JP2007038232A - Method for manufacturing metallic endless belt - Google Patents

Method for manufacturing metallic endless belt Download PDF

Info

Publication number
JP2007038232A
JP2007038232A JP2005222743A JP2005222743A JP2007038232A JP 2007038232 A JP2007038232 A JP 2007038232A JP 2005222743 A JP2005222743 A JP 2005222743A JP 2005222743 A JP2005222743 A JP 2005222743A JP 2007038232 A JP2007038232 A JP 2007038232A
Authority
JP
Japan
Prior art keywords
roller
load
rolling
measuring means
deviation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005222743A
Other languages
Japanese (ja)
Other versions
JP4475418B2 (en
Inventor
Koji Yamashiro
浩嗣 山城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005222743A priority Critical patent/JP4475418B2/en
Publication of JP2007038232A publication Critical patent/JP2007038232A/en
Application granted granted Critical
Publication of JP4475418B2 publication Critical patent/JP4475418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a metallic endless belt by which the variation in products and the generation of defective products are sufficiently prevented for a long term and the inspection of secular change of mechanical response automatically is performed without stopping the line. <P>SOLUTION: In the method of manufacturing a metallic endless belt of a desired size by winding a endless-shaped metallic belt material around between a fixed roller and a drawing roller, and the material is extended with the drawing roller while rolling the material with a rolling roller, the load response characteristics which are obtained from each load cell when the rolling roller and the drawing roller are moved at rolling and before the extending of the material is compared with the load response characteristics which are obtained from each load cell when each roller is similarly moved at the initial normal time, and each deviation between mutual characteristics is determined. The present work is performed under load control conditions corrected on the basis of the deviation. The correction is performed by taking the elements of the secular change such as slide resistance generated when the line is operated into consideration. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、CVT(Continuously Variable Transmission)ベルト等の金属製無端ベルトの製造方法に関するものである。   The present invention relates to a method for manufacturing a metal endless belt such as a CVT (Continuously Variable Transmission) belt.

従来、この種のベルトの製造方法としては、金属製無端ベルトの素材(無端状金属ベルト素材)の板幅又は板厚を、目標板幅又は目標板厚にするように張力制御し、その後、素材の周長を目標周長にするように張力を制御して、金属製無端ベルトの製造をする方法があった(特許文献1参照)。
しかし上述従来技術では、機械系パラメータが初期調整で最適化された値に固定されており、機械系の各構成要素から得られた荷重応答特性の経時的な変化について配慮されてなく、したがって、その変化が加工精度に影響して製品にばらつきが生じた。また、定期あるいは不定期の精度検査が行われるまで、製品不良が発見されず、不良品を多発するという問題点もあった。
そこで本出願人は、この種のベルトの製造において、所定加工回数毎に、検定用の荷重を与えて得られた応答特性を、初期正常時において得られた応答特性と比較して相互間のずれ量を求める検定を行い、次回検定時までの加工を、そのずれ量を補正する荷重制御条件に従って行うという方法を提供した。
Conventionally, as a manufacturing method of this type of belt, the tension control is performed so that the plate width or plate thickness of the metal endless belt material (endless metal belt material) becomes the target plate width or target plate thickness, There has been a method of manufacturing a metal endless belt by controlling the tension so that the circumference of the material becomes the target circumference (see Patent Document 1).
However, in the above-described conventional technology, the mechanical system parameter is fixed to the value optimized by the initial adjustment, and the change with time of the load response characteristic obtained from each component of the mechanical system is not taken into consideration. The change affected the machining accuracy, resulting in product variations. In addition, there is a problem that defective products are not found until regular or irregular accuracy inspections are performed, and defective products are frequently generated.
Therefore, in the manufacture of this type of belt, the applicant compared the response characteristics obtained by applying a load for verification at a predetermined number of times of processing with the response characteristics obtained at the initial normal time. We provided a method of performing verification to determine the amount of deviation, and performing processing up to the next verification according to load control conditions for correcting the amount of deviation.

特公平2−36321号公報JP-B-2-36321 特開2004−291050号公報JP 2004-291050 A

特許文献2に開示された発明によれば、製品のばらつきや不良品の発生を長期間に亘って防止できるという効果があるが、上記検定手法において未だ改善の余地があり、充分な効果を得るには限界があった。また、その効果の程度は検定を行う頻度に依存し、その検定は製造ラインを停止させて行うために生産性が低下した。更に、その検定は人為的に行うために、検定作業員の手間と時間とを要し、誤作業による製品のばらつきや不良品発生の虞もあった。   According to the invention disclosed in Patent Document 2, there is an effect that it is possible to prevent product variations and generation of defective products over a long period of time, but there is still room for improvement in the above-described verification method, and sufficient effects are obtained. There were limits. In addition, the degree of the effect depends on the frequency of performing the test, and the test is performed with the production line stopped, so the productivity is lowered. Further, since the verification is performed artificially, it takes labor and time for the verification operator, and there is a risk of product variations and defective products due to erroneous work.

本発明は、上記のような実情に鑑みなされたもので、製品のばらつきや不良品の発生を長期間に亘って充分に防止でき、また生産性を低下させず、検定作業に要する手間や時間、更には誤作業による製品のばらつきや不良品発生も皆無となる金属製無端ベルトの製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and can sufficiently prevent product variations and the occurrence of defective products over a long period of time, and does not reduce productivity, and labor and time required for verification work. It is another object of the present invention to provide a method for producing a metal endless belt that eliminates product variations and defective products due to erroneous work.

上記目的を達成するために、特許請求の範囲の請求項1に記載の発明は、固定ローラと引張りローラとの間に無端状金属ベルト素材を循環回送自在に巻き掛けておき、圧延ローラが前記固定ローラとの間で前記素材を圧延しつつ前記引張りローラが該素材を引き伸ばす加工を行って、所望の板幅及び/又は板厚を有する所望の周長の金属製無端ベルトを製造する方法において、前記圧延ローラ及び引張りローラに加わる荷重を各別に測定する圧延ローラ荷重測定手段及び引張りローラ荷重測定手段を備え、前記素材の圧延及び引き伸ばし前の前記圧延ローラ及び引張りローラの移動時の前記各測定手段から得られた荷重応答特性を、初期正常時における同様の前記各ローラの移動時の前記各測定手段から得られた荷重応答特性と各々比較して相互間の各ずれ量を求め、今回の加工を、該ずれ量に基づいて補正された荷重制御条件により行うことを特徴とする。
特許請求の範囲の請求項2に記載の発明は、固定ローラと引張りローラとの間に無端状金属ベルト素材を循環回送自在に巻き掛けておき、圧延ローラが前記固定ローラとの間で前記素材を圧延しつつ前記引張りローラが該素材を引き伸ばす加工を行って、所望の板幅及び/又は板厚を有する所望の周長の金属製無端ベルトを製造する方法において、前記圧延ローラ及び引張りローラに加わる荷重を各別に測定する圧延ローラ荷重測定手段及び引張りローラ荷重測定手段を備え、前記素材の圧延及び引き伸ばし後の前記圧延ローラ及び引張りローラの移動時の前記各測定手段から得られた荷重応答特性を、初期正常時における同様の前記各ローラの移動時の前記各測定手段から得られた荷重応答特性と各々比較して相互間の各ずれ量を求め、次回の加工を、該ずれ量に基づいて補正された荷重制御条件により行うことを特徴とする。
また、特許請求の範囲の請求項3に記載の発明は、上記請求項1又は2に記載の発明において、求められたずれ量が予め設定された閾値を超えたときにその旨を報知することを特徴とする。
In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention is characterized in that an endless metal belt material is wound around a fixed roller and a pulling roller so as to be freely circulated, and the rolling roller is In a method for producing a metal endless belt having a desired circumferential width and / or thickness by performing a process in which the tension roller stretches the material while rolling the material with a fixed roller. And a rolling roller load measuring means and a tension roller load measuring means for separately measuring the load applied to the rolling roller and the tension roller, and each measurement during the movement of the rolling roller and the tension roller before rolling and stretching of the material. The load response characteristics obtained from the respective means are compared with the load response characteristics obtained from the respective measurement means during the movement of the respective rollers in the initial normal state. Determine the respective deviation amounts of 互間, the current processing, and performs the corrected load control conditions based on the shift amount.
The invention according to claim 2 of the claims is characterized in that an endless metal belt material is wound around a fixed roller and a pulling roller so as to be freely circulated and the rolling roller is interposed between the fixed roller and the material. In the method for producing a metal endless belt having a desired circumferential width and / or thickness, the tension roller performs a process of stretching the material while rolling the material. A load response characteristic obtained from each measuring means during the movement of the rolling roller and the tension roller after rolling and stretching the material, comprising a rolling roller load measuring means and a tension roller load measuring means for measuring the applied load separately. Are respectively compared with the load response characteristics obtained from the respective measuring means during the movement of the respective rollers in the initial normal state, and the respective deviation amounts are obtained. The processing, and performs the corrected load control conditions based on the shift amount.
Further, in the invention described in claim 3 of the claims, in the invention described in claim 1 or 2, when the calculated deviation amount exceeds a preset threshold value, the fact is notified. It is characterized by.

特許請求の範囲の請求項1に記載の発明では、圧延ローラ及び引張りローラに加わる荷重を各別に測定する圧延ローラ荷重測定手段及び引張りローラ荷重測定手段を備え、素材の圧延及び引き伸ばし前の圧延ローラ及び引張りローラの移動時の各測定手段から得られた荷重応答特性を、初期正常時における同様の各ローラの移動時の各測定手段から得られた荷重応答特性と各々比較して相互間の各ずれ量を求め、今回の加工を、該ずれ量に基づいて補正された荷重制御条件により行うようにした。
特許請求の範囲の請求項2に記載の発明では、請求項1と同様の圧延ローラ荷重測定手段及び引張りローラ荷重測定手段を備える。そして、素材の圧延及び引き伸ばし後の圧延ローラ及び引張りローラの移動時の各測定手段から得られた荷重応答特性を、初期正常時における同様の各ローラの移動時の各測定手段から得られた荷重応答特性と各々比較して相互間の各ずれ量を求め、次回の加工を、該ずれ量に基づいて補正された荷重制御条件により行うようにした。
特許文献2に開示された発明では、経時的に変化する要素として、製造ライン運転時に生じる摺動抵抗等、例えば上記ローラの移動時にこれを案内するガイドと上記ローラの回転軸支持体との間の摺動抵抗は考慮されていなかった。しかし、請求項1,2に記載の発明によれば、このような摺動抵抗等も補正される、経時的に変化する要素に含まれることになり、したがって、製品のばらつきや不良品の発生を長期間に亘って充分に防止できる。また、請求項1,2に記載の発明によれば、機械系の各構成要素の経時的変化を補正するために行う、荷重応答特性のずれ量を求める検定に人為的な作業をなくした(自動化した)ので、検定作業に要する手間や時間、更には誤作業による製品のばらつきや不良品発生も皆無となる。上記検定は、製造ラインを運転したまま行われるので、製造ラインを停止させて行う方法に比べて生産性を高めることができる。
請求項1に記載の発明は、上記ずれ量を、素材の圧延及び引き伸ばし前の圧延ローラ及び引張りローラの移動時に求め、今回の加工を、該ずれ量に基づいて補正された荷重制御条件により行うものである。また、請求項2に記載の発明は、上記ずれ量を、素材の圧延及び引き伸ばし後の圧延ローラ及び引張りローラの移動時に求め、次回の加工を、該ずれ量に基づいて補正された荷重制御条件により行うものであって、両発明により、上記ずれ量を求める検定時期を、加工の前又は後のいずれにするかの選択が可能となる。
特許請求の範囲の請求項3に記載の発明によれば、請求項1に記載の発明において、求められたずれ量が予め設定された閾値を超えたとき(異常時)にその旨を報知するようにしたので、その異常を即座に、かつ低コストで知ることができる。
The invention according to claim 1 of the present invention includes a rolling roller load measuring means and a tension roller load measuring means for separately measuring loads applied to the rolling roller and the pulling roller, and the rolling roller before rolling and stretching the material. The load response characteristics obtained from each measuring means at the time of movement of the pulling roller are compared with the load response characteristics obtained from the respective measuring means at the time of initial normal movement, respectively. The amount of deviation was obtained, and the current machining was performed under load control conditions corrected based on the amount of deviation.
The invention according to claim 2 of the claims includes the same rolling roller load measuring means and pulling roller load measuring means as in the first aspect. Then, the load response characteristics obtained from each measuring means during the movement of the rolling roller and the pulling roller after rolling and stretching of the material, the load obtained from each measuring means during the movement of each similar roller in the initial normal state Each shift amount is obtained by comparing with each of the response characteristics, and the next processing is performed under the load control condition corrected based on the shift amount.
In the invention disclosed in Patent Document 2, as an element that changes with time, sliding resistance generated during operation of the production line, for example, between the guide that guides the roller when it moves and the rotating shaft support of the roller The sliding resistance was not considered. However, according to the first and second aspects of the invention, such sliding resistance is corrected and included in the element that changes over time, and therefore, variations in products and occurrence of defective products are caused. Can be sufficiently prevented over a long period of time. In addition, according to the first and second aspects of the present invention, human labor is eliminated in the test for obtaining the deviation amount of the load response characteristic, which is performed in order to correct the change with time of each component of the mechanical system ( This eliminates the labor and time required for the verification work, and also eliminates product variations and defective products due to erroneous work. Since the test is performed while the production line is in operation, productivity can be improved as compared with a method in which the production line is stopped.
In the first aspect of the present invention, the deviation amount is obtained when the rolling roller and the pulling roller are moved before rolling and stretching the material, and the current machining is performed under a load control condition corrected based on the deviation amount. Is. Further, the invention according to claim 2 is the load control condition in which the deviation amount is obtained when the rolling roller and the pulling roller are moved after rolling and stretching the material, and the next processing is corrected based on the deviation amount. According to the two inventions, it is possible to select whether the test time for obtaining the deviation amount is before or after the processing.
According to the invention described in claim 3 of the scope of claims, in the invention described in claim 1, when the calculated deviation amount exceeds a preset threshold value (at the time of abnormality), the fact is notified. As a result, the abnormality can be known immediately and at a low cost.

以下、本発明の実施の形態を図面に基づき説明する。なお、各図間において、同一符号は同一又は相当部分を示す。
図1は、本発明による金属製無端ベルトの製造方法の一実施形態の説明図である。
この図において、1は無端状金属ベルト素材であり、固定ローラ2と引張りローラ3との間に循環回送自在に巻き掛けられている。
圧延ローラ4は、上記固定ローラ2との間で上記無端状金属ベルト素材1を圧延する径大のローラである。この圧延ローラ4は、圧延ローラ回転用モータ5によって回転され、また、圧延モータ6によってそのローラ面を上記固定ローラ2のローラ面側(矢印イ方向)に所望の力で加圧可能である。圧延ロードセル7は、圧延ローラ4の矢印イ方向への加圧力(圧延荷重)測定手段である。
引張りモータ8は、引張りローラ3に対して、固定ローラ2側とは反対側(矢印ロ方向)に所望の力で引っ張り、無端状金属ベルト素材1を引き伸ばすための張力を付与するモータである。また、引張りロードセル9は、上記引張りローラ3の矢印ロ方向への張力(引張り荷重)測定手段である。リニアゲージ10は、無端状金属ベルト素材1の周長測定用の測定手段である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol shows the same or an equivalent part between each figure.
FIG. 1 is an explanatory view of an embodiment of a method for producing a metal endless belt according to the present invention.
In this figure, reference numeral 1 denotes an endless metal belt material, which is wound around a fixed roller 2 and a pulling roller 3 so as to be freely circulated.
The rolling roller 4 is a large-diameter roller that rolls the endless metal belt material 1 with the fixed roller 2. The rolling roller 4 is rotated by a rolling roller rotating motor 5, and the roller surface of the rolling roller 6 can be pressed with a desired force to the roller surface side (in the direction of arrow A) of the fixed roller 2. The rolling load cell 7 is a means for measuring the pressing force (rolling load) of the rolling roller 4 in the direction of arrow A.
The pulling motor 8 is a motor that pulls the pulling roller 3 with a desired force on the side opposite to the fixed roller 2 side (in the direction of arrow B) and applies a tension for stretching the endless metal belt material 1. The tension load cell 9 is means for measuring the tension (tensile load) of the tension roller 3 in the direction of arrow B. The linear gauge 10 is a measuring means for measuring the circumference of the endless metal belt material 1.

演算・制御装置12は、無端状金属ベルト素材1を所望の板幅及び/又は板厚を有する所望の周長の金属製無端ベルトに加工(金属製無端ベルトを製造)するために、各モータ5,6,8等を予め設定された値(初期設定値)に従って制御する装置である。
この演算・制御装置12は、図1に示す構成各部(構成要素)における機械系の特性の経時的変化に起因する同構成各部から得られた荷重応答特性の経時的変化を加工毎(各加工回)に検定し、その結果求められたずれ量に基づいて補正する機能も備える。
各機能は、内蔵する制御プログラムが、メモリに記録された各種パラメータ等のデータや、ロードセル7,9、リニアゲージ10等からの出力信号(測定値)を参照して実行されることにより実現される。
In order to process the endless metal belt material 1 into a metal endless belt having a desired peripheral width and / or thickness (manufacturing a metal endless belt), the arithmetic / control device 12 It is a device that controls 5, 6, 8, etc. according to a preset value (initial setting value).
This calculation / control device 12 determines the change over time in the load response characteristic obtained from each part of the configuration due to the change over time of the mechanical system characteristics in each part (component) shown in FIG. And a function of correcting based on the amount of deviation obtained as a result.
Each function is realized by executing a built-in control program with reference to data such as various parameters recorded in the memory and output signals (measured values) from the load cells 7 and 9, the linear gauge 10, and the like. The

図1に示す構成において、固定ローラ2と引張りローラ3との間に巻き掛けられた無端状金属ベルト素材1は、同ローラ2,3間において循環回送中に、モータ5により回転されている圧延ローラ4がモータ6により矢印イ方向に加圧されると共に、モータ8により矢印ロ方向に引っ張られる。
この際、圧延荷重、引張り荷重及び無端状金属ベルト素材1の周長は、ロードセル7,9及びリニアゲージ10からの信号を受けた演算・制御装置12によって測定され、無端状金属ベルト素材1は所望の板幅及び/又は板厚を有する所望の周長の金属製無端ベルトに加工(金属製無端ベルトが製造)される。
上述したように、基本的なベルト製造工程は、従来技術と大きく変わるところはないが、本実施形態においては、それに加え、各加工回毎に荷重応答特性の自動検定(ずれ量を求める自動検定)を行い、初期正常時に得られた荷重応答特性との間に予め決められた値を超えるずれが生じている場合に、そのずれを補正するようにした。
In the configuration shown in FIG. 1, an endless metal belt material 1 wound between a fixed roller 2 and a pulling roller 3 is rolled by a motor 5 while being circulated between the rollers 2 and 3. The roller 4 is pressurized in the direction of arrow A by the motor 6 and is pulled by the motor 8 in the direction of arrow B.
At this time, the rolling load, the tensile load, and the circumferential length of the endless metal belt material 1 are measured by the calculation / control device 12 that receives signals from the load cells 7 and 9 and the linear gauge 10, and the endless metal belt material 1 is It is processed into a metal endless belt having a desired peripheral width and / or a desired thickness (manufactured by a metal endless belt).
As described above, the basic belt manufacturing process is not significantly different from that of the prior art, but in this embodiment, in addition to this, an automatic verification of load response characteristics (automatic verification for obtaining a deviation amount) at each processing time. ), And when there is a deviation exceeding a predetermined value with the load response characteristic obtained at the initial normal time, the deviation is corrected.

以下このずれ補正につき、図2のフローチャートを併用して説明する。
図2における各処理(ここではステップ21,33を除く)は、ロードセル7,9からの測定値を受けた演算・制御装置12が実行し、あるいは実行させる。
すなわち、演算・制御装置12は、ステップ21で無端状金属ベルト素材1を製造ラインに投入すると、具体的には、同素材1が固定ローラ2と引張りローラ3との間に循環回送自在に巻き掛けられたこと(加工準備の完了)を確認すると、ステップ22を実行する。加工準備完了の確認は、例えば加工開始のスイッチON信号等が入力されることにより行われる。
This deviation correction will be described below with reference to the flowchart of FIG.
Each processing in FIG. 2 (excluding steps 21 and 33 here) is executed or executed by the arithmetic / control device 12 that has received the measurement values from the load cells 7 and 9.
That is, when the computing / control device 12 puts the endless metal belt material 1 into the production line in step 21, specifically, the material 1 is wound between the fixed roller 2 and the pulling roller 3 so as to be freely circulated and circulated. If it is confirmed that it has been applied (completion of processing preparation), step 22 is executed. Confirmation of machining preparation completion is performed, for example, when a machining start switch ON signal or the like is input.

ステップ22では、一定パターン(予め決められている一定の速度パターン)の早送りにて引張りローラ3を移動する。
ここで「早送り」とは、上記加工準備の完了後、実際に加工を行う〔張力(引張り荷重)を与える〕前に、実際の加工時よりも早い速度でその加工を行う位置まで引張りローラ3を移動することをいう。
ステップ22で行っている早送りが継続する一定時間、ロードセル9の出力信号波形、すなわち検定用の張力測定信号波形(引張り荷重応答特性)は測定され、演算・制御装置12内のメモリに記録される(ステップ23参照)。
In step 22, the pulling roller 3 is moved by rapid feed of a constant pattern (a constant speed pattern determined in advance).
Here, “rapid feed” refers to the tension roller 3 up to a position where the processing is performed at a speed higher than that during the actual processing before the processing is actually performed [giving a tension (tensile load)] after the preparation for the processing is completed. To move.
The output signal waveform of the load cell 9, that is, the tension measurement signal waveform for test (tensile load response characteristic) is measured and recorded in the memory in the arithmetic / control device 12 for a certain period of time in which the fast-forwarding performed in step 22 continues. (See step 23).

ステップ24では、一定パターン(予め決められている一定の速度パターン)の早送りにて圧延ローラ4を移動する。
ここでの「早送り」は、上記加工準備の完了後、実際に加工を行う〔加圧力(圧延荷重)を与える〕前に、実際の加工時よりも早い速度でその加工を行う位置まで圧延ローラ4を移動することをいう。
ステップ24で行っている早送りが継続する一定時間、ロードセル7の出力信号波形、すなわち検定用の加圧力測定信号波形(圧延荷重応答特性)は測定され、演算・制御装置12内のメモリに記録される(ステップ25参照)。
In step 24, the rolling roller 4 is moved by rapid feed of a constant pattern (a constant speed pattern determined in advance).
Here, “fast forward” refers to the rolling roller up to the position where the machining is performed at a faster speed than the actual machining before the machining is actually performed (applying a pressing force (rolling load)) after the completion of the machining preparation. 4 is to move.
The output signal waveform of the load cell 7, that is, the pressure measurement signal waveform (rolling load response characteristic) for verification is measured for a certain period of time during which fast-forwarding performed in step 24 continues, and is recorded in the memory in the arithmetic / control device 12. (See step 25).

ステップ26では、初期正常時に、ステツプ22,24と同様に移動して得られ、記録しておいたロードセル7,9の出力信号波形、すなわち基準用の張力測定信号波形及び加圧力測定信号波形(引張り荷重応答特性及び圧延荷重応答特性)を読み出す。
そして、上記検定用の張力測定信号波形を基準用の張力測定信号波形と比較すると共に、検定用の加圧力測定信号波形を基準用の加圧力測定信号波形と比較し、各々相互間に生じた所定の項目(制御対象項目)についてのずれ量を求める。
In step 26, during the initial normal state, the output signal waveforms of the load cells 7 and 9 which are obtained and recorded in the same manner as in steps 22 and 24, that is, the reference tension measurement signal waveform and the applied pressure measurement signal waveform ( Read the tensile load response characteristics and rolling load response characteristics).
Then, the test tension measurement signal waveform is compared with the reference tension measurement signal waveform, and the test pressure measurement signal waveform is compared with the reference pressure measurement signal waveform, which are generated between each other. The deviation amount for a predetermined item (control target item) is obtained.

ステップ27では、ステップ26で求められたずれ量(今回の加工に際して求められたずれ量:今回ずれ量)から前回の加工に際して求められたずれ量(前回ずれ量)を引算した値が第1閾値を超えるか否かを判定する。この判定の結果がYesであればステップ28を実行し、Noであればステップ29を実行する。なお第1閾値は、所望の加工精度に応じて決められる許容値に基づき設定されている。   In step 27, the value obtained by subtracting the deviation amount (previous deviation amount) obtained in the previous machining from the deviation amount obtained in step 26 (deviation amount obtained in the current machining: current deviation amount) is the first value. It is determined whether or not the threshold value is exceeded. If the result of this determination is Yes, step 28 is executed, and if it is No, step 29 is executed. Note that the first threshold value is set based on an allowable value determined according to desired processing accuracy.

ステップ28では、今回ずれ量を元に、加工で用いる荷重制御条件及びロードセル測定値の補正関数を更新する。
すなわち、今回ずれ量が第1閾値を超えた場合には、その今回ずれ量に基づき、それ(今回ずれ量)を補正する荷重制御条件を演算する。また、加工中においてロードセル7,9の出力信号値から同加工中の実圧延力、実引張り力を予測し、各予測値で上記補正演算後の荷重制御条件(加工荷重値)を制御して加工を進行させるための新たな荷重予測式を上記の今回ずれ量に基づいて求め、更新する。
In step 28, the load control condition used in the machining and the correction function for the load cell measurement value are updated based on the current deviation amount.
That is, when the current deviation amount exceeds the first threshold value, a load control condition for correcting it (current deviation amount) is calculated based on the current deviation amount. Also, during the processing, the actual rolling force and the actual tensile force during the processing are predicted from the output signal values of the load cells 7 and 9, and the load control condition (processing load value) after the correction calculation is controlled by each predicted value. A new load prediction formula for advancing the processing is obtained and updated based on the current deviation amount.

ステップ29では、今回ずれ量が、予め設定された第2閾値(例えば初期正常時からのずれ量が累積して一定値を超えた場合におけるその一定値)以下か否かを判定し、この判定結果がYesであればステップ30を実行し、Noであればステップ34を実行する。
ステップ30では、ステップ28で更新した荷重制御条件及び荷重予測式を用いて加工を行う。すなわち、第1閾値を超える今回ずれ量を補正する荷重制御条件を演算し、得られた荷重制御条件により荷重制御を行い、加工を行う。この際、上記荷重予測式により、ロードセル7,9の出力信号値から加工中の実圧延力、実引張り力を予測し、各予測値を用いて上記補正演算後の荷重制御条件、つまり加工荷重値(圧延荷重値、引張り荷重値)の制御がなされ、その制御後の加工荷重値によって加工が行われる。
具体的には、上記補正演算後の加工荷重値を目標値とし、各予測値に基づいて作成されたフィードバック信号を用いて荷重制御を行い、加工が行われる。単純に、各予測値に基づいて作成した加工荷重値を補正演算後の加工荷重値として用いて荷重制御を行い、加工を行うようにしてもよい。
ステップ28で補正処理がされていなければ、つまり、今回ずれ量が第1閾値を超えていない場合であって、かつ、ステップ29で今回ずれ量が第2閾値以下であると判定された場合には、前回の補正(更新)演算後の荷重制御条件及び荷重予測式を用いて上述と同様に荷重制御を行い加工を行う。
In step 29, it is determined whether or not the current deviation amount is equal to or less than a preset second threshold value (for example, the constant value when the deviation amount from the initial normal time is accumulated and exceeds a certain value). If the result is Yes, step 30 is executed, and if it is No, step 34 is executed.
In step 30, processing is performed using the load control condition and the load prediction formula updated in step. That is, a load control condition for correcting the current deviation amount exceeding the first threshold value is calculated, the load control is performed according to the obtained load control condition, and machining is performed. At this time, the actual rolling force and the actual tensile force during processing are predicted from the output signal values of the load cells 7 and 9 by the load prediction formula, and the load control condition after the correction calculation, that is, the processing load is calculated using each predicted value. The values (rolling load value, tensile load value) are controlled, and processing is performed by the processed load value after the control.
Specifically, the machining load value after the correction calculation is set as a target value, and load control is performed using a feedback signal created based on each predicted value, and machining is performed. Simply, machining may be performed by performing load control using the machining load value created based on each predicted value as the machining load value after the correction calculation.
If correction processing is not performed in step 28, that is, if the current deviation amount does not exceed the first threshold value, and if it is determined in step 29 that the current deviation amount is equal to or smaller than the second threshold value. Uses the load control condition and the load prediction formula after the previous correction (update) calculation to perform load control in the same manner as described above.

ステップ31では早送りで引張りローラ3を移動する。
ここで「早送り」とは、実際に加工を行った〔張力(引張り荷重)を与えた〕後に、その実際の加工時よりも早い速度で加工前の位置まで引張りローラ3を移動する(戻す)ことをいう。
ステップ32では早送りで圧延ローラ4を移動する。
ここでの「早送り」は、実際に加工を行った〔加圧力(圧延荷重)を与えた〕後に、その実際の加工時よりも早い速度で加工前の位置まで圧延ローラ4を移動する(戻す)ことをいう。
ステップ33では、製品(加工済みの金属製無端ベルト)を取り出し、その後、処理を終了(正常終了)する。
ステップ34では、ステップ29における判定結果がNo、つまり今回ずれ量が第2閾値を超える異常が発生したとして、その旨を報知し、その後、処理を終了(異常終了)する。報知は、ランプ、ブザー等で行われる。
In step 31, the pulling roller 3 is moved at a rapid feed.
Here, “rapid feed” refers to the movement of the pulling roller 3 to the position before processing (return) at a speed higher than that during the actual processing after the actual processing is performed (tension (tensile load) is given). That means.
In step 32, the rolling roller 4 is moved by rapid feed.
Here, “rapid feed” moves (returns) the rolling roller 4 to a position before processing at a faster speed than that during actual processing after applying the processing (giving a pressing force (rolling load)). )
In step 33, the product (processed metal endless belt) is taken out, and then the processing is terminated (normal termination).
In step 34, it is notified that the determination result in step 29 is No, that is, an abnormality in which the current deviation amount exceeds the second threshold has occurred, and then the process is terminated (abnormal termination). The notification is performed by a lamp, a buzzer or the like.

以上述べたステップ21〜34の処理が加工毎に繰り返されることによって、各加工回毎に荷重応答特性の自動検定(ずれ量を求める自動検定)及びこの検定結果に基づくずれ補正が行われる。
これによれば、製品のばらつきや不良品の発生を長期間に亘って充分に防止できるようになる。特に、検定、補正が自動で行われることによっては、検定、補正作業に要する手間や時間、更には誤作業による製品のばらつきや不良品発生も皆無となる。また検定、補正は、製造ラインを運転したまま行われるので、製造ラインを停止させて行う方法に比べて生産性を高めることができる。
また、ステップ34において、ずれ量が予め設定された第2閾値を超えたとき(異常時)にその旨を報知するようにしたので、その異常を即座に、かつ低コストで知ることができる。
By repeating the processes of steps 21 to 34 described above for each processing, automatic verification of load response characteristics (automatic verification for determining the amount of deviation) and deviation correction based on the result of this examination are performed for each machining time.
According to this, it becomes possible to sufficiently prevent variations in products and generation of defective products over a long period of time. In particular, automatic verification and correction eliminates the labor and time required for verification and correction, and eliminates product variations and defective products due to erroneous operations. Further, since the verification and correction are performed while the production line is in operation, productivity can be improved as compared with a method in which the production line is stopped.
Further, in step 34, when the deviation amount exceeds the preset second threshold value (at the time of abnormality), the fact is notified, so that the abnormality can be known immediately and at low cost.

次に、上記制御対象項目の具体例について図3〜図5を参照して説明する。
図3(パターン301)は、図2中のステップ22又は24におけるローラ3又は4、ここではステップ22における引張りローラ3の早送り(移動)の際の速度パターンを示し、各加工毎に、ステップ22においてこの同じ早送り速度パターン301を用いて早送りを行う。図3中、t0は引張りローラ3の早送り移動開始時点、tnは同じく早送り移動終了時点、t1〜tn-1はt0〜tn間において引張りローラ3が一定速度で早送り移動している期間を示す。後掲図4及び図5も同様である。
製造ライン運転時に生じる摺動抵抗等、例えばローラ3の移動時にこれを案内するガイド(図示せず)とローラ3の回転軸支持体(図示せず)との間の摺動抵抗等の機械系の各構成要素の経時的変化が大きくなり、同各構成要素の応答特性が変化すると、同じ速度パターン301を維持するためにモータ8の発生トルクが変化する。この変化(荷重応答変化)をロードセル9で検出する。
図4(波形401)は、初期正常時における図2中のステップ22において、図3に示す早送り速度パターン301で引張りローラ3を早送りしたときの同ステップ23におけるロードセル9の出力信号波形、つまり張力測定信号波形(初期正常時の引張り荷重応答ft)を示す。
図5は(波形501)は、今回(各加工回)における図2中のステップ22において、図3に示す早送り速度パターン301で引張りローラ3を早送りしたときの同ステップ23におけるロードセル9の出力信号波形、つまり張力測定信号波形(今回の引張り荷重応答ft)を示す。
Next, specific examples of the control target items will be described with reference to FIGS.
FIG. 3 (pattern 301) shows a speed pattern at the time of rapid feed (movement) of the roller 3 or 4 in step 22 or 24 in FIG. 2, here, the tension roller 3 in step 22. The fast forward speed pattern 301 is used to perform fast feed. In FIG. 3, t0 is the start point of the fast feed movement of the pulling roller 3, tn is the end point of the fast feed movement, and t1 to tn-1 are periods during which the pulling roller 3 is moving at a constant speed between t0 and tn. The same applies to FIGS. 4 and 5 described later.
Mechanical system such as a sliding resistance generated during operation of the production line, for example, a sliding resistance between a guide (not shown) for guiding the roller 3 when it is moved and a rotating shaft support (not shown) of the roller 3 When the change over time of each of the components increases and the response characteristics of the components change, the torque generated by the motor 8 changes in order to maintain the same speed pattern 301. This change (load response change) is detected by the load cell 9.
FIG. 4 (waveform 401) shows the output signal waveform of the load cell 9 at step 23 when the pulling roller 3 is fast-fed at the fast feed speed pattern 301 shown in FIG. The measurement signal waveform (tensile load response ft at normal initial stage) is shown.
FIG. 5 (waveform 501) shows the output signal of the load cell 9 in step 23 when the pulling roller 3 is fast-fed at the fast-feed speed pattern 301 shown in FIG. 3 in step 22 in FIG. A waveform, that is, a tension measurement signal waveform (current tensile load response ft) is shown.

上記荷重応答ftは評価式frkで評価され、区間荷重評価値が求められる。
ここで、上記評価式frkは荷重応答ftの時間tk-1からtkの間の平均値を求める等の関数である。
図4中の区間荷重評価値f0k(k=1〜n)、図5中の区間荷重評価値f1k(k=1〜n)は、下式(1),(2)に示すように時間tk-1からtkの間の荷重応答ftを評価式frkで評価した値である。
f0k=frk(ft,tk-1,tk) …(1)
f1k=frk(ft,tk-1,tk) …(2)
そして、図2中のステップ26のずれ量d、すなわち初期正常時と今回の両引張り荷重応答ft間のずれ量dは、上式(1),(2)で求まる区間荷重評価値f0k,f1kから区間ずれ量dk=f1k-f0kを求め、それぞれの区間ずれ量dk(k=1〜n)から、評価関数fdnを用いて早送り時全体の荷重応答のずれ量を表す値としたもので、次式(3)のように求める。
d=fdn(d1,d2,…,dn) …(3)
このずれ量dは、図2中のステップ27の今回ずれ量(次回加工時における前回ずれ量)及び同ステップ29の今回ずれ量に用いられる。
The load response ft is evaluated by the evaluation formula frk to obtain a section load evaluation value.
Here, the evaluation formula frk is a function for obtaining an average value of the load response ft between times tk-1 and tk.
The section load evaluation value f0k (k = 1 to n) in FIG. 4 and the section load evaluation value f1k (k = 1 to n) in FIG. 5 are expressed as time tk as shown in the following equations (1) and (2). This is a value obtained by evaluating the load response ft between -1 and tk using the evaluation formula frk.
f0k = frk (ft, tk-1, tk) (1)
f1k = frk (ft, tk-1, tk) (2)
Then, the deviation d in step 26 in FIG. 2, that is, the deviation d between the initial normal state and the current tensile load response ft is the section load evaluation values f0k and f1k obtained by the above equations (1) and (2). From the section deviation amount dk = f1k-f0k, from each section deviation amount dk (k = 1 to n), using the evaluation function fdn as a value representing the deviation amount of the entire load response at the time of rapid feed, It calculates | requires like following Formula (3).
d = fdn (d1, d2, ..., dn) (3)
This deviation amount d is used as the current deviation amount at step 27 in FIG. 2 (previous deviation amount at the next machining) and the current deviation amount at step 29.

図2中のステップ28の荷重制御条件を表す加工パラメータP1〜Pmは、同ステップ26で求めた区間ずれ量dkを引数とする関数fmを用いて次式(4)のように演算される。
Pm=fm(d1,d2,…,dn) …(4)
この加工パラメータP1〜Pmによる新たな加工パターンを作成(加工パターンを補正)し、この加工パターンを荷重制御条件として用いることで、ずれ量dを補正した加工が行われる(同ステップ30参照)。
また、加工実行中においては、ロードセル9で測定された荷重値(実引張り力)Finと図2中のステップ26で求めた区間ずれ量dkを引数とする関数(荷重予測式)fc(Fin,d1,d2,…,dn)を用い、次式(5)のように加工荷重予測値(実引張り力予測値)Fcを求める。
Fc=fc(Fin,d1,d2,…,dn) …(5)
そして、求められたこの加工荷重予測値Fcを用いて、上述した新たな加工パターンによる荷重制御条件の制御、つまり加工荷重値の操作がなされ、その操作後の加工荷重値で荷重制御することにより、ずれ量dを補正した(ずれをなくした)加工が行われる(同ステップ30参照)。
The machining parameters P1 to Pm representing the load control conditions in step 28 in FIG. 2 are calculated as shown in the following equation (4) using the function fm having the section deviation amount dk obtained in step 26 as an argument.
Pm = fm (d1, d2,…, dn) (4)
A new machining pattern with the machining parameters P1 to Pm is created (the machining pattern is corrected), and the machining pattern is used as a load control condition, thereby performing machining with the deviation d corrected (see step 30).
Further, during processing, a function (load prediction formula) fc (Fin, Fin, a load value (actual tensile force) Fin measured by the load cell 9 and an interval deviation dk obtained in step 26 in FIG. d1, d2,..., dn) are used to obtain a predicted processing load (actual tensile force prediction value) Fc as shown in the following equation (5).
Fc = fc (Fin, d1, d2, ..., dn) (5)
Then, using this calculated processing load predicted value Fc, the control of the load control condition by the new processing pattern described above, that is, the processing load value is operated, and the load control is performed by the processing load value after the operation. Then, a process is performed in which the shift amount d is corrected (the shift is eliminated) (see step 30).

以上は、引張りローラ3に係る荷重制御条件(ずれ量d)の補正の場合について述べたが、圧延ローラ4についても上述した引張りローラ3における場合と同様に荷重制御条件(ずれ量d)の制御が行われ、ずれ量dを補正した加工が行われる。
この場合、図3は、図2中のステップ24における圧延ローラ4の早送りの際の速度パターンに相当する。また図4は、初期正常時における図2中のステップ24において、図3に示す速度パターンで圧延ローラ4を早送りしたときの同ステップ25におけるロードセル7の出力信号波形、つまり初期正常時の圧延荷重応答に相当する。更に図5は、今回(各加工回)における図2中のステップ24において、図3に示す速度パターンで圧延ローラ4を早送りしたときの同ステップ25におけるロードセル7の出力信号波形、つまり今回の圧延荷重応答に相当する。
The above has described the case of correcting the load control condition (deviation amount d) related to the pulling roller 3, but the control of the load control condition (deviation amount d) is also applied to the rolling roller 4 as in the case of the pulling roller 3 described above. Is performed, and processing with the shift amount d corrected is performed.
In this case, FIG. 3 corresponds to a speed pattern at the time of rapid feed of the rolling roller 4 in step 24 in FIG. FIG. 4 shows the output signal waveform of the load cell 7 in step 25 when the rolling roller 4 is fast-fed at the speed pattern shown in FIG. 3 in step 24 in FIG. 2 at the initial normal state, that is, the rolling load in the initial normal state. Corresponds to response. Further, FIG. 5 shows the output signal waveform of the load cell 7 in the same step 25 when the rolling roller 4 is fast-fed at the speed pattern shown in FIG. 3 in step 24 in FIG. Corresponds to load response.

なお、本発明においては、上述実施例に対して次のような変形例が実施可能である。
すなわち、圧延ロードセル及び引張りロードセルによって測定される荷重値(荷重応答特性)の代用として、圧延モータ、引張りモータの各発生トルク値を用いてもよい。
また、引張りローラ、圧延ローラの移動時に、これを案内する各ガイド及びローラ回転軸支持体(図示せず)との間に新たにロードセルを設置し、その荷重応答を圧延ロードセル及び引張りロードセルによって測定される荷重値(荷重応答特性)の代用としてもよい。
荷重制御条件及び荷重予測式の補正(ずれ補正)を、前回補正を実施したときのずれ量と、今回加工時のずれ量の差が第1閾値を超えたときではなく、加工毎(各加工回)毎に行うようにしてもよい。また、荷重応答特性の自動検定(ずれ量を求める自動検定)及びこの検定結果に基づくずれ補正を所定の加工回数毎に行うようにしてもよい。
更に、荷重応答特性の自動検定及びこの検定結果に基づくずれ補正の時期を、引張りローラ、圧延ローラの加工前の移動時ではなく、加工後の移動時(戻し移動時)等、加工前以外の移動時としてもよい。加工後の移動時(戻し移動時)とした場合には、ずれ補正された荷重制御条件による加工は次回の加工時以降となる。
In the present invention, the following modifications can be made to the above embodiment.
That is, the generated torque values of the rolling motor and the tension motor may be used as a substitute for the load value (load response characteristic) measured by the rolling load cell and the tension load cell.
Also, when the tension roller and rolling roller are moved, a load cell is newly installed between each guide for guiding the roller and the roller rotating shaft support (not shown), and the load response is measured by the rolling load cell and the tension load cell. It is good also as a substitute of the load value (load response characteristic) to be performed.
The load control condition and load prediction formula correction (deviation correction) is not performed when the difference between the deviation amount when the previous correction is performed and the deviation amount during the current machining exceeds the first threshold value (each machining) It may be performed every time. Further, automatic verification of load response characteristics (automatic verification for obtaining a deviation amount) and deviation correction based on the verification result may be performed every predetermined number of machining operations.
Furthermore, the automatic verification of load response characteristics and the timing of deviation correction based on this verification result are not performed when the tension roller or rolling roller is moved before processing, but when it is moved after processing (during return movement). It is also possible to move. In the case of the time of movement after machining (at the time of return movement), machining based on the load control condition whose deviation has been corrected is after the next machining.

本発明方法の一実施形態の説明図である。It is explanatory drawing of one Embodiment of the method of this invention. 同上方法におけるずれ補正を説明するためのフローチャートである。It is a flowchart for demonstrating the shift | offset | difference correction in a method same as the above. 同じくローラの早送り速度パターンを示す図である。It is a figure which similarly shows the rapid feed speed pattern of a roller. 同じく初期正常時の引張り荷重応答を示す波形図である。It is a wave form diagram which similarly shows the tensile load response at the time of initial normal. 同じく今回加工時の引張り荷重応答を示す波形図である。It is a wave form diagram which similarly shows the tensile load response at the time of a process this time.

符号の説明Explanation of symbols

1:無端状金属ベルト素材、2:固定ローラ、3:引張りローラ、4:圧延ローラ、5,6,8:モータ、7:圧延ロードセル(圧延ローラ荷重測定手段)、9:引張りロードセル(引張りローラ荷重測定手段)、12:演算・制御装置。
1: endless metal belt material, 2: fixed roller, 3: tension roller, 4: rolling roller, 5, 6, 8: motor, 7: rolling load cell (rolling roller load measuring means), 9: tensioning load cell (tensioning roller) Load measuring means), 12: calculation / control device.

Claims (3)

固定ローラと引張りローラとの間に無端状金属ベルト素材を循環回送自在に巻き掛けておき、圧延ローラが前記固定ローラとの間で前記素材を圧延しつつ前記引張りローラが該素材を引き伸ばす加工を行って、所望の板幅及び/又は板厚を有する所望の周長の金属製無端ベルトを製造する方法において、
前記圧延ローラ及び引張りローラに加わる荷重を各別に測定する圧延ローラ荷重測定手段及び引張りローラ荷重測定手段を備え、
前記素材の圧延及び引き伸ばし前の前記圧延ローラ及び引張りローラの移動時の前記各測定手段から得られた荷重応答特性を、初期正常時における同様の前記各ローラの移動時の前記各測定手段から得られた荷重応答特性と各々比較して相互間の各ずれ量を求め、今回の加工を、該ずれ量に基づいて補正された荷重制御条件により行うことを特徴とする金属製無端ベルトの製造方法。
An endless metal belt material is wrapped around a fixed roller and a pulling roller so as to be freely circulated, and the pulling roller stretches the material while the rolling roller rolls the material with the fixed roller. In a method for producing a metal endless belt having a desired circumference and having a desired plate width and / or thickness,
A rolling roller load measuring means and a tensile roller load measuring means for measuring the load applied to the rolling roller and the pulling roller separately;
The load response characteristics obtained from the respective measuring means during the movement of the rolling roller and the pulling roller before rolling and stretching of the material are obtained from the respective measuring means during the movement of the respective rollers in the initial normal state. A method for manufacturing a metal endless belt, wherein each deviation amount is obtained by comparing with each of the obtained load response characteristics, and the current machining is performed under a load control condition corrected based on the deviation amount .
固定ローラと引張りローラとの間に無端状金属ベルト素材を循環回送自在に巻き掛けておき、圧延ローラが前記固定ローラとの間で前記素材を圧延しつつ前記引張りローラが該素材を引き伸ばす加工を行って、所望の板幅及び/又は板厚を有する所望の周長の金属製無端ベルトを製造する方法において、
前記圧延ローラ及び引張りローラに加わる荷重を各別に測定する圧延ローラ荷重測定手段及び引張りローラ荷重測定手段を備え、
前記素材の圧延及び引き伸ばし後の前記圧延ローラ及び引張りローラの移動時の前記各測定手段から得られた荷重応答特性を、初期正常時における同様の前記各ローラの移動時の前記各測定手段から得られた荷重応答特性と各々比較して相互間の各ずれ量を求め、次回の加工を、該ずれ量に基づいて補正された荷重制御条件により行うことを特徴とする金属製無端ベルトの製造方法。
An endless metal belt material is wrapped around a fixed roller and a pulling roller so as to be freely circulated, and the pulling roller stretches the material while the rolling roller rolls the material with the fixed roller. In a method for producing a metal endless belt having a desired circumference and having a desired plate width and / or thickness,
A rolling roller load measuring means and a tensile roller load measuring means for measuring the load applied to the rolling roller and the pulling roller separately;
The load response characteristics obtained from the respective measuring means during the movement of the rolling roller and the pulling roller after the rolling and stretching of the material are obtained from the respective measuring means during the movement of the respective rollers in the initial normal state. A method for manufacturing a metal endless belt, wherein each deviation amount is obtained by comparing with each of the obtained load response characteristics, and the next processing is performed under a load control condition corrected based on the deviation amount .
求められたずれ量が予め設定された閾値を超えたときにその旨を報知することを特徴とする請求項1又は2に記載の金属製無端ベルトの製造方法。
The metal endless belt manufacturing method according to claim 1, wherein when the calculated deviation amount exceeds a preset threshold value, the fact is notified.
JP2005222743A 2005-08-01 2005-08-01 Method for producing metal endless belt Active JP4475418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222743A JP4475418B2 (en) 2005-08-01 2005-08-01 Method for producing metal endless belt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222743A JP4475418B2 (en) 2005-08-01 2005-08-01 Method for producing metal endless belt

Publications (2)

Publication Number Publication Date
JP2007038232A true JP2007038232A (en) 2007-02-15
JP4475418B2 JP4475418B2 (en) 2010-06-09

Family

ID=37796696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222743A Active JP4475418B2 (en) 2005-08-01 2005-08-01 Method for producing metal endless belt

Country Status (1)

Country Link
JP (1) JP4475418B2 (en)

Also Published As

Publication number Publication date
JP4475418B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP5581964B2 (en) Thickness control method in reverse rolling mill
KR20100005115A (en) Strip thickness control system for reverse rolling mill
KR102301336B1 (en) Variable width type roll-forming apparatus
KR101877341B1 (en) Method for aligning a straightening roller of a straightening roller system
CN110799277B (en) Stretch-bend straightening apparatus and method of actuating the same
KR101749018B1 (en) Flatness control device
WO2021106288A1 (en) Quality measurement method and quality measurement device
JP4475418B2 (en) Method for producing metal endless belt
JP5391646B2 (en) Winding machine pinch roll control method and apparatus
JP6295932B2 (en) Metal strip shape control method and shape control apparatus
JP2022508735A (en) How to make metal workpieces
US9109867B2 (en) Weld detecting method and weld detecting apparatus
JP6870359B2 (en) Arithmetic logic unit and arithmetic method
JP2010120047A (en) Method and device for controlling tension between rolling mills
WO2006106938A1 (en) Drawing/rolling control method
JP6870358B2 (en) Arithmetic logic unit and arithmetic method
JP2006007307A (en) Method for manufacturing steel plate
JP2004291050A (en) Method for manufacturing metal-made endless belt
JP3961533B2 (en) Evaluation method for rolls of long rolls
KR100929015B1 (en) Prediction of rolling load by calibrating plasticity factor of rolled material
JP6071500B2 (en) Rubber roller extrusion molding machine and rubber roller manufacturing method
KR100910491B1 (en) Method for decision of strip target shape using thickness profile
KR100325335B1 (en) Method for predicting roll force in cold rolling
JP6597565B2 (en) Thickness control method in cold rolling
RU2789317C2 (en) Method for assembly of tires and system for assembly of tires, intended, in particular, for winding tape

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080506

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090109

A131 Notification of reasons for refusal

Effective date: 20091104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20091225

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100217

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100302

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3