JP2007039354A - Method for producing acrylic acid - Google Patents

Method for producing acrylic acid Download PDF

Info

Publication number
JP2007039354A
JP2007039354A JP2005223627A JP2005223627A JP2007039354A JP 2007039354 A JP2007039354 A JP 2007039354A JP 2005223627 A JP2005223627 A JP 2005223627A JP 2005223627 A JP2005223627 A JP 2005223627A JP 2007039354 A JP2007039354 A JP 2007039354A
Authority
JP
Japan
Prior art keywords
acrylic acid
fixed bed
bed reactor
gas
propane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005223627A
Other languages
Japanese (ja)
Inventor
Yasuhiro Mangaya
康弘 萬ヶ谷
Koji Kobayashi
康志 小林
Sumimasa Seo
純將 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2005223627A priority Critical patent/JP2007039354A/en
Publication of JP2007039354A publication Critical patent/JP2007039354A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing acrylic acid, by which an existing acrylic acid-producing installation using propylene as a raw material can be diverted into an acrylic acid-producing installation using propane as a raw material by a simple method, and the acrylic acid can be produced in high efficiency. <P>SOLUTION: This method for producing the acrylic acid is characterized by comprising a process for subjecting propane to a gaseous phase catalytic oxidation reaction using the first fixed bed reactor to produce a mixture gas containing acrylic acid, a process for subjecting propane to a gaseous phase catalytic oxidation reaction using the second fixed bed reactor connected to the first fixed bed reactor in parallel to produce a mixture gas containing acrylic acid, and a process for recovering the acrylic acid from the obtained acrylic acid-containing mixture gases, wherein the particle sizes of the first and second composite metal oxide catalysts are adjusted so that a gas pressure loss between the first reactor entrance and exit of the first multi-tubular type fixed bed reactor is substantially identical to a gas pressure loss between the second reactor entrance and exit of the second multitubular type fixed bed reactor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はプロパンを、複合金属酸化物触媒を有する固定床反応器を使用し、気相接触酸化反応してアクリル酸を製造する方法に関する。   The present invention relates to a method for producing acrylic acid by subjecting propane to a gas phase catalytic oxidation reaction using a fixed bed reactor having a composite metal oxide catalyst.

アクリル酸は、繊維、合成樹脂、合成ゴムなどの原料として工業的に使用されている。アクリル酸の工業的な製造方法としては、プロピレンを原料とし、これを酸素の存在下、複合金属酸化物触媒に接触させアクロレインを製造する工程(第一工程)、第一工程で得られたアクロレインを酸素の存在下、複合金属酸化物触媒に接触させる工程(第二工程)を経る二段反応が一般的である(特許文献1)。一方、このプロピレンは通常、原料ナフサを水蒸気と共に熱分解して得られるため高価であり、これに代わる原料として安価なプロパンを使用しアクリル酸を製造することが試みられている。   Acrylic acid is industrially used as a raw material for fibers, synthetic resins, synthetic rubbers and the like. As an industrial production method of acrylic acid, a process for producing acrolein by using propylene as a raw material and contacting it with a composite metal oxide catalyst in the presence of oxygen (first process), acrolein obtained in the first process In general, a two-stage reaction that undergoes a step (second step) of contacting a mixed metal oxide catalyst with oxygen in the presence of oxygen (Patent Document 1). On the other hand, this propylene is usually expensive because it is obtained by thermally decomposing raw material naphtha together with steam, and attempts have been made to produce acrylic acid using inexpensive propane as an alternative raw material.

プロパンを原料としたアクリル酸の製造方法は、主に複合金属酸化物触媒の組成を改良し、プロパンの転化率を向上させると共にアクリル酸の選択率を向上させる方法や、製造工程そのものの改良といった二つの面から主にアプローチされている。前者においては例えばMo−V−Te系触媒(特許文献2)、Mo−V−Sb系触媒(特許文献3)、Mo−V−Sb−Nb系触媒(特許文献4)等が知られている。しかしながらこれらの触媒のプロパン転化率は、工業的にはまだ低いレベルであり、満足できるものではない。この点を改良するため高温で反応させることも考えられるが、副反応が起こり目的物以外の生成物、特に一酸化炭素、二酸化炭素の生成量が多くなりアクリル酸選択率が低下するばかりでなく、触媒寿命の低下にもつながる。このため、プロパンの転化率を低く抑え、供給するプロパン濃度を高くするといった手法が提案されているが、未反応のプロパンを回収する工程が必要となる。他方、製造工程そのものの改良は、触媒の性能に起因し発生するものであり、例えば前記プロパンの回収工程を改良する方法として、プロパンをアルカリ性物質含有水溶液に選択的に吸着させることにより回収する方法(特許文献5)が提案されている。この方法は、未反応プロパンの有効活用としては有利であるが、アクリル酸の生産効率が必ずしも良いとは言えず、工業的に問題が残る。また特許文献6には、プロパンを適当な酸化脱水素触媒の存在下、プロピレンに変換し、プロピレンと未反応プロパンをプロピレン酸化工程に供給すると、プロピレンからのアクロレインの変換効率が向上することが記載され、この方法では更に最終工程でアクリル酸を回収した残留ガスをプロパンの酸化脱水素工程に再循環し、原料ガスの有効活用を図っている。しかしながら、この方法ではプロパンを酸化脱水素する工程が必要となり、必ずしも経済的な方法であるとは言えない。
このように、特別な設備が必要でなく、しかも効率の良いアクリル酸の製造法が切望されているのが現状である。
The production method of acrylic acid using propane as a raw material mainly improves the composition of the composite metal oxide catalyst, improves the conversion rate of propane and improves the selectivity of acrylic acid, and improves the production process itself. It is mainly approached from two aspects. In the former, for example, a Mo-V-Te catalyst (Patent Document 2), a Mo-V-Sb catalyst (Patent Document 3), a Mo-V-Sb-Nb catalyst (Patent Document 4), and the like are known. . However, the propane conversion rate of these catalysts is still low industrially and is not satisfactory. In order to improve this point, it is conceivable to carry out the reaction at a high temperature, but a side reaction occurs, and not only the product other than the target product, particularly carbon monoxide and carbon dioxide, increases, but also the acrylic acid selectivity decreases. This also leads to a reduction in catalyst life. For this reason, methods have been proposed in which the propane conversion rate is kept low and the propane concentration to be supplied is increased, but a step of recovering unreacted propane is required. On the other hand, the improvement of the production process itself occurs due to the performance of the catalyst. For example, as a method for improving the recovery process of propane, a process of recovering propane by selectively adsorbing it to an aqueous solution containing an alkaline substance. (Patent Document 5) has been proposed. Although this method is advantageous for effective utilization of unreacted propane, it cannot be said that the production efficiency of acrylic acid is necessarily good, and there remains an industrial problem. Patent Document 6 describes that when propane is converted to propylene in the presence of an appropriate oxidative dehydrogenation catalyst and propylene and unreacted propane are supplied to the propylene oxidation step, the conversion efficiency of acrolein from propylene is improved. In this method, the residual gas from which acrylic acid has been recovered in the final step is recycled to the propane oxidative dehydrogenation step to effectively use the raw material gas. However, this method requires a step of oxidative dehydrogenation of propane, and is not necessarily an economical method.
In this way, no special equipment is required and an efficient method for producing acrylic acid is desired.

特開2002−161066号公報JP 2002-161066 A 特開平6−279351号公報JP-A-6-279351 特開平9−316023号公報Japanese Patent Laid-Open No. 9-316023 特開平11−285636号公報JP-A-11-285636 特開2004−51589号公報JP 2004-51589 A 特表2000−502719号公報Special Table 2000-502719

プロピレンを原料とした二段反応によるアクリル酸製造設備を利用し、二段反応工程を並列で利用して原料プロパンをアクリル酸に変換する反応方法は、既存の設備を利用するため経済的であり、しかもプロパン酸化触媒の低い転化率を補い、生産効率を上げることができると考えられる。しかしながら、既存のアクリル酸製造設備は、原料の転化率と目的物の選択率を最大にし、しかも触媒寿命や異常蓄熱による暴走反応を考慮に入れて、触媒組成や反応器が最適になるよう設計されている。特に第一工程と第二工程とでは触媒組成が異なるばかりでなく、反応管の管径までも相違する場合がある。このような第一工程と第二工程とで管径が相違する設備を、プロパン酸化反応に転用する場合、第一工程と第二工程とで反応条件を同一に近づけることが最も効率的であると考えられる。すなわち、第一工程の原料ガス導入管を第二工程のガス導入管まで延長し、両工程同時に原料ガス供給を可能とし、第一工程の反応ガス導出口を別個に設けるか、もしくは、第二工程の反応ガス導出口に接続することにより第一、第二工程を並列に用い、両工程で圧力や温度等の条件を同一にできれば両工程での触媒寿命や、両工程前後での供給ガス組成を細かに制御する必要性が小さくなる。
本発明は、簡便な手法で既存のプロピレンを原料としたアクリル酸製造設備を、プロパンを原料としたアクリル酸製造設備に転用でき、しかも高効率でアクリル酸を製造できる方法を提供することを目的とする。
The reaction method of converting raw material propane to acrylic acid using a two-stage reaction process in parallel using propylene as a raw material and using a two-stage reaction process in parallel is economical because it uses existing equipment. Moreover, it is considered that the low conversion rate of the propane oxidation catalyst can be supplemented and the production efficiency can be increased. However, existing acrylic acid production facilities are designed to optimize the catalyst composition and reactors, maximizing the conversion rate of raw materials and the selectivity of target products, and taking into account runaway reactions due to catalyst life and abnormal heat storage. Has been. In particular, not only the catalyst composition is different between the first step and the second step, but also the diameter of the reaction tube may be different. When diverting equipment having different pipe diameters in the first step and the second step to the propane oxidation reaction, it is most efficient to bring the reaction conditions close to the same in the first step and the second step. it is conceivable that. That is, the raw material gas introduction pipe of the first step is extended to the gas introduction pipe of the second step, the raw material gas can be supplied simultaneously in both steps, and the reaction gas outlet port of the first step is provided separately, or the second step If the first and second processes are used in parallel by connecting to the reaction gas outlet of the process and the conditions such as pressure and temperature are the same in both processes, the catalyst life in both processes and the supply gas before and after both processes The need to finely control the composition is reduced.
An object of the present invention is to provide a method capable of diverting an existing acrylic acid production facility using propylene as a raw material to an acrylic acid production facility using propane as a raw material, and producing acrylic acid with high efficiency by a simple method. And

本発明者らは上記課題を解決するため鋭意検討の結果、本発明を完成した。
すなわち本発明は
(1)少なくとも下記工程(a)〜(c)
工程(a):プロパンを、第一の複合金属酸化物触媒を充填した複数の第一反応管を有する第一の多管式固定床反応器を用いて気相接触酸化反応させ、アクリル酸を含む混合ガスを生成させる工程
工程(b):プロパンを、第二の複合金属酸化物触媒を充填し、第一の多管式固定床反応器と並列に接続された、複数の第二反応管を有する第二の多管式固定床反応器を用いて気相接触酸化反応させ、アクリル酸を含む混合ガスを生成させる工程
工程(c):工程(a)及び/又は(b)で得られたアクリル酸含有混合ガスからアクリル酸を回収する工程からなり、第一の多管式固定床反応器の第一反応管入口と出口間のガス圧力損失が第二の多管式固定床反応器の第二反応管入口と出口間のガス圧力損失と実質的に同一になるように、第一及び第二の複合金属酸化物触媒の粒径を調整することを特徴とするアクリル酸の製造方法、
(2)第一及び第二の複合金属酸化物触媒が、触媒活性成分を不活性担体に担持した担持触媒である上記(1)記載のアクリル酸の製造方法、
(3)第一及び第二の複合金属酸化物触媒の粒径を、触媒活性成分の担持量を同一として、異なった粒径を持つ不活性担体を用いることにより調整する上記(2)記載のアクリル酸の製造方法、
(4)工程(c)でアクリル酸を回収した残留ガスを、第一及び/又は第二の多管式固定床反応器における原料ガスに混合して使用する上記(1)から(3)のいずれかに記載のアクリル酸の製造方法
を提供するものである。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems.
That is, the present invention provides (1) at least the following steps (a) to (c):
Step (a): Propane is subjected to a gas phase catalytic oxidation reaction using a first multitubular fixed bed reactor having a plurality of first reaction tubes filled with a first composite metal oxide catalyst, Step (b) of generating a mixed gas containing: a plurality of second reaction tubes filled with propane and a second mixed metal oxide catalyst and connected in parallel with the first multitubular fixed bed reactor Step (c): a gas phase catalytic oxidation reaction using a second multi-tubular fixed bed reactor having a gas to produce a mixed gas containing acrylic acid: obtained in steps (a) and / or (b) A process for recovering acrylic acid from a mixed gas containing acrylic acid, and the gas pressure loss between the first reaction tube inlet and the outlet of the first multitubular fixed bed reactor is the second multitubular fixed bed reactor. So that the gas pressure loss between the second reaction tube inlet and outlet is substantially the same. Process for producing acrylic acid, characterized by adjusting the particle diameter of the secondary of the composite metal oxide catalyst,
(2) The method for producing acrylic acid according to the above (1), wherein the first and second composite metal oxide catalysts are supported catalysts in which a catalytically active component is supported on an inert support,
(3) The particle diameters of the first and second composite metal oxide catalysts are adjusted by using inert carriers having different particle diameters with the same loading amount of the catalytically active component. A method for producing acrylic acid,
(4) The residual gas from which acrylic acid has been recovered in step (c) is mixed with the raw material gas in the first and / or second multitubular fixed bed reactor and used in the above (1) to (3) A method for producing acrylic acid according to any one of the above is provided.

本発明によれば、既存のアクリル酸製造設備に大きな変更を加えることなく、プロピレンよりも安価なプロパンを原料とした、アクリル酸製造設備に転用することができ、しかもアクリル酸を、高効率で製造できる。したがって、本発明は工業的に極めて有用である。   According to the present invention, it is possible to divert to an acrylic acid production facility that uses propane, which is cheaper than propylene, as a raw material without greatly changing the existing acrylic acid production facility. Can be manufactured. Therefore, the present invention is extremely useful industrially.

本発明における製造工程の一例の概念図を図1に示す。本発明の製造方法は、少なくとも二つのプロパン酸化工程(工程(a)、(b))、及び工程(a)及び/又は工程(b)で得られた生成ガスからアクリル酸を回収する工程(工程(c))からなる。工程(a)及び工程(b)において、生成ガス(アクリル酸含有混合ガス)は、アクリル酸、少量のアクロレイン、未反応プロパン及び副生成物(主に一酸化炭素及び二酸化炭素)を含有するが、後述するようにアクリル酸混合ガスからアクリル酸を回収してから(工程(c))、工程(a)及び/又は工程(b)に供給してもよい。また、本発明における第二の固定床反応器は、第一の固定床反応器と、例えば図1に示すように共通の原料ガス供給口を有し、この形態を「並列」とする。
以下、本発明の第一の実施態様につき説明する。
本発明における第一の固定床反応器は、公知の、プロピレンを原料とした混合ガスを気相接触酸化反応してアクロレインに変換する装置が、また、第二の固定床反応器は、前記第一の固定床反応器からの生成ガスを気相接触酸化反応してアクリル酸に変換する装置が、それぞれ転用できる。第一及び第二の固定床反応器における複合金属酸化物触媒は、それぞれ異なる触媒活性成分組成を有していても、本発明におけるのと同様の効果を奏することができるが、触媒自身の製造効率から、両反応器において実質的に同一の触媒活性成分組成を有するものを使用することが好ましい。ここで、実質的に同一の触媒活性成分組成とは、複合金属酸化物において有効な金属組成(金属の種類及び構成比)が、実質的に同一なものを指す。
The conceptual diagram of an example of the manufacturing process in this invention is shown in FIG. The production method of the present invention comprises at least two propane oxidation steps (steps (a) and (b)) and a step of recovering acrylic acid from the product gas obtained in step (a) and / or step (b) ( Step (c)). In step (a) and step (b), the product gas (acrylic acid-containing mixed gas) contains acrylic acid, a small amount of acrolein, unreacted propane and by-products (mainly carbon monoxide and carbon dioxide). As will be described later, acrylic acid may be recovered from the acrylic acid mixed gas (step (c)) and then supplied to step (a) and / or step (b). Further, the second fixed bed reactor in the present invention has a common raw material gas supply port as shown in FIG. 1, for example, with the first fixed bed reactor, and this form is “parallel”.
Hereinafter, the first embodiment of the present invention will be described.
The first fixed bed reactor in the present invention is a known apparatus for converting a mixed gas of propylene as a raw material into acrolein by a gas phase catalytic oxidation reaction, and the second fixed bed reactor is the above-mentioned first fixed bed reactor. The apparatus which converts the product gas from one fixed bed reactor into acrylic acid by vapor-phase catalytic oxidation reaction can be diverted, respectively. Even if the mixed metal oxide catalysts in the first and second fixed bed reactors have different catalytic active component compositions, they can produce the same effect as in the present invention, but the production of the catalyst itself. In view of efficiency, it is preferable to use those having substantially the same catalytic active component composition in both reactors. Here, the substantially same catalytically active component composition means that the effective metal composition (metal type and composition ratio) in the composite metal oxide is substantially the same.

触媒活性成分組成としては、特許文献2〜4に記載された触媒や特開2002−361085号公報に記載されたMo−V−Ti−(Sb/Te)系触媒を使用することができる。触媒の形状としては、特に制限はなく、球形、円柱状、リング状などいずれでも良いが、触媒を反応管に再現性良く充填でき、反応管入口と出口間のガス圧力損失を実質的に同一にするために好ましい形状は球形である。球形の複合金属酸化物触媒を得るには、公知の方法が適用できる。適当な成型器で触媒活性成分を球形に成型した成型触媒であっても、シリカ、アルミナ等の不活性担体に触媒活性成分を担持させた担持触媒であってもよいが、前者は反応効率が高すぎ暴走反応につながる恐れがあるので、後者を選択する方が好ましい。なお、成型触媒を得るにあたって、水、エタノール、ポリビニルアルコール、シリカゾル等のバインダーや珪藻土、無機繊維等を混合することは、触媒の機械的強度を高める上で好ましい。   As a catalyst active component composition, the catalyst described in patent documents 2-4 and the Mo-V-Ti- (Sb / Te) type | system | group catalyst described in Unexamined-Japanese-Patent No. 2002-361085 can be used. The shape of the catalyst is not particularly limited and may be any of a spherical shape, a cylindrical shape, a ring shape, etc., but the catalyst can be filled into the reaction tube with good reproducibility, and the gas pressure loss between the reaction tube inlet and outlet is substantially the same. In order to achieve this, the preferred shape is a sphere. A known method can be applied to obtain a spherical composite metal oxide catalyst. The catalyst may be a molded catalyst in which the catalytically active component is formed into a spherical shape with an appropriate molding device, or a supported catalyst in which the catalytically active component is supported on an inert carrier such as silica or alumina. The latter is preferred because it is too high and can lead to a runaway reaction. In obtaining a molded catalyst, it is preferable to mix water, ethanol, polyvinyl alcohol, silica sol and other binders, diatomaceous earth, inorganic fibers and the like in order to increase the mechanical strength of the catalyst.

本発明においては、第一の固定床反応器と第二の固定床反応器とで、それぞれの反応管径に応じ、同一の又は異なる粒径の複合金属酸化物触媒を使用する。複合金属酸化物触媒の粒径は、成型触媒の場合、混合物の量や成型器駆動条件等を調節することにより調整することができるし、担持触媒の場合、不活性担体を同一にして触媒活性成分の担持量を変えたり、逆に担持量を一定にして不活性担体の粒径を変えたりして調整可能である。なお、本発明において使用する複合金属酸化物触媒の粒径は、反応管の内径に応じ選択されるが、通常3〜100mm、好ましくは3.5〜8mm程度である。   In the present invention, a mixed metal oxide catalyst having the same or different particle diameter is used in the first fixed bed reactor and the second fixed bed reactor according to the diameter of each reaction tube. In the case of a molded catalyst, the particle size of the composite metal oxide catalyst can be adjusted by adjusting the amount of the mixture and the driving conditions of the molding machine. It can be adjusted by changing the loading amount of the component, or by changing the particle size of the inert carrier while keeping the loading amount constant. The particle size of the composite metal oxide catalyst used in the present invention is selected according to the inner diameter of the reaction tube, but is usually 3 to 100 mm, preferably about 3.5 to 8 mm.

第一の固定床反応器に充填する第一の複合金属酸化物触媒と第二の固定床反応器に充填する第二の複合金属酸化物触媒の粒径は、両反応器における各反応管入口と出口間のガス圧力損失が実質的に同一になるよう大きさを調整する。ガス圧力損失は、同じ管径、同じ充填体積で比較すると複合金属酸化物触媒の粒径が小さくなるほど大きくなる。
第一及び第二工程において、圧力損失を実質的に同一に調整することにより、両工程への均等なガス供給が可能となり、反応条件の微妙なコントロールや供給ガス組成の調整等複雑な作業が不要となり、最も効率的に制御することが可能となる。なお、各反応管入口と出口間のガス圧力損失が実質的に同一とは、各反応管のガス圧力損失をそれぞれ独立して計測した時、それぞれの圧力損失差が10%以下程度のものを指す。両反応器各反応管入口と出口間のガス圧力損失が実質的に同一に調整できないと、触媒性能を十分発揮させることができない。
The particle diameters of the first mixed metal oxide catalyst charged in the first fixed bed reactor and the second mixed metal oxide catalyst charged in the second fixed bed reactor are determined at the inlet of each reaction tube in both reactors. And the gas pressure loss between the outlet and the outlet are adjusted to be substantially the same. When compared with the same tube diameter and the same filling volume, the gas pressure loss increases as the particle diameter of the composite metal oxide catalyst decreases.
By adjusting the pressure loss in the first and second steps to be substantially the same, it is possible to supply gas to both steps equally, and complicated operations such as delicate control of reaction conditions and adjustment of the supply gas composition are possible. It becomes unnecessary and can be controlled most efficiently. In addition, the gas pressure loss between each reaction tube inlet and outlet is substantially the same. When the gas pressure loss in each reaction tube is measured independently, the pressure loss difference between them is about 10% or less. Point to. If the gas pressure loss between the reaction tube inlet and outlet of both reactors cannot be adjusted to be substantially the same, the catalyst performance cannot be exhibited sufficiently.

本発明の第一の実施態様における第一の固定床反応器は、プロパン供給口、これに接続した第一の反応管及び第一の反応管に接続した生成ガス導出口を有し、適当な熱媒体で加温し反応を行う装置である。第一の固定床反応器における反応条件は、この第一の反応管の長さ、触媒の充填長等により異なり一概には言えないが、通常プロパン:酸素:水蒸気:希釈ガス(窒素、不活性ガス等)=1:0.1〜10:0〜70:0〜20(容積比)からなる混合ガスを、空間速度(SV)にして通常100〜10000hr−1で供給する。反応温度は熱媒体の温度で通常250〜500℃である。
第一の固定床反応器で、気相接触酸化されたプロパンは、アクリル酸へと変換され、第一の固定床反応器の生成ガス導出口から導出される(工程(a))。第二の固定床反応器は、第一の固定床反応器と同様の構造を有し、供給されたプロパンを気相接触酸化して、アクリル酸に変換する(工程(b))。第二の固定床反応器における反応温度は、第一の固定床反応器と同じ範囲が好ましい、両反応器での反応温度が大幅に異なると反応全体の制御が煩雑になり、アクリル酸生成効率が異なるだけでなく、各反応器における触媒の寿命に影響を及ぼし、第一と第二の反応器の触媒交換時期が異なることにもつながるため本発明の目的から逸脱し好ましくない。
第一及び第二の固定床反応器の生成ガス導出口から導出された生成ガスは、冷却及び/又は吸収塔により捕集され、抽出、分離を経て、目的とするアクリル酸の回収が行われる(工程(c))。
The first fixed bed reactor in the first embodiment of the present invention has a propane supply port, a first reaction tube connected to the propane supply port, and a product gas outlet port connected to the first reaction tube. It is an apparatus that performs a reaction by heating with a heat medium. The reaction conditions in the first fixed bed reactor vary depending on the length of the first reaction tube, the packing length of the catalyst, etc., and cannot be generally stated, but usually propane: oxygen: steam: dilution gas (nitrogen, inert Gas etc.) = 1: 0.1 to 10: 0 to 70: 0 to 20 (volume ratio) is supplied at a space velocity (SV), usually at a rate of 100 to 10,000 hr −1 . The reaction temperature is usually 250 to 500 ° C. as the temperature of the heat medium.
Propane that has undergone gas phase catalytic oxidation in the first fixed bed reactor is converted into acrylic acid, and is derived from the product gas outlet of the first fixed bed reactor (step (a)). The second fixed bed reactor has the same structure as the first fixed bed reactor, and the supplied propane is subjected to gas phase catalytic oxidation to convert it into acrylic acid (step (b)). The reaction temperature in the second fixed bed reactor is preferably in the same range as the first fixed bed reactor. If the reaction temperatures in both reactors differ significantly, the overall reaction control becomes complicated and acrylic acid production efficiency Not only being different, but also affecting the life of the catalyst in each reactor, leading to a difference in catalyst replacement timing between the first and second reactors.
The product gas derived from the product gas outlets of the first and second fixed bed reactors is collected by a cooling and / or absorption tower and extracted and separated to recover the target acrylic acid. (Step (c)).

本発明の実施態様において、触媒性能や要求されるアクリル酸生産量によりプロパンの転化率やアクリル酸選択率を増減させるが、未反応プロパンが多い場合は、下記するように第二の実施態様を適用しても良い。   In the embodiment of the present invention, propane conversion and acrylic acid selectivity are increased / decreased depending on the catalyst performance and the required acrylic acid production amount, but when there is a large amount of unreacted propane, the second embodiment is performed as described below. It may be applied.

本発明の第二の実施態様においては、第一の実施態様で最終的にアクリル酸を回収した後の残留ガスを、加温して第一の固定床反応器及び/又は第二の固定床反応器に再循環させる。再循環の主目的は、前記したように未反応プロパンの酸化であるが、酸化反応により酸素が消費された残留ガスを、不活性ガスとして有効活用することにもある。したがって、本発明の第二の実施態様における残留ガスの再循環は、第一の固定床反応装置及び/又は第二の固定床反応器に供給する混合ガスの組成が前記範囲になるように、プロパン、酸素、水蒸気、不活性ガス等を残留ガスと適宜混合し調整して供給する。   In the second embodiment of the present invention, the residual gas after finally recovering acrylic acid in the first embodiment is heated to heat the first fixed bed reactor and / or the second fixed bed. Recirculate to reactor. The main purpose of the recycle is to oxidize unreacted propane as described above, but also to effectively utilize the residual gas in which oxygen is consumed by the oxidation reaction as an inert gas. Therefore, the recirculation of the residual gas in the second embodiment of the present invention is performed so that the composition of the mixed gas supplied to the first fixed bed reactor and / or the second fixed bed reactor falls within the above range. Propane, oxygen, water vapor, inert gas, and the like are mixed with the residual gas as appropriate, adjusted and supplied.

次に本発明を更に実施例により具体的に説明する。なお、本発明はその主旨を越えない限り以下の実施例に限定されるものではない。
また、以下の実施例におけるプロパン転化率、アクリル酸選択率はそれぞれ次の通り定義される。
プロパン転化率(モル%)=100×(供給したプロパンのモル数−未反応プロパンのモル数)/(供給したプロパンのモル数)
アクリル酸選択率(モル%)=100×(生成したアクリル酸のモル数)/(供給したプロパンのモル数−未反応プロパンのモル数)
Next, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to a following example, unless the main point is exceeded.
Moreover, the propane conversion rate and acrylic acid selectivity in the following examples are respectively defined as follows.
Propane conversion (mol%) = 100 × (number of moles of propane supplied−number of moles of unreacted propane) / (number of moles of propane supplied)
Acrylic acid selectivity (mol%) = 100 × (number of moles of produced acrylic acid) / (number of moles of supplied propane−number of moles of unreacted propane)

実施例1
80℃の水12リットルに、モリブデン酸アンモニウム1kgとメタバナジン酸アンモニウム200g、テルル酸300g、を加えた後、50℃以下に冷却し、溶液Aを得る。
水4リットルにしゅう酸水素ニオブ水和物640gを加え、50℃なったところで加熱を停止し、溶液Aに加える。得られた溶液を蒸発乾固後、空気中において、300℃で2時間の焼成を行い、その後窒素中で600℃、2時間の焼成を行い触媒粉末を得た。焼成粉末を、成型後の触媒に対して50重量%を占める割合となるように量を調整して、転動造粒機を用いて不活性担体上に担持した。触媒粒径は平均3.5mmであった。次に同じ焼成粉末を用い、異なる粒径の不活性担体に担持量が50重量%となるよう担持し、平均粒径が4.7mmの触媒を得た。反応は22.6mm及び25.4mmの異なった内径のステンレス製反応管2本が並列に接続され、それぞれに反応ガスを流通させることができるようにした固定床流通式反応装置を用いて行った。なお、圧力は反応管毎に、反応ガス供給側及び出口側それぞれ独立して制御、計測可能とした。内径22.6mmの反応管には平均粒径4.6mmの触媒を、内径25.4mmの反応管には平均粒径3.5mmの触媒を、それぞれ充填長3.5mとなるよう充填した。プロパン、空気、水蒸気からなる原料混合ガスをプロパン/空気/水蒸気=1/15/14のモル比、空間速度1000hr-1により流通させ、各反応管別個に圧力損失を計測したところ両反応管共に7.1kPaであった。反応管の反応温度370℃として、両方の反応管に同時にガスを流通させ反応試験を行った。反応生成物はガスクロマトグラフィーで分析した。反応結果は、プロパン転化率53%、アクリル酸選択率は57%であった。
Example 1
After adding 1 kg of ammonium molybdate, 200 g of ammonium metavanadate, and 300 g of telluric acid to 12 liters of water at 80 ° C., the solution is cooled to 50 ° C. or lower to obtain Solution A.
Add 640 g of niobium hydrogen oxalate hydrate to 4 liters of water, stop heating at 50 ° C. and add to solution A. The obtained solution was evaporated to dryness and then calcined in air at 300 ° C. for 2 hours, and then calcined in nitrogen at 600 ° C. for 2 hours to obtain a catalyst powder. The amount of the calcined powder was adjusted so as to account for 50% by weight with respect to the molded catalyst, and supported on an inert carrier using a tumbling granulator. The average particle size of the catalyst was 3.5 mm. Next, the same calcined powder was used and supported on an inert carrier having a different particle size so that the supported amount was 50% by weight to obtain a catalyst having an average particle size of 4.7 mm. The reaction was carried out using a fixed bed flow reactor in which two stainless steel reaction tubes with different inner diameters of 22.6 mm and 25.4 mm were connected in parallel and each of which was able to circulate reaction gas. . Note that the pressure can be controlled and measured independently for each reaction gas supply side and the outlet side for each reaction tube. A catalyst having an average particle diameter of 4.6 mm was packed in a reaction tube having an inner diameter of 22.6 mm, and a catalyst having an average particle diameter of 3.5 mm was packed in a reaction tube having an inner diameter of 25.4 mm so as to have a packing length of 3.5 m. A raw material mixed gas composed of propane, air and water vapor was circulated at a molar ratio of propane / air / water vapor = 1/15/14 and a space velocity of 1000 hr −1, and the pressure loss was measured separately for each reaction tube. It was 7.1 kPa. The reaction temperature was set to 370 ° C. in the reaction tubes, and the reaction test was performed by simultaneously passing gas through both reaction tubes. The reaction product was analyzed by gas chromatography. As a result of the reaction, the propane conversion was 53% and the acrylic acid selectivity was 57%.

比較例1
実施例1において調製された平均粒径3.5mmの触媒のみを用いて、実施例1と同じ、異なる内径を有する反応管両方に充填長3.5mとなるよう充填した。それ以外は同条件として圧力損失を別個に計測したところ、反応管内径が22.6mmの方は8.5kPaであったが、反応管内径が25.4mmの方は7.0kPaとなった。実施例1と同様に反応温度370℃として反応を行ったところ、プロパン転化率が44%と低下し、アクリル酸選択率は59%となった。
Comparative Example 1
Using only the catalyst having an average particle diameter of 3.5 mm prepared in Example 1, both the reaction tubes having the different inner diameters as in Example 1 were packed so as to have a filling length of 3.5 m. Otherwise, the pressure loss was measured separately under the same conditions. As a result, the reaction tube inner diameter was 8.5 kPa when the reaction tube inner diameter was 22.6 mm, but 7.0 kPa when the reaction tube inner diameter was 25.4 mm. When the reaction was carried out at a reaction temperature of 370 ° C. in the same manner as in Example 1, the propane conversion decreased to 44% and the acrylic acid selectivity became 59%.

二つのプロパン酸化工程(工程(a)、(b))を並列に接続し、工程(a)及び(b)で得られた生成ガスからアクリル酸を回収する工程(工程(c))とアクリル酸回収後のガスを工程(a)及び(b)に供給する工程例を示した概念図である。Two propane oxidation steps (steps (a) and (b)) are connected in parallel to recover acrylic acid from the product gas obtained in steps (a) and (b) (step (c)) and acrylic It is the conceptual diagram which showed the process example which supplies the gas after acid collection | recovery to process (a) and (b).

Claims (4)

少なくとも下記工程(a)〜(c)
工程(a):プロパンを、第一の複合金属酸化物触媒を充填した複数の第一反応管を有する第一の多管式固定床反応器を用いて気相接触酸化反応させ、アクリル酸を含む混合ガスを生成させる工程
工程(b):プロパンを、第二の複合金属酸化物触媒を充填し、第一の多管式固定床反応器と並列に接続された、複数の第二反応管を有する第二の多管式固定床反応器を用いて気相接触酸化反応させ、アクリル酸を含む混合ガスを生成させる工程
工程(c):工程(a)及び/又は(b)で得られたアクリル酸含有混合ガスからアクリル酸を回収する工程からなり、第一の多管式固定床反応器の第一反応管の入口と出口間のガス圧力損失が、第二の多管式固定床反応器の第二反応管の入口と出口間のガス圧力損失と実質的に同一になるように、第一及び第二の複合金属酸化物触媒の粒径を調整することを特徴とするアクリル酸の製造方法。
At least the following steps (a) to (c)
Step (a): Propane is subjected to a gas phase catalytic oxidation reaction using a first multitubular fixed bed reactor having a plurality of first reaction tubes filled with a first composite metal oxide catalyst, Step (b) of generating a mixed gas containing: a plurality of second reaction tubes filled with propane and a second mixed metal oxide catalyst and connected in parallel with the first multitubular fixed bed reactor Step (c): a gas phase catalytic oxidation reaction using a second multi-tubular fixed bed reactor having a gas to produce a mixed gas containing acrylic acid: obtained in steps (a) and / or (b) A step of recovering acrylic acid from the mixed gas containing acrylic acid, and the gas pressure loss between the inlet and outlet of the first reaction tube of the first multi-tube fixed bed reactor is reduced to the second multi-tube fixed bed. So that the gas pressure loss between the inlet and outlet of the second reactor tube of the reactor is substantially the same. And method for producing acrylic acid, characterized by adjusting the particle diameter of the second composite metal oxide catalyst.
第一及び第二の複合金属酸化物触媒が、触媒活性成分を不活性担体に担持した担持触媒である請求項1に記載のアクリル酸の製造方法。 The method for producing acrylic acid according to claim 1, wherein the first and second composite metal oxide catalysts are supported catalysts in which a catalytically active component is supported on an inert support. 第一及び第二の複合金属酸化物触媒の粒径を、触媒活性成分の担持量を同一として、異なった粒径を持つ不活性担体を用いることにより調整する請求項2に記載のアクリル酸の製造方法。 The particle size of the first and second mixed metal oxide catalysts is adjusted by using inert carriers having different particle sizes, with the same amount of the catalytically active component supported. Production method. 工程(c)でアクリル酸を回収した残留ガスを、第一及び/又は第二の多管式固定床反応器における原料ガスに混合して使用する請求項1から3のいずれか1項に記載のアクリル酸の製造方法。 The residual gas which collect | recovered acrylic acid at the process (c) is mixed with the raw material gas in a 1st and / or 2nd multitubular fixed bed reactor, and is used for any one of Claim 1 to 3 A method for producing acrylic acid.
JP2005223627A 2005-08-02 2005-08-02 Method for producing acrylic acid Pending JP2007039354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223627A JP2007039354A (en) 2005-08-02 2005-08-02 Method for producing acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223627A JP2007039354A (en) 2005-08-02 2005-08-02 Method for producing acrylic acid

Publications (1)

Publication Number Publication Date
JP2007039354A true JP2007039354A (en) 2007-02-15

Family

ID=37797668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223627A Pending JP2007039354A (en) 2005-08-02 2005-08-02 Method for producing acrylic acid

Country Status (1)

Country Link
JP (1) JP2007039354A (en)

Similar Documents

Publication Publication Date Title
AU606160B2 (en) Process for production of acrylic acid
US5218146A (en) Process for production of acrylic acid
US7429678B2 (en) Composite-oxide catalyst and process for production of acrylic acid using said catalyst
JP2731612B2 (en) Method for producing nitriles and oxides
US7524987B2 (en) Process for preparing acrolein or acrylic acid or a mixture thereof from propane
WO2003055835A1 (en) Process for vapor-phase catalytic oxidation and process for production of (meth)acrolein or (meth)acrylic acid
US6310240B1 (en) Vapor phase oxidation of acrolein to acrylic acid
AU8400798A (en) Improved vapor phase oxidation of propylene to acrolein
EP1350784A1 (en) Process for production of unsaturated aldehyde or acid using Mo-Bi-Fe catalyst
JP5676628B2 (en) Method for producing allyl acetate
US6281384B1 (en) Vapor phase catalytic oxidation of propylene to acrylic acid
US7553986B2 (en) Process for the selective (amm)oxidation of lower molecular weight alkanes and alkenes
CN112961077B (en) Method for producing acrylonitrile by propylene through aldolization of propylene
JP6653621B2 (en) Catalyst for catalytic gas phase reaction and reaction method using the catalyst
JP2007039354A (en) Method for producing acrylic acid
CN100439313C (en) Multistage fluidized bed reactor for preparing propenoic acid from propene oxidation and preparing method
CN103889942A (en) Method for preparing acrylic acid from propane and propylene
JP2007031400A (en) Method for producing acrylic acid
JP2005314314A (en) Manufacturing method of (meth)acrylic acid or (meth)acrolein
KR101257411B1 (en) Method for production of (meth)acrylic acid
WO2018020345A1 (en) Process for producing oxo-synthesis syngas composition by high-pressure hydrogenation of c02 over spent chromium oxide/aluminum catalyst
JP2009084167A (en) Manufacturing method of acrolein and/or acrylic acid
JP2005162744A (en) Method for producing unsaturated aldehyde and unsaturated carboxylic acid
JPS5929679A (en) Manufacture of maleic acid anhydride
TWI511946B (en) Process for the (amm) oxidation of lower molecular weight alkanes and alkenes