JP2007038114A - Method for subjecting nitric acid-containing waste water to reduction treatment - Google Patents

Method for subjecting nitric acid-containing waste water to reduction treatment Download PDF

Info

Publication number
JP2007038114A
JP2007038114A JP2005224436A JP2005224436A JP2007038114A JP 2007038114 A JP2007038114 A JP 2007038114A JP 2005224436 A JP2005224436 A JP 2005224436A JP 2005224436 A JP2005224436 A JP 2005224436A JP 2007038114 A JP2007038114 A JP 2007038114A
Authority
JP
Japan
Prior art keywords
nitric acid
water
reactor
catalyst
containing wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005224436A
Other languages
Japanese (ja)
Inventor
Masaaki Matsubara
正明 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005224436A priority Critical patent/JP2007038114A/en
Publication of JP2007038114A publication Critical patent/JP2007038114A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently subjecting a large amount of waste water containing high-concentration nitric acid to reduction treatment at a low cost while dispensing with special maintenance. <P>SOLUTION: The method for subjecting nitric acid in raw water 1 consisting of nitric acid-containing waste water to reduction treatment comprises a step of circulating the raw water 1 in a reactor packed with a catalyst while adding hydrogen. A fixed-bed catalytic reactor 4 is used as the reactor. A part of the treated water 6 treated in the fixed-bed catalytic reactor 4 is mixed with the raw water by using a mixed water line 1c formed by connecting circulating water lines 6b, 6c to a raw water line 1b. The obtained mixed water is treated circularly in the fixed-bed catalytic reactor 4. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高濃度の硝酸含有廃水を効率良く還元処理する方法に関するものである。   The present invention relates to a method for efficiently reducing high concentration nitric acid-containing wastewater.

硝酸性窒素は農薬肥料等に含まれ地下水や河川に混入し得るが、硝酸イオンは生体内で亜硝酸イオンに還元され、血液中のヘモグロビンと結合することによって、特に乳児にメトヘモグロビン血症を発症させる。また、成人に対しても発ガン性が疑われている。従って、水道水には硝酸イオンや亜硝酸イオンの濃度基準が設けられている。   Nitrate nitrogen is contained in agricultural fertilizers and can be mixed into groundwater and rivers, but nitrate ions are reduced to nitrite ions in the body and bind to hemoglobin in the blood, so that methemoglobinemia occurs particularly in infants. Cause it to develop. It is also suspected to be carcinogenic to adults. Therefore, the concentration standard of nitrate ion and nitrite ion is provided in tap water.

硝酸含有廃水の従来の処理方法としては、触媒の存在下に硝酸と水素等の還元剤を反応させることにより、硝酸を窒素ガスに還元処理して除去する方法が種々検討されている。例えば、ヒドラジンまたはその塩を添加し、スポンジ銅触媒と接触させて硝酸を亜硝酸へ還元した後、更にヒドラジンまたはその塩の存在下にパラジウム触媒と接触させて前記亜硝酸を窒素ガスにまで還元する処理方法が提案されている(特許文献1参照)。このような処理方法においては、pHを8以上に調整することが好ましいと記載されている。   As conventional treatment methods for nitric acid-containing wastewater, various methods for removing nitric acid by reducing it to nitrogen gas by reacting nitric acid with a reducing agent such as hydrogen in the presence of a catalyst have been studied. For example, hydrazine or a salt thereof is added and contacted with a sponge copper catalyst to reduce nitric acid to nitrous acid, and further contacted with a palladium catalyst in the presence of hydrazine or a salt thereof to reduce the nitrous acid to nitrogen gas. A processing method has been proposed (see Patent Document 1). In such a treatment method, it is described that the pH is preferably adjusted to 8 or more.

また、別の従来例においては、金属パラジウムと元素比がCu≧Pdである銅−パラジウム合金との混合物である触媒組成物と、これを触媒とする硝酸含有水の処理方法が提案されている(特許文献2参照)。この方法においては、pHは4〜11の範囲が好ましく、5〜10の範囲が更に好ましいとの記載がある。   In another conventional example, a catalyst composition which is a mixture of metallic palladium and a copper-palladium alloy whose element ratio is Cu ≧ Pd, and a method for treating nitric acid-containing water using the catalyst composition as a catalyst have been proposed. (See Patent Document 2). In this method, it is described that the pH is preferably in the range of 4 to 11, more preferably in the range of 5 to 10.

これら従来の処理方法が低pHの硝酸含有廃水に適用できないのは、pHが低くなると触媒金属の被処理水への溶出が顕著となり、触媒性能が低下するためである。一方、耐酸性の高い金属を用いた触媒、例えばプラチナ−スズ触媒の場合、逆にpHが上昇してアルカリ性になると反応速度が低下するという知見が得られている。   The reason why these conventional treatment methods cannot be applied to nitric acid-containing wastewater having a low pH is that when the pH is lowered, elution of the catalyst metal into the water to be treated becomes remarkable, and the catalyst performance deteriorates. On the other hand, in the case of a catalyst using a metal with high acid resistance, for example, a platinum-tin catalyst, it has been found that the reaction rate decreases when the pH rises and becomes alkaline.

このように、触媒反応により硝酸を還元処理する場合、pHを調整しながら反応させることが肝要である。この目的に合致する処理方式として、完全混合槽型の触媒反応器を用いれば、pHの調整が容易である。このような従来例として、固定床触媒反応器以外の処理方式の採用により、金属微粒子触媒を用いて硝酸含有水を還元処理する方法が提案されている(特許文献3,4参照)。
特開2003−126872号公報 特開2001−866号公報 特開2004−57954号公報 特開2004−97893号公報
Thus, when nitric acid is reduced by a catalytic reaction, it is important to carry out the reaction while adjusting the pH. If a complete mixing tank type catalyst reactor is used as a treatment method that meets this purpose, the pH can be easily adjusted. As such a conventional example, a method for reducing nitric acid-containing water using a metal fine particle catalyst by employing a treatment method other than a fixed bed catalyst reactor has been proposed (see Patent Documents 3 and 4).
JP 2003-126872 A Japanese Patent Laid-Open No. 2001-866 JP 2004-57954 A JP 2004-97893 A

しかしながら、前記従来例に係る金属微粒子触媒は、完全混合槽型の触媒反応器より流出した触媒の回収装置が必要であり、その分設備コストが高くなる。更に、この触媒回収装置のメンテナンスを要するため、大量の硝酸含有廃水の処理には不向きである等の問題点を有する。   However, the metal fine particle catalyst according to the conventional example requires a recovery device for the catalyst that has flowed out of the complete mixing tank type catalyst reactor, which increases the equipment cost. Further, since the maintenance of this catalyst recovery device is required, there is a problem that it is not suitable for treating a large amount of nitric acid-containing wastewater.

また、完全混合槽型触媒反応器は、処理廃水中に触媒を分散させた状態で還元剤である水素ガスを吹き込む方式である。この方式においては、連続相が液相であるため、液−ガス間および液−触媒間の接触状態は良好であるが、硝酸還元反応に必要なガス−触媒の接触効率が悪いという問題がある。   The complete mixing tank type catalyst reactor is a system in which hydrogen gas as a reducing agent is blown in a state where the catalyst is dispersed in the treatment wastewater. In this method, since the continuous phase is a liquid phase, the contact state between the liquid and the gas and between the liquid and the catalyst is good, but there is a problem that the contact efficiency between the gas and the catalyst necessary for the nitric acid reduction reaction is poor. .

従って、本発明の目的は、高濃度で大量の硝酸含有廃水を、低コストにかつ特別なメンテナンスを要すことなく、効率良く還元処理する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for efficiently reducing a large amount of nitric acid-containing wastewater having a high concentration at low cost and without requiring special maintenance.

前記目的を達成するために、本発明の請求項1に係る硝酸含有廃水の還元処理方法が採用した手段は、硝酸含有廃水からなる原水を、触媒を充填した反応器中に水素を添加しつつ流通させ、前記原水中の硝酸を還元処理する方法において、前記反応器に固定床触媒反応器を用いるとともに、この固定床触媒反応器により処理された処理水の一部を循環水として、前記原水と混合して混合水となし、この混合水を前記固定床触媒反応器に循環させて処理することを特徴とするものである。   In order to achieve the above object, the means adopted by the method for reducing nitric acid-containing wastewater according to claim 1 of the present invention is to add raw water composed of nitric acid-containing wastewater while adding hydrogen to a reactor filled with a catalyst. In the method of reducing and treating nitric acid in the raw water, a fixed bed catalyst reactor is used for the reactor, and a part of the treated water treated by the fixed bed catalyst reactor is used as circulating water, and the raw water is used. And mixed water to form mixed water, and this mixed water is circulated to the fixed bed catalyst reactor for treatment.

本発明の請求項2に係る硝酸含有廃水の還元処理方法が採用した手段は、請求項1に記載の硝酸含有廃水の還元処理方法において、固定床触媒反応器に流通する前記原水流量に対する前記循環水流量の割合が、0.5〜20倍であることを特徴とするものである。   The means adopted by the method for reducing nitric acid-containing wastewater according to claim 2 of the present invention is the method for reducing nitric acid-containing wastewater according to claim 1, wherein the circulation with respect to the flow rate of the raw water flowing through the fixed bed catalyst reactor is used. The ratio of the water flow rate is 0.5 to 20 times.

本発明の請求項3に係る硝酸含有廃水の還元処理方法が採用した手段は、請求項1または2に記載の硝酸含有廃水の還元処理方法において、前記固定床触媒反応器が、トリクルベッド反応器であることを特徴とするものである。   The means adopted by the method for reducing nitric acid-containing wastewater according to claim 3 of the present invention is the method for reducing nitric acid-containing wastewater according to claim 1 or 2, wherein the fixed bed catalytic reactor is a trickle bed reactor. It is characterized by being.

本発明の請求項4に係る硝酸含有廃水の還元処理方法が採用した手段は、請求項1乃至3のうちの何れか一つの項に記載の硝酸含有廃水の還元処理方法において、前記循環水のpHを調整した後、この循環水を前記原水と混合して混合水となし、この混合水を前記固定床触媒反応器に循環させて処理することを特徴とするものである。   The means adopted by the method for reducing nitric acid-containing wastewater according to claim 4 of the present invention is the method for reducing nitric acid-containing wastewater according to any one of claims 1 to 3, wherein the circulating water is After adjusting the pH, this circulating water is mixed with the raw water to form mixed water, and this mixed water is circulated through the fixed bed catalyst reactor for treatment.

本発明の請求項5に係る硝酸含有廃水の還元処理方法が採用した手段は、請求項1乃至3のうちの何れか一つの項に記載の硝酸含有廃水の還元処理方法において、前記循環水を前記原水と混合して混合水となし、この混合水のpHを調整した後前記固定床触媒反応器に循環させて処理することを特徴とするものである。   The means adopted by the method for reducing nitric acid-containing wastewater according to claim 5 of the present invention is the method for reducing nitric acid-containing wastewater according to any one of claims 1 to 3, wherein the circulating water is It is mixed with the raw water to form mixed water, and after adjusting the pH of the mixed water, it is circulated through the fixed bed catalyst reactor for treatment.

本発明の請求項6に係る硝酸含有廃水の還元処理方法が採用した手段は、請求項4または5に記載の硝酸含有廃水の還元処理方法において、前記pHを11以下に調整することを特徴とするものである。   The means adopted by the method for reducing nitric acid-containing wastewater according to claim 6 of the present invention is characterized in that in the method for reducing nitric acid-containing wastewater according to claim 4 or 5, the pH is adjusted to 11 or less. To do.

本発明の請求項7に係る硝酸含有廃水の還元処理方法が採用した手段は、請求項1乃至6のうちの何れか一つの項に記載の硝酸含有廃水の還元処理方法において、前記触媒が、プラチナおよびパラジウムから選ばれた少なくとも1種と、銅およびスズから選ばれた少なくとも1種とを含むことを特徴とするものである。   The means adopted by the method for reducing nitric acid-containing wastewater according to claim 7 of the present invention is the method for reducing nitric acid-containing wastewater according to any one of claims 1 to 6, wherein the catalyst comprises: It contains at least one selected from platinum and palladium and at least one selected from copper and tin.

本発明の請求項1に係る硝酸含有廃水の還元処理方法によれば、触媒反応器に固定床触媒反応器を用いるので、完全混合槽型触媒反応器のような触媒回収の問題がなく、また触媒の磨耗が少ない。かつ、この固定床触媒反応器により処理された処理水の一部を循環水として、前記原水と混合して混合水となし、この混合水を前記固定床触媒反応器に循環させて処理するので、送液量が多くなり液流路の偏流が防止される。   According to the method for reducing nitric acid-containing wastewater according to claim 1 of the present invention, since a fixed bed catalyst reactor is used as the catalyst reactor, there is no problem of catalyst recovery as in the complete mixing tank type catalyst reactor, and Less catalyst wear. And, a part of the treated water treated by this fixed bed catalyst reactor is used as circulating water, mixed with the raw water to form mixed water, and this mixed water is circulated to the fixed bed catalyst reactor for treatment. As a result, the amount of liquid feeding is increased and the drift of the liquid flow path is prevented.

また、本発明の請求項2に係る硝酸含有廃水の還元処理方法によれば、前記固定床触媒反応器に流入する前記原水流量に対する前記循環水流量の割合が0.5〜20倍であるので、流入する硝酸溶液が希釈されるため硝酸による触媒劣化が防止される。更に、送液量が多いので、前記反応器上部と下部とのpH変化が小さい。   Further, according to the method for reducing nitric acid-containing wastewater according to claim 2 of the present invention, the ratio of the circulating water flow rate to the raw water flow rate flowing into the fixed bed catalytic reactor is 0.5 to 20 times. Since the flowing nitric acid solution is diluted, catalyst deterioration due to nitric acid is prevented. Furthermore, since the amount of liquid fed is large, the pH change between the upper part and the lower part of the reactor is small.

本発明の請求項3に係る硝酸含有廃水の還元処理方法によれば、前記固定床触媒反応器がトリクルベッド反応器であるので、水素と触媒との接触効率が良好で、還元反応の効率が高い。   According to the method for reducing nitric acid-containing wastewater according to claim 3 of the present invention, since the fixed bed catalyst reactor is a trickle bed reactor, the contact efficiency between hydrogen and the catalyst is good, and the efficiency of the reduction reaction is high. high.

更に、本発明の請求項4または5に係る硝酸含有廃水の還元処理方法によれば、前記循環水のpHを調整した後、この循環水を前記原水と混合して混合水となし、あるいはまた前記循環水を前記原水と混合して混合水となし、この混合水のpHを調整することによって、完全混合槽型触媒反応器のようにpHを最適範囲に維持しつつ還元処理することができる。   Furthermore, according to the method for reducing nitric acid-containing wastewater according to claim 4 or 5 of the present invention, after adjusting the pH of the circulating water, the circulating water is mixed with the raw water to form mixed water, or alternatively The circulating water is mixed with the raw water to form mixed water, and by adjusting the pH of the mixed water, reduction treatment can be performed while maintaining the pH within the optimum range as in a complete mixing tank type catalyst reactor. .

更にまた、本発明の請求項6に係る硝酸含有廃水の還元処理方法によれば、前記pHを11以下に調整することにより、触媒反応速度の低下が防止される。   Furthermore, according to the method for reducing nitric acid-containing wastewater according to claim 6 of the present invention, by adjusting the pH to 11 or less, a decrease in the catalyst reaction rate is prevented.

また、本発明の請求項7に係る硝酸含有廃水の還元処理方法によれば、硝酸含有廃水の還元反応を促進する金属触媒を特定した。   Further, according to the method for reducing nitric acid-containing wastewater according to claim 7 of the present invention, the metal catalyst that promotes the reduction reaction of the nitric acid-containing wastewater is specified.

先ず、本発明の形態1に係る硝酸含有廃水の還元処理方法を、そのフロー図である図1を用いて以下に説明する。図中の符号1は、本発明に係る還元処理方法により処理される硝酸含有廃水(以下、原水と称す)を示し、100〜100,000mg/リットル(以下Lと記載)の広範囲な硝酸濃度を処理対象としている。この硝酸を含む原水1は、先ず原水貯留槽2に貯留され、原水ポンプP1により原水ライン1aを経て原水槽3に送水される。   First, a method for reducing nitric acid-containing wastewater according to Embodiment 1 of the present invention will be described below with reference to FIG. Reference numeral 1 in the figure indicates nitric acid-containing wastewater (hereinafter referred to as raw water) to be treated by the reduction treatment method according to the present invention, and has a wide range of nitric acid concentrations of 100 to 100,000 mg / liter (hereinafter referred to as L). It is targeted for processing. The raw water 1 containing nitric acid is first stored in the raw water storage tank 2 and is sent to the raw water tank 3 through the raw water line 1a by the raw water pump P1.

そして、この原水槽3においては、必要に応じてpH計10aによって原水のpHを計り、図示しない薬液タンク内のアルカリもしくは酸を薬液ポンプで注入して、pH調整することができるようになっている。   In the raw water tank 3, the pH of the raw water can be measured by a pH meter 10a as necessary, and the pH can be adjusted by injecting alkali or acid in a chemical tank (not shown) with a chemical pump. Yes.

次に、この原水槽3中の原水は、原水ポンプP2により原水ライン1bを介して触媒反応器4上部に送水され、後述するように、この触媒反応器4によって処理された処理水6の一部を、循環ライン6b,6cを経由する循環水として前記原水ライン1bに合流させて混合水とし、この混合水を混合水ライン1cを経て前記触媒反応器4の上部から流入させる。   Next, the raw water in the raw water tank 3 is sent to the upper part of the catalytic reactor 4 by the raw water pump P2 via the raw water line 1b, and one of the treated water 6 treated by the catalytic reactor 4 as described later. These parts are combined with the raw water line 1b as circulating water via the circulation lines 6b and 6c to form mixed water, and this mixed water is allowed to flow from the upper part of the catalytic reactor 4 through the mixed water line 1c.

同時に、前記触媒反応器4上部に設けられた水素供給ライン5から、水素ガスを還元剤として供給しつつ、硝酸含有廃水を含む混合水の還元処理を行う。処理後の排ガスは排気ライン5aより排気され、処理終了後の処理水6は処理水槽7に貯留される。   At the same time, the mixed water containing nitric acid-containing waste water is reduced while supplying hydrogen gas as a reducing agent from the hydrogen supply line 5 provided in the upper part of the catalyst reactor 4. The treated exhaust gas is exhausted from the exhaust line 5 a, and the treated water 6 after the treatment is stored in the treated water tank 7.

前記処理水槽に貯留された処理水の一部は、循環ポンプP3によって、循環ライン6bを経て循環水槽8へ送水される。そして、この循環水槽8において、pH計10bによって循環水のpHを計り、図示しない薬液タンク内のアルカリもしくは酸を薬液ポンプで注入してpH調整された後、循環ポンプP4により原水ライン1bの原水と合流して混合水をなし、混合水ライン1cとして前記触媒反応器4へ送水される。また、処理水槽7の処理水の残りは処理水6aとして排水される。   A part of the treated water stored in the treated water tank is sent to the circulating water tank 8 through the circulation line 6b by the circulation pump P3. Then, in this circulating water tank 8, the pH of the circulating water is measured by the pH meter 10b, the pH is adjusted by injecting alkali or acid in a chemical tank (not shown) with the chemical pump, and then the raw water in the raw water line 1b by the circulation pump P4 And mixed water is formed, and the mixed water is supplied to the catalytic reactor 4 as a mixed water line 1c. Further, the remaining treated water in the treated water tank 7 is drained as treated water 6a.

前記循環水流量は、触媒性能、原水の硝酸濃度や前記触媒反応器中の滞留時間等によって最適値が異なってくるが、原水流入量に対する前記循環水流量の割合(以下、循環割合と称す)が、0.5〜20倍の範囲が好ましく、1〜10倍の範囲が更に好ましい。前記循環割合が、0.5倍未満の場合は、本発明の特徴である偏流の抑制、pH変化の抑制等の効果が十分に発揮されない。また、前記循環割合が20倍を超える場合は、効果が飽和し循環ポンプのエネルギーコストが無駄になる。   The optimum value of the circulating water flow rate varies depending on the catalyst performance, the concentration of nitric acid in the raw water, the residence time in the catalytic reactor, etc., but the ratio of the circulating water flow rate to the raw water inflow rate (hereinafter referred to as the circulation rate). However, the range of 0.5 to 20 times is preferable, and the range of 1 to 10 times is more preferable. When the circulation ratio is less than 0.5 times, effects such as suppression of drift and suppression of pH change, which are features of the present invention, are not sufficiently exhibited. When the circulation ratio exceeds 20 times, the effect is saturated and the energy cost of the circulation pump is wasted.

最適な循環割合を設定するためには、事前に循環水流量を種々変えた実験を行って、処理水の硝酸濃度が所定値を達成できる循環水流量を調査し、その結果得られた適正条件で循環させれば良い。   In order to set the optimum circulation rate, we conducted experiments with various changes in the circulating water flow rate in advance, investigated the circulating water flow rate at which the nitric acid concentration in the treated water could achieve the specified value, and obtained the appropriate conditions You can circulate with.

触媒と水素を用いるこのような硝酸還元処理において、比較的低コストで大量の硝酸含有廃水を処理するためには、前記触媒反応器4としては、ペレット状もしくはハニカム状等の触媒固定床に原水とガスを流通させる固定床触媒反応器が好適である。また、水素ガス−触媒の接触効率を考慮すれば、液とガスを下向流で並流に流す方式であるトリクルベッド反応器であることが、更に好ましい。   In such a nitric acid reduction treatment using a catalyst and hydrogen, in order to treat a large amount of nitric acid-containing wastewater at a relatively low cost, the catalyst reactor 4 includes raw water on a catalyst fixed bed such as a pellet or honeycomb. And a fixed bed catalytic reactor in which a gas is circulated. In consideration of the contact efficiency of the hydrogen gas-catalyst, a trickle bed reactor that is a system in which a liquid and a gas are allowed to flow in a parallel flow in a downward flow is more preferable.

前記トリクルベッド反応器においては、液は触媒表面に薄膜を形成した状態で触媒表面を伝わりながら流下し、これに対して連続相を形成する水素ガスが接触するため、気液界面から触媒表面までの距離が短く、水素の触媒表面への拡散が容易であるという特徴がある。従って、前記触媒反応器4として、このトリクルベッド反応器とすれば硝酸含有廃水からなる原水を効率良く還元処理することができるのである。   In the trickle bed reactor, the liquid flows down along the catalyst surface in a state where a thin film is formed on the catalyst surface, and the hydrogen gas that forms a continuous phase comes into contact with this, so from the gas-liquid interface to the catalyst surface. The distance is short, and diffusion of hydrogen to the catalyst surface is easy. Therefore, if this trickle bed reactor is used as the catalyst reactor 4, the raw water composed of nitric acid-containing waste water can be efficiently reduced.

前記触媒反応器4に流入する原水および循環水の好適なpH範囲は、使用する触媒の種類によって異なるが、pHが11を越えると反応速度が低下するため、pH11以下にすることが好ましく、10以下とするのが更に好ましい。例えば、プラチナのような耐酸性の高い金属を用いた触媒では、低いpHでも反応が進むためpHの下限は特に気にする必要はない。   The preferred pH range of the raw water and circulating water flowing into the catalyst reactor 4 varies depending on the type of catalyst used, but the reaction rate decreases when the pH exceeds 11, so that the pH is preferably 11 or less. The following is more preferable. For example, in the case of a catalyst using a metal with high acid resistance such as platinum, the reaction proceeds even at a low pH.

一方、パラジウムのような酸に弱い金属を用いた触媒では、pHは4以上にすることが好ましく、更には5以上にすることが好ましい。また、このようなpH調整に用いる薬剤は、アルカリとして水酸化ナトリウム、水酸化カリウム等の一般的な薬剤、酸としても硫酸や塩酸等の一般的な薬剤を用いることができる。   On the other hand, in a catalyst using an acid weak metal such as palladium, the pH is preferably 4 or more, and more preferably 5 or more. Moreover, the chemical | medical agent used for such pH adjustment can use common chemical | medical agents, such as sodium hydroxide and potassium hydroxide, as an alkali, and common chemical | medical agents, such as a sulfuric acid and hydrochloric acid, as an acid.

そして、前記触媒は、プラチナおよびパラジウムから選ばれた少なくとも1種と、銅およびスズから選ばれた少なくとも1種とを含むことが好ましい。このような触媒の組み合わせとすることによって、硝酸の還元反応を促進することができるからである。   The catalyst preferably contains at least one selected from platinum and palladium and at least one selected from copper and tin. This is because the reduction reaction of nitric acid can be promoted by using such a combination of catalysts.

次に、本発明の形態2に係る硝酸含有廃水の還元処理方法を、そのフロー図である図2を用いて以下に説明する。尚、本発明の形態2が上記形態1と相違するところは、循環水を原水に合流して混合水を形成するフロー構成およびpHの調整方法に相違があり、その他は全く同構成であるから、上記形態1と同一のものに同一符号を付して、その相違する点について以下説明する。   Next, a method for reducing nitric acid-containing wastewater according to Embodiment 2 of the present invention will be described below with reference to FIG. Incidentally, the difference between the second embodiment of the present invention and the first embodiment is that there is a difference in the flow configuration for forming the mixed water by combining the circulating water with the raw water, and the pH adjustment method, and the rest is exactly the same configuration. The same reference numerals are given to the same components as in the first embodiment, and the differences will be described below.

即ち、本発明の形態1に係る図1においては、処理水槽7から処理水の一部は、循環ライン6bを経て一旦循環水槽8に貯留され、この循環水槽8でpH調整された後循環ライン6cを経由して原水ライン1bに合流して混合水を形成し、この混合水の通る混合水ライン1cを触媒反応器4に流通させるフロー構成であった。   That is, in FIG. 1 according to the first embodiment of the present invention, a part of the treated water from the treated water tank 7 is temporarily stored in the circulating water tank 8 via the circulation line 6b, and the pH of the circulating water tank 8 is adjusted after the circulation line. The mixed water was formed by merging with the raw water line 1 b via 6 c and the mixed water line 1 c through which this mixed water passes was passed through the catalyst reactor 4.

ところが、本発明の形態2に係る図2においては、処理水槽7から処理水の一部は、循環ライン6dを経て原水槽3へ循環されて原水と合流し混合水を形成し、前記原水槽3内で混合水のpHを調整された後、混合水ライン1cを経由して触媒反応器4に流通させるフロー構成である。   However, in FIG. 2 according to the second embodiment of the present invention, a part of the treated water from the treated water tank 7 is circulated to the raw water tank 3 through the circulation line 6d to join the raw water to form mixed water, and the raw water tank 3 is a flow configuration in which the pH of the mixed water is adjusted in 3 and then circulated to the catalytic reactor 4 via the mixed water line 1c.

以上、本発明の形態1と2では、循環水を原水に混合して混合水を形成するフロー構成およびpHの調整方法に相違があるが、循環水を原水に混合して混合水とし、触媒反応器に流入する混合水をpH調整できる点で実施の形態2の方が管理し易い。   As described above, in the first and second embodiments of the present invention, there is a difference in the flow configuration in which the circulating water is mixed with the raw water to form the mixed water and the pH adjustment method, but the circulating water is mixed with the raw water to form the mixed water, The second embodiment is easier to manage in that the pH of the mixed water flowing into the reactor can be adjusted.

また、本発明の実施の形態2に係る硝酸含有廃水の還元処理方法は、上記の相違点以外は全て本発明の実施の形態1に係る硝酸含有廃水の還元処理方法と同一であるから、上記実施の形態1に係る硝酸含有廃水の還元処理方法と同効である。
以上、上記のような還元処理方法により、高濃度で大量の硝酸含有廃水からなる原水を、低コストにかつ特別なメンテナンスが不要で、効率良く処理可能とした。
In addition, the reduction treatment method for nitric acid-containing wastewater according to Embodiment 2 of the present invention is the same as the reduction treatment method for nitric acid-containing wastewater according to Embodiment 1 of the present invention except for the above differences. This is the same effect as the method for reducing nitric acid-containing wastewater according to Embodiment 1.
As described above, the reduction treatment method as described above makes it possible to efficiently treat raw water composed of a high concentration and a large amount of nitric acid-containing wastewater at low cost and without special maintenance.

本発明の実施の形態1で説明した図1のフローからなる処理装置を用いて、濃度1000mg/Lに調整した硝酸水溶液を原水とする還元処理テストを実施した。実験条件は次の通りである。これらの還元処理テスト結果を、表1を参照しながら以下に説明する。   Using the treatment apparatus having the flow of FIG. 1 described in the first embodiment of the present invention, a reduction treatment test was performed using a nitric acid aqueous solution adjusted to a concentration of 1000 mg / L as raw water. The experimental conditions are as follows. These reduction processing test results will be described below with reference to Table 1.

<実験条件>
・触媒 :5重量%プラチナ担持チタニアペレット(エヌ・イー・ケムキャット株
式会社製)に、0.3重量%銅、0.1重量%スズを担持した触媒
・循環なしの時の液空間速度(LHSV): 1[h-1
・水素ガスのガス空間速度(GHSV) :20[h-1
・原水流量に対する循環水流量の割合 :0〜30倍
・原水槽でのpH調整 :無し
・循環水槽でのpH調整 :無し
有り(pH4〜12)
<Experimental conditions>
・ Catalyst: 5 wt% platinum-supported titania pellets (NE Chemcat Co., Ltd.)
Catalyst made by 0.3 wt% copper and 0.1 wt% tin on a chemical company)-Liquid space velocity without circulation (LHSV): 1 [h -1 ]
-Gas space velocity (GHSV) of hydrogen gas: 20 [h -1 ]
・ Ratio of circulating water flow rate to raw water flow rate: 0 to 30 times ・ pH adjustment in raw water tank: None ・ pH adjustment in circulating water tank: None
Available (pH 4-12)

ここで、上記触媒の調製方法について更に詳細を述べるならば、前記5重量%プラチナ担持チタニアペレットを使用し、銅とスズの担持量が夫々前記チタニアペレットに対して、0.3重量%、0.1重量%となるように硝酸銅と塩化スズを夫々水に溶解し、この溶液へ前記チタニアペレットを添加して1時間撹拌した。次に、前記チタニアペレットを回収して110℃で2時間乾燥し、この乾燥物を空気中350℃で3時間熱処理した。更に、5%水素中350℃で3時間熱処理して調製したものである。   Here, the catalyst preparation method will be described in more detail. The 5 wt% platinum-supported titania pellets are used, and the supported amounts of copper and tin are 0.3 wt% and 0 wt%, respectively, with respect to the titania pellets. Copper nitrate and tin chloride were each dissolved in water so as to be 1% by weight, and the titania pellets were added to this solution and stirred for 1 hour. Next, the titania pellets were collected and dried at 110 ° C. for 2 hours, and the dried product was heat-treated at 350 ° C. in air for 3 hours. Further, it was prepared by heat treatment at 350 ° C. for 3 hours in 5% hydrogen.

上記原水流量に対する循環水流量の割合を0.6〜20倍の範囲に変更するとともに、循環水槽中のpHを調整しないあるいはpH3〜7に調整した実施例と、前記循環割合の範囲外あるいは循環水槽中のpHの調整範囲外でテストした比較例について、処理水の硝酸濃度を測定した結果を表1に示す。   An embodiment in which the ratio of the circulating water flow rate to the raw water flow rate is changed to a range of 0.6 to 20 times, and the pH in the circulating water tank is not adjusted or adjusted to pH 3 to 7, and the circulation rate is outside the range or the circulation rate. Table 1 shows the results of measuring the nitric acid concentration of the treated water for the comparative example tested outside the pH adjustment range in the water tank.

循環を行わない比較例1−1においては、処理水の硝酸濃度は原水の1/4に低減しただけで、硝酸除去が不十分であった。処理流量が少ないため偏流が生じたこと、および反応途中でpHが11を越えて上昇し、反応速度が低下したためと考えられる。   In Comparative Example 1-1 in which no circulation was performed, the nitric acid concentration in the treated water was reduced to ¼ of the raw water, and nitric acid removal was insufficient. It is considered that a drift flow occurred because the treatment flow rate was small, and that the pH rose above 11 during the reaction and the reaction rate decreased.

循環割合0.3倍とした比較例1−2においては、比較例1−1と比較して若干は処理が進行しているが、処理水の硝酸濃度に大差はない。これに対し、循環割合を0.6以上とした実施例1−1乃至4においては、硝酸除去効率が大幅に向上している。   In Comparative Example 1-2 in which the circulation ratio is 0.3 times, the treatment is slightly advanced as compared with Comparative Example 1-1, but the nitric acid concentration in the treated water is not significantly different. On the other hand, in Examples 1-1 to 4 in which the circulation ratio is 0.6 or more, the nitric acid removal efficiency is greatly improved.

次に、循環割合を一定(5倍)とし、pH条件を変えた実施例1−3乃至5および比較例1−3においては、pH12に調整した比較例1−3の場合、処理水の硝酸濃度が高くなってしまう。逆に、pHを一定(pH7)に調製し、循環倍率を変えた実施例1−6,7および比較例1−4において、循環割合20倍までは処理水中の硝酸濃度に改善が認められたが、循環割合を30倍とした比較例1−4においては、むしろ硝酸の除去率は悪化した。   Next, in Examples 1-3 to 5 and Comparative Example 1-3 in which the circulation ratio was constant (5 times) and the pH conditions were changed, in the case of Comparative Example 1-3 adjusted to pH 12, the nitric acid in the treated water The concentration becomes high. On the contrary, in Examples 1-6 and 7 and Comparative Example 1-4, in which the pH was adjusted to be constant (pH 7) and the circulation ratio was changed, the nitric acid concentration in the treated water was improved up to a circulation rate of 20 times. However, in Comparative Example 1-4 in which the circulation rate was 30 times, the removal rate of nitric acid was rather deteriorated.

Figure 2007038114
Figure 2007038114

本発明の実施の形態2で説明した図2のフローからなる処理装置を用いて、濃度1000mg/Lに調整した硝酸水溶液を原水とする還元処理テストを実施した。実験条件は、実施例1と異なる条件のみ下記に示す。これらの還元処理テスト結果を、表2を参照しながら以下に説明する。   Using the processing apparatus having the flow of FIG. 2 described in the second embodiment of the present invention, a reduction test was performed using a nitric acid aqueous solution adjusted to a concentration of 1000 mg / L as raw water. Only experimental conditions different from those in Example 1 are shown below. These reduction processing test results will be described below with reference to Table 2.

<実験条件>
・触媒 :5重量%パラジウム担持チタニアペレット(エヌ・イー・ケムキャット
株式会社製)に、0.3重量%銅を担持した触媒
・原水槽でのpH調整:無し
有り(pH3〜12)
<Experimental conditions>
・ Catalyst: 5% by weight palladium-supported titania pellets (NE Chemcat)
Co., Ltd.) 0.3 wt% copper supported catalyst-pH adjustment in raw water tank: None
Available (pH 3-12)

ここで、上記触媒の調製方法については、前記実施例1で用いた5重量%プラチナ担持チタニアペレットの代わりに5重量%パラジウム担持チタニアペレットを使用し、かつスズを使用しないこと以外は、前述の実施例1で詳細説明した調製方法と全く同一であるので以下省略する。   Here, the preparation method of the catalyst is the same as that described above except that 5 wt% palladium-supported titania pellets are used instead of 5 wt% platinum-supported titania pellets used in Example 1 and tin is not used. Since it is exactly the same as the preparation method described in detail in Example 1, it will be omitted below.

本実施例2においては、実施例1で行った循環割合および原水槽中のpHを同一の条件として処理テストを行った。但し、実施例2においては、実施例1−3に該当する条件のテストは実施しなかったので、実施例2−3の項目は省略している。その他の実施例と比較例について、処理水の硝酸濃度を測定した結果を表2に示す。   In the present Example 2, the treatment test was performed under the same conditions as the circulation ratio performed in Example 1 and the pH in the raw water tank. However, in Example 2, since the test of the conditions corresponding to Example 1-3 was not performed, the items of Example 2-3 are omitted. Table 2 shows the results of measuring the nitric acid concentration of the treated water for other examples and comparative examples.

循環を行わない比較例2−1および循環割合0.3倍とした比較例2−2においては、実施例1と同様、処理水の硝酸除去は不十分であった。処理流量が少ないため偏流が生じたこと、および反応途中でpHが11を越えて上昇し、反応速度が低下したためと考えられる。これに対し、循環割合を0.6以上とした実施例2−1乃至4においては、硝酸除去効率が向上した。   In Comparative Example 2-1 where no circulation was performed and in Comparative Example 2-2 where the circulation ratio was 0.3 times, as in Example 1, nitric acid removal of the treated water was insufficient. It is considered that a drift flow occurred because the treatment flow rate was small, and that the pH rose above 11 during the reaction and the reaction rate decreased. On the other hand, in Examples 2-1 to 4 in which the circulation ratio was 0.6 or more, the nitric acid removal efficiency was improved.

次に、循環割合を一定(5倍)とし、pH条件を変えた実施例2−4,5および比較例2−3においては、pH12に調整した比較例2−3の場合、処理水の硝酸濃度が高くなることが認められた。更に、pHを一定(pH7)に調整し、循環倍率を大きくした実施例2−6,7および比較例2−4において、循環割合20倍までは処理水中の硝酸濃度に改善が認められたが、循環割合を30倍(比較例2−4)としても、硝酸の除去率はこれ以上向上しないことが分かる。   Next, in Examples 2-4, 5 and Comparative Example 2-3 in which the circulation ratio was constant (5 times) and the pH conditions were changed, in the case of Comparative Example 2-3 adjusted to pH 12, the nitric acid in the treated water A higher concentration was observed. Furthermore, in Examples 2-6 and 7 and Comparative Example 2-4 in which the pH was adjusted to be constant (pH 7) and the circulation ratio was increased, the nitric acid concentration in the treated water was improved up to a circulation rate of 20 times. It can be seen that even when the circulation ratio is 30 times (Comparative Example 2-4), the nitric acid removal rate does not improve any more.

Figure 2007038114
Figure 2007038114

以上のように、本発明に係る硝酸含有廃水の還元処理方法によれば、触媒反応器に固定床触媒反応器を用いるので触媒回収の問題がなく、また触媒の磨耗が少ない。かつ、この固定床触媒反応器により処理された処理水の一部を、循環水として前記固定床触媒反応器に循環させて処理するので、送水量が多くなり、反応器内の液流路の偏流が防止される。   As described above, according to the method for reducing nitric acid-containing wastewater according to the present invention, there is no problem of catalyst recovery because the fixed-bed catalyst reactor is used as the catalyst reactor, and the wear of the catalyst is small. In addition, since a part of the treated water treated by the fixed bed catalyst reactor is circulated and treated as circulating water in the fixed bed catalyst reactor, the amount of water supply is increased, and the liquid flow path in the reactor is increased. Drift is prevented.

また、本発明に係る硝酸含有廃水の還元処理方法によれば、固定床触媒反応器に流入する前記原水流量に対する前記循環水流量の割合が0.5〜20倍であるので、流入する硝酸溶液が希釈されるため硝酸による触媒劣化が防止される。更に、送液量が多いので、前記反応器上部と下部とのpH変化が小さい。   Further, according to the method for reducing nitric acid-containing wastewater according to the present invention, since the ratio of the circulating water flow rate to the raw water flow rate flowing into the fixed bed catalytic reactor is 0.5 to 20 times, the inflowing nitric acid solution Is diluted to prevent catalyst deterioration due to nitric acid. Furthermore, since the amount of liquid fed is large, the pH change between the upper part and the lower part of the reactor is small.

本発明に係る硝酸含有廃水の還元処理方法によれば、前記固定床触媒反応器がトリクルベッド反応器であるので、水素と触媒との接触効率が良好で、還元反応の効率が高い。
また、前記処理水の一部のpHを11以下に調整する、あるいはまた、前記処理水を硝酸含有廃水と混合して混合水としこの混合水のpHを11以下に調整することにより、触媒反応速度の低下を防止しつつ還元処理することができる。
According to the method for reducing nitric acid-containing wastewater according to the present invention, since the fixed bed catalyst reactor is a trickle bed reactor, the contact efficiency between hydrogen and the catalyst is good, and the efficiency of the reduction reaction is high.
In addition, by adjusting the pH of a part of the treated water to 11 or less, or by mixing the treated water with nitric acid-containing wastewater to form mixed water, the pH of the mixed water is adjusted to 11 or less, thereby causing a catalytic reaction. Reduction processing can be performed while preventing a decrease in speed.

本発明の実施の形態1に係る硝酸含有廃水の還元処理方法を示すフロー図で ある。It is a flowchart which shows the reduction | restoration processing method of nitric acid containing wastewater which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る硝酸含有廃水の還元処理方法を示すフロー図で ある。It is a flowchart which shows the reduction | restoration processing method of nitric acid containing wastewater which concerns on Embodiment 2 of this invention.

符号の説明Explanation of symbols

P1,P2…原水ポンプ, P3,P4…循環ポンプ,
1…原水(硝酸含有廃水), 1a,1b…原水ライン, 1c…混合水ライン,
2…原水貯留槽, 3…原水槽, 4…触媒反応器,
5…水素ガス供給ライン,5a…排気ライン,
6,6a…処理水, 6b,6c,6d…循環ライン,
7…処理水槽, 8…循環水槽, 10a,10b…pH計
P1, P2 ... Raw water pump, P3, P4 ... Circulation pump,
1 ... Raw water (nitrate-containing wastewater), 1a, 1b ... Raw water line, 1c ... Mixed water line,
2 ... Raw water storage tank, 3 ... Raw water tank, 4 ... Catalytic reactor,
5 ... Hydrogen gas supply line, 5a ... Exhaust line,
6, 6a ... treated water, 6b, 6c, 6d ... circulation line,
7 ... treated water tank, 8 ... circulating water tank, 10a, 10b ... pH meter

Claims (7)

硝酸含有廃水からなる原水を、触媒を充填した反応器中に水素を添加しつつ流通させ、前記原水中の硝酸を還元処理する方法において、前記反応器に固定床触媒反応器を用いるとともに、この固定床触媒反応器により処理された処理水の一部を循環水として前記原水と混合して混合水となし、この混合水を前記固定床触媒反応器に循環させて処理することを特徴とする硝酸含有廃水の還元処理方法。   In a method in which raw water composed of nitric acid-containing wastewater is circulated while adding hydrogen to a reactor filled with a catalyst to reduce nitric acid in the raw water, a fixed bed catalyst reactor is used for the reactor, and A part of the treated water treated by the fixed bed catalytic reactor is mixed with the raw water as circulating water to form mixed water, and this mixed water is circulated to the fixed bed catalytic reactor for treatment. A method for reducing nitric acid-containing wastewater. 固定床触媒反応器に流入する前記原水流量に対する前記循環水流量の割合が、0.5〜20倍であることを特徴とする請求項1に記載の硝酸含有廃水の還元処理方法。   The method for reducing nitric acid-containing wastewater according to claim 1, wherein a ratio of the circulating water flow rate to the raw water flow rate flowing into the fixed bed catalyst reactor is 0.5 to 20 times. 前記固定床触媒反応器が、トリクルベッド反応器であることを特徴とする請求項1または2に記載の硝酸含有廃水の還元処理方法。   The method for reducing nitric acid-containing wastewater according to claim 1 or 2, wherein the fixed bed catalyst reactor is a trickle bed reactor. 前記循環水のpHを調整した後、この循環水を前記原水と混合して混合水となし、この混合水を前記固定床触媒反応器に循環させて処理することを特徴とする請求項1乃至3のうちの何れか一つの項に記載の硝酸含有廃水の還元処理方法。   After adjusting the pH of the circulating water, the circulating water is mixed with the raw water to form mixed water, and the mixed water is circulated through the fixed bed catalyst reactor for treatment. 4. The method for reducing nitric acid-containing wastewater according to any one of 3 above. 前記循環水を前記原水と混合して混合水となし、この混合水のpHを調整した後前記固定床触媒反応器に循環させて処理することを特徴とする請求項1乃至3のうちの何れか一つの項に記載の硝酸含有廃水の還元処理方法。   The circulated water is mixed with the raw water to form mixed water, and after adjusting the pH of the mixed water, the circulated water is circulated to the fixed bed catalyst reactor for treatment. The method for reducing nitric acid-containing wastewater according to any one of the items. 前記pHを11以下に調整することを特徴とする請求項4または5に記載の硝酸含有廃水の還元処理方法。   6. The method for reducing nitric acid-containing wastewater according to claim 4, wherein the pH is adjusted to 11 or less. 前記触媒が、プラチナおよびパラジウムから選ばれた少なくとも1種と、銅およびスズから選ばれた少なくとも1種とを含むことを特徴とする請求項1乃至6のうちの何れか一つの項に記載の硝酸含有廃水の還元処理方法。

The said catalyst contains at least 1 sort (s) chosen from platinum and palladium, and at least 1 sort (s) chosen from copper and tin, The statement as described in any one of Claim 1 thru | or 6 characterized by the above-mentioned. A method for reducing nitric acid-containing wastewater.

JP2005224436A 2005-08-02 2005-08-02 Method for subjecting nitric acid-containing waste water to reduction treatment Pending JP2007038114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005224436A JP2007038114A (en) 2005-08-02 2005-08-02 Method for subjecting nitric acid-containing waste water to reduction treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005224436A JP2007038114A (en) 2005-08-02 2005-08-02 Method for subjecting nitric acid-containing waste water to reduction treatment

Publications (1)

Publication Number Publication Date
JP2007038114A true JP2007038114A (en) 2007-02-15

Family

ID=37796588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005224436A Pending JP2007038114A (en) 2005-08-02 2005-08-02 Method for subjecting nitric acid-containing waste water to reduction treatment

Country Status (1)

Country Link
JP (1) JP2007038114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993877A1 (en) * 2012-07-24 2014-01-31 Jean-Francois Bouyssou Installation, useful for treating an aqueous effluent charged with nitrogen from e.g. aquarium, comprises a reactor comprising catalyst, and a unit for pumping a part of recirculating flow of fluid from fluid chamber towards chamber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332490A (en) * 1995-06-06 1996-12-17 Hitachi Ltd Waste water treatment
JPH09299963A (en) * 1996-05-14 1997-11-25 Japan Organo Co Ltd Removing method of oxidized nitrogen in water and device therefor
JP2000084575A (en) * 1998-09-17 2000-03-28 Chiyoda Corp Method for efficiently oxidizing ammonia in aqueous solution
JP2003128403A (en) * 2001-10-22 2003-05-08 Ube Ind Ltd Method of manufacturing nitrogen monoxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332490A (en) * 1995-06-06 1996-12-17 Hitachi Ltd Waste water treatment
JPH09299963A (en) * 1996-05-14 1997-11-25 Japan Organo Co Ltd Removing method of oxidized nitrogen in water and device therefor
JP2000084575A (en) * 1998-09-17 2000-03-28 Chiyoda Corp Method for efficiently oxidizing ammonia in aqueous solution
JP2003128403A (en) * 2001-10-22 2003-05-08 Ube Ind Ltd Method of manufacturing nitrogen monoxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993877A1 (en) * 2012-07-24 2014-01-31 Jean-Francois Bouyssou Installation, useful for treating an aqueous effluent charged with nitrogen from e.g. aquarium, comprises a reactor comprising catalyst, and a unit for pumping a part of recirculating flow of fluid from fluid chamber towards chamber

Similar Documents

Publication Publication Date Title
Qian et al. Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction
JP5499753B2 (en) Water treatment method and apparatus
CN102781849A (en) Water treatment method and ultrapure water production method
JP2002059176A (en) Treatment of water containing organic waste water by ammonium nitrate
JP2007125484A (en) Nitrogen-containing wastewater treatment method
JP6290654B2 (en) Ultrapure water production equipment
JP2014198286A (en) Method for treating poorly biodegradable organic matter-containing water and treatment apparatus thereof
JP2007038114A (en) Method for subjecting nitric acid-containing waste water to reduction treatment
Fan et al. Selective reduction of NO3−-N from wastewater to N2 by Zn/Ag bimetallic particles combined with wet ammonia oxidation process
JP6279295B2 (en) Ultrapure water production system and ultrapure water production method
US20220298045A1 (en) Treatment of Azoles
JP4177521B2 (en) Method for treating wastewater containing metal and ammonia
JP3401844B2 (en) Ammonia-containing water treatment method
JP2001000866A (en) Water treating catalyst composition and water treatment using the catalyst
JP4862876B2 (en) Method and apparatus for decomposing and removing ammonia nitrogen
US20230192515A1 (en) Water treatment apparatus and water treatment method
JP3477804B2 (en) Method for treating water containing ammonia and nitrate ions
JP6947267B1 (en) Cleaning water supply device for electronic parts / members and cleaning water supply method for electronic parts / members
TW201226330A (en) Method for processing waste water and system thereof
CN114229985B (en) Method for removing ammonia nitrogen by catalytic oxidation of magnesium-based oxyfluoride
JPH081172A (en) Treatment of ammonia nitrogen-containing water
JP2007069190A (en) Method and apparatus for treating nitrite nitrogen-containing water
JP4502877B2 (en) Nitric acid reduction catalyst composition and nitric acid solution treatment method using the same
JP3509186B2 (en) Denitrification treatment method
JP5534231B2 (en) Nitrate-nitrogen-containing wastewater treatment method and sponge copper catalyst used in the treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608