained phenol resin was weighed and pulverized and mixed with 10 g of hexamethylenetetramine (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.). The obtained powder mixture was transferred to a polytetrafluoroethylene vat and cured while being mixed on a 200 ° C. hot plate. The cured resin was completely cured by heat treatment at 180 ° C. for 4 hours in a hot air dryer. The obtained cured resin was pulverized for 30 seconds using a cutter mill.

粉砕した樹脂を900℃の連続焼成炉に通し、炭素化を行った。得られた炭化物をカッターミルを用いて30秒間粉砕した後、250メッシュの篩で篩った。篩った炭化物をN雰囲気下、室温(25℃)から500℃まで30分、500℃から1300℃まで昇温速度5.8℃/minで昇温、1300℃で1時間保持することで、炭素粒子を作製した。 The pulverized resin was passed through a continuous firing furnace at 900 ° C. to perform carbonization. The obtained carbide was pulverized for 30 seconds using a cutter mill and then sieved with a 250 mesh sieve. By heating the sieved carbide in a N 2 atmosphere from room temperature (25 ° C.) to 500 ° C. for 30 minutes and from 500 ° C. to 1300 ° C. at a heating rate of 5.8 ° C./min and holding at 1300 ° C. for 1 hour. Carbon particles were produced.

(実施例3)
攪拌装置、還流冷却器、及び温度系を備えた2Lの三口フラスコ中にm−クレゾール(試薬特級:和光純薬品工業株式会社製)217g、38%ホルムアルデヒド水溶液(試薬特級:和光純薬品工業株式会社製)97g、1mol/l塩酸(容量分析用:和光純薬品工業株式会社製)20gを入れ、100℃まで加熱し、一時間保持した。その後150℃で4時間加熱還流し、180℃で系内の残存モノマと水を除去した。得られたフェノール樹脂を100g秤量し、ヘキサメチレンテトラミン(試薬特級:和光純薬品工業株式会社製)10gとともに粉砕・混合した。得られた粉末混合物をポリテトラフルオロエチレンバットに移し、200℃ホットプレート上で混合しながら硬化処理を行った。この樹脂硬化物を熱風乾燥機中で180℃、4時間加熱処理することにより、完全に硬化処理を行った。得られた樹脂硬化物をカッターミルを用いて30秒間粉砕した。
(Example 3)
In a 2 L three-necked flask equipped with a stirrer, a reflux condenser, and a temperature system, 217 g of m-cresol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.), 38% formaldehyde aqueous solution (reagent special grade: Wako Pure Chemical Industries, Ltd.) 97 g, 1 mol / l hydrochloric acid (for volumetric analysis: Wako Pure Chemical Industries, Ltd.) 20 g was added, heated to 100 ° C., and held for 1 hour. Thereafter, the mixture was heated to reflux at 150 ° C. for 4 hours, and residual monomers and water in the system were removed at 180 ° C. 100 g of the obtained phenol resin was weighed and pulverized and mixed with 10 g of hexamethylenetetramine (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.). The obtained powder mixture was transferred to a polytetrafluoroethylene vat and cured while being mixed on a 200 ° C. hot plate. The cured resin was completely cured by heat treatment at 180 ° C. for 4 hours in a hot air dryer. The obtained cured resin was pulverized for 30 seconds using a cutter mill.

粉砕した樹脂を900℃の連続焼成炉に通し、炭素化を行った。得られた炭化物をカッターミルを用いて30秒間粉砕した後、250メッシュの篩で篩った。篩った炭化物をN雰囲気下、室温(25℃)から500℃まで30分、500℃から1400℃まで昇温速度5.8℃/minで昇温、1400℃で1時間保持することで、炭素粒子を作製した。 The pulverized resin was passed through a continuous firing furnace at 900 ° C. to perform carbonization. The obtained carbide was pulverized for 30 seconds using a cutter mill and then sieved with a 250 mesh sieve. By heating the sieved carbide in a N 2 atmosphere from room temperature (25 ° C.) to 500 ° C. for 30 minutes, from 500 ° C. to 1400 ° C. at a heating rate of 5.8 ° C./min, and holding at 1400 ° C. for 1 hour. Carbon particles were produced.

(実施例4)
攪拌装置、還流冷却器、及び温度系を備えた2Lの三口フラスコ中にm−クレゾール(試薬特級:和光純薬品工業株式会社製)217g、38%ホルムアルデヒド水溶液(試薬特級:和光純薬品工業株式会社製)97g、1mol/l塩酸(容量分析用:和光純薬品工業株式会社製)20gを入れ、100℃まで加熱し、一時間保持した。その後150℃で4時間加熱還流し、180℃で系内の残存モノマと水を除去した。得られたフェノール樹脂を100g秤量しヘキサメチレンテトラミン(試薬特級:和光純薬品工業株式会社製)10gとともに粉砕・混合した。得られた粉末混合物をポリテトラフルオロエチレンバットに移し、200℃ホットプレート上で混合しながら硬化処理を行った。この樹脂硬化物を熱風乾燥機中で180℃、4時間加熱処理することにより、完全に硬化処理を行った。ついで、得られた樹脂硬化物をカッターミルを用いて30秒間粉砕した後、振動ミルを用いて5分間粉砕し、250メッシュの篩で篩った。
Example 4
In a 2 L three-necked flask equipped with a stirrer, a reflux condenser, and a temperature system, 217 g of m-cresol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.), 38% formaldehyde aqueous solution (reagent special grade: Wako Pure Chemical Industries, Ltd.) 97 g, 1 mol / l hydrochloric acid (for volumetric analysis: Wako Pure Chemical Industries, Ltd.) 20 g was added, heated to 100 ° C., and held for 1 hour. Thereafter, the mixture was heated to reflux at 150 ° C. for 4 hours, and residual monomers and water in the system were removed at 180 ° C. 100 g of the obtained phenol resin was weighed and pulverized and mixed with 10 g of hexamethylenetetramine (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.). The obtained powder mixture was transferred to a polytetrafluoroethylene vat and cured while being mixed on a 200 ° C. hot plate. The cured resin was completely cured by heat treatment at 180 ° C. for 4 hours in a hot air dryer. Subsequently, the obtained cured resin was pulverized for 30 seconds using a cutter mill, then pulverized for 5 minutes using a vibration mill, and sieved with a 250 mesh sieve.

篩った樹脂をN雰囲気下、室温〜200℃まで2.9℃/minで昇温して、200℃で2時間保持、その後、200℃から昇温速度20℃/hで900℃まで昇温、900℃で1時間保持し、炭素化を行った。ついで、得られた炭化物を粉砕せずに、N雰囲気下、室温(25℃)から500℃まで30分、500℃から昇温速度300℃/hで1200℃まで昇温して、1200℃で1時間保持することで、炭素粒子を作製した。 Sieved resin under N 2 was heated at 2.9 ° C. / min to room temperature to 200 DEG ° C., 2 hours hold at 200 ° C., then to 900 ° C. at a heating rate of 20 ° C. / h from 200 ° C. Carbonization was performed by heating and holding at 900 ° C. for 1 hour. Next, without pulverizing the obtained carbide, the temperature was raised from room temperature (25 ° C.) to 500 ° C. for 30 minutes under N 2 atmosphere to 1200 ° C. at a heating rate of 300 ° C./h from 500 ° C. to 1200 ° C. The carbon particles were produced by holding for 1 hour.

(比較例1)
攪拌装置、還流冷却器、及び温度系を備えた2Lの三口フラスコ中にフェノール(試薬特級:和光純薬品工業株式会社製)188g、38%ホルムアルデヒド水溶液(試薬特級:和光純薬品工業株式会社製)97g、1mol/l塩酸(試薬特級:和光純薬品工業株式会社製)20gを入れ、100℃まで加熱し、1時間保持した。その後150℃で4時間加熱還流し、180℃で系内の残存モノマと水を除去した。得られたノボラック樹脂を100g秤量し、ヘキサメチレンテトラミン(試薬特級:和光純薬品工業株式会社製)10gと共に粉砕・混合した。得られた粉末混合物をポリテトラフルオロエチレンバットに移し、200℃ホットプレート上で混合しながら硬化処理を行った。この樹脂硬化物を熱風乾燥機中で180℃、4時間加熱処理することにより、完全に硬化処理を行った。得られた樹脂硬化物をカッターミルを用いて30秒間粉砕した。
(Comparative Example 1)
In a 2 L three-necked flask equipped with a stirrer, reflux condenser, and temperature system, phenol (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) 188 g, 38% formaldehyde aqueous solution (reagent special grade: manufactured by Wako Pure Chemical Industries, Ltd.) 97 g, 1 mol / l hydrochloric acid (reagent special grade: Wako Pure Chemical Industries, Ltd.) 20 g was added, heated to 100 ° C. and held for 1 hour. Thereafter, the mixture was heated to reflux at 150 ° C. for 4 hours, and residual monomers and water in the system were removed at 180 ° C. 100 g of the obtained novolac resin was weighed and pulverized and mixed with 10 g of hexamethylenetetramine (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.). The obtained powder mixture was transferred to a polytetrafluoroethylene vat and cured while being mixed on a 200 ° C. hot plate. The cured resin was completely cured by heat treatment at 180 ° C. for 4 hours in a hot air dryer. The obtained cured resin was pulverized for 30 seconds using a cutter mill.

粉砕した樹脂を900℃の連続焼成炉に通し、炭素化を行った。得られた炭化物をカッターミルを用いて30秒間粉砕した後、250メッシュの篩で篩った。篩った炭化物をN雰囲気下、室温(25℃)から500℃まで30分、500℃から1200℃まで昇温速度5.8℃/minで昇温、1200℃で1時間保持することで、炭素粒子を作製した。 The pulverized resin was passed through a continuous firing furnace at 900 ° C. to perform carbonization. The obtained carbide was pulverized for 30 seconds using a cutter mill and then sieved with a 250 mesh sieve. By heating the sieved carbide from room temperature (25 ° C.) to 500 ° C. for 30 minutes and from 500 ° C. to 1200 ° C. at a heating rate of 5.8 ° C./min and holding at 1200 ° C. for 1 hour under N 2 atmosphere. Carbon particles were produced.

(比較例2)
攪拌装置、還流冷却器、及び温度系を備えた2Lの三口フラスコ中にフェノール(試薬特級:和光純薬品工業株式会社製)132g、p−t−ブチルフェノール(試薬特級:和光純薬品工業株式会社製)90g、38%ホルムアルデヒド水溶液(試薬特級:和光純薬品工業株式会社製)97g、1mol/l塩酸(容量分析用:和光純薬品工業株式会社製)20gを入れ、100℃まで加熱し、一時間保持した。その後150℃で4時間加熱還流し、180℃で系内の残存モノマと水を除去した。得られたフェノール樹脂を100g秤量し、ヘキサメチレンテトラミン(試薬特級:和光純薬品工業株式会社製)10gとともに粉砕・混合した。得られた粉末混合物をポリテトラフルオロエチレンバットに移し、200℃ホットプレート上で混合しながら硬化処理を行った。この樹脂硬化物を熱風乾燥機中で180℃、4時間加熱処理することにより、完全に硬化処理を行った。得られた樹脂硬化物をカッターミルを用いて30秒間粉砕した。
(Comparative Example 2)
In a 2 L three-necked flask equipped with a stirrer, a reflux condenser, and a temperature system, 132 g of phenol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) and pt-butylphenol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) ) 90g, 38% formaldehyde aqueous solution (reagent special grade: Wako Pure Chemical Industries, Ltd.) 97g, 1mol / l hydrochloric acid (for volumetric analysis: Wako Pure Chemical Industries, Ltd.) 20g, heated to 100 ° C, one hour Retained. Thereafter, the mixture was heated to reflux at 150 ° C. for 4 hours, and residual monomers and water in the system were removed at 180 ° C. 100 g of the obtained phenol resin was weighed and pulverized and mixed with 10 g of hexamethylenetetramine (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.). The obtained powder mixture was transferred to a polytetrafluoroethylene vat and cured while being mixed on a 200 ° C. hot plate. The cured resin was completely cured by heat treatment at 180 ° C. for 4 hours in a hot air dryer. The obtained cured resin was pulverized for 30 seconds using a cutter mill.

粉砕した樹脂を900℃の連続焼成炉を通し、炭素化を行った。得られた炭化物をカッターミルを用いて30秒間粉砕した後、250メッシュの篩で篩った。篩った炭化物をN雰囲気下、室温(25℃)から500℃まで30分、500℃から1100℃まで昇温速度5.8℃/minで昇温、1100℃で1時間保持することで、炭素粒子を作製した。 The pulverized resin was passed through a continuous baking furnace at 900 ° C. and carbonized. The obtained carbide was pulverized for 30 seconds using a cutter mill and then sieved with a 250 mesh sieve. By heating the sieved carbide in a N 2 atmosphere from room temperature (25 ° C.) to 500 ° C. for 30 minutes, from 500 ° C. to 1100 ° C. at a heating rate of 5.8 ° C./min, and holding at 1100 ° C. for 1 hour. Carbon particles were produced.

(比較例3)
攪拌装置、還流冷却器、及び温度系を備えた2Lの三口フラスコ中にフェノール(試薬特級:和光純薬品工業株式会社製)132g、p−t−ブチルフェノール(試薬特級:和光純薬品工業株式会社製)90g、38%ホルムアルデヒド水溶液(試薬特級:和光純薬品工業株式会社製)97g、1mol/l塩酸(容量分析用:和光純薬品工業株式会社製)20gを入れ、100℃まで加熱し、一時間保持した。その後150℃で4時間加熱還流し、180℃で系内の残存モノマと水を除去した。得られたフェノール樹脂を100g秤量し、ヘキサメチレンテトラミン(試薬特級:和光純薬品工業株式会社製)10gとともに粉砕・混合した。得られた粉末混合物をポリテトラフルオロエチレンバットに移し、200℃ホットプレート上で混合しながら硬化処理を行った。この樹脂硬化物を熱風乾燥機中で180℃、4時間加熱処理することにより、硬化処理を行った。得られた樹脂硬化物をカッターミルを用いて30秒間粉砕した後、振動ミルを用いて5分間粉砕し、250メッシュの篩で篩った。
(Comparative Example 3)
In a 2 L three-necked flask equipped with a stirrer, a reflux condenser, and a temperature system, 132 g of phenol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) and pt-butylphenol (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.) ) 90g, 38% formaldehyde aqueous solution (reagent special grade: Wako Pure Chemical Industries, Ltd.) 97g, 1mol / l hydrochloric acid (for volumetric analysis: Wako Pure Chemical Industries, Ltd.) 20g, heated to 100 ° C, one hour Retained. Thereafter, the mixture was heated to reflux at 150 ° C. for 4 hours, and residual monomers and water in the system were removed at 180 ° C. 100 g of the obtained phenol resin was weighed and pulverized and mixed with 10 g of hexamethylenetetramine (special reagent grade: manufactured by Wako Pure Chemical Industries, Ltd.). The obtained powder mixture was transferred to a polytetrafluoroethylene vat and cured while being mixed on a 200 ° C. hot plate. The cured resin was subjected to a heat treatment by heating at 180 ° C. for 4 hours in a hot air dryer. The obtained cured resin was pulverized for 30 seconds using a cutter mill, then pulverized for 5 minutes using a vibration mill, and sieved with a 250 mesh sieve.

篩った樹脂をN雰囲気下、室温〜200℃まで2.9℃/minで昇温して、200℃で2時間保持、その後、200℃から昇温速度20℃/hで900℃まで昇温、900℃で1時間保持し、炭素化を行った。ついで、得られた炭化物を粉砕せずに、N雰囲気下、室温(25℃)から500℃まで30分、500℃から昇温速度300℃/hで1200℃まで昇温して、1200℃で1時間保持することで、炭素粒子を作製した。 The temperature of the sieved resin is raised from room temperature to 200 ° C. at 2.9 ° C./min under N 2 atmosphere and held at 200 ° C. for 2 hours, and then from 200 ° C. to 900 ° C. at a heating rate of 20 ° C./h. Carbonization was performed by heating and holding at 900 ° C. for 1 hour. Next, without pulverizing the obtained carbide, the temperature was raised from room temperature (25 ° C.) to 500 ° C. for 30 minutes under N 2 atmosphere to 1200 ° C. at a heating rate of 300 ° C./h from 500 ° C. to 1200 ° C. The carbon particles were produced by holding for 1 hour.

<評価>
実施例1〜4及び比較例1〜3で得られたリチウム二次電池負極用炭素粒子のHe真密度、CO吸着量、炭素002面の面間隔d002、酸素濃度、N比表面積及びO/Cを下記の方法によって測定した。結果を表1に示す。
<Evaluation>
He true density of carbon particles for lithium secondary battery negative electrodes obtained in Examples 1 to 4 and Comparative Examples 1 to 3, CO 2 adsorption amount, carbon 002 plane spacing d002, oxygen concentration, N 2 specific surface area and O 2 / C was measured by the following method. The results are shown in Table 1.

[He真密度の測定法]
He真密度計(MUPY−13T QUANTACOME社製)を用いて、以下の条件で、予め200℃で2時間、減圧乾燥を行ったリチウム二次電池負極用炭素粒子にHeガスを浸透させた後、測定を行った。
・Runモード:Multi Run
・分析回数:20回
・採用分析回数:10回
・許容%偏差:0.050%
・パージモード:パルスモード 2500回パルス
[Measurement method of He true density]
After impregnating He gas into carbon particles for a lithium secondary battery negative electrode, which was previously dried under reduced pressure at 200 ° C. for 2 hours under the following conditions, using a He true density meter (MUPU-13T QUANTOMECOM), Measurements were made.
-Run mode: Multi Run
・ Number of analysis: 20 times ・ Number of recruitment analysis: 10 times ・ Allowable% deviation: 0.050%
・ Purge mode: Pulse mode Pulse 2500 times

[CO吸着量の測定法]
ガス吸着装置(AUTSORB−1Quantachrome社製)を用いて以下の方法で行った。リチウム二次電池負極用炭素粒子を石英製のサンプル管に3g秤量し、備え付けの前処理ステージで200℃、6時間、減圧下で前処理を行った。前処理後のサンプル管を測定ステージに付け替え、CO吸脱着測定を行った。下記の測定条件で測定を行い、測定圧力9.75×10−1mmHg時の吸着量をCO吸着量とした。
・測定温度:273K
・測定圧力:吸着1.0×10−5〜9.75×10−1mmHg
:脱着9.75×10−1〜2.5×10−2mmHg
[Measurement method of CO 2 adsorption amount]
It was carried out by the following method using a gas adsorption device (manufactured by AUTSORB-1 Quantachrome). 3 g of carbon particles for a lithium secondary battery negative electrode were weighed into a quartz sample tube, and pretreated at 200 ° C. for 6 hours under reduced pressure on a pretreatment stage provided. The sample tube after the pretreatment was replaced with a measurement stage, and CO 2 adsorption / desorption measurement was performed. Measurement was performed under the following measurement conditions, and the adsorption amount at a measurement pressure of 9.75 × 10 −1 mmHg was defined as the CO 2 adsorption amount.
・ Measurement temperature: 273K
Measurement pressure: Adsorption 1.0 × 10 −5 to 9.75 × 10 −1 mmHg
: Desorption 9.75 × 10 −1 to 2.5 × 10 −2 mmHg

[炭素002面の面間隔d002の測定法]
リチウム二次電池負極用炭素粒子を石英製の試料ホルダーの凹部分に充填し、測定ステージにセットした。以下の測定条件において広角X線回折装置(理学電気株式会社製)で測定を行った。
・線源:CuKα線(波長λ=0.15418nm)
・出力:40kV、20mA
・サンプリング幅:0.010°
・走査範囲:10〜35°
・積算回数:1回
・スキャンスピード:0.5°/min
得られた002回折線のピーク位置(2θ)は、標準物質用高純度シリコン粉末の111回折線を用いて外部補正し、CuKα線の波長λとBraggの式を用いて炭素002面の面間隔d002を計算した。

Figure 2007042571
[Measurement method of d002 spacing between carbon 002 planes]
The carbon particles for the negative electrode of the lithium secondary battery were filled in the concave portion of the quartz sample holder and set on the measurement stage. Measurement was performed with a wide-angle X-ray diffractometer (manufactured by Rigaku Corporation) under the following measurement conditions.
-Radiation source: CuKα ray (wavelength λ = 0.15418 nm)
・ Output: 40kV, 20mA
・ Sampling width: 0.010 °
-Scanning range: 10-35 °
・ Number of integration: 1 time ・ Scanning speed: 0.5 ° / min
The peak position (2θ) of the obtained 002 diffraction line is externally corrected using the 111 diffraction line of the high-purity silicon powder for standard materials, and the interplanar spacing of the carbon 002 plane using the CuKα ray wavelength λ and Bragg equation d002 was calculated.
Figure 2007042571

[酸素濃度の測定法]
リチウム二次電池負極用炭素粒子の酸素濃度は、酸素・窒素分析装置(TC436:LECO製)を用いて測定した。インパルス炉を5400Wに設定することで炉内の温度を約1600℃とした。リチウム二次電池負極用炭素粒子0.1gから0.2gを不活性ガス気流中(ヘリウム)で加熱し、酸素を赤外検出器にて測定した。得られたスペクトルを酸素量が分かっている基準物質(酸化イットリウム)と比較することでリチウム二次電池用負極材の酸素含有量を算出した。
[Measurement method of oxygen concentration]
The oxygen concentration of the carbon particles for a lithium secondary battery negative electrode was measured using an oxygen / nitrogen analyzer (TC436: manufactured by LECO). The temperature in the furnace was set to about 1600 ° C. by setting the impulse furnace to 5400 W. 0.1 g to 0.2 g of carbon particles for a lithium secondary battery negative electrode were heated in an inert gas stream (helium), and oxygen was measured with an infrared detector. The oxygen content of the negative electrode material for a lithium secondary battery was calculated by comparing the obtained spectrum with a reference material (yttrium oxide) whose oxygen content was known.

[N比表面積の測定法]
比表面積は、AUTSORB−1(Quantachrome社製)を用いて以下の方法で行った。リチウム二次電池負極用炭素粒子を石英製のサンプル管に1g秤量し、備え付けの前処理ステージで200℃、6時間、減圧下で前処理を行った。前処理後のサンプル管を測定ステージに付け替え、下記の条件でN吸脱着測定を行った。
・測定温度:77K
・測定圧力:吸着1.0×10−4〜9.95×10−1mmHg
:脱着9.95×10−1〜5.0×10−2mmHg
得られた等温線から相対圧が1.0×10−4〜1.5×10−1の値をBET理論に適応しN比表面積を得た。
[Measurement method of N 2 specific surface area]
The N 2 specific surface area was measured by the following method using AUTSORB-1 (manufactured by Quantachrome). 1 g of the carbon particles for a lithium secondary battery negative electrode was weighed into a quartz sample tube, and pretreated at 200 ° C. for 6 hours under reduced pressure on a pretreatment stage provided. Transfer the sample tube after the pretreatment in the measurement stage, was N 2 adsorption-desorption measurements under the following conditions.
・ Measurement temperature: 77K
Measurement pressure: Adsorption 1.0 × 10 −4 to 9.95 × 10 −1 mmHg
: Desorption 9.95 × 10 −1 to 5.0 × 10 −2 mmHg
From the obtained isotherm, a value of relative pressure of 1.0 × 10 −4 to 1.5 × 10 −1 was applied to the BET theory to obtain an N 2 specific surface area.

[O/Cの測定法]
O/Cの測定は、X線光電子分光測定装置(AXSIS−165、島津/Kratos製)を用いて下記の測定条件下で行った。
・X線源:AlKα 45〜150W(3〜10mA、15kV)
・検出角度:90度
・分析面積:0.3×0.7mm
・定性分析PE:160eV
・定量分析PE:10eV
測定試料は、後に述べる充放電特性の測定に作製した電極を用いた。検出されたスペク
トル(C1s、O1s、F1s)のスペクトル面積から元素の存在比(atmic%)を
算出し、炭素と酸素の存在比を用いてO/C(=酸素存在比atmic%/炭素存在比a
tmic%)を求めた。
[O / C measurement method]
The measurement of O / C was performed under the following measurement conditions using an X-ray photoelectron spectrometer (AXSIS-165, manufactured by Shimadzu / Kratos).
X-ray source: AlKα 45 to 150 W (3 to 10 mA, 15 kV)
・ Detection angle: 90 degrees ・ Analysis area: 0.3 × 0.7 mm 2
・ Qualitative analysis PE: 160 eV
・ Quantitative analysis PE: 10 eV
As a measurement sample, an electrode prepared for measurement of charge / discharge characteristics described later was used. An element abundance ratio (atomic%) is calculated from the spectrum area of the detected spectrum (C1s, O1s, F1s), and O / C (= oxygen abundance ratio atomic% / carbon abundance ratio) using the abundance ratio of carbon and oxygen. a
tmic%).

実施例1〜4及び比較例1〜3で得られたリチウム二次電池負極用炭素粒子を負極材として適用したリチウム二次電池用負極を有するリチウム二次電池を作製し、その充放電特性及び入出力特性を下記の方法により測定した。結果を表2に示す。   Lithium secondary batteries having negative electrodes for lithium secondary batteries in which the carbon particles for lithium secondary battery negative electrodes obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were applied as negative electrode materials were prepared, and their charge / discharge characteristics and Input / output characteristics were measured by the following method. The results are shown in Table 2.

[充放電特性の測定法]
充放電特性測定用のコイン型リチウム二次電池を以下の手順で作製した。まず、得られたリチウム二次電池負極用炭素粒子(負極炭素材料)90重量%に、N−メチル−2ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で10重量%加えて混練してペーストを作製した。ついで、直径9.2mmの穴が空いた厚さ200μmのマスクを用いて、厚さ42μmの電解銅箔上に上記で得たペーストを円形状に塗布し、さらにこれを105℃で乾燥してN−メチル−2ピロリドンを除去することで、試験電極を得た。
[Measurement method of charge / discharge characteristics]
A coin-type lithium secondary battery for charge / discharge characteristic measurement was produced by the following procedure. First, 90% by weight of the obtained carbon particles for a negative electrode of a lithium secondary battery (negative electrode carbon material) were added with 10% by weight of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone and kneaded. A paste was prepared. Next, using a 200 μm thick mask with a 9.2 mm diameter hole, the paste obtained above was applied in a circular shape on a 42 μm thick electrolytic copper foil, which was further dried at 105 ° C. A test electrode was obtained by removing N-methyl-2pyrrolidone.

次に、得られた試験電極を、電解液(LiPFをエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で1:3)の混合溶媒に1mol/lの濃度になるように溶解した溶液)を含浸させたポリエチレン微孔膜セパレータをはさんでリチウム金属電極を対向させ、コイン型リチウム二次電池を作製した。 Next, the obtained test electrode was placed in an electrolyte solution (LiPF 6 in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (EC and MEC are in a volume ratio of 1: 3) at a concentration of 1 mol / l. A coin-type lithium secondary battery was manufactured by placing a lithium metal electrode facing the polyethylene microporous membrane separator impregnated with a solution so dissolved.

得られたリチウム二次電池について、2端子法による充放電試験を行い、充放電容量の測定を行った。試料電極とリチウム金属電極の間に、試料電極の面積に対して、0.2mA/cmの定電流で0V(V vs.Li/Li)まで充電し、次いで0Vの定電圧で電流が0.02mA/cmになるまで充電した。次に30分の休止時間後に0.2mA/mの定電流で1.5V(V vs.Li/Li)まで放電する1サイクル試験を行い、放電容量及び充放電効率を測定した。充放電効率は、(放電容量)/(充電容量)×100として算出した。 The obtained lithium secondary battery was subjected to a charge / discharge test by a two-terminal method, and the charge / discharge capacity was measured. Between the sample electrode and the lithium metal electrode, the battery was charged to 0 V (V vs. Li / Li + ) with a constant current of 0.2 mA / cm 2 with respect to the area of the sample electrode, and then the current was supplied with a constant voltage of 0 V. The battery was charged to 0.02 mA / cm 2 . Next, after a 30-minute rest period, a one-cycle test was performed to discharge to 1.5 V (V vs. Li / Li + ) at a constant current of 0.2 mA / m 2 , and the discharge capacity and charge / discharge efficiency were measured. The charge / discharge efficiency was calculated as (discharge capacity) / (charge capacity) × 100.

[出力特性の測定法]
出力特性測定用の捲回型円筒型リチウム二次電池を以下の手順で作製した。まず、得られたリチウム二次電池負極用炭素粒子87重量%に、導電補助剤としてカーボンブラックを5重量%、N−メチル−2−ピロリドンに溶解したポリ弗化ビニリデン(PVDF)を固形分で8重量%となるように加えて混練してペーストを作製した。ついで、このペーストを、厚さが40μmの電解銅箔にクリアランスを単位面積当りの塗布量が4.5mg/cmとなるように塗工機(チビコータ:サンク株式会社製)を用いて塗工した後、130℃で乾燥してN−メチル−2−ピロリドンを除去し、ロールプレス機により合材密度が1.0g/cmとなるように圧縮成型を行い、負極を作製した。
[Measurement method of output characteristics]
A wound cylindrical lithium secondary battery for measuring output characteristics was produced by the following procedure. First, 87% by weight of the obtained carbon particles for a negative electrode of a lithium secondary battery, 5% by weight of carbon black as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone in a solid content. A paste was prepared by adding 8% by weight and kneading. Next, this paste was applied to an electrolytic copper foil having a thickness of 40 μm using a coating machine (Chibi Coater: Sunk Co., Ltd.) so that the clearance was 4.5 mg / cm 2 per unit area. Then, it was dried at 130 ° C. to remove N-methyl-2-pyrrolidone, and compression molding was performed with a roll press so that the composite density was 1.0 g / cm 3 , thereby producing a negative electrode.

次に、正極活物質である粒径5μmのコバルト酸リチウム94重量%に、導電補助剤としてカーボンブラック3重量%、N−メチル−2−ピロリドンに溶解したポリ弗化ビニリデン(PVDF)を固形分で3重量%となるように加えて混練してペーストを作製した。ついで、このペーストを、厚さが20μmの電解アルミニウム箔に単位面積当りの塗布量が8.0mg/cmとなるように塗工機(チビコータ:サンク株式会社製)を用いて塗布した後、130℃で乾燥してN−メチル−2−ピロリドンを除去し、ロールプレス機により合材密度が2.5g/cmとなるように圧縮成型を行い、正極を作製した。 Next, 94% by weight of lithium cobaltate having a particle diameter of 5 μm as a positive electrode active material, 3% by weight of carbon black as a conductive auxiliary agent, and polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone as a solid content. Was added to 3 wt% and kneaded to prepare a paste. Next, this paste was applied to an electrolytic aluminum foil having a thickness of 20 μm using a coating machine (Chibi Coater: Sunk Co., Ltd.) so that the coating amount per unit area was 8.0 mg / cm 2 . N-methyl-2-pyrrolidone was removed by drying at 130 ° C., and compression molding was performed with a roll press machine so that the composite density was 2.5 g / cm 3 , thereby producing a positive electrode.

次に、作製した負極を54mm×360mm角に、正極を50mm×30mm角に切り出し、それぞれの塗工部がセパレータを隔てて向き合うように積層した後、1mm厚のPTFE(ポリテトラフルオロエチレン)板を巻くことにより径の調整を行った。なお、セパレータには厚み20μmのポリエチレン微孔膜を2枚重ねて使用した。ついで、極板群をスチール製の缶に入れ、LiPFをエチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECは体積比で1:3)の混合溶媒に1.5mol/lの濃度になるように溶解した電解液3mlを入れ、封缶して捲回型円筒型リチウム二次電池を作製した。 Next, the produced negative electrode was cut out to 54 mm × 360 mm square and the positive electrode was cut into 50 mm × 30 mm square, and laminated so that the respective coating portions faced with a separator therebetween, and then a 1 mm thick PTFE (polytetrafluoroethylene) plate The diameter was adjusted by winding. The separator was used by superposing two polyethylene microporous membranes with a thickness of 20 μm. Next, the electrode plate group was put into a steel can, and LiPF 6 was added to a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (EC and MEC are 1: 3 in a volume ratio) of 1.5 mol / l. 3 ml of the electrolytic solution dissolved so as to have a concentration was put in a sealed can to produce a wound cylindrical lithium secondary battery.

得られたリチウム二次電池について、以下の方法で出力特性を測定した。まず、上記で作製した電池を25℃の恒温槽中において100mAの定電流で4.15Vまで充電し、さらに4.15Vの定電圧で電流が10mAになるまで充電し、30分の休止後100mAの定電流で2.75Vまで放電した。次いで、30分の休止後100mAの定電流で4.15Vまで充電し、さらに4.15Vの定電圧で電流が10mAになるまで充電し、SOC(充電状態)100%の状態とした。その後、30分の休止後500mAの定電流下10秒間放電し、その際の電圧降下(ΔV)を測定した。この電圧降下(ΔV)と放電電流値(500mA)の商で求められる直流抵抗値を出力特性とした。

Figure 2007042571
Figure 2007042571
The output characteristics of the obtained lithium secondary battery were measured by the following method. First, the battery prepared above was charged to 4.15 V with a constant current of 100 mA in a constant temperature bath at 25 ° C., further charged with a constant voltage of 4.15 V until the current became 10 mA, and after 100 minutes of rest, 100 mA was charged. The battery was discharged to 2.75 V at a constant current of. Next, after a 30-minute pause, the battery was charged to 4.15 V at a constant current of 100 mA, and further charged to a current of 10 mA at a constant voltage of 4.15 V, so that the SOC (charged state) was 100%. Then, after a 30-minute rest, the battery was discharged for 10 seconds under a constant current of 500 mA, and the voltage drop (ΔV) at that time was measured. The DC resistance value obtained by the quotient of this voltage drop (ΔV) and the discharge current value (500 mA) was taken as the output characteristic.
Figure 2007042571
Figure 2007042571

表1および表2から分かるように、実施例1〜4のリチウム二次電池負極用炭素粒子を負極材として適用した負極を有するリチウム二次電池は、充放電効率、出力特性に優れる。   As can be seen from Tables 1 and 2, lithium secondary batteries having negative electrodes to which the carbon particles for negative electrodes of lithium secondary batteries of Examples 1 to 4 are applied as negative electrode materials are excellent in charge / discharge efficiency and output characteristics.

Claims (10)

X線回折装置(XRD)測定により求められる炭素002面の面間隔d002が0.340〜0.390nmであるリチウム二次電池負極用炭素粒子であって、He真密度が1.40〜2.00g/cc、CO吸着量が0.01〜5.00cc/gであるリチウム二次電池負極用炭素粒子。 A carbon particle for a lithium secondary battery negative electrode having a carbon 002 plane spacing d002 of 0.340 to 0.390 nm determined by X-ray diffractometer (XRD) measurement, wherein the He true density is 1.40 to 2. Carbon particles for a lithium secondary battery negative electrode having 00 g / cc and a CO 2 adsorption amount of 0.01 to 5.00 cc / g. 炭素粒子全体の酸素濃度が1重量%以下である請求項1に記載のリチウム二次電池負極用炭素粒子。   The carbon particle for a lithium secondary battery negative electrode according to claim 1, wherein the oxygen concentration of the entire carbon particle is 1 wt% or less. 77Kでの窒素吸着測定より求めたN比表面積が0.30〜10m/gである請求項1または2に記載のリチウム二次電池負極用炭素粒子。 The carbon particle for a lithium secondary battery negative electrode according to claim 1 or 2, wherein the N 2 specific surface area obtained by measuring nitrogen adsorption at 77K is 0.30 to 10 m 2 / g. X線光電子分光法(XPS)より求めたO/Cが0.001〜0.060である請求項1〜3のいずれかに記載のリチウム二次電池負極用炭素粒子。   The O / C obtained by X-ray photoelectron spectroscopy (XPS) is 0.001 to 0.060. The carbon particles for a lithium secondary battery negative electrode according to any one of claims 1 to 3. 炭素前駆体樹脂を450℃〜1000℃で炭素化し、得られた炭化物を粉砕し、粉砕した炭化物をさらに900℃〜2000℃で炭素化してなる請求項1〜4のいずれかに記載のリチウム二次電池負極用炭素粒子。   The lithium precursor according to any one of claims 1 to 4, wherein the carbon precursor resin is carbonized at 450 ° C to 1000 ° C, the obtained carbide is pulverized, and the pulverized carbide is further carbonized at 900 ° C to 2000 ° C. Carbon particles for secondary battery negative electrode. 平均粒径が5〜50μmの炭素前駆体樹脂を炭素化してなる請求項1〜5のいずれかに記載のリチウム二次電池負極用炭素粒子。   The carbon particles for a lithium secondary battery negative electrode according to any one of claims 1 to 5, wherein a carbon precursor resin having an average particle size of 5 to 50 µm is carbonized. 下記一般式(I)
Figure 2007042571
で表されるフェノール誘導体を構造に含む樹脂を炭素前駆体樹脂とし、これを炭素化してなる請求項1〜6のいずれかに記載のリチウム二次電池負極用炭素粒子。
The following general formula (I)
Figure 2007042571
The carbon particle for lithium secondary battery negative electrodes in any one of Claims 1-6 formed by carbonizing the resin which contains the phenol derivative represented by these as a carbon precursor resin.
前記樹脂が前記一般式(I)で表されるフェノール誘導体を構造に40〜70mol%含む請求項7に記載のリチウム二次電池負極用炭素粒子。   The carbon particles for a lithium secondary battery negative electrode according to claim 7, wherein the resin contains 40 to 70 mol% of a phenol derivative represented by the general formula (I) in its structure. 請求項1〜8のいずれかに記載のリチウム二次電池負極用炭素粒子を用いたリチウム二次電池用負極。   The negative electrode for lithium secondary batteries using the carbon particle for lithium secondary battery negative electrodes in any one of Claims 1-8. 請求項9に記載のリチウム二次電池用負極を用いたリチウム二次電池。   A lithium secondary battery using the negative electrode for a lithium secondary battery according to claim 9.
JP2005330205A 2005-06-28 2005-11-15 Carbon particle for lithium secondary battery negative electrode, carbon negative electrode for lithium secondary battery using the same, and lithium secondary battery Expired - Fee Related JP4967316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005330205A JP4967316B2 (en) 2005-06-28 2005-11-15 Carbon particle for lithium secondary battery negative electrode, carbon negative electrode for lithium secondary battery using the same, and lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005188118 2005-06-28
JP2005188118 2005-06-28
JP2005330205A JP4967316B2 (en) 2005-06-28 2005-11-15 Carbon particle for lithium secondary battery negative electrode, carbon negative electrode for lithium secondary battery using the same, and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2007042571A true JP2007042571A (en) 2007-02-15
JP4967316B2 JP4967316B2 (en) 2012-07-04

Family

ID=37800357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005330205A Expired - Fee Related JP4967316B2 (en) 2005-06-28 2005-11-15 Carbon particle for lithium secondary battery negative electrode, carbon negative electrode for lithium secondary battery using the same, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4967316B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239391A (en) * 2007-03-27 2008-10-09 Sumitomo Bakelite Co Ltd Carbon material, method for manufacturing the same, negative electrode material for secondary cell and nonaqueous electrolyte secondary cell
WO2009057727A1 (en) * 2007-10-30 2009-05-07 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery, electrode and carbon material
WO2009082026A2 (en) * 2007-12-25 2009-07-02 Sumitomo Chemical Company, Limited Process for producing carbon
WO2009101947A2 (en) * 2008-02-12 2009-08-20 Sumitomo Chemical Company, Limited Process for producing carbon material
JP2009193924A (en) * 2008-02-18 2009-08-27 Nec Tokin Corp Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2011198710A (en) * 2010-03-23 2011-10-06 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery, negative electrode material, and nonaqueous secondary battery
US20110274979A1 (en) * 2010-05-07 2011-11-10 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
WO2012015054A1 (en) * 2010-07-30 2012-02-02 日立化成工業株式会社 Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
WO2014034859A1 (en) 2012-08-30 2014-03-06 株式会社クレハ Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
JP5472514B1 (en) * 2012-12-07 2014-04-16 住友ベークライト株式会社 Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
JP2014212101A (en) * 2013-04-19 2014-11-13 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Vehicle battery system including multiple battery pack and operating method of vehicle battery system
WO2016031854A1 (en) * 2014-08-29 2016-03-03 住友ベークライト株式会社 Secondary battery negative electrode resin composition, method for producing secondary battery negative electrode carbon material, secondary battery negative electrode carbon material, modified phenolic hydroxyl group for use in secondary battery negative electrode, secondary battery negative electrode active material, secondary battery negative electrode, and secondary battery
JP2016152222A (en) * 2015-02-19 2016-08-22 株式会社クレハ Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017010650A (en) * 2015-06-17 2017-01-12 三菱化学株式会社 Carbon material and non-aqueous secondary battery
CN106575769A (en) * 2014-08-29 2017-04-19 住友电木株式会社 Secondary battery negative electrode resin composition, method for producing secondary battery negative electrode carbon material, secondary battery negative electrode carbon material, modified phenolic hydroxyl group for use in secondary battery negative electrode, secondary battery negative electrode active material, secondary battery negative electrode, and secondary battery
US20180233749A1 (en) * 2015-08-05 2018-08-16 Kuraray Co., Ltd. Hardly graphitizable carbonaceous material for nonaqueous electrolyte secondary batteries fully charged to be used, method for producing same, negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery fully charged to be used
JP2020047601A (en) * 2019-12-13 2020-03-26 三菱ケミカル株式会社 Carbon material and non-aqueous secondary battery
KR102663370B1 (en) * 2015-08-05 2024-05-03 주식회사 쿠라레 Hardly graphitizable carbonaceous material for nonaqueous electrolyte secondary batteries fully charged to be used, method for producing same, negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery fully charged to be used

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574457A (en) * 1991-03-02 1993-03-26 Sony Corp Negative electrode material and manufacture thereof, and nonaqueous electrolyte battery using it
JPH08298114A (en) * 1995-04-27 1996-11-12 Sony Corp Carbon material for negative electrode and nonaqueous electrolyte secondary battery
JPH10223226A (en) * 1997-02-06 1998-08-21 Kureha Chem Ind Co Ltd Carbonaceous material for secondary battery electrode
JPH10284089A (en) * 1997-04-03 1998-10-23 Sony Corp Carbon material for electrode of nonaqueous solvent secondary battery, and its manufacture, and nonaqueous solvent secondary battery
JPH11130414A (en) * 1997-10-22 1999-05-18 Sumitomo Durez Kk Carbon material
JP2001085007A (en) * 1999-09-14 2001-03-30 Matsushita Electric Ind Co Ltd Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material
JP2003297352A (en) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd Carbonic substance and negative electrode material for secondary battery using carbonic substance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0574457A (en) * 1991-03-02 1993-03-26 Sony Corp Negative electrode material and manufacture thereof, and nonaqueous electrolyte battery using it
JPH08298114A (en) * 1995-04-27 1996-11-12 Sony Corp Carbon material for negative electrode and nonaqueous electrolyte secondary battery
JPH10223226A (en) * 1997-02-06 1998-08-21 Kureha Chem Ind Co Ltd Carbonaceous material for secondary battery electrode
JPH10284089A (en) * 1997-04-03 1998-10-23 Sony Corp Carbon material for electrode of nonaqueous solvent secondary battery, and its manufacture, and nonaqueous solvent secondary battery
JPH11130414A (en) * 1997-10-22 1999-05-18 Sumitomo Durez Kk Carbon material
JP2001085007A (en) * 1999-09-14 2001-03-30 Matsushita Electric Ind Co Ltd Negative electrode material for lithium ion secondary battery and manufacture of negative electrode material
JP2003297352A (en) * 2002-03-29 2003-10-17 Sumitomo Bakelite Co Ltd Carbonic substance and negative electrode material for secondary battery using carbonic substance

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239391A (en) * 2007-03-27 2008-10-09 Sumitomo Bakelite Co Ltd Carbon material, method for manufacturing the same, negative electrode material for secondary cell and nonaqueous electrolyte secondary cell
WO2009057727A1 (en) * 2007-10-30 2009-05-07 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery, electrode and carbon material
JP2009132593A (en) * 2007-10-30 2009-06-18 Sumitomo Chemical Co Ltd Carbon material, and electrode having the carbon material
WO2009082026A2 (en) * 2007-12-25 2009-07-02 Sumitomo Chemical Company, Limited Process for producing carbon
JP2009173533A (en) * 2007-12-25 2009-08-06 Sumitomo Chemical Co Ltd Method for producing carbon material
WO2009082026A3 (en) * 2007-12-25 2009-09-24 Sumitomo Chemical Company, Limited Process for producing carbon
WO2009101947A2 (en) * 2008-02-12 2009-08-20 Sumitomo Chemical Company, Limited Process for producing carbon material
KR101509280B1 (en) 2008-02-12 2015-04-06 수미토모 케미칼 컴퍼니 리미티드 Process for producing carbon material
WO2009101947A3 (en) * 2008-02-12 2009-12-10 Sumitomo Chemical Company, Limited Process for producing carbon material
JP2009193924A (en) * 2008-02-18 2009-08-27 Nec Tokin Corp Negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the same
JP2011198710A (en) * 2010-03-23 2011-10-06 Mitsubishi Chemicals Corp Carbon material for nonaqueous secondary battery, negative electrode material, and nonaqueous secondary battery
US20110274979A1 (en) * 2010-05-07 2011-11-10 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
US9005815B2 (en) * 2010-05-07 2015-04-14 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
CN107528053A (en) * 2010-07-30 2017-12-29 日立化成株式会社 Anode material for lithium-ion secondary battery, lithium ion secondary battery cathode and lithium rechargeable battery
JP2016131159A (en) * 2010-07-30 2016-07-21 日立化成株式会社 Negative electrode material for lithium ion secondary batteries, lithium ion secondary battery negative electrode, and lithium ion secondary battery
US10854871B2 (en) 2010-07-30 2020-12-01 Hitachi Chemical Company, Ltd. Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
TWI620372B (en) * 2010-07-30 2018-04-01 日立化成股份有限公司 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012015054A1 (en) * 2010-07-30 2012-02-02 日立化成工業株式会社 Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
JPWO2012015054A1 (en) * 2010-07-30 2013-09-12 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US20130143127A1 (en) * 2010-07-30 2013-06-06 Hitachi Chemical Company, Ltd. Anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
CN103098274A (en) * 2010-07-30 2013-05-08 日立化成株式会社 Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
US9508494B2 (en) 2012-08-30 2016-11-29 Kureha Corporation Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
WO2014034859A1 (en) 2012-08-30 2014-03-06 株式会社クレハ Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same
JP2014132556A (en) * 2012-12-07 2014-07-17 Sumitomo Bakelite Co Ltd Negative electrode material, negative electrode active material, negative electrode, and alkaline metal ion battery
JP5472514B1 (en) * 2012-12-07 2014-04-16 住友ベークライト株式会社 Negative electrode material, negative electrode active material, negative electrode and alkali metal ion battery
JP2020074669A (en) * 2013-04-19 2020-05-14 三星エスディアイ株式会社Samsung SDI Co., Ltd. Vehicle battery system including multiple battery pack and operating method of vehicle battery system
JP2014212101A (en) * 2013-04-19 2014-11-13 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Vehicle battery system including multiple battery pack and operating method of vehicle battery system
CN106575769A (en) * 2014-08-29 2017-04-19 住友电木株式会社 Secondary battery negative electrode resin composition, method for producing secondary battery negative electrode carbon material, secondary battery negative electrode carbon material, modified phenolic hydroxyl group for use in secondary battery negative electrode, secondary battery negative electrode active material, secondary battery negative electrode, and secondary battery
WO2016031854A1 (en) * 2014-08-29 2016-03-03 住友ベークライト株式会社 Secondary battery negative electrode resin composition, method for producing secondary battery negative electrode carbon material, secondary battery negative electrode carbon material, modified phenolic hydroxyl group for use in secondary battery negative electrode, secondary battery negative electrode active material, secondary battery negative electrode, and secondary battery
JP2016152222A (en) * 2015-02-19 2016-08-22 株式会社クレハ Carbonaceous material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2017010650A (en) * 2015-06-17 2017-01-12 三菱化学株式会社 Carbon material and non-aqueous secondary battery
US20180233749A1 (en) * 2015-08-05 2018-08-16 Kuraray Co., Ltd. Hardly graphitizable carbonaceous material for nonaqueous electrolyte secondary batteries fully charged to be used, method for producing same, negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery fully charged to be used
US20230113201A1 (en) * 2015-08-05 2023-04-13 Kuraray Co., Ltd. Hardly graphitizable carbonaceous material for nonaqueous electrolyte secondary batteries fully charged to be used, method for producing same, negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery fully charged to be used
KR102663370B1 (en) * 2015-08-05 2024-05-03 주식회사 쿠라레 Hardly graphitizable carbonaceous material for nonaqueous electrolyte secondary batteries fully charged to be used, method for producing same, negative electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery fully charged to be used
JP2020047601A (en) * 2019-12-13 2020-03-26 三菱ケミカル株式会社 Carbon material and non-aqueous secondary battery
JP2021185582A (en) * 2019-12-13 2021-12-09 三菱ケミカル株式会社 Carbon material and non-aqueous secondary battery
JP7192932B2 (en) 2019-12-13 2022-12-20 三菱ケミカル株式会社 Carbon material and non-aqueous secondary battery

Also Published As

Publication number Publication date
JP4967316B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4967316B2 (en) Carbon particle for lithium secondary battery negative electrode, carbon negative electrode for lithium secondary battery using the same, and lithium secondary battery
JP5439701B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
US11605818B2 (en) Anode material for lithium ion secondary battery, method of producing anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP6747294B2 (en) Negative electrode active material for lithium-ion secondary battery, method for producing the same, negative electrode, and lithium-ion secondary battery
EP2600449A1 (en) Negative pole material for lithium ion secondary battery, negative pole for lithium ion secondary battery, and lithium ion secondary battery
JP4866611B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery using the negative electrode material, and non-aqueous electrolyte secondary battery
JP7156468B2 (en) Method for producing negative electrode material for lithium ion secondary battery, and negative electrode material for lithium ion secondary battery
JP2018110076A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5811999B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP7196938B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5590159B2 (en) Negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP2008130890A (en) Carbon material for hybrid capacitor, electrode for hybrid capacitor using carbon material, and hybrid capacitor
WO2017191820A1 (en) Negative electrode material for lithium ion secondary cell, method for manufacturing negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell
JP5707707B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
WO2023139662A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP7004093B2 (en) Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
TW201822394A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2023073103A (en) Method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2003297352A (en) Carbonic substance and negative electrode material for secondary battery using carbonic substance
JP7444322B1 (en) Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries
JP5636149B2 (en) A negative electrode material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, a negative electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
WO2022215126A1 (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2020119805A (en) Negative electrode material for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2019087460A (en) Manufacturing method of negative electrode material for lithium ion secondary battery
JP2004349217A (en) Electrode material for nonaqueous solvent secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4967316

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees