KR100325335B1 - Method for predicting roll force in cold rolling - Google Patents

Method for predicting roll force in cold rolling Download PDF

Info

Publication number
KR100325335B1
KR100325335B1 KR1019970033375A KR19970033375A KR100325335B1 KR 100325335 B1 KR100325335 B1 KR 100325335B1 KR 1019970033375 A KR1019970033375 A KR 1019970033375A KR 19970033375 A KR19970033375 A KR 19970033375A KR 100325335 B1 KR100325335 B1 KR 100325335B1
Authority
KR
South Korea
Prior art keywords
rolling
rolled
rolling mill
strain resistance
strain
Prior art date
Application number
KR1019970033375A
Other languages
Korean (ko)
Other versions
KR19990010569A (en
Inventor
이원호
Original Assignee
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항종합제철 주식회사 filed Critical 포항종합제철 주식회사
Priority to KR1019970033375A priority Critical patent/KR100325335B1/en
Publication of KR19990010569A publication Critical patent/KR19990010569A/en
Application granted granted Critical
Publication of KR100325335B1 publication Critical patent/KR100325335B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/006Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/221Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by cold-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/02Transverse dimensions
    • B21B2261/04Thickness, gauge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2261/00Product parameters
    • B21B2261/20Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE: A method for predicting roll force in cold rolling is provided to obtain products of high quality by not using values measured at an ordinary temperature, but using values measured at about 200 deg.C that is an actual rolling temperature as strain resistance values of a metallic material applied. CONSTITUTION: In controlling a rolling mill using an ordinary setup model applied AGC (automatic gauge controller) system so that thickness error of a strip rolled in cold rolling process is within the allowable range, the method for predicting roll force in cold rolling comprises the steps of obtaining a strain resistance prediction equation represented as in the following expression 3 through regression analysis method using strain resistance measured values of a concerned material according to the test results after performing rolling-tensile test in the state that the measured temperature values are maintained by measuring temperature of the strip to be rolled coming out of the rolling mill during actual continuous cold rolling: £Expression 3| k=lx(m+ε)¬n, where k is strain resistance, l, m and n are peculiar constants of the materials differed depending on the materials to be rolled, and ε is strain rate; and applying the obtained strain resistance prediction equation in the AGC (automatic gauge controller) system to a roll force prediction equation represented as in the following expression 1: £Expression 1| P=BxkxKtxDpx{R(H-h)}¬0.5, where B is width of strip to be rolled, k is strain resistance of a material to be rolled, Kt is an influence term by tensions at front and rear of the rolling mill, Dp is an influence term of friction coefficient, R is radius of work rolls of the rolling mill, H is strip thickness at the inlet side of the rolling mill, and h is strip thickness at the outlet side of the rolling mill.

Description

냉간압연에서의 압연하중 예측방법Prediction Method of Rolling Load in Cold Rolling

본 발명은 냉간압연에서의 압연하중 예측방법에 관한 것으로, 특히 보다 정확한 압연하중 예측을 통해 압연판내에 발생되는 두께편차를 줄이고, 이를 통해 실수율을 향상시켜 경제적인 이익을 얻고자 하는것이다.The present invention relates to a rolling load prediction method in cold rolling, and in particular, to reduce the thickness deviation generated in the rolling plate through more accurate rolling load prediction, thereby improving the error rate to obtain economic benefits.

일반적으로 자동화된 냉간압연공장에서의 압연작업은 모든 공정이 전산기에 의해 제어되고 있으며, 이들 공정제어전산기를 실제로 구동시키기 위해서는 셋업모델이라고 하는 소프트웨어가 필요하다.In general, in an automated cold rolling mill, all processes are controlled by a computer, and software called a setup model is required to actually drive these process control computers.

셋업모델은 원하는 제품이 생산될 수 있도록 압연기의 구동조건을 결정해 주고, 압연작업중 상황의 변화에 따라 설비의 운용조건을 적절히 변경시켜 주는 기능을 갖고 있다.The setup model determines the operating conditions of the rolling mill to produce the desired product and changes the operating conditions of the equipment according to the change of the situation during the rolling operation.

셋업모델은 오랜 기간동안 많은 연구를 통해 얻어진 압연이론식을 바탕으로 만들어지며, 여러 가지 압연이론식중 가장 중요한 것으로는 당해 기술분야에 Hill식으로도 널리 알려져 있는 압연하중 예측식이 있다.The setup model is based on the rolling theory obtained through many studies for a long time, and the most important of the various rolling theories is the rolling load prediction equation, which is also widely known in the art as the Hill equation.

압연하중 예측식은 셋업모델의 궁극적인 목표인 롤갭과 롤속도 설정치의 계산 그리고 자동두께제어장치(AGC: Automatic Gauge Controller)의 구동에 필요한 계수를 구하는 데 사용된다.The rolling load prediction equation is used to calculate the roll gap and roll speed setpoints, which are the ultimate goals of the setup model, and to obtain the coefficients needed to drive the Automatic Gauge Controller (AGC).

따라서 계산된 압연하중이 실제의 압연하중과 차이가 클 경우에는 판두께 편차가 커지게 되므로 이로 인한 실수율 감소로 경제적 손실을 초래하게 된다. 그러므로 정밀한 두께의 압연판을 생산하기 위해서는 압연하중의 정확한 예측이 전제되어야 한다.Therefore, if the calculated rolling load is different from the actual rolling load, the plate thickness variation is large, resulting in economic loss due to the reduction of the real number. Therefore, accurate prediction of rolling load must be made in order to produce rolled plates of precise thickness.

일반적인 AGC시스템의 구성을 간략하게 설명하면 다음과 같다.The configuration of a general AGC system is briefly described as follows.

통상적인 냉간압연공정은 순차적으로 압연판의 두께를 감소시키도록 여러개의 압연기 스탠드가 순차적으로 설치되는데, 그 중 특히 1번 스탠드에 적절한 크기의 롤켑이 형성될수 있도록 AGC시스템이 집중적으로 설치된다.In a typical cold rolling process, a plurality of rolling mill stands are sequentially installed to sequentially reduce the thickness of the rolling plate, and in particular, an AGC system is intensively installed so that a roll of a suitable size can be formed in the first stand.

즉, 주어진 압연조건화에서 최상위 컴퓨터에 의해 계산된 1번 스탠드 압연기의 롤캡, 즉 상하 작업롤간의 간격은 상부 작업롤의 상부에 설치된 스크류 다운에 의해 조절된다. 이렇게 초기치가 설정된 후 압연이 진행되면, 압연된 판의 두께는 1번 스탠드의 후단에 설치된 두께 측정기에 의해 계측되고, 이를 목표 두께와 비교하여 오차가 허용 범위내에 들면 계속 압연을 진행한다. 그러나 오차가 크게 되면 그 오차를 줄이기 위해 공정제어용 컴퓨터가 실시간 제어를 실시하게 된다.In other words, the roll cap of the No. 1 stand rolling mill, ie the upper and lower work rolls, calculated by the top-level computer in a given rolling condition is controlled by a screw down installed on the upper part of the upper work roll. When rolling proceeds after the initial value is set in this way, the thickness of the rolled plate is measured by a thickness measuring instrument installed at the rear end of No. 1 stand, and the rolling is continued if the error is within the allowable range compared to the target thickness. However, if the error is large, the process control computer performs real time control to reduce the error.

공정제어용 컴퓨터는 판두께 오차를 줄이기 위해 작동해야 할 유압시스템의 제어량을 계산하고 이를 하부 작업를 하부에 설치된 유압시스템에 지령을 내리게 되며, 이와 같은 일련의 동작을 판두께 오차가 허용범위에 들 때가지 반복하게 된다. 이러한 판두께 제어의 실시간 제어를 통상 AGC라고 한다.The process control computer calculates the control amount of the hydraulic system to be operated in order to reduce the plate thickness error, and commands the lower work to the hydraulic system installed at the lower part. This series of operations is performed until the plate thickness error is within the allowable range. Will repeat. Real-time control of such plate thickness control is commonly referred to as AGC.

이러한 AGC에서 적절한 롤캡 제어량(△ S)을 구하기 위하여는, 롤캡 제어량(△S)을 구하는데 이용되는 변수인 소성계수(M)가 구해져야 하며, 상기 소성계수(M)를 구하는데 압연하중 예측식이 이용되게 된다. 그러므로, 압연하중의 정확한 예측이 전제되면, 정확한 롤캡 제어량(△ S)을 얻을 수 있으므로 정밀한 두께의 압연판을 생산할 수 있게 된다.In order to obtain an appropriate roll cap control amount (ΔS) in this AGC, the plasticity coefficient (M), which is a parameter used to obtain the roll cap control amount (ΔS), should be obtained, and the rolling load prediction is used to obtain the plasticity coefficient (M). The formula will be used. Therefore, if accurate prediction of the rolling load is assumed, an accurate roll cap control amount D can be obtained, so that a rolled plate of precise thickness can be produced.

통상의 냉간압연 셋업모텔에서 사용되고 있는 압연하중 예측식을 나타내어 보면 다음과 같다.The rolling load prediction formula used in the ordinary cold rolling set-up motor is as follows.

Figure pat00001
Figure pat00001

여기서, B : 압연판의 폭Where B is the width of the rolled plate

k : 압연된 소재외 변형저항k: strain resistance other than rolled material

Kt : 압연기 전후방의 장력에 의한 영향항Kt: Influence term due to tension in front and rear of rolling mill

Dp : 마찰계수 영향항Dp: coefficient of friction influence

R : 압연기의 작업롤 반경R: working roll radius of rolling mill

H, h : 압연기의 입, 출측판두께H, h: mouth and exit plate thickness of rolling mill

상기 식(1)에서 볼 수 있는 바와 같이 압연하중의 크기는 압연판폭, 판두께, 압연기의 작업롤 반경 등의 압연조건은 물론, 압연될 소재의 물성치인 변형저항 k에 의해 정해지게 된다.As can be seen in Equation (1), the size of the rolling load is determined by the deformation resistance k, which is the physical property of the material to be rolled, as well as the rolling conditions such as the width of the rolling plate, the thickness of the rolling mill, and the working roll radius of the rolling mill.

변형저항(k)은 압연될 소재의 강도, 즉 해당 재료를 소성변형시키기 위해 필요한 단위면적당의 하중을 나타내는 물리량으로써 실험에 의해 구해지는 값이다.The deformation resistance k is a value obtained by experiment as a physical quantity representing the strength of the material to be rolled, that is, the load per unit area required for plastic deformation of the material.

따라서 상기 식(1)에서 알 수 있는 바와 같이 압연하중과 변형저항은 정비례하고 있으므로 압연하중을 정확히 예측하기 위해서는 먼저, 압연될 소재의 변형저항을 정확히 구해두어야 한다.Therefore, as can be seen in Equation (1), the rolling load and the deformation resistance are directly proportional, so in order to accurately predict the rolling load, the deformation resistance of the material to be rolled must be accurately obtained.

통상의 셋업모델에서 사용되고 있는 냉간변형저항 예측식은 일정량의 소성가공에 대한 변형저항의 측정치를 수식화하여 사용하고 있으며, 수식은 소성가공량, 즉 변형률ε의 증가에 따라 지수함수적으로 증가하는 다음과 같은 형태를 갖고 있다.The cold deformation resistance prediction formula used in the conventional setup model is used by formulating the measured value of the deformation resistance for a certain amount of plastic working, and the equation is exponentially increased as the plastic working amount, i.e., the strain ε increases. It has the same form.

Figure pat00002
Figure pat00002

윗식에서 l, m, n은 압연될 소재에 따라 달라지는 재료의 고유상수이다.Where l, m and n are the intrinsic constants of the material depending on the material to be rolled.

따라서 압연될 소재의 냉간변형저항 예측식을 구한다는 것은 상기 식(3)의 재료상수 l, m, n를 구하는 것과 같다.Therefore, to obtain the cold strain resistance prediction equation of the material to be rolled is the same as to find the material constant l, m, n of the formula (3).

여기서 통상의 방법에서 사용되고 있는 냉간변형 저항 예측상수를 구하는 방법을 간단하게 기술하면 다음과 같다.Here, a brief description of a method for obtaining the cold deformation resistance prediction constant used in the conventional method is as follows.

금속재료의 냉간변형저항을 구하는 방법에는 압연-인장시험법, 원주압측시험법, 평판압축시험법, 비틀림시험법 그리고 휨시험법등이 있으나, 가장 쉽고 정확한 측정방법으로서 최근에 널리 사용되는 것은 압연-인장시험법이다.The cold deformation resistance of metal materials can be calculated by rolling-tensile test, circumferential pressure test, flat plate compression test, torsion test, and bending test method. Tensile test method.

이방법은 동일한 모재로부터 절취한 10여개의 소재를 일정한 간격의 압하율로 각각 압연을 한후, 압연된 판으로부터 인장시험편을 떼어낸다. 그리고 이들을 각각 인장시험을 통해 인장강도를 측정한다.In this method, ten pieces of material cut out from the same base metal are respectively rolled at regular intervals of rolling reduction, and then the tensile test piece is removed from the rolled plate. And each of them is measured the tensile strength through a tensile test.

이와 같이 구해진 재료의 인장강도는 해당시험편이 이미 압연에 의해 가공경화을 받은 상태이므로 압연시의 압하율에 해당하는 변형저항을 구한 것이 된다.The tensile strength of the material thus obtained is obtained by obtaining the deformation resistance corresponding to the rolling reduction rate at the time of rolling because the specimen has already been subjected to work hardening by rolling.

따라서 이들의 변형저항을 각 시험편의 초기 압연량에 대응되도록 X-Y그래프에 플로팅하게 되면 해당소재의 변형저항 측정치가 얻어질 수 있으며, 이들 측정치를 모두 만족할 수 있는 대표 함수. 즉 상기 식(3)과 같은 형태의 변형저항 예측식이 얻어지게 되는 것이다.Therefore, when these strain resistances are plotted on the X-Y graph so as to correspond to the initial rolling amount of each test piece, the strain resistance measurement of the material can be obtained, and a representative function that can satisfy all of these measurements. In other words, a deformation resistance prediction equation of the form as shown in Equation (3) is obtained.

일반적으로, 실험치를 이용한 함수의 도출에는 희귀분석법이 많이 사용되고 있으며, 상기 식(3)은 변형률에 따라 변형저항이 지수함수의 형태로 증가하므로 중회귀분석법을 사용하게 된다.In general, a rare analysis method is used for deriving a function using experimental values, and the formula (3) uses a regression analysis method because the deformation resistance increases in the form of an exponential function according to the strain rate.

도 1은 통상의 압연-인장법으로 구해진 각 압하율별 변형저항을 플로트하고 이들을 하나의 예측식으로 만들어내는 과정을 보여주는 하나의 예이다.FIG. 1 is an example showing a process of plotting strain resistance for each reduction ratio obtained by a conventional rolling-tension method and making them into one prediction equation.

그런데 이와같은 통상의 방법에 의해 구해진 금속재료의 냉간변형저항은 실제로 이 값이 사용되는 환경이 실험조건과 많은 차이가 있으므로, 실험에 의해 구해진 값을 직접 사용하게 되면 압연하중의 계산에 있어서 많은 오차를 발생시키게 된다.However, since the cold deformation resistance of the metal material obtained by such a conventional method is actually different from the experimental conditions in which the value is used, many errors in the calculation of the rolling load are obtained by directly using the value obtained by the experiment. Will be generated.

왜냐하면 기존의 냉간변형저항 측정실험은 상온에서 실시되었으나, 실제의 압연은 도 2a에서 볼수 있는 바와 같이 상하부작업롤(1)(1a)를 소재인 압연판(3) 사이에 작용되는 큰 부하에 의해 많은 양의 열이 발생하고, 이로 인해 압연판의 온도는 약 200℃까지 상승하기 때문이다.Because the existing cold strain resistance measurement experiment was carried out at room temperature, the actual rolling is due to the large load acting between the upper and lower work rolls (1) (1a) between the rolling plate 3 of the material as shown in Figure 2a This is because a large amount of heat is generated, which causes the temperature of the rolled plate to rise to about 200 ° C.

도 2b는 실제의 연속 냉간압연중 압연판의 온도변화을 나타내고 있으며, 압연기를 빠져나오는 압연판의 온도를 측정한 결과 약 200℃의 비교적 고온에서 인장시험을 해야 하고 여기서 측정된 데이터를 기준으로 냉간변형저항식을 구해주는 것이 타당하게 된다.Figure 2b shows the actual temperature change of the rolling plate during continuous cold rolling, the tensile test at a relatively high temperature of about 200 ℃ as a result of measuring the temperature of the rolling plate exiting the rolling mill cold deformation based on the measured data here It is reasonable to find a resistance formula.

본 발명은 냉간압연의 셋업모델에서 압연하중을 구함에 있어서, 반영되는 금속재료의 변형저항치를 상온에서 측정된 값을 사용하지 않고, 실제의 압연온도인 약 200℃에서 측정된 값을 사용함에 따라 통상의 방법에서 갖고 있는 압연하중 계산의 오류를 극복하고 보다 정확한 압연하중을 계산하여 양질의 제품을 생산할수 있도록 함에 그 목적이 있다.In the present invention, in calculating the rolling load in the setup model of cold rolling, the measured value of the deformation resistance of the metal material to be reflected is used without using the value measured at room temperature, and according to the actual rolling temperature. The purpose is to overcome the errors of rolling load calculation in the conventional method and to calculate a more accurate rolling load to produce a good quality product.

도 1은 통상의 압연-인장시험법에 의해 구해지는 금속재료의 변형저항곡선도,1 is a deformation resistance curve diagram of a metal material obtained by a conventional rolling-tension test method;

도 2a는 통상의 연속냉간압연시 압연이 진행됨에 따라 변화되는 압연판의 온도를 나타내는 개략도로서 5개의 압연기로 구성된 연속냉각압연기구성도,Figure 2a is a schematic diagram showing the temperature of the rolling plate that changes as the rolling proceeds during the normal continuous cold rolling, the continuous cold rolling mechanism consisting of five rolling mills,

도 2b는 통상의 연속냉간압연시 압연이 진행됨에 따라 변화되는 압연판의 온도를 나타내는 개략도로서 연속냉간압연중 압연판의 온도변화를 나타낸 그래프,Figure 2b is a schematic diagram showing the temperature of the rolling plate changes as the rolling progresses in the normal continuous cold rolling, a graph showing the temperature change of the rolling plate during continuous cold rolling,

도 3은 고온에서의 변형저항을 측정하기 위한 시험장치의 구성도,3 is a configuration diagram of a test apparatus for measuring deformation resistance at high temperature;

도 4는 BO4CZ강종에 대한 변형저항의 실험치와 실제값의 비교 그래프,4 is a graph comparing the experimental and actual values of strain resistance for BO4CZ steels;

도 5은 본 발명의 효과를 나타내는 압연하중 예측치와 실측치의 비교 그래프이다.5 is a comparative graph of the rolling load prediction value and the measured value showing the effect of the present invention.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

1 : 상부작업롤 1a : 하부작업롤1: upper work roll 1a: lower work roll

2 : 상부보강롤 2a : 하부보당롤2: upper reinforcement roll 2a: lower reinforcement roll

3 : 압연판 4 : 인장시험기3: rolled sheet 4: tensile tester

5 : 인장시험편 6 : 인장시험기의 상부 죠오5: tensile test piece 6: upper jaw of tensile tester

6a : 인장시험기의 하부죠오 7 : 가열로6a: lower jaw of tensile tester 7: heating furnace

8 : 써모커풀 9 : 온도측정장치8: thermocouple 9: temperature measuring device

10 : 온도조절장치10: temperature controller

상기와 같은 목적을 달성하기 위한 본 발명은, 냉간압연공정에서 압연되는 판두게의 오차가 허용범위에 들도록, 통상의 셋업모델이 적용된 AGC시스템을 이용하여 압연기를 제어함에 있어서,In order to achieve the above object, the present invention, in the control of the rolling mill using an AGC system to which a conventional setup model is applied, so that the error of the plate thickness to be rolled in the cold rolling process is within the allowable range,

실제의 연속 냉간압연중 압연기를 빠져나오는 압연판의 온도를 측정하여, 상기 측정된 온도가 유지되는 상태에서 압연-인장시험법을 실시한 후, 상기 시험 결과로 나온 해당소재의 변형저항 측정치를 이용하여 하기 식(3)으로 표시되는 변형저항 예측식을 회귀분석법을 통해 구하는 단계,After measuring the temperature of the rolling plate exiting the rolling mill during the continuous continuous cold rolling, the rolling-tension test method was carried out while the measured temperature was maintained, and then the strain resistance measurement of the corresponding material resulted from the test result was used. Obtaining a deformation resistance prediction equation represented by Equation (3) through regression analysis;

Figure pat00003
Figure pat00003

(단, k : 변형 저항(Where k is strain resistance

1, m, n : 압연될 소재에 따라 달라지는 재료의 고유상수1, m, n: intrinsic constant of the material depends on the material to be rolled

ε: 변형률 ):ε: strain):

상기 AGC시스템 상에서, 상기와 같이 구해진 변형저항 예측식을 하기의 식(1)로 표시되는 압연하중 예측식에 적용하는 단계,On the AGC system, applying the strain resistance prediction equation obtained as described above to the rolling load prediction equation represented by the following equation (1),

Figure pat00004
Figure pat00004

(단, B : 압연판의 폭(B, width of the rolled sheet

k : 압연된 소재의 변형저항k: strain resistance of rolled material

Kt : 압연기 전후방의 장력에 의한 영향항Kt: Influence term due to tension in front and rear of rolling mill

Dp: 마찰계수 영방항Dp: coefficient of friction

R: 압연기의 작업롤 반경R: working roll radius of rolling mill

H,h :압연기의 입, 출측판두께 );를 포함하여 구성된 것을 특징으로 한다.H, h: the mouth, exit plate thickness of the rolling mill); characterized in that it comprises a.

이하, 본 발명에 대하여 도면을 참조하여 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated with reference to drawings.

도 3은 본 발명에서 사용된 고온 변형저항 측정장치를 나타내는 개략도이다.Figure 3 is a schematic diagram showing a high temperature strain resistance measuring apparatus used in the present invention.

종래의 인장시험기(4)에 인장시험편(5)을 장착한 후 인장시험편(5)과 인장시험기의 죠오(jow)(6)(6a)전체를 감싸는 가열로(7)를 설치한다.After the tensile test piece (5) is attached to a conventional tensile tester (4), a heating furnace (7) covering the tensile test piece (5) and the entire jaws (6) (6a) of the tensile tester is installed.

설치된 가열로(7)는 인장시험편(5)에 부착된 온도측정용 써머커플(8)과 온도 측정장치를 통해 측정된 온도가 원하는 시험온도인 200℃로 유지될 수 있도록 온도조절장치(10)를 이용하여 적절히 온도가 조절되도록 한다.The installed heating furnace (7) is a thermostat (8) so that the temperature measured by the thermocouple (8) and the temperature measuring device attached to the tensile test piece (5) can be maintained at a desired test temperature of 200 ℃ To adjust the temperature appropriately.

이와 같이 고온 인장실험이 가능하도록 구성된 실험장치를 이용하여, 실제의 압연온도에 가까운 200℃를 유지한 상태로 인장실험을 하게 되면 압연판의 변형저항을 측정할 수 있게 된다. 측정된 변형저항은 종래의 방식과 마찬가지로 중회귀분석을 통해 실제의 압연에서 사용할 수 있는 변형저항 예측식이 만들어진다.Using the experimental apparatus configured to enable high temperature tensile test as described above, when the tensile test is performed while maintaining the temperature close to the actual rolling temperature, the deformation resistance of the rolled sheet can be measured. The measured strain resistance, like the conventional method, is used to predict the deformation resistance that can be used in actual rolling through the multiple regression analysis.

이와 같이 고온에서 측정된 변형저항 예측식을 압연하중식(1)에 사용함으로써 압연하중 계산의 정확도가 높아진다. 이렇게 압연하중 계산의 정확도가 높아짐에 따라 AGC시스템에 있어서의 제어에 사용되는 소성계수(M)의 정확한 산출이 가능해지고, 이에 따라 상하 롤캡의 정확한 제어가 가능해지므로, 압연판의 두게 편차가 줄여질 수 있게 된다.Thus, the accuracy of rolling load calculation becomes high by using the deformation resistance prediction formula measured at high temperature in rolling load formula (1). As the accuracy of rolling load calculation increases, accurate calculation of the plasticity coefficient M used for the control in the AGC system becomes possible, thereby enabling accurate control of the upper and lower roll caps, thereby reducing the thickness variation of the rolled plate. It becomes possible.

이하 본 발명을 실시예를 통해 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail with reference to the following Examples.

(실시예)(Example)

본 발명이 제시한 냉각변형저항 예측식을 200℃의 비교적 고온에서 구한 결과와 이를 압연하중 계산에 사용한 실시예이다. 도 4는 냉간압연공장에서 대표적으로 많이 생산하고 있는 BO4CZ라고 하는 강종에 대한 상온과 200℃에서 측정된 변형저항의 크기를 변형율과 함께 나타내었고 이들 측정치를 중회귀분석하여 구해낸 변형저항 예측식을 오른쪽에 표시해 두었다.The cooling strain resistance prediction equation presented by the present invention was obtained at a comparatively high temperature of 200 ° C. and used in calculating the rolling load. Figure 4 shows the strain resistance measured at room temperature and 200 ℃ for the steel species called BO4CZ which is typically produced in cold rolling mills with the strain rate and the formula for predicting the strain resistance obtained by multiple regression analysis Marked on

또한 같은 그림에 앞서의 실험으로부터 구해낸 변형저항 예측식의 정확도를 검토해보기 위해 실제 압연으로부터 얻어진 변형저항값을 'ε'로 표시해 두었다.In addition, in order to examine the accuracy of the strain resistance prediction equation obtained from the previous experiment in the same figure, the strain resistance value obtained from the actual rolling is marked as 'ε'.

실제의 압연으로부터 변형저항을 구해내는 방법은 해당강종의 압연시에 로드셀로부터 측정된 압연하중을 기준으로 식(1)을 역산함으로써 구해진다.The method of calculating the strain resistance from the actual rolling is obtained by inverting Equation (1) on the basis of the rolling load measured from the load cell during the rolling of the steel sheet.

도 4로부터 200℃의 고온에서 측정된 변형저항은 상온에서 측정된 변형저항보다 약10∼15%정도 낮다는 것을 알 수 있다. 또한 실제 압연시의 변형저항은 고온에서 측정된 변형저항과 잘 일치하고 있음을 볼 수 있다.From Figure 4 it can be seen that the strain resistance measured at a high temperature of 200 ℃ is about 10 to 15% lower than the strain resistance measured at room temperature. In addition, it can be seen that the deformation resistance in actual rolling is in good agreement with the deformation resistance measured at high temperature.

따라서 고부하상태에서 가공이 진행되는 냉간압연의 경우에는 압연상태의 온도와 동일한 조건에서 측정된 변형저항을 사용하여야 실제의 압연하중을 예측하는 데 있어서 정확한 계산이 가능함을 알 수 있다.Therefore, in the case of cold rolling in which the processing is performed under high load conditions, it can be seen that accurate calculation is possible in predicting the actual rolling load by using the strain resistance measured under the same conditions as the rolling temperature.

한편, 5도는 압연전에 셋업모델에서 계산한 압연하중과 실적 압연하중을 비교한 것으로써, 새로 구해진 변형저항예측식을 사용하여 계산한 압연하중이 실적 압연하중과 잘 맞고 압연하중 예측방법이 통상의 방법보다 정확한 압연하중 계산을 할 수 있음을 알 수 있다.On the other hand, 5 degrees is a comparison between the rolling load calculated from the setup model and the actual rolling load before rolling, and the rolling load calculated using the newly obtained strain resistance prediction equation matches the actual rolling load and the rolling load prediction method is conventional. It can be seen that the rolling load calculation can be more accurate than the method.

이상과 같은 본 발명은 냉간압연의 셋업모델에서 압연하중을 구함에 있어서, 반영되는 금속재료의 변형저항치를 상온에서 측정된 값을 사용하지 않고, 실제의 압연온도인 약 200℃에서 측정된 값을 사용함에 따라 통상의 방법에서 갖고 있는 압연하중 계산의 오류를 극복하고 보다 정확한 압연하중을 계산하여 양질의 제품을 생산할수 있는 효과가 있다.In the present invention as described above, in obtaining the rolling load in the setup model of cold rolling, the measured value at the actual rolling temperature of about 200 ° C. is used without using the value measured at room temperature in the deformation resistance value of the reflected metal material. As it is used, there is an effect of overcoming the error of the rolling load calculation in the conventional method and calculating a more accurate rolling load to produce a good quality product.

Claims (1)

냉간압연공정에서 압연되는 판두께의 오차가 허용범위에 들도록, 통상의 셋업모델이 적용된 AGC시스템을 이용하여 압연기를 제어함에 있어서,In controlling the rolling mill using the AGC system to which the usual setup model is applied, the error of the plate thickness rolled in the cold rolling process is within the allowable range. 실제의 연속 냉간압연중 압연기를 빠져나오는 압연판의 온도를 측정하여, 상기 측정된 온도가 유지되는 상태에서 압연-인장시험법을 실시한 후, 상기 시험 결과로 나온 해당소재의 변형저항 측정치를 이용하여 하기 식(3)으로 표시되는 변형저항 예측식을 회귀분석법을 통해 구하는 단계.After measuring the temperature of the rolling plate exiting the rolling mill during the continuous continuous cold rolling, the rolling-tension test method was carried out while the measured temperature was maintained, and then the strain resistance measurement of the corresponding material resulted from the test result was used. Obtaining the deformation resistance prediction equation represented by the following equation (3) through the regression analysis method.
Figure pat00005
Figure pat00005
(단, k : 변형저항(Where k is strain resistance l, m, n : 압연될 소재에 따라 달라지는 재료의 고유상수l, m, n: Intrinsic constant of material that depends on the material to be rolled ε: 변형률 ):ε: strain): 상기 AGC 시스템 상에서, 상기와 같이 구해진 변형저항 예측식을 하기의 식(1)로 표시되는 압연하중 예측식에 적용하는 단계.On the AGC system, applying the strain resistance prediction equation obtained as described above to the rolling load prediction equation represented by Equation (1) below.
Figure pat00006
Figure pat00006
(단, B : 압연판의 폭(B, width of the rolled sheet k : 압연된 소재의 변형저항k: strain resistance of rolled material Kt : 압연기 전후방의 장력에 의한 영향항Kt: Influence term due to tension in front and rear of rolling mill Dp : 마찰계수 영향항Dp: coefficient of friction influence R :압연기의 작업롤 반경R: working roll radius of rolling mill H,h : 압연기의 입, 출측판두께):H, h: mouth and exit plate thickness of rolling mill): 를 포함하여 구성된 것을 특징으로 하는 냉간압연에서의 압연하중 예측방법.Rolling load prediction method in cold rolling, characterized in that configured to include.
KR1019970033375A 1997-07-18 1997-07-18 Method for predicting roll force in cold rolling KR100325335B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970033375A KR100325335B1 (en) 1997-07-18 1997-07-18 Method for predicting roll force in cold rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970033375A KR100325335B1 (en) 1997-07-18 1997-07-18 Method for predicting roll force in cold rolling

Publications (2)

Publication Number Publication Date
KR19990010569A KR19990010569A (en) 1999-02-18
KR100325335B1 true KR100325335B1 (en) 2002-07-22

Family

ID=37478195

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970033375A KR100325335B1 (en) 1997-07-18 1997-07-18 Method for predicting roll force in cold rolling

Country Status (1)

Country Link
KR (1) KR100325335B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040877B1 (en) 2004-12-01 2011-06-16 주식회사 포스코 Method for forcasting strain resistance in cold-rolling ferritic stainless steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114178321B (en) * 2021-11-17 2024-05-10 首钢智新迁安电磁材料有限公司 Method for reducing cold rolling force

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101040877B1 (en) 2004-12-01 2011-06-16 주식회사 포스코 Method for forcasting strain resistance in cold-rolling ferritic stainless steel

Also Published As

Publication number Publication date
KR19990010569A (en) 1999-02-18

Similar Documents

Publication Publication Date Title
JP2001506544A (en) Automatic control method of straightening process
JP2000317511A (en) Method for rolling metallic product
KR100818151B1 (en) Method for optimising the production technology of rolled products
KR100325335B1 (en) Method for predicting roll force in cold rolling
JP4705275B2 (en) Optimal position setting and control method for rolling rolls and guides during asymmetric shape rolling
KR20200018610A (en) How annealing furnace works
JP7211386B2 (en) Model learning method, running strip thickness changing method, steel plate manufacturing method, model learning device, running strip thickness changing device, and steel plate manufacturing device
JP2755893B2 (en) Rolling control method and apparatus
JP2003311326A (en) Steel plate manufacturing method
JPH11192505A (en) Method for correcting sheet width change prediction equation in hot rolling and sheet width control method
KR100660215B1 (en) Apparatus for controlling speed of roll in continuous rolling mill
JP4102267B2 (en) Sheet width control method in cold tandem rolling
JP3205130B2 (en) Strip width control method in hot rolling
JPS6323848B2 (en)
KR0143325B1 (en) Cold rolling method for less thickness deviation of rolled plate
JP4086119B2 (en) Shape control method in cold rolling of hot rolled steel strip before pickling
KR100910491B1 (en) Method for decision of strip target shape using thickness profile
JP4227686B2 (en) Edge drop control method during cold rolling
JPH07251207A (en) Rolling mill
JP3205175B2 (en) Strip width control method in hot rolling
JP4164306B2 (en) Edge drop control method in cold rolling
KR0135016B1 (en) Regulation method of set-up model
JP2000263113A (en) Method and device for correcting condition of abnormal rolling in rolling mill
JPH08257637A (en) Method for flattening tapered thick steel plate
JP6597565B2 (en) Thickness control method in cold rolling

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee