JP2007038373A - Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material - Google Patents

Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material Download PDF

Info

Publication number
JP2007038373A
JP2007038373A JP2005227908A JP2005227908A JP2007038373A JP 2007038373 A JP2007038373 A JP 2007038373A JP 2005227908 A JP2005227908 A JP 2005227908A JP 2005227908 A JP2005227908 A JP 2005227908A JP 2007038373 A JP2007038373 A JP 2007038373A
Authority
JP
Japan
Prior art keywords
layer
carbide
cutting
hard coating
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005227908A
Other languages
Japanese (ja)
Inventor
Kazunori Sato
和則 佐藤
Yusuke Tanaka
裕介 田中
Akihiro Kondou
暁裕 近藤
Tsutomu Ogami
強 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005227908A priority Critical patent/JP2007038373A/en
Publication of JP2007038373A publication Critical patent/JP2007038373A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cemented-carbide cutting tool with a hard coating layer showing excellent chipping resistance in cutting a difficult-to-cut material. <P>SOLUTION: The surface-coated cemented-carbide cutting tool has the hard coating layer on the surface of a cemented carbide base body composed of tungsten-carbide-based cemented carbide alloy or titanium-carbonitride-based cermet. The hard coating layer is composed of (a) a lower layer which has a mean layer thickness of 1 to 5 μm, and is composed of a (Ti, Al)N layer satisfying the following composition formula, (Ti<SB>1-X</SB>Al<SB>X</SB>)N, where X is 0.30 to 0.70 in a atomic ratio; (b) an interlayer adhesive layer composed of a vanadium nitride layer having a mean layer thickness of 0.1 to 1.5 μm; and (c) an upper layer which has a mean layer thickness of 1 to 5 μm, and is composed of a V-diffused VO<SB>M</SB>layer having a texture in which a metal V of 0.5 to 7 atm.% in a ratio occupied in the total amount including VO<SB>M</SB>is dispersively distributed in a matrix of VO<SB>M</SB>(vanadium oxide). <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特にステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention is a cutting tool made of a surface-coated cemented carbide alloy (hereinafter referred to as coated carbide) that exhibits excellent chipping resistance with a hard coating layer, especially when machining difficult-to-cut materials such as stainless steel, high manganese steel, and even mild steel. Tool).

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   Generally, for coated carbide tools, a throw-away tip that is attached to the tip of a cutting tool for turning or flattening of various steel and cast iron work materials, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、
組成式:(Ti1-XAl)N(ただし、原子比で、Xは0.30〜0.70を示す)、
を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で物理蒸着してなる被覆超硬工具が知られており、かつ前記被覆超硬工具の硬質被覆層である(Ti,Al)N層が、構成成分であるAlによって高温硬さと耐熱性、同Tiによって高温強度を具備するようになることから、これを各種の一般鋼や普通鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている。
Further, as a coated carbide tool, on the surface of a carbide substrate composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet,
Composition formula: (Ti 1-X Al X ) N (however, in atomic ratio, X represents 0.30 to 0.70),
There is known a coated carbide tool formed by physical vapor deposition of a hard coating layer composed of a composite nitride of Ti and Al [hereinafter referred to as (Ti, Al) N] layer satisfying the following conditions with an average layer thickness of 1 to 15 μm. And the (Ti, Al) N layer, which is a hard coating layer of the coated carbide tool, has high temperature hardness and heat resistance due to Al as a component, and high temperature strength due to the Ti. It is also known to exhibit excellent cutting performance when used for continuous cutting and intermittent cutting of various general steels and ordinary cast iron.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第2644710号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in a state heated to a temperature of 500 ° C., an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) in which a Ti—Al alloy having a predetermined composition is set, for example, under a current of 90 A, At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to give a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied with a bias voltage of, for example, −100 V on the surface of the carbide substrate. It is also known that it is produced by vapor-depositing a hard coating layer composed of a (Ti, Al) N layer.
Japanese Patent No. 2644710

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、上記の従来被覆超硬工具においては、これを低合金鋼や炭素鋼などの一般鋼や、ダクタイル鋳鉄やねずみ鋳鉄などの普通鋳鉄の切削加工に用いた場合には問題はないが、特に切粉の粘性が高く、かつ工具表面に溶着し易いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工を行った場合には、切削時の発熱によって難削材からなる被削材およびその切粉は高温に加熱されて粘性度が一段と増大し、これに伴なって硬質被覆層表面に対する粘着性および反応性が一段と増すようになり、この結果切刃部におけるチッピング(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting processing. As a result, cutting tools are affected as much as possible by the type of work material. There is a tendency to demand cutting tools that can cut as many grades as possible, but in the above-mentioned conventional coated carbide tools, this is applied to general steels such as low alloy steels and carbon steels. There is no problem when used for cutting of ordinary cast iron such as ductile cast iron and gray cast iron, but especially stainless steel, high manganese steel, and mild steel with high chip viscosity and easy welding to the tool surface. When cutting difficult-to-cut materials, the work material and chips made of difficult-to-cut materials are heated to a high temperature due to the heat generated during cutting, and the viscosity increases further. On the layer surface Tackiness and become reactive increases further to this result chipping in the cutting edge (small chipping) increases rapidly, which is at present, leading to a relatively short time service life due.

そこで、本発明者等は、上述のような観点から、特に難削材の切削加工で、
硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具に着目し、研究を行った結果、
(a)上記従来被覆超硬工具の硬質被覆層である(Ti,Al)N層を下部層として1〜5μmの平均層厚で形成し、これの上に上部層として酸化バナジウム(以下、VOで示す。ただし、Mは酸素のバナジウム(V)に対する相対含有割合の変化値を示し、原子比で、VO、V、V、およびVOなどを示す)層を同じく1〜5μmの平均層厚で形成すると、前記VO層は表面滑り性にすぐれ、この結果切削時の発熱で被削材(難削材)およびその切粉が高温加熱された状態でも切刃部(すくい面および逃げ面と、これら両面が交わる切刃稜線部)と被削材および切粉との間には常にすぐれた滑り性が確保され、前記被削材および切粉の切刃部表面に対する粘着性および反応性が著しく低減し、前記下部層である(Ti,Al)N層を十分に保護することから、(Ti,Al)N層のもつすぐれた特性が長期に亘って十分に発揮されるようになること。
Therefore, the present inventors, from the viewpoint as described above, particularly in cutting of difficult-to-cut materials,
In order to develop a coated carbide tool that exhibits excellent chipping resistance with a hard coating layer, as a result of research conducted focusing on the above conventional coated carbide tool,
(A) A (Ti, Al) N layer, which is a hard coating layer of the above-mentioned conventional coated carbide tool, is formed with an average layer thickness of 1 to 5 μm as a lower layer, and a vanadium oxide (hereinafter referred to as VO) as an upper layer thereon. M represents a change value of the relative content ratio of oxygen to vanadium (V), and the atomic ratio indicates VO, V 2 O 3 , V 2 O 5 , VO 2, etc.) cutting edge to form with an average layer thickness of 1 to 5 [mu] m, the VO M layer is excellent surface slipperiness, even when this result workpiece by heat generated during cutting (difficult-to-cut materials) and its cutting scraps is high temperature heating Excellent slipperiness is always ensured between the part (the rake face and the flank face, and the cutting edge ridge line where these two surfaces intersect) and the work material and the chip, and the work material and the cutting edge part of the chip The adhesiveness and reactivity to the surface is significantly reduced, the lower layer ( i, Al) N-layer because it sufficiently protect, (Ti, Al) having excellent characteristics N layer may become to be sufficiently exhibited for a long time.

(b)上記(a)のVO層を構成するVOを素地とし、これに前記VOとの合量に占める割合で0.5〜7原子%の金属バナジウム(以下、金属Vで示す)を分散含有させて、VOの素地に金属Vが分散分布した組織を有するV分散VO層とすると、この結果のV分散VO層においては、素地に分散分布する金属Vが、切削時の高い発熱雰囲気で酸化して、VOとなるが、この生成VOが同じくVOからなる素地の摩耗進行を著しく抑制するように作用することから、上記(a)のVO層に比してすぐれた耐摩耗性を示すようになること。 (B) the the VO M and matrix constituting the VO M layer (a), which the VO M and 0.5 to 7 atomic% of vanadium metal as a percentage of the total amount (hereinafter, indicated by metal V ) a dispersing contained, the metal V into a green body of VO M is a V dispersed VO M layer having dispersed distribution organization, in the V dispersed VO M layer of this result, the metal V to disperse distribution into a green body, the cutting by oxidation with highly exothermic atmosphere with time, but the VO M, since it acts to significantly suppress the wear progress of green bodies this product VO M consists likewise VO M, the VO M layer of the (a) Be superior to wear resistance.

さらに、上記のV分散VO層は、例えば金属V粉末を酸化雰囲気で加熱酸化してVO粉末とし、これに所定量の金属V粉末を配合し、混合し、圧粉体にプレス成形した後、この圧粉体を、Ar雰囲気中、1300℃の温度に1時間保持の条件で焼結して、V分散VO焼結体を製造し、この結果得られたV分散VO焼結体をスパッタリング装置のカソード電極として用い、Ar雰囲気中でスパッタ蒸着することにより形成できること。、
(c)一方、上記の上部層であるV分散VO層と下部層である(Ti,Al)N層との密着性は十分でなく、特に断続切削を行った場合に前記の層間の密着性不足が原因でチッピングが発生し易いが、前記V分散VO層と(Ti,Al)N層との間に窒化バナジウム(以下、VNで示す)層を0.1〜1.5μmの平均層厚で介在させると、前記VN層は前記V分散VO層および(Ti,Al)N層のいずれとも強固に密着することから、これら両層間にはすぐれた密着性が確保されるようになること。
Further, V dispersed VO M layer described above, for example, a metal V powder was heated oxidized in an oxidizing atmosphere and VO M powder, this mixed a predetermined amount of the metal V powder, mixed and press-molded into a powder compact after, the green compact in an Ar atmosphere, and sintered under the conditions of 1 hour hold time at a temperature of 1300 ° C., to produce a V dispersion VO M sintered body, the resulting V dispersed VO M sintering The body can be formed by sputtering vapor deposition in an Ar atmosphere using the cathode electrode of the sputtering apparatus. ,
(C) On the other hand, a V dispersion VO M layer and the lower layer is the upper layer of the (Ti, Al) adhesion to the N layer is not sufficient, the adhesion of the interlayer particularly when subjected to intermittent cutting Although easily chipping occurs sexual because of lack of the average vanadium nitride (hereinafter indicated by VN) layer of 0.1~1.5μm between the V dispersion VO M layer and (Ti, Al) N layer When interposing a layer thickness, the VN layer the V dispersed VO M layer and (Ti, Al) since the firmly adhered with any of the N layer, so adhesion with superior in these two layers is ensured To become a.

(d)上記(a)〜(c)で構成される硬質被覆層は、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置(以下、AIP装置と略記する)とスパッタリング装置(以下、SP装置と略記する)が共存の蒸着装置、すなわち装置中央部に超硬基体装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に前記AIP装置のカソード電極(蒸発源)として金属V、他方側に前記SP装置のカソード電極(蒸発源)としてV分散VO焼結体を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属VおよびV分散VO焼結体のそれぞれから90度離れた位置に同じくAIP装置のカソード電極(蒸発源)として所定の組成を有するTi−Al合金を配置した蒸着装置を用い、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、この装置の前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の超硬基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬基体自体も自転させながら、基本的に、まず前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させて、前記超硬基体の表面に、下部層として(Ti,Al)N層を1〜5μmの平均層厚で蒸着し、ついで前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、同じく装置内雰囲気を窒素雰囲気に保持したままで、カソード電極(蒸発源)である金属Vとアノード電極との間にアーク放電を発生させて、層間密着層としてVN層を0.1〜1.5μmの平均層厚で蒸着した後、前記蒸着装置内の雰囲気をAr雰囲気とすると共に、前記SP装置のカソード電極(蒸発源)として配置したV分散VO焼結体のスパッタリングを行って前記VN層に重ねて上部層として1〜5μmの平均層厚でV分散VO層を蒸着することにより形成することができること。 (D) The hard coating layer constituted by the above (a) to (c) is, for example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 1 (a) and a schematic front view in (b). (Hereinafter abbreviated as AIP apparatus) and sputtering apparatus (hereinafter abbreviated as SP apparatus) coexisting vapor deposition apparatus, that is, a rotating table for mounting a carbide substrate is provided at the center of the apparatus, metal V as a cathode electrode of the AIP device side (evaporation source), a cathode electrode (vapor source) as V dispersion VO M sintered body of the SP device on the other side opposed, further along the rotary table, and deposition apparatus arranged Ti-Al alloy having a predetermined composition as a cathode electrode (vapor source) of the same AIP device in a position 90 degrees apart from each of the metal V and V dispersed VO M sintered body A plurality of carbide substrates are mounted in a ring shape along the outer peripheral portion at a position that is a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus, and the atmosphere in the apparatus is set as a nitrogen atmosphere in this state. The rotary table is rotated, and a plurality of carbide substrates are mounted in a ring shape along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table of the apparatus. First, the Ti—Al alloy cathode electrode is first rotated while rotating the rotary table in a nitrogen atmosphere and rotating the carbide substrate itself for the purpose of uniforming the thickness of the hard coating layer formed by vapor deposition. An arc discharge is generated between the (evaporation source) and the anode electrode, and a (Ti, Al) N layer is deposited on the surface of the cemented carbide substrate as a lower layer with an average layer thickness of 1 to 5 μm. Arc discharge between the cathode electrode (evaporation source) of the Ti—Al alloy and the anode electrode is stopped, and the metal V as the cathode electrode (evaporation source) and the anode electrode are kept while maintaining the atmosphere in the apparatus in a nitrogen atmosphere. And VN layer is deposited as an interlayer adhesion layer with an average layer thickness of 0.1 to 1.5 μm, and the atmosphere in the deposition apparatus is changed to an Ar atmosphere, and the SP apparatus formed by depositing cathode electrode V dispersed VO M layer with an average layer thickness of 1~5μm as an upper layer overlapping the VN layer disposed was performed sputtering of V dispersion VO M sintered body as (evaporation source) of What you can do.

(e)上記の下部層、層間密着層、および上部層で構成された硬質被覆層を蒸着形成してなる被覆超硬工具は、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工で、下部層である(Ti,Al)N層がすぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層の介在によって前記下部層との間にすぐれた密着接合性が確保されたV分散VO層の作用で、前記難削材および切粉との間にすぐれた表面滑り性が確保され、前記難削材および切粉の切刃部表面に対する粘着性および反応性は著しく低減された状態で切削加工が行われるようになることから、切刃部におけるチッピングの発生がなくなり、長期に亘ってすぐれた耐摩耗性を発揮するようになること。
以上(a)〜(e)に示される研究結果を得たのである。
(E) A coated cemented carbide tool formed by vapor-depositing a hard coating layer composed of the lower layer, the interlayer adhesion layer, and the upper layer is a stainless steel, a high manganese steel, and a mild steel that are particularly highly viscous and sticky. In the cutting of difficult-to-cut materials such as (Ti, Al) N layer, the lower layer (Ti, Al) N layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and the intervening VN layer as an interlayer adhesion layer by the action of V dispersion VO M layer adhesion bonding properties is secured for excellent between the lower layer, excellent surface slipperiness between the flame cut materials and chips is ensured, the flame-cut materials and Cutting is performed with the chip's adhesiveness and reactivity to the cutting edge surface being significantly reduced, so there is no chipping at the cutting edge and excellent wear resistance over a long period of time. To come out.
The research results shown in (a) to (e) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、組成式:(Ti1-XAl)N(ただし、原子比で、Xは0.30〜0.70を示す)を満足する(Ti,Al)N層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有するVN層からなる層間密着層、
(c)1〜5μmの平均層厚を有し、かつVOの素地に、前記VOとの合量に占める割合で、0.5〜7原子%の金属Vが分散分布した組織を有するV分散VO層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) It has an average layer thickness of 1 to 5 μm and satisfies the composition formula: (Ti 1-X Al X ) N (wherein X represents 0.30 to 0.70 in terms of atomic ratio). A lower layer comprising a (Ti, Al) N layer;
(B) an interlayer adhesion layer comprising a VN layer having an average layer thickness of 0.1 to 1.5 μm;
(C) it has an average layer thickness of 1 to 5 [mu] m, and the matrix of VO M, a percentage of the total amount of the VO M, with a tissue 0.5 to 7 atomic% of the metal V are dispersed distribution An upper layer consisting of V-dispersed VO M layers;
It is characterized by a coated cemented carbide tool that forms a hard coating layer composed of the above (a) to (c) and exhibits excellent chipping resistance in cutting of difficult-to-cut materials. is there.

つぎに、この発明の被覆超硬工具の硬質被覆層の構成層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.

(a)下部層の組成および平均層厚
下部層を構成する(Ti,Al)N層におけるAl成分には高温硬さと耐熱性、同Ti成分には高温強度を向上させる作用があるが、Alの割合を示すX値がTiとの合量に占める割合(原子比、以下同じ)で0.30未満になると、相対的にTiの割合が多くなり過ぎて、所定の高温硬さと耐熱性を確保することができなくなり、この結果摩耗進行が急激に促進するようになり、一方Alの割合を示すX値が同0.70を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果切刃部にチッピングなどが発生し易くなることから、X値を0.30〜0.70と定めた。
(A) Lower layer composition and average layer thickness The Al component in the (Ti, Al) N layer constituting the lower layer has the effect of improving the high temperature hardness and heat resistance, and the Ti component improves the high temperature strength. When the X value indicating the proportion of Ti is less than 0.30 in terms of the total amount with Ti (atomic ratio, the same shall apply hereinafter), the proportion of Ti becomes relatively large, resulting in a predetermined high temperature hardness and heat resistance. As a result, the progress of wear is accelerated rapidly. On the other hand, when the X value indicating the Al ratio exceeds 0.70, the Ti ratio is relatively decreased, and the high temperature is increased. Since the strength rapidly decreases and as a result, chipping or the like is likely to occur at the cutting edge portion, the X value was determined to be 0.30 to 0.70.

また、その平均層厚が1μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方その平均層厚が5μmを越えると、上記の粘性の高い難削材の切削加工では切刃部にチッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。   Further, if the average layer thickness is less than 1 μm, it is insufficient to exhibit its excellent wear resistance over a long period of time, whereas if the average layer thickness exceeds 5 μm, the above-mentioned high viscosity is difficult. In the cutting of the cutting material, chipping is likely to occur at the cutting edge, so the average layer thickness was set to 1 to 5 μm.

(c)層間密着層の平均層厚
その平均層厚が0.1μm未満では、上部層と下部層の間に強固な接合強度を確保することができず、一方その平均層厚が1.5μmを越えると、硬質被覆層の強度が層間密着層部分で急激に低下するようになり、これがチッピング発生の原因となることから、その平均層厚を0.1〜1.5μmと定めた。
(C) Average layer thickness of interlayer adhesion layer If the average layer thickness is less than 0.1 μm, it is not possible to ensure a strong bonding strength between the upper layer and the lower layer, while the average layer thickness is 1.5 μm. If it exceeds 1, the strength of the hard coating layer suddenly decreases at the interlayer adhesion layer portion, which causes the occurrence of chipping. Therefore, the average layer thickness was determined to be 0.1 to 1.5 μm.

(d)上部層の平均層厚および分散金属Vの含有割合
上部層を構成するV分散VO層は、すぐれた表面滑り性を有し、上記の通り被削材(難削材)および切粉に対する粘着性および反応性がきわめて低く、これは切削時に前記被削材が高温加熱された状態でも変わることなく維持されることから、下部層である(Ti,Al)N層を前記高温加熱された被削材および切粉から保護し、これのチッピング発生を抑制する作用を発揮するが、その平均層厚が1μm未満では、前記作用に所望の効果が得られず、一方その平均層厚が5μmを越えて厚くなり過ぎると、チッピングが発生し易くなることから、その平均層厚を1〜5μmと定めた。
(D) V dispersion VO M layer constituting the content upper layer of the average layer thickness and dispersed metal V of the upper layer has excellent surface slipperiness, as described above workpiece (difficult-to-cut materials) and switching The adhesiveness and reactivity to the powder are extremely low, and this is maintained without changing even when the work material is heated at the time of cutting. Therefore, the (Ti, Al) N layer as the lower layer is heated at the high temperature. This protects against the cut work material and chips and suppresses the occurrence of chipping. However, if the average layer thickness is less than 1 μm, the desired effect cannot be obtained in the above operation, while the average layer thickness is If the thickness exceeds 5 μm and becomes too thick, chipping tends to occur, so the average layer thickness was set to 1 to 5 μm.

また、上記のV分散VO層における金属Vには、上記の通り切削時の高い発熱雰囲気で酸化して、VOとなり、この結果の生成VOが同じくVOからなる素地の摩耗進行を著しく抑制する作用があり、したがって、前記V分散VO層は、素地を構成するVOだけからなるVO層に比してすぐれた耐摩耗性を示すが、金属Vの含有割合が、素地のVO層との合量に占める割合で0.5原子%未満では所望の耐摩耗性向上効果が得られず、一方金属Vの含有割合が、同7原子%を超えると、層自体の強度が急激に低下し、チッピング発生の原因となることから、その含有割合を0.5〜7原子%と定めた。 Further, the metal V in V dispersed VO M layer above, by oxidation with a high heating atmosphere during cutting as described above, next VO M, the wear progress of green bodies produced VO M of this result consists likewise VO M There is remarkable inhibitory action, therefore, the V distributed VO M layer, show compared to VO M layer consisting only VO M excellent wear resistance for constituting the matrix, the content of the metal V, matrix a percentage of the total amount of the VO M layer is less than 0.5 atomic% can not be obtained the desired wear resistance improving effect, whereas the content of the metal V exceeds the same 7 atomic%, the layer itself Since the strength is abruptly reduced and causes chipping, the content is determined to be 0.5 to 7 atomic%.

この発明の被覆超硬工具は、硬質被覆層を構成する下部層の(Ti,Al)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ同層間密着層としてのVN層によって強固に密着接合した上部層としてのV分散VO層によって、被削材(難削材)および切粉との間にすぐれた表面滑り性が確保されることから、特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工でも、すぐれた耐チッピング性を示し、長期に亘ってすぐれた耐摩耗性を発揮するものである。 In the coated carbide tool of the present invention, the lower layer (Ti, Al) N layer constituting the hard coating layer has excellent high-temperature hardness and heat resistance, and excellent high-temperature strength, and as an interlayer adhesion layer. by the V dispersion VO M layer as an upper layer was firmly adhered joined by VN layer, since the superior surface slipperiness between the workpiece (difficult-to-cut materials) and chips is ensured, in particular viscosity and Even when cutting difficult-to-cut materials such as highly sticky stainless steel, high manganese steel, and mild steel, it exhibits excellent chipping resistance and exhibits excellent wear resistance over a long period of time.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。 Further, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Carbide substrates B-1 to B-6 made of TiCN-based cermet having a chip shape of CNMG120408 were formed.

さらに、硬質被覆層の上部層形成用カソード電極(蒸発源)として、まず、平均粒径:0.8μmの金属V粉末を用意し、これを10Paの酸化雰囲気中、温度:1000℃に1時間保持の条件で加熱酸化処理して、VO粉末とし、これに同じく平均粒径:0.8μmの金属V粉末を所定量配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を、6PaのAr雰囲気中、1200〜1400℃の範囲内の所定の温度に1時間保持の条件で焼結することにより、金属Vを所定の割合で分散含有したV分散VO焼結体を調製した。 Furthermore, as a cathode electrode (evaporation source) for forming the upper layer of the hard coating layer, first, a metal V powder having an average particle diameter of 0.8 μm is prepared, and this is placed in an oxidizing atmosphere of 10 Pa at a temperature of 1000 ° C. for 1 hour. by heating oxidation treatment under conditions of retention, and VO M powder, likewise an average particle diameter thereto: a 0.8μm of metal V powder predetermined amount, after 72 hours wet mixed in a ball mill and dried, the pressure of 100MPa Is pressed into a green compact, and the green compact is sintered in a 6 Pa Ar atmosphere at a predetermined temperature within a range of 1200 to 1400 ° C. for 1 hour, thereby allowing the metal V to be predetermined. V dispersion VO M sintered body containing dispersed at a ratio was prepared.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される蒸着装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のAIP装置のカソード電極(蒸発源)として層間密着層形成用金属V、他方側のSP装置のカソード電極(蒸発源)として上部層形成用V分散VO焼結体を対向配置し、さらに前記回転テーブルに沿って、かつ前記金属VおよびV分散VO焼結体のそれぞれから90度離れた位置にカソード電極(蒸発源)として所定の組成を有する下部層形成用Ti−Al合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記下部層形成用Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の下部層として蒸着形成し、
(d)上記の下部層形成用Ti−Al合金のカソード電極とアノード電極との間のアーク放電を停止し、装置内の雰囲気を同じく4Paの窒素雰囲気に保持すると共に、超硬基体への直流バイアス電圧も同じく−100Vとした条件で、カソード電極の前記金属Vとアノード電極との間に120Aの電流を流してアーク放電を発生させ、もって同じく表3に示される目標層厚のVN層を硬質被覆層の層間密着層として蒸着形成し、
(e)上記金属Vとアノード電極とのアーク放電を停止し、前記蒸着装置内の雰囲気を0.5PaのAr雰囲気とすると共に、前記SP装置のカソード電極(蒸発源)として配置したV分散VO焼結体に、スパッタ出力:3kWの条件でスパッタリングを開始し、同じく表3に示される目標層厚を有し、かつ金属V目標含有割合に相当する金属Vをそれぞれ分散含有したV分散VO層を硬質被覆層の上部層として蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above-mentioned carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then in the vapor deposition apparatus shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table, an interlayer adhesion layer forming metal V as the cathode electrode (evaporation source) of the AIP device on one side, and the SP on the other side the upper layer forming V dispersion VO M sintered body placed opposite a cathode (evaporation source) of the device, further along said rotating table, and each 90 degrees of the metal V and V dispersed VO M sintered body A Ti-Al alloy for forming a lower layer having a predetermined composition as a cathode electrode (evaporation source) is arranged at a distant position,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And applying a current of 100 A between the anode electrode and the Ti-Al alloy for forming the lower layer of the cathode electrode to generate an arc discharge, whereby the surface of the carbide substrate is made to the Ti-Al Bombard washed by alloy and
(C) Introducing nitrogen gas as a reaction gas into the apparatus to form a 4 Pa reaction atmosphere, applying a DC bias voltage of −100 V to a carbide substrate rotating while rotating on the rotary table, and a cathode electrode A current of 120 A is passed between the Ti-Al alloy and the anode electrode to generate an arc discharge, so that the surface of the cemented carbide substrate has a target composition and target layer thickness (Ti, Al) shown in Table 3. ) N layer is deposited as a lower layer of the hard coating layer,
(D) The arc discharge between the cathode electrode and the anode electrode of the Ti—Al alloy for forming the lower layer is stopped, and the atmosphere in the apparatus is kept in a nitrogen atmosphere of 4 Pa, and direct current to the carbide substrate is applied. Under the condition that the bias voltage is also -100 V, a current of 120 A is caused to flow between the metal V of the cathode electrode and the anode electrode to generate arc discharge, so that the VN layer having the target layer thickness shown in Table 3 is also formed. Evaporation formation as an interlayer adhesion layer of hard coating layer,
(E) Arc discharge between the metal V and the anode electrode is stopped, the atmosphere in the vapor deposition apparatus is changed to an Ar atmosphere of 0.5 Pa, and a V-dispersed VO arranged as a cathode electrode (evaporation source) of the SP apparatus Sputtering was started on the M sintered body under the condition of sputtering output: 3 kW, V dispersion VO having the target layer thickness similarly shown in Table 3 and containing metal V corresponding to the metal V target content ratio. By forming the M layer as an upper layer of the hard coating layer, the surface-coated carbide throwaway tips (hereinafter referred to as the present invention-coated tips) 1 to 16 as the present invention coated carbide tools are produced, respectively. did.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったTi−Al合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表4に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層として蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製スローアウエイチップ(以下、従来被覆チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. The Ti-Al alloy having various composition is mounted as a cathode electrode (evaporation source), and first the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less with a heater. After heating the inside of the apparatus to 500 ° C., a DC bias voltage of −1000 V is applied to the carbide substrate, and a current of 100 A is passed between the Ti—Al alloy of the cathode electrode and the anode electrode to cause arc discharge. Then, the surface of the cemented carbide substrate is bombarded with the Ti—Al alloy, and then nitrogen gas is introduced into the apparatus as a reactive gas to form a 4 Pa reaction atmosphere, and a bar is applied to the cemented carbide substrate. An ass voltage was lowered to -100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti-Al alloy, and thus the carbide substrates A-1 to A-10 and B-1 to B-6 were used. A conventional surface-coated cemented carbide throw as a conventional coated carbide tool is formed by vapor-depositing a (Ti, Al) N layer having the target composition and target layer thickness shown in Table 4 on each surface as a hard coated layer. Outer chips (hereinafter referred to as conventional coated chips) 1 to 16 were produced, respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:JIS・SUS316の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件(切削条件A)でのステンレス鋼の乾式断続切削加工試験、
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:280m/min.、
切り込み:1.5mm、
送り:0.35mm/rev.、
切削時間:5分、
の条件(切削条件B)での軟鋼の乾式断続切削加工試験、
被削材:JIS・SCMnH1の丸棒、
切削速度:300m/min.、
切り込み:1.5mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件(切削条件C)での高マンガン鋼の乾式連続切削加工試験、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 16 and the conventional coated chips 1 to 16 are as follows.
Work material: JIS / SUS316 lengthwise equidistant 4 round grooved round bars,
Cutting speed: 300 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted cutting test of stainless steel under the above conditions (cutting condition A),
Work material: JIS / S15C lengthwise equal length 4 vertical grooved round bars,
Cutting speed: 280 m / min. ,
Incision: 1.5mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes
Dry interrupted cutting test of mild steel under the above conditions (cutting condition B),
Work material: JIS / SCMnH1 round bar,
Cutting speed: 300 m / min. ,
Incision: 1.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous cutting test of high manganese steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 5.

Figure 2007038373
Figure 2007038373

Figure 2007038373
Figure 2007038373

Figure 2007038373
Figure 2007038373

Figure 2007038373
Figure 2007038373

Figure 2007038373
Figure 2007038373

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表6に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 .8 μm Co powders were prepared, each of these raw material powders was blended in the composition shown in Table 6, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then shaped into a predetermined shape at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three kinds of sintered rods for round bar were ground and shown in Table 6. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表7に示される目標組成および目標層厚の(Ti,Al)N層からなる下部層と、同じく表7に示される目標層厚のVN層からなる層間密着層と、さらに同じく表7に示される目標層厚を有し、かつ金属V目標含有割合に相当する金属Vをそれぞれ分散含有したV分散VO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜8をそれぞれ製造した。 Subsequently, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. Under the same conditions, and a lower layer composed of a (Ti, Al) N layer having a target composition and a target layer thickness shown in Table 7, an interlayer adhesion layer consisting of a VN layer having a target layer thickness also shown in Table 7, further also has a target layer thickness shown in Table 7, and deposited forming a hard coating layer composed of a top layer made of V dispersed VO M layer dispersed each containing a metal V corresponding to the metal V target content Thus, the surface coated carbide end mills (hereinafter referred to as the present invention coated end mills) 1 to 8 as the present coated carbide tools were produced, respectively.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表7に示される目標組成および目標層厚の(Ti,Al)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具としての従来表面被覆超硬製エンドミル(以下、従来被覆エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. The conventional coated carbide tool was deposited and deposited under the same conditions as in Example 1 above, by vapor-depositing a hard coating layer consisting of a (Ti, Al) N layer having the target composition and target layer thickness also shown in Table 7 Conventional surface-coated carbide end mills (hereinafter referred to as conventional coated end mills) 1 to 8 were produced.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:80m/min.、
溝深さ(切り込み):3mm、
テーブル送り:150mm/分、
の条件での軟鋼の乾式溝切削加工試験、本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:75m/min.、
溝深さ(切り込み):5mm、
テーブル送り:120mm/分、
の条件でのステンレス鋼の湿式(水溶性切削油使用)溝切削加工試験、本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:60m/min.、
溝深さ(切り込み):10mm、
テーブル送り:120mm/分、
の条件での高マンガン鋼の乾式溝切削加工試験をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and conventional coated end mills 1-8, the present invention coated end mills 1-3 and conventional coated end mills 1-3 are as follows:
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 80 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 150 mm / min,
About the dry grooving cutting test of mild steel under the conditions of the present invention, the coated end mills 4-6 of the present invention and the conventional coated end mills 4-6,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 75 m / min. ,
Groove depth (cut): 5 mm,
Table feed: 120 mm / min,
For the stainless steel wet (using water-soluble cutting oil) grooving test, the present coated end mills 7 and 8 and the conventional coated end mills 7 and 8,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 60 m / min. ,
Groove depth (cut): 10 mm,
Table feed: 120 mm / min,
The dry grooving test of high manganese steel under the above conditions was conducted, and in each grooving test, the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is the standard for the service life. The cutting groove length was measured. The measurement results are shown in Table 7, respectively.

Figure 2007038373
Figure 2007038373

Figure 2007038373
Figure 2007038373

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), and from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding). Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の(Ti,Al)N層からなる下部層と、同じく表8に示される目標層厚のVN層からなる層間密着層と、さらに同じく表8に示される目標層厚を有し、かつ金属V目標含有割合に相当する金属Vをそれぞれ分散含有したV分散VO層からなる上部層で構成された硬質被覆層を蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜8をそれぞれ製造した。 Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then loaded into the vapor deposition apparatus shown in FIG. Then, under the same conditions as in Example 1, the lower layer composed of the (Ti, Al) N layer having the target composition and target layer thickness shown in Table 8 and the VN layer having the target layer thickness also shown in Table 8 an interlayer adhesion layer comprising, further also has a target layer thickness shown in Table 8, and rigid made up of an upper layer consisting of V dispersed VO M layer dispersed each containing a metal V corresponding to the metal V target content The surface-coated carbide drills (hereinafter referred to as the present invention-coated drills) 1 to 8 as the present invention coated carbide tools were produced by depositing the coating layer, respectively.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表8に示される目標組成および目標層厚を有する(Ti,Al)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具としての従来表面被覆超硬製ドリル(以下、従来被覆ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc shown in FIG. A hard coating layer made of (Ti, Al) N layer having the target composition and target layer thickness shown in Table 8 is also formed by vapor deposition under the same conditions as in Example 1 above while charging in an ion plating apparatus. Thus, conventional surface-coated carbide drills (hereinafter referred to as conventional coated drills) 1 to 8 as conventional coated carbide tools were produced, respectively.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SUS316の板材、
切削速度:160m/min.、
送り:0.2mm/rev、
穴深さ:8mm、
の条件でのステンレス鋼の湿式穴あけ切削加工試験、本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・SCMnH1の板材、
切削速度:120m/min.、
送り:0.25mm/rev、
穴深さ:16mm、
の条件での高マンガン鋼の湿式穴あけ切削加工試験、本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・S15Cの板材、
切削速度:100m/min.、
送り:0.25mm/rev、
穴深さ:28mm、
の条件での軟鋼の湿式穴あけ切削加工試験、をそれぞれ行い、いずれの湿式穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated drills 1 to 8 and the conventional coated drills 1 to 8, the present invention coated drills 1 to 3 and the conventional coated drills 1 to 3 are:
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 160 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 8mm,
For the wet drilling cutting test of stainless steel under the conditions of the present invention, the present invention coated drills 4-6 and the conventional coated drills 4-6,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH1 plate material,
Cutting speed: 120 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 16mm,
For the wet drilling cutting test of high manganese steel under the conditions of the present invention, the present invention coated drills 7 and 8 and the conventional coated drills 7 and 8,
Work material-planar dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / S15C plate,
Cutting speed: 100 m / min. ,
Feed: 0.25mm / rev,
Hole depth: 28mm,
Welding drilling test of mild steel under the above conditions, and drilling until the flank wear width of the cutting edge surface reaches 0.3mm in any wet drilling test (using water-soluble cutting oil) Number was measured. The measurement results are shown in Table 8, respectively.

Figure 2007038373
Figure 2007038373

この結果得られた本発明被覆超硬工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層を構成する(Ti,Al)N層(下部層)の組成、並びに従来被覆超硬工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の(Ti,Al)N層からなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   (Ti, Al) N constituting the hard coating layer of the present coated chips 1-16, the present coated end mills 1-8, and the present coated drills 1-8 as the present coated carbide tool obtained as a result of this. Composition of the layer (lower layer), and a hard coating layer composed of (Ti, Al) N layers of conventional coated chips 1 to 16, conventional coated end mills 1 to 8, and conventional coated drills 1 to 8 as a conventional coated carbide tool Were measured by an energy dispersive X-ray analysis method using a transmission electron microscope, and showed substantially the same composition as the target composition.

さらに、本発明被覆超硬工具の硬質被覆層を構成するV分散VO層(上部層)の組成を同じく透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、素地に分散する金属Vは目標含有割合と実質的に同じ含有割合を示し、さらに、VOの素地は、組成式で、VOを主体とし、これにV、V、およびVOなどが含有する混合組織を示した。 Moreover, as measured by the present invention V dispersed VO M layer constituting the hard coating layer of the coated cemented carbide tools energy dispersive X-ray analysis of the composition of (upper layer) likewise with a transmission electron microscope, dispersed in the matrix metal V represents substantially the same content as the target content to be further matrix of VO M is a composition formula, as a main component VO, this V 2 O 3, V 2 O 5, and VO 2, etc. The mixed structure which contains.

また、上記の硬質被覆層の構成層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a scanning electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜8に示される結果から、本発明被覆超硬工具は、いずれも特に粘性および粘着性の高いステンレス鋼や高マンガン鋼、さらに軟鋼などの難削材の切削加工でも、硬質被覆層の下部層である(Ti,Al)N層が、すぐれた高温硬さと耐熱性、さらにすぐれた高温強度を有し、かつ層間密着層としてのVN層によって前記下部層に強固に密着したV分散VO層によって、前記被削材および切粉との間にすぐれた表面滑り性が確保されることから、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Ti,Al)N層で構成された従来被覆超硬工具においては、いずれも前記難削材の切削加工では被削材(難削材)および切粉と前記硬質被覆層との粘着性および反応性が一段と高くなり、これが原因で切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 8, all of the coated carbide tools of the present invention have a hard coating layer even when cutting difficult-to-cut materials such as stainless steel, high manganese steel, and mild steel, which are particularly highly viscous and sticky. The V-dispersed VO in which the (Ti, Al) N layer as the lower layer has excellent high-temperature hardness and heat resistance, excellent high-temperature strength, and is firmly adhered to the lower layer by the VN layer as an interlayer adhesion layer The M layer ensures excellent surface slippage between the work material and the chips, so that it exhibits excellent wear resistance over a long period of time without occurrence of chipping. In the conventional coated carbide tool in which the coating layer is composed of a (Ti, Al) N layer, in any cutting of the difficult-to-cut material, the work material (difficult-to-cut material) and chips and the hard coating layer Increased stickiness and reactivity It is clear that chipping occurs at the cutting edge due to the above, and the service life is reached in a relatively short time.

上述のように、この発明の被覆超硬工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、特に上記の難削材の切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated carbide tool of the present invention exhibits excellent chipping resistance not only for cutting of general steel and ordinary cast iron, but particularly for cutting of the above difficult-to-cut materials, and for a long time. Since it shows excellent cutting performance, it can fully satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

本発明被覆超硬工具を構成する硬質被覆層を形成するのに用いた蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus used in forming the hard coating layer which comprises this invention coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)1〜5μmの平均層厚を有し、かつ、組成式:(Ti1-XAl)N(ただし、原子比で、Xは0.30〜0.70を示す)を満足するTiとAlの複合窒化物層からなる下部層、
(b)0.1〜1.5μmの平均層厚を有する窒化バナジウム層からなる層間密着層、
(c)1〜5μmの平均層厚を有し、かつ酸化バナジウムの素地に、前記酸化バナジウムとの合量に占める割合で、0.5〜7原子%の金属バナジウムが分散分布した組織を有する金属バナジウム分散酸化バナジウム層からなる上部層、
以上(a)〜(c)で構成された硬質被覆層を形成してなる、難削材の切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) It has an average layer thickness of 1 to 5 μm and satisfies the composition formula: (Ti 1-X Al X ) N (wherein X represents 0.30 to 0.70 in terms of atomic ratio). A lower layer composed of a composite nitride layer of Ti and Al,
(B) an interlayer adhesion layer comprising a vanadium nitride layer having an average layer thickness of 0.1 to 1.5 μm;
(C) having an average layer thickness of 1 to 5 μm, and having a structure in which 0.5 to 7 atomic% of metal vanadium is dispersed and distributed in the vanadium oxide base in a proportion of the total amount with the vanadium oxide. An upper layer comprising a metal vanadium dispersed vanadium oxide layer,
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance when a difficult-to-cut material is cut by forming a hard coating layer composed of (a) to (c) above.
JP2005227908A 2005-08-05 2005-08-05 Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material Pending JP2007038373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227908A JP2007038373A (en) 2005-08-05 2005-08-05 Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227908A JP2007038373A (en) 2005-08-05 2005-08-05 Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material

Publications (1)

Publication Number Publication Date
JP2007038373A true JP2007038373A (en) 2007-02-15

Family

ID=37796814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227908A Pending JP2007038373A (en) 2005-08-05 2005-08-05 Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material

Country Status (1)

Country Link
JP (1) JP2007038373A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158861A (en) * 1996-12-04 1998-06-16 Sumitomo Electric Ind Ltd Coated cutting tool and its production
JP2000063121A (en) * 1998-08-11 2000-02-29 Toyota Motor Corp Oxide-based hydrogen storage material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10158861A (en) * 1996-12-04 1998-06-16 Sumitomo Electric Ind Ltd Coated cutting tool and its production
JP2000063121A (en) * 1998-08-11 2000-02-29 Toyota Motor Corp Oxide-based hydrogen storage material

Similar Documents

Publication Publication Date Title
JP2007038378A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP4711059B2 (en) Cutting tool made of surface coated cemented carbide with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007038379A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007030100A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in hard cutting of material hard to cut
JP4747719B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP4747718B2 (en) Surface coated cermet cutting tool with excellent chipping resistance with hard coating layer in heavy cutting of difficult-to-cut materials
JP2007021649A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in high-speed cutting of hard-to-cut material
JP2007030098A (en) Cutting tool made of surface coated cemented carbide having hard coarted layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007038374A (en) Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP2007144595A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007038386A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of hard-to-cut-material
JP4747709B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP4747710B2 (en) Surface-coated cermet cutting tool with excellent chipping resistance with hard coating layer in difficult-to-cut materials
JP2007038373A (en) Surface-coated cemented-carbide cutting tool with hard coating layer showing excellent chipping resistance in cutting difficult-to-cut material
JP2007038383A (en) Surface-coated cemented-carbide cutting tool with hard coating layer exerting excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007030067A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting material hard to cut
JP2007038377A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in high speed cutting of difficult-to-cut material
JP2007021665A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP2007021639A (en) Cutting tool made of surface coated cemented carbide having hard coated layer exhibiting excellent chipping resistance in cutting work of hard-to-cut material
JP2007038375A (en) Surface-coated cemented-carbide cutting tool with hard coating layer capable of showing excellent chipping resistance in cutting difficult-to-cut material
JP2010207915A (en) Surface coated cutting tool with hard coating layer exerting excellent chipping resistance and wear resistance in heavy cutting work of material to be cut having high welding performance

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108