JP2007038227A - Welding method - Google Patents

Welding method Download PDF

Info

Publication number
JP2007038227A
JP2007038227A JP2005221907A JP2005221907A JP2007038227A JP 2007038227 A JP2007038227 A JP 2007038227A JP 2005221907 A JP2005221907 A JP 2005221907A JP 2005221907 A JP2005221907 A JP 2005221907A JP 2007038227 A JP2007038227 A JP 2007038227A
Authority
JP
Japan
Prior art keywords
welding
current
frequency
inverter
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005221907A
Other languages
Japanese (ja)
Inventor
Hiroaki Iida
浩章 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP2005221907A priority Critical patent/JP2007038227A/en
Publication of JP2007038227A publication Critical patent/JP2007038227A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welding (sealing) method of an inverter type resistance welding machine for welding a work by the welding current for rectifying the current of the frequency higher than the frequency of the power supply which can obtain the best welded state and can reduce the entering of splash (contamination) into a closed container during the welding. <P>SOLUTION: The entering of the contamination into the container is suppressed to enhance the airtightness between a base part and a lid, and the joining strength therebetween. In the inverter type welding condition, the high frequency is varied by the inverter. A welding means is used, in which a work pressed and held between welding electrodes is welded by running the welding current obtained by rectifying the current of the frequency higher than the frequency of the power supply. The set time before the predetermined welding temperature is reached is set to be 5 ms, and the welding condition thereof is that the pressure (force) of 1.45 kN is applied, and the electric current of 10.5 kA is applied for 10 ms. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電源周波数より高周波数の電流を整流した溶接電流で被溶接物を溶接するインバータ式抵抗溶接装置におけるの溶接(封止)方法に関する。   The present invention relates to a welding (sealing) method in an inverter type resistance welding apparatus that welds an object to be welded with a welding current obtained by rectifying a current having a frequency higher than a power supply frequency.

昨今の電子機器の高機能、高精度化、小型化、軽量化に伴い、これらの電子機器に搭載する電子部品にも同様の課題が要求されてきている。例えば電子部品の容器構造をとってみても、従来の金属容器に代わり、セラミック材料を用いたものへの展開で前述する要求課題の改善に取り組んできている現状にある。   With the recent high functionality, high precision, miniaturization, and weight reduction of electronic devices, similar problems have been demanded for electronic components mounted on these electronic devices. For example, even when taking a container structure of an electronic component, the present invention has been addressed to improve the above-described requirements by developing a ceramic material instead of a conventional metal container.

その一方で金属容器(ベース、蓋)などを用いた、高品質な密閉封止環境を必要とする場合には、従前から用いられている封止方法により密閉環境を実現した封止が行われている。例えば、水晶振動子(ハーメチィックシールと缶タイプ)は抵抗溶接(コンデンサタイプ)やコールドウェルドと言った溶接機で溶接封止している。昔からインバータ方式の溶接の存在もあったが、設備コスト則ちインバータ方式の溶接機が非常に高価であったために導入できなかった経緯もある。なお、理想的な溶接(封止)行う条件には、電流と時間と加圧(力)が主な要素となる。   On the other hand, when a high-quality hermetic sealing environment using a metal container (base, lid) or the like is required, sealing that realizes a hermetic environment is performed by a conventionally used sealing method. ing. For example, crystal resonators (hermetic seal and can type) are welded and sealed with a welding machine such as resistance welding (capacitor type) or cold weld. Although inverter-type welding has existed since a long time ago, there were circumstances that could not be introduced because the equipment cost, that is, the inverter-type welding machine was very expensive. Note that current, time, and pressurization (force) are the main factors for ideal welding (sealing) conditions.

特開2000−158148号公報JP 2000-158148 A 特開2001−105155号公報 なお、出願人は前記した先行技術文献情報で特定される先行技術文献以外には、本発明に関連する先行技術文献を、本件出願時までに発見するに至らなかった。JP, 2001-105155, A In addition to the prior art document specified by the above-mentioned prior art document information, the applicant has not found prior art documents related to the present invention by the time of filing of the present application. .

従来の課題にも記載したように、最近では金属材料の容器や蓋に代わり、セラミック材料や樹脂材料を用いることから、従来の溶接式の封止方法に代えて、封止材を用いてシーム溶接などコンパクトな封止装置で量産化しているのが現状にある。しかしながら、水晶振動子を一例に取ってみると高安定で経時変化に対する周波数変動が通常は1×10−6の周波数安定度の製品から1×10−9の周波数安定度と言うように周波数変動の要求が極めて小さくなった場合には、従来から用いられる抵抗溶接による溶接(封止)が現在でも使われいる。 As described in the conventional problems, recently, ceramic materials and resin materials are used instead of metallic materials containers and lids. Currently, it is mass-produced with compact sealing devices such as welding. However, taking a crystal resonator as an example, it is highly stable and the frequency fluctuation with respect to the change with time is usually 1 × 10 −6 frequency stability to 1 × 10 −9 frequency stability. In the case where the requirement for this becomes extremely small, welding (sealing) by resistance welding that has been conventionally used is still used.

ここで従来からの溶接(封止)方法を簡単に説明すると図2に示すように、金属からなる容器として、ベース部分と蓋部分とを溶接電極間に加圧挟持して電流を印加することで、ベース部分と蓋部分の接触部分が溶けて封止がなされるのが原理となっている。図2(a)は溶接を構成する概念図、図2(b)は溶接前後の接合部の状態を示した概念図、図2(c)はナゲットを示す概念図である。   Here, the conventional welding (sealing) method will be briefly described. As shown in FIG. 2, as a container made of metal, a base portion and a lid portion are press-clamped between welding electrodes and an electric current is applied. In principle, the contact portion between the base portion and the lid portion is melted and sealed. FIG. 2A is a conceptual diagram that constitutes welding, FIG. 2B is a conceptual diagram that shows a state of a joint before and after welding, and FIG. 2C is a conceptual diagram that shows a nugget.

そのため、溶接部分から飛散する溶接塵が接合部周辺に飛び散り、場合によっては溶接部から容器の内側に飛散する場合も考えられる。   For this reason, it is conceivable that welding dust that scatters from the welded part scatters around the joint, and in some cases scatters from the welded part to the inside of the container.

ところで、溶接の電流制御方式には、大別してコンデンサ式とインバータ式がある。コンデンサ式は溶接設備が比較的安価であるのに対して、コンデンサに蓄えた電流を瞬時に放流する形式から詳細な溶接条件を設定することができない。その一方で、インバータ式は周波数を可変することで詳細に条件を設定することができる反面で溶接設備が高価になってしまうという一面がある。   By the way, the current control method of welding is roughly classified into a capacitor type and an inverter type. In contrast to the capacitor type, where welding equipment is relatively inexpensive, it is not possible to set detailed welding conditions from the form in which the current stored in the capacitor is instantaneously discharged. On the other hand, while the inverter type can set conditions in detail by changing the frequency, there is one aspect that the welding equipment becomes expensive.

しかしながら、前述する溶接部分から飛散する溶接塵が接合部周辺に飛び散り、場合によっては溶接部から容器の内側に飛散するという状況は、コンデンサ式でもインバータ式でも同様に発生する。特に、温度が上昇し溶接部の溶融温度の限界を超えると、溶融金属がコンタミとして飛散し、接合した容器の内部の収納する水晶表面に飛散した金属成分が付着し電気的特性を劣化させと言う課題がある。   However, the situation in which the welding dust that scatters from the above-described welded part scatters around the joint and, in some cases, scatters from the welded part to the inside of the container occurs similarly in both the capacitor type and the inverter type. In particular, when the temperature rises and exceeds the melting temperature limit of the welded part, the molten metal is scattered as contamination, and the scattered metal component adheres to the quartz surface stored inside the joined container, deteriorating the electrical characteristics. There is a problem to say.

以上のような課題を解決するために本発明は、溶接電極間に加圧挟持された被溶接物を電源周波数より高周波数の電流を整流した溶接電流の通電により溶接する溶接手段を用い、前記高周波をインバータにて周波数を可変したインバータ式溶接の溶接方法において、所定の溶接温度に達するまでの設定時間を5msとしたことにある。   In order to solve the above-mentioned problems, the present invention uses welding means for welding an object to be welded pressed between welding electrodes by energization of a welding current obtained by rectifying a current having a frequency higher than a power frequency. In the welding method of inverter type welding in which the frequency is varied by an inverter, the set time until reaching a predetermined welding temperature is set to 5 ms.

このとき、所定温度のときの溶接条件は加圧(力)が1.45kN、通電電流10.5kAを10ms通電したことを特徴とするインバータ式溶接の溶接方法である。   At this time, the welding condition at the predetermined temperature is an inverter type welding method characterized in that a pressurization (force) is 1.45 kN and an energization current of 10.5 kA is energized for 10 ms.

要するに本発明は、金属容器であるベース部分と蓋部分とを抵抗溶接で溶接する場合に、溶接時に金属成分が飛散する量を調整するために、発明者はインバータ式の溶接を持ちいたときに、最も溶接効率と溶接時則ち、封止時に発生する各種問題(接合強度の不足、接合箇所の欠落など)を解消し最良の接合条件を実験的に得たものである。その結果、容器内へのコンタミの侵入を抑えベース部と蓋部の気密性と接合強度を向上することで課題を解決する。   In short, in the present invention, when the base portion and the lid portion, which are metal containers, are welded by resistance welding, in order to adjust the amount of metal components scattered during welding, the inventor has an inverter-type welding. The best welding conditions were experimentally obtained by solving various problems (insufficient joint strength, missing joints, etc.) that occur during sealing, the welding efficiency and the welding time. As a result, the problem is solved by suppressing the entry of contamination into the container and improving the airtightness and bonding strength of the base portion and the lid portion.

以上のように本発明による溶接方法によれば、真空容器の内側にコンタミの侵入を低減することにより、高品質な製品を得ることができることから歩留まりの向上と、製造コストの低減を実現することができる。   As described above, according to the welding method of the present invention, it is possible to obtain a high-quality product by reducing the intrusion of contamination inside the vacuum vessel, thereby realizing an improvement in yield and a reduction in manufacturing cost. Can do.

以下、添付図面に従ってこの発明の実施例を説明する。なお、各図において同一の符号は同様の対象を示すものとする。図1は溶接条件の一例を示したグラフである。図1(a)は縦軸に溶接電流をとり、横軸に溶接電流の印加時間をとったもので、図1(b)は縦軸に溶接温度と、横軸に溶接要する通電時間をとったものである。また、図1にはコンデンサ式の溶接とインバータ式の溶接の条件(プロファイル)が図1(a)と図1(b)それぞれの状態で示している。   Embodiments of the present invention will be described below with reference to the accompanying drawings. In each figure, the same numerals indicate the same objects. FIG. 1 is a graph showing an example of welding conditions. Fig. 1 (a) shows the welding current on the vertical axis and the welding current application time on the horizontal axis. Fig. 1 (b) shows the welding temperature on the vertical axis and the energization time required for welding on the horizontal axis. It is a thing. Further, FIG. 1 shows conditions (profiles) for capacitor-type welding and inverter-type welding in the respective states of FIG. 1 (a) and FIG. 1 (b).

図1(a)から分かるように、コンデンサ式の溶接では温度上昇の制御ができないために、そのときの温度上昇に沿って最大温度まで達してから、温度が下降している。それに対して、インバータ式の場合には、最大温度を自由に設定できるよう、インバータで温度制御に関わる周波数を制御し所望の温度になるようにしているのが伺える。   As can be seen from FIG. 1 (a), since the temperature rise cannot be controlled by capacitor welding, the temperature drops after reaching the maximum temperature along the temperature rise at that time. On the other hand, in the case of the inverter type, it can be seen that the frequency related to the temperature control is controlled by the inverter so that the maximum temperature can be set freely so that the desired temperature is obtained.

また、図1(b)に示す溶接温度に達するまでの通電時間のグラフからは、図1(a)と同様にコンデンサ式の溶接とインバータ式の溶接とで比較したグラフを示しているが、コンデンサ式の溶接では温度上昇の制御ができないために、そのときの温度上昇に沿って最大温度まで達してから、温度が下降しているのに対して、インバータ式の場合には、最大温度周辺で温度制御することで、最大温度での急激な温度変化の発生を抑制している。   Further, from the graph of the energization time until the welding temperature shown in FIG. 1 (b) is reached, a graph comparing capacitor type welding and inverter type welding as in FIG. 1 (a) is shown. Since the temperature rise cannot be controlled with capacitor type welding, the temperature drops after reaching the maximum temperature along the temperature rise at that time, whereas in the case of the inverter type, around the maximum temperature By controlling the temperature at, the occurrence of a sudden temperature change at the maximum temperature is suppressed.

また、図1(b)のグラフでは、スプラッシュを発生させてしまうほどの高温度範囲と、ナゲットを発生させてしまう温度範囲をグラフ中に示しているが、コンデンサ式の溶接ではスプラッシュを発生させてしまう温度範囲に最大温度が達してしまうのに対して、インバータ式溶接はスプラッシュを発生させる温度範囲以下の温度で制御できていることが伺える。   In addition, in the graph of FIG. 1B, a high temperature range that causes splash and a temperature range that causes nugget are shown in the graph. However, in capacitor type welding, splash is generated. It can be seen that the maximum temperature reaches the temperature range in which inverter welding is controlled at a temperature below the temperature range in which splash is generated.

加えて、インバータ式溶接ではナゲットを発生させてしまう温度範囲以上の温度を維持することから、スプラッシュの発生とナゲットの発生の両方を解消した温度設定となっている。ここでナゲットとは、金属容器のベースと蓋との溶接時に溶接部分にイボ状になった溶接ムラのことを示すもので、ナゲット部分の溶接は不安定な状態であることを伺わせる。従ってこのナゲット箇所は溶接強度が弱かったり、場合によっては未溶接の箇所があったりすることもある。   In addition, inverter welding maintains a temperature that is above the temperature range where nuggets are generated, so the temperature is set to eliminate both splash and nugget generation. Here, the nugget indicates a welding unevenness that is warped at the welded portion when welding the base of the metal container and the lid, and indicates that the welding of the nugget portion is in an unstable state. Therefore, this nugget location may have weak welding strength or may have an unwelded location in some cases.

以上のことから本発明は、金属容器であるベース部分と蓋部分とを抵抗溶接で溶接する場合に、溶接時に金属成分が飛散する量を調整するために、発明者はインバータ式の溶接を持ちいたときに、最も溶接効率と溶接時則ち、封止時に発生する各種問題(接合強度の不足、接合箇所の欠落など)を解消し最良の接合条件を実験的に得たものである。   From the above, the present inventor has an inverter type welding in order to adjust the amount of metal components scattered during welding when the base portion and the lid portion which are metal containers are welded by resistance welding. In this case, the best welding conditions were experimentally obtained by solving various problems (insufficient joint strength, missing joints, etc.) that occurred during sealing.

その結果、容器内へのコンタミの侵入を抑えベース部と蓋部の気密性と接合強度を向上するもので、溶接電極間に加圧挟持された被溶接物を電源周波数より高周波数の電流を整流した溶接電流の通電により溶接する溶接手段を用い、前記高周波をインバータにて周波数を可変したインバータ式溶接の溶接条件として、所定の溶接温度に達するまでの設定時間を5msとし、そのときの溶接条件は加圧(力)が1.45kN、通電電流10.5kAを10ms通電したことを特徴とするインバータ式溶接の溶接条件を発明者が実験的に得たものである。   As a result, the penetration of contaminants into the container is suppressed and the airtightness and bonding strength of the base and lid are improved. Using welding means for welding by energizing the rectified welding current, the welding time for the inverter type welding in which the frequency is varied by an inverter is set to 5 ms, and the welding time at that time is set to 5 ms. The inventors experimentally obtained welding conditions for inverter welding characterized in that pressurization (force) was 1.45 kN and energization current 10.5 kA was applied for 10 ms.

なお本発明の溶接方法では、スブラッシュの発生はLog的に変化するために、金属ベースゆ蓋の母材によっては、電流、時間、圧力での制御も可能な場合がある。しかしながらコンデンサ式溶接に比べてインバータ式溶接は封止条件の設定幅を広くすることができ、かつ条件設定を容易にすることができる。その結果、プロジェクション部が安定して潰れる溶接による封止程度も高くなる。   In the welding method of the present invention, since the occurrence of slush changes in a Log manner, depending on the base material of the metal base lid, it may be possible to control with current, time, and pressure. However, compared to capacitor type welding, inverter type welding can widen the setting range of sealing conditions and can easily set conditions. As a result, the degree of sealing by welding in which the projection part is stably crushed also increases.

なお、図3に示す図は溶接温度に達するまでの設定時間とその設定時間に対する溶接状態を示したものである。本発明では発明者が実験により最適設定時間を探し得たもので、溶接温度に達するまでの設定時間を5±1msであれば十分に溶接が可能であると結論付けている。しかしながら4msの場合にはナゲット状態を生じる場合もあることから、理想としては5msを設定時間としている。   In addition, the figure shown in FIG. 3 shows the welding state with respect to the setting time until it reaches welding temperature, and the setting time. In the present invention, the inventor has been able to find the optimum setting time by experiment, and concludes that welding is sufficiently possible if the setting time until reaching the welding temperature is 5 ± 1 ms. However, since the nugget state may occur in the case of 4 ms, 5 ms is ideally set as the set time.

また、全体の通電時間については、当然ながら10ms以上であっても構わないが、溶接に必要な時間は10msで足りることから、それ以上の時間は全体的な製造時間の無駄となってしまう。仮に10ms余計に時間を要した過程したときに、1000個の溶接作業を行った場合に約10000ms則ち、10秒になるため量産数量が増えるほど製造時間の無駄となってしまう。従って、発明者は最良の溶接結果を得る最短時間として溶接に必要な時間を10msと設定するものである。   The entire energization time may of course be 10 ms or longer. However, since the time required for welding is 10 ms, the additional manufacturing time is wasted. If it takes 10 ms extra time, it takes about 10 000 ms when 1000 welding operations are performed. Therefore, as the mass production quantity increases, the manufacturing time is wasted. Therefore, the inventor sets the time required for welding as 10 ms as the shortest time for obtaining the best welding result.

本発明の状態を示したグラフで、図1(a)は溶接電流−時間を示し、図2(b)は、温度−通電時間を示したものである。In the graph showing the state of the present invention, FIG. 1 (a) shows the welding current-time, and FIG. 2 (b) shows the temperature-energization time. 溶接状態の概念を示した図である。It is the figure which showed the concept of the welding state. 溶接温度に達するまでの設定時間と溶接状態の関係を示したものである。It shows the relationship between the set time to reach the welding temperature and the welding state.

Claims (2)

溶接電極間に加圧挟持された被溶接物を電源周波数より高周波数の電流を整流した溶接電流の通電により溶接する溶接手段を用い、前記高周波をインバータにて周波数を可変したインバータ式溶接の溶接方法において、
所定の溶接温度に達するまでの設定時間を5msとしたことを特徴とするインバータ式溶接の溶接方法。
Welding of the inverter type welding in which welding is performed by energizing a welding current obtained by rectifying a current having a frequency higher than the power supply frequency, and the high frequency of the work is clamped between welding electrodes. In the method
A welding method for inverter welding, characterized in that a set time until reaching a predetermined welding temperature is set to 5 ms.
請求項1記載の所定温度のときの溶接条件は加圧(力)が1.45kN、通電電流10.5kAを10ms通電したことを特徴とするインバータ式溶接の溶接方法。 2. The welding method of inverter type welding according to claim 1, wherein the welding conditions at a predetermined temperature are a pressurization (force) of 1.45 kN and an energization current of 10.5 kA for 10 ms.
JP2005221907A 2005-07-29 2005-07-29 Welding method Pending JP2007038227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221907A JP2007038227A (en) 2005-07-29 2005-07-29 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221907A JP2007038227A (en) 2005-07-29 2005-07-29 Welding method

Publications (1)

Publication Number Publication Date
JP2007038227A true JP2007038227A (en) 2007-02-15

Family

ID=37796691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221907A Pending JP2007038227A (en) 2005-07-29 2005-07-29 Welding method

Country Status (1)

Country Link
JP (1) JP2007038227A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128663A1 (en) * 2012-02-29 2013-09-06 株式会社 向洋技研 Welding transformer, welding transformer assembly, welding device, and resistance welding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067954A (en) * 1992-05-12 1994-01-18 Furukawa Alum Co Ltd Spot welding method for aluminum alloy sheet
JPH1128576A (en) * 1997-07-05 1999-02-02 Yoshitaka Aoyama Spatter generation prevention method in electric resistance welding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067954A (en) * 1992-05-12 1994-01-18 Furukawa Alum Co Ltd Spot welding method for aluminum alloy sheet
JPH1128576A (en) * 1997-07-05 1999-02-02 Yoshitaka Aoyama Spatter generation prevention method in electric resistance welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128663A1 (en) * 2012-02-29 2013-09-06 株式会社 向洋技研 Welding transformer, welding transformer assembly, welding device, and resistance welding method
US9202622B2 (en) 2012-02-29 2015-12-01 Koyo Giken Inc. Welding transformer and welding transformer assembly and welding apparatus

Similar Documents

Publication Publication Date Title
CN101015876A (en) AC tungsten inert gases welding electric arc micro-melting brazing procedure for aluminium, titanium and diverse metal alloy thereof
JP6731289B2 (en) Battery manufacturing method and battery
CN101856757A (en) Powder medium diffusion reaction resistance soldering method of aluminum alloy
CN101885095A (en) Powder medium diffusion reaction resistance brazing method of magnesium alloy
KR101814354B1 (en) Electrical bonding method and electrical bonding device
WO2008059693A1 (en) Electronic component package
JP2007059736A (en) Piezoelectric vibrator package, its manufacturing method, and physical value sensor
JP2001205452A (en) Ultrasonic welding equipment, ultrasonic welding method, closed battery and producing method thereof
JP2007038227A (en) Welding method
KR20180120910A (en) Apparatus and Method for Hybrid-Jointing of stacked metal plates
JP2005317793A (en) Electronic device container and its sealing method
JP2006086463A (en) Temporary lid welding device and temporary welding electrode
JP6488460B2 (en) Film capacitor
JP4159531B2 (en) Package sealing method
JP4532225B2 (en) Roller electrode for seam welding
JP2012049252A (en) Electronic component package
JP4974284B2 (en) Package sealing method
US11969816B2 (en) Plated metal bonding method and plated metal bonding apparatus
JP4781925B2 (en) Airtight container
JP2005229338A (en) Sealing and manufacturing method of crystal resonator
JP2010034099A (en) Hermetic sealing method
JP4363990B2 (en) Surface mount crystal unit
JP6892250B2 (en) Piezoelectric device and base
JP2006339307A (en) Sealing method of piezoelectric component
JP2000269663A (en) Case for electronic component and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120321

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120329

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120629